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Abstract.

Sea surface temperature (SST) is one of the essential variables of the Earth climate system. Being at the interface with

the atmosphere
::::::
air-sea

:::::::
interface, SST modulates heat fluxes in and out of the ocean, provides insight on

::::::
provide

::::::
insight

::::
into

several upper/interior ocean dynamical processes, and it is a fundamental indicator of climate variability potentially impact-

ing marine ecosystems’ health
::
the

::::::
health

::
of

::::::
marine

::::::::::
ecosystems. Its accurate estimation and regular monitoring from space is5

therefore crucial. However, even if satellite infrared/microwave measurements provide a much better coverage than what
::
is

achievable from in situ platforms, they cannot sense the sea surface under cloudy/rainy conditions. Large gaps are present even

in merged multi-sensor satellite products and different statistical strategies have thus been proposed to obtain gap-free (L4)

images, mostly based on the Optimal Interpolation algorithms. This kind of
:::::
These techniques, however, filter out the signals

below the space-time decorrelation scales considered, significantly smoothing most of the small mesoscale and submesoscale10

features. Here, deep learning models, originally designed for single image Super Resolution (SR), are applied to enhance the

effective resolution of SST products and the accuracy of SST gradients. SR schemes include a set of computer vision techniques

leveraging Convolutional Neural Networks to retrieve high-resolution data from low-resolution images. A dilated convolutional

multi-scale learning network, which includes an adaptive residual strategy and implements a channel attention mechanism, is

used to reconstruct features in SST data at 1/100◦ spatial resolution starting from 1/16◦ data over the Mediterranean Sea. The15

application of this technique shows a remarkable
::
an improvement in the high resolution reconstruction, being able to capture

::::::::
capturing small scale features and providing a root-mean-squared-difference improvement of 0.02◦C with respect to the L3

ground-truth data.

1 Introduction

Investigating ocean dynamics and climate variability requires accurate, regular and systematic observations of the Sea Surface20

Temperature (SST). SST plays indeed a key role in air-sea interaction and upper ocean circulation processes (Warner et al.,

1990; Deser et al., 2010; Chang and Cornillon, 2015), it is used to track climate variability and change (Jha et al., 2014; Pisano

et al., 2020), and it is at the base of various chemical and biological processes (MacKenzie and Schiedek, 2007; Dong et al.,

2022a). SST and the estimate of its gradients have also been proven to be a powerful tool to assess and investigate mesoscale and
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submesoscale variability (e.g., Bowen et al., 2002; Isern-Fontanet et al., 2006; González-Haro and Isern-Fontanet, 2014; Rio25

et al., 2016; Castro et al., 2017; Ciani et al., 2020). Therefore, the availability of high resolution SST fields is crucial, since they

serve as
::
the

:
primary data source for many scientific and operational applications. However, their reliability is hindered by the

limitations of infrared (IR) and microwave-based (MW) measurements (Minnett et al., 2019). In fact, thermal IR instruments

are able to provide SST images at kilometer to sub-kilometer scale resolution, although their application is limited by cloud

cover, aerosols radiation emission/absorption and scattering. Conversely, SST retrieval in the microwave is hampered only due30

to sunglint, rain
:
,
::::
radio

:::::::::
frequency

::::::::::
interference or proximity to land, but the lower spatial resolution (≃ 25 km

:::::::
nominal

::::::::
resolution)

achievable with present platforms represents a significant disadvantage. Higher resolution MW SSTs (≃ 15 km resolution) will

only be available after the launch of the Copernicus Imaging Microwave Radiometer (Pearson et al., 2019), expected during

2029. Consequently, SST fields at high resolution are generally affected by several data voids. For this reason, a few statistical

techniques have been developed to obtain gap-free SST images, mostly based on optimal interpolation (OI) (Bretherton et al.,35

1976). However, as a result of the temporal and spatial averaging applied during the interpolation, the effective resolution of

the interpolated products can be significantly coarser than the nominal grid resolution, rarely getting down to less than a few

tens of kilometres (Chin et al., 2017; Ciani et al., 2020; Yang et al., 2021). As such, providing interpolated data increases the

accessibility of sea surface temperature fields for a wide community of users, but this improvement comes with a trade-off, as

statistical interpolation leads to a strong smoothing of small scale ocean features.40

In this context, we investigate here the potential of applying deep learning models to improve the effective resolution of a

gap-free SST field, providing those small scale features even when direct measurements are missing. We exploit techniques

generally used in the field of computer vision, which have proven
:
to

:::
be very successful especially for processing gridded data,

managing large-scale datasets while controlling the computational efficiency. In the field of oceanography, the research com-

munity started only recently to explore the applicability of machine learning (ML) methods to ocean remote sensing images45

(Dong et al., 2022b). The applications range from oil spill (Singha et al., 2013) to eddy detection (Lguensat et al., 2018; Duo

et al., 2019) and parametrization (Bolton and Zanna, 2019), to marine algae species discrimination (Balado et al., 2021; Cui

et al., 2022), to forecasting of ocean variables (Deo and Naidu, 1998; Ham et al., 2019) and estimation of meteorological

parameters (Krasnopolsky et al., 2013; Zanna et al., 2019). Moreover, good results have been achieved from applying Neu-

ral Networks (NNs) to space-time interpolation and short-term forecasting issues with satellite altimetry data (Fablet et al.,50

2021), to high-performance description of turbulence processes (Mohan et al., 2020; Zanna and Bolton, 2020) and to SST

reconstruction (Meng et al., 2021; Lloyd et al., 2021).

Among the image processing techniques, impressive performances
::::::
results have been obtained by

:::
with

:
Convolutional Neu-

ral Networks (CNNs) due to the high ability of this kind of networks
::::
their

::::
high

::::::
ability

:
to extract the most important infor-

mation from two-dimensional spatial fields. Recently, the application of CNN architectures in the process of reconstructing55

High-Resolution (HR) images from Low-Resolution (LR)
::::::::::::
high-resolution

::::::
images

:::::
from

::::::::::::
low-resolution ones, the so-called sin-

gle image Super Resolution (SR) problem, has attracted much attention in a wide range of scientific challenges. The idea is to

implement a network that directly learns the end-to-end mapping between low and high resolution images. One of the simplest

attempts made by Dong et al. (2015) was the construction of a network for image restoration composed by
::
of three 2D convolu-
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tional layers with different kernel size
::::
sizes. The three layers might be seen as the three conceptual phases of this NN algorithm:60

a first extraction of overlapping tiles from the input images representing them into features maps; the non-linear mapping of

these maps onto one high-dimensional vector of high-resolution feature maps; the final reconstruction aggregating the above

representations to generate the final high-resolution image. This final image is expected to be similar to the ground truth one.

Despite the simplicity of the architecture, the SRCNN developed by Dong et al. (2015) achieved excellent performances
:::::
results

with respect to more traditional methods and it has already been applied to reconstruct satellite-derived SST data, with promis-65

ing results (Ducournau and Fablet, 2016). Building on Dong’s work, several more complicated structures have been developed

to tackle the Super Resolution problem. In the subsequent years, a few intents
:::::::
attempts

:
to develop residual networks have

shown the convergence improvement of deeper architectures, mainly given by the introduction of skip-connections and recur-

sive convolutions (He et al., 2016; Kim et al., 2016a, b). Similarly, a step forward has been made by Lim et al. (2017) with the

development of an Enhanced Deep Residual Network for Super Resolution (EDSR) which makes use of residual blocks with70

constant scaling layers after the last convolutional layer, in order to stabilize the training even in presence of a large number

of filters. This modification brought to a
::
led

::
to

:
significantly better accuracy using much deeper networks, while controlling

the computational cost of the training phase. A further step has been proposed by Liu et al. (2019) with the Adaptive Residual

Blocks (ARBs), which replace the constant factor with adaptive residual factors, increasing the adaptability of the network.

::::
More

::::::::::
specifically,

::
in

:::
the

:::::
ARB,

::::::
feature

:::::::::
responses

:::
(i.e.

:::
the

::::
filter

::::::
output

::::::::
channels)

:::
are

:::::::::::
re-calibrated

::
on

:
a
:::::::::::
channel-wise

:::::
basis

:::::
using75

:
a
::::::::
so-called

:::::::
Squeeze

:::
and

:::::::::
Excitation

:::::::
module,

:::::
before

:::::
being

::::::::
combined

::::
with

:::
the

:::::
block

:::::
input.

::::
This

:::::::
process

::
is

::
in

:::
fact

::::
able

::
to

:::::::
enhance

::
the

:::::::::
network’s

::::::::
capability

::
to
:::::::

capture
:::::::
intricate

:::::::::::
relationships

::::::
among

:::
the

::::::
learned

::::::
feature

:::::::::
channels. Recently, to further push these

networks to efficiently handle different spatial scales in a multichannel input (each channel including a different variable with

characteristic feature scales), Buongiorno Nardelli et al. (2022) introduced dilated convolutional multi-scale learning modules

in the network developed by Liu et al. (2019), expanding the network receptive fields while still controlling its computational80

cost. In that work, the deep learning network was designed to super-resolve absolute dynamic topography (ADT) learning

from both low resolution ADT and high resolution SST data, through an observing system simulation experiment (namely

simulating all observations through an ocean general circulation numerical model).

Our aim is to exploit the ability of the dilated SR network to increase gap-free SST effective resolution, directly training our

network on remote sensing SST data for both the input and target datasets. We make use of the data produced by the Italian85

National Research Council - Institute of Marine Sciences (CNR-ISMAR), within the Copernicus Marine Service, consisting in

::
of merged multi-sensor (L3S) and gap-free (L4) Sea Surface Temperature products over the Mediterranean Sea at high (HR,

nominal 1/16◦ resolution) and ultra-high (UHR, nominal 1/100◦ resolution) spatial resolution (Buongiorno Nardelli et al.,

2013). Considering that our UHR interpolation accounts for space-time decorrelation scales of 5 km and 1 day, in presence

of valid UHR L3 observations the resulting L4 data can be considered as submesoscale resolving (Kurkin et al., 2020). UHR90

OI processing makes use of upsized HR L4 data as a background field. This first
:::::
fields

::
as

::
an

::::::
initial

:::::
guess.

::::
This

:
guess is left

unchanged in
:::
the absence of UHR L3 data and L4 effective resolution is thus by definition lower than 1/100◦ there. Our goal

is thus
::::::::
Therefore,

:::
our

::::
goal

::
is to enhance the effective resolution of the

:::::::
gaps-free upsized 1/16◦ background field.
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2 Materials and Methods

2.1 Training and test datasets95

When dealing with deep learning methods it is very important how
::::::::
important

:
to construct the training and the test datasets,

to ensure a sufficient generalization capability and, more specifically, to avoid under and over-fitting problems. Under-fitting

occurs when the model fails to achieve a suitably low error on the training set, while over-fitting occurs when the gap between

the training error and test error becomes excessively wide (Goodfellow et al., 2016). Remote sensing data are a very suitable

resource to prevent the occurrence of these problems, due to the wide availability of large-scale gridded datasets which are100

complex enough to encapsulate an extensive variety of features.

The suite of products considered for this project provides the foundation SST (i.e., the temperature free of diurnal variability)

over the Mediterranean Sea from 2008 to present (https://doi.org/10.48670/moi-00172) at Near Real Time (NRT). These data

are built from level 2 (L2) infrared measurements (i.e., data in satellite native grid/swath coordinates)
::::::::
processed

:::::::
through

::
a

:::::
series

::
of

::::
steps

:::::::
divided

:::
into

::::::::
different

:::::::
modules

::
as

:::::::
detailed

::
by

::::::::::::::::::::::::::::
Buongiorno Nardelli et al. (2013)

:::
and

::::::::
sketched

::
in

:::::
Figure

::
1.
:

105

Figure 1.
:::::
Sketch

::
of

:::
the

::::::::
processing

:::::
chains

:::
for

:::
the

::::::::
production

::
of
::::

L3S
:::
and

:::
L4

::::
SST

::::
fields

::
at
:::::

1/16◦
:::
and

::::::
1/100◦

:::::
spatial

::::::::
resolution

::::
over

:::
the

::::::::::
Mediterranean

::::
Sea.

:::::
Green

::::
boxes

:::::::
represent

:::::
shared

:::::::
modules,

::::
blue

::::
boxes

::::::
contain

:::
the

:::::::::
information

:::
and

::
the

::::
data

::
for

:::
the

:::
HR

::::::
product,

:::::
yellow

:::::
boxes

:::
refer

::
to
:::
the

::::
UHR

::::::::
processing

:::::
chain

:::
and

::
red

:::::
boxes

:::::::
highlight

:::
the

::::::::
application

::
of

:::
the

::::::::::::
super-resolution

::::::::
technique.
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:::
The

:::
L2

::::::::::::
measurements

:::
are

::::::::
obtained

:
from several instruments on board of both geostationary and polar orbiting satellites

::::::::
(including

::::::::::
Sentinel-3A

::::
and

::::::::::
Sentinel-3B,

::::::::::
NOAA-20,

:::::::
SUOMI

::::
NPP,

::::::::
Metop-B, after the execution of a series of processing steps

divided in different modules, as detailed in Buongiorno Nardelli et al. (2013)
::::::::
Metop-C,

:::::::
AQUA,

:::::::
TERRA

::::
and

::::::::
SEVIRI).

:::::
After

:
a
::::
first

::::::
shared

:::::::
module

:::
for

:::
the

::::::::
upstream

::::
data

:::::::::
collection

:::::
(M1),

::::
two

::::::::
separated

::::::::::
processing

:::::
chains

::::
are

::::
used

::
to
::::::

obtain
:::

the
:::::

SST

:::::::
products

::
at

:::::
1/16◦

::::
and

::::::
1/100◦

:::::
spatial

::::::::::
resolution.

::::
Both

:::::::
include

:
a
::::::
second

:::::::
module

:::
for

:::
the

:::::::::::
geographical

:::
and

::::::::
temporal

:::::::::
extraction110

::
of

:::
the

:::
L2

::::
data

:::
and

:::
the

:::::::::
remapping

:::::
onto

:::
the

::::::::::::
corresponding

::::::
regular

::::
grid

:::::
(M2),

::::
and

:
a
:::::

third
::::::
module

:::
for

::::
the

:::
bias

:::::::::
correction

::::
and

::::::
quality

::::::
control

::::::
which

::::
lead

::
to

:::
the

::::::::
merging

::
of

:::
all

:::
the

::::
data

:::::
from

:::
the

:::::::
different

:::::::
sensors

:::::
(M3).

::::::::::
Therefore,

:::
the

::::
L3S

::::::::
products

::
at

::::
both

::::::::
resolution

:::
are

::::::
created. The final daily (night-time) gap-free field is

::::
fields

:::
are

:
provided by applying a space-time Optimal

Interpolation algorithm to the L3 SST field
:::
data

:
for both HR and UHR products . As introduced before, in the

:::::
(M4).

::::::::
However,

::
the

::::
two

:::
OI

:::::::
schemes

:::
use

::::::::
different

:::::
initial

:::::
guess

::
in

:::::::
absence

::
of

:::
the

::::::::
observed

:::::
data.

:::::
While

:::
the

:::
HR

::::::::::
processing

:::::
chain

:::::
makes

:::
use

:::
of115

:
a
::::::::::::
climatological

::::::::::
background

::::
field

::
to

:::::::
produce

:::
the

:::
L4

::::
SST

:::::
image

::
at

:::::
1/16◦

:::::::::
resolution,

::
in

:::
the

:
case of the finer resolution product

::
the

::::::
initial

:::::
guess

::::
used

:::
by

:::
the

:::
OI

::::::::
algorithm

::
is
:::
the

:::
L4

::::
HR

::::
SST

::::
field,

::::::::::
preliminary

:::::::
upsized

::::
onto

::
a
::::::
1/100◦

::::::
regular

::::
grid

::::::::
(through

:
a
::::
thin

::::
plate

:::::::
spline).

:::
As

:
a
::::::::::::
consequence, due to the small decorrelation scales assumed in the UHR interpolation, small scale

features are correctly represented only when valid UHR L3 observations are present close to the interpolation point within a

short temporal window. In
:::
For

:::
this

:::::::
reason,

::
in

:
the absence of those

::::
these

:
observations, the background field used by the OI120

algorithm is the L4 HR SST field, preliminary upsized onto a 1/100◦ regular grid (through a thin plate spline) but having
::::
final

::::
UHR

:::::::
product

:::
will

:::::
have an effective resolution equal or even lower

:
to

::
or

:::::::
coarser than 1/16◦.

Therefore, we train the network to improve the satellite SST effective resolution introducing realistic small scale features

in the interpolated and upsized gap-free L4 HR SST images .
::::::
(dADR

:::::
input

::
in

::::
Fig.

:::
1). The target data are derived from a

ground-truth super-collated UHR SST dataset (L3S, namely merged multi-sensor data) specifically built for this purpose. The125

dataset is obtained by applying the CNR
::::
first

::::
three

::::::::
modules

::
of

:::
the

:::::
UHR SST processing chain to acquisitions

:::
only

:
from the

Sea and Land Surface Temperature Radiometer (SLSTR) on board of the Sentinel 3A and 3B missions
:::::::
satellites, due to their

high radiometric accuracy and km-scale resolving capabilities (Coppo et al., 2020).

Both input and target datasets are mapped on a regular grid at 1/100◦ spatial resolution over the Mediterranean Sea for the

year 2020. Since our goal is to retrieve small scale features, a first moving average high pass filter (with a kernel radius of130

200 km) is applied to remove the large scale dynamics in both input and target images (Kurkin et al., 2020). The data are

then selected considering overlapping patches of dimensions 100 × 100 km, chosen extracting all the tiles containing at least

95% of valid pixels. SST values are then transformed into anomalies to avoid seasonal variability and scaled between -1 and 1

through a classical min-max normalization technique
:
,
:::
i.e.:

:

SSTnorm = (b− a)
SST −min(SST )

max(SST )−min(SST )
+ a,

:::::::::::::::::::::::::::::::::::::::::

(1)135

:::::
where

:::::::
a=−1

:::
and

:::::
b= 1. The test dataset is finally selected separating

:::::
setting

:::::
aside the 15% of the tiles available after the

preprocessing, chosen in order to be able to reconstruct the full geographical coverage of four
::::
using

:::
all

:::
the

::::
tiles

:::::::
extracted

:::::
from

:::
four

:::::::::
individual

:
days which are representative of

:::
the different seasons. These data are separated in a fully independent dataset

which is composed by 18576 tiles (374Mb). The training dataset finally consists of 94110 pairs of tiles (6.4Gb), of which
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one part (properly separated from the original training dataset at the beginning of the training phase, following a 85:15 ratio140

between the two) is used by the network in the validation phase. In Figure 2 an example of the images used to construct the

two datasets is shown. The top left panel depicts the gap-free first guess map on the 4th
:
4 January 2020 and below we show

the corresponding L3 image derived from merged Sentinel 3A and 3B data. On the right, we provide three examples of the

pairs
::
an

::::::::
example

::
of

:::
the

:
a
::::
pair

:
of tiles extracted from the related low and high resolution SST, fed as input

:::
and

:::::
target

:
to train

the network
:
,
::::::::::
respectively.145

Figure 2. On the left the SST First Guess map used to extract the input tiles (top) and the SST L3C target image (bottom) on 4th January

2020. On the right three examples
::
an

::::::
example

:
of

:
an

:
extracted tiles

::
tile

:
used for the training and test datasets.

2.2 Super Resolution Convolutional Neural Network

In deep learning, Super Resolution algorithms are example-based methods
:
,
:
which generate exemplar patches from the input

image. As mentioned before
:::::
above, the application of Convolutional Neural Networks to the Super Resolution problem is based

on networks that directly learn an end-to-end mapping between low and high resolution images. These networks consist in
::
of

a series of interconnected layers,
:
which make use of the convolution operator simulating the connectivity pattern between150

neurons that we can find
:::::::
between

:::::::
neurons

:::::::
observed

:
in the organization of the animal visual cortex. Formally, the output Y of
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each layer i is a function of a transformation of the previous layer output X , i.e.

Y = F (Wi ∗X +Bi), (2)

where F is the non-linear activation function (in this case the Rectified Linear Unit or ReLU), Wi the weights, Bi the biases

and ∗ the convolution operator. The array of weights, generally called filters or kernel
::::::
kernels, is able to detect a specific type155

of feature in the input (generating what is called a features map) and might include for instance Gaussian-like filters or edge

detectors along different directions, or any other kind of filter learned during the training. Having its own functionality, each

layer will contain different structures. The main idea is that the network learns the weights of the filters and updates the

parameters of the system through an optimization process based on minimizing the error between the output and the data from

the validation set. This simple yet powerful idea can be complicated
:::::::::
augmented

:
as much as desired, especially exploiting the160

potential of deep networks. The CNN implemented here was originally developed by Buongiorno Nardelli et al. (2022) and

called dilated Adaptive Deep Residual Network for Super-Resolution (dADR-SR). In the dADR-SR network (schematized

in Fig. 3) the low resolution input dataset is initially fed to three parallel dilated convolutional layers with the same number

of filters (equal to 3 × 3) but increasing dilation factor (1, 3 and 5, respectively), which allows to have a larger receptive

field, extracting information at different scales without increasing the number of parameters. After this first stage, the data165

pass through a sequence of twelve Multiscale Adaptive Residual Blocks (M-ARB), each one including two sets of parallel

dilated convolutional layers (with 120 and 10 filters, respectively) and a Squeeze-and-Excitation (SE) module able to improve

channel interdependencies at almost no computational cost (Hu et al., 2018), before being summed up to produce the final high

resolution output. The SE block is a channel attention mechanismthat weights each channel adaptively
::::
main

::::::::::::
characteristics

::
of

::
an

:::::::
adaptive

:::::::
strategy

:::::::
involves

::::::::
replacing

:::
the

::::
fixed

::::::
scaling

::
of

:::::::
learned

:::::::
features

::::
with

::
an

:::::::
adaptive

::::::
scaling

::::::::::
mechanism,

::::::
carried

:::
out

:::
by170

::
the

:::
SE

:::::
block

::::::
(which

::
is

:
a
::::
kind

::
of

::::::::
attention

::::::::::
mechanism). It captures the global importance of each channel by initially squeezing

the feature maps to a single numeric value (therefore obtaining a vector of size equal to the number of channels) and, finally,

feeding this output to a two-layer "bottleneck" network which will produce new features maps, scaling each channel based on its

importance. The
::::::
detailed

:::::::::
discussion

::
of

:::
the

::::::::::
architecture

::
of

:::
the

:::::::
network

:::
may

:::
be

:::::
found

::
in

::::::::::::::::::::::::::::
(Buongiorno Nardelli et al., 2022).

::::
The

training algorithm follows an early stopping rule which terminates the iterations as soon as the validation loss function increases175

for a previously chosen number of epochs (defined by the patience parameter which is set here equal to 20). An adaptive

learning rate (initialized at lr = 10−4) is given by the Adam optimizer (Kingma and Ba, 2014), where the hyperparameters are

set following the values found in most of the recent literature (Lim et al., 2017; Liu et al., 2019; Buongiorno Nardelli et al.,

2022): the numerical stability constant is ε= 10−8, the exponential decay rates for the first and the second moment estimates

are set to β1 = 0.9 and β2 = 0.999, respectively. Instead of using the classical dropout regularization technique, a DropBlock180

strategy is implemented where contiguous region
::::::
regions

:
of a feature map are dropped together, which has been shown to

increase the accuracy of the network for convolutional layers (Ghiasi et al., 2018). To evaluate the accuracy, the mean-squared

error is used as reference in the loss function. The dADR-SR training model finally uses almost 1.6 M trainable parameters.

All codes are written in Python using the deep learning framework Keras and the training was performed on a single NVIDIA

T4 GPU in almost 4 days.185
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Figure 3. Schematic of the dilated Adaptive Deep Residual Network for Super-Resolution developed by Buongiorno Nardelli et al. (2022)

.
:
In
:::

the
:::::
figure:

::
i)
::::
Conv

:::::
stands

:::
for

:::::::::::
convolutional;

::
ii)

::::::
M-ARB

:::::
stands

:::
for

::::::::
Multiscale

:::::::
Adaptive

:::::::
Residual

::::
Block

:
;
:::
iii)

:::
SE

:::::
stands

::
for

:::::::
Squeeze

:::
and

:::::::
Excitation

:::::::
module;

::
iv)

::::
Add

:::::::
indicates

:::::::::
aggregations

::
of

:::
the

::::::
outputs

:::
from

:::
the

:::::::
networks

::::::
blocks.

2.3 Evaluation of model performances

Three different error measures are calculated to evaluate the network reconstruction performance between the ground-truth

image x and the network output y.

Firstly, we consider the classical Root Mean Squared Error (RMSE) given by:

RMSE(x,y) =

√∑N
i (xi − yi)

N
, (3)190

where xi and yi are the pixel i of the images x and y, respectively, and N is the total number of pixels. This measure can be

useful to evaluate the accuracy of a reconstructed value pixel by pixel, but it can be misleading in the assessment of the ocean

state reconstruction, depending on the objectives of the application considered. For instance, if the NN is able to reproduce an

ocean structure in a position which is slightly misplaced with respect to the ground-truth measurement, the RMSE will be high

indicating a poor reconstruction, even worse than if it would have entirely missed the structure. This issue is often referred to195

as the double penalty issue, since point-matching measures will penalize the misplacement twice (where the structure should

actually be and where is wrongly
:
it
::
is

:::::::::
incorrectly

:
predicted). However, in some cases it is possible that capturing an ocean

phenomenon, even if in a slightly wrong position, is better than missing it completely. For this reason, we also consider two

additional measures usually considered in image processing.

The most commonly used measure for reconstructed image quality is the Peak Signal to Noise Ratio (PSNR), representing200

the ratio between the maximum possible pixel value of the image I and the power of distorting noise that affects the quality of
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its representation, usually represented by the RMSE itself:

PSNR(x,y) = 20log10

(
max(I)

RMSE(x,y)

)
. (4)

The PSNR can be seen as an approximation to human perception of reconstruction quality, where the higher the value the better

the quality of the image.205

The third error measure is the structural similarity index measure (SSIM) proposed by Wang et al. (2004), widely used

for measuring image quality and especially the similarity between two images. It
:::
The

:::::::
concept

:
is based on the idea that , if

the
::::
while

:
PSNR estimates perceived errors to quantify the image degradation, the SSIM can capture perceived changes in the

:::::
SSIM

:::::::
captures

:::::::
changes

::
in

::::::::
perceived structural information variation. That is, if a reconstructed image is altered with a

:
different

type of degradation (for instance, mean-shifted, blurred or with a salt-pepper impulsive noise effect), while the MSE will come210

out nearly identical for all the cases, the SSIM will capture the different perceptual quality, being a weighted combination of

luminance, contrast and structure measurements. The mathematical formulation of the SSIM between two images x and y is

given by:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)(

µ2
x +µ2

y + c1
)(

σ2
x +σ2

y + c2
) , (5)

where µx and µy are the mean values of x and y, respectively, σxy is the cross-correlation of x and y, σ2
x and σ2

y are the variance215

of x and y, respectively, and c1 and c2 are the regularization constants for the luminance, contrast, and structural terms.

:::
All

::::
these

::::::
errors

:::
are

::::::::
computed

:::
for

:::
the

::::
final

:::::::::::
reconstructed

:::::
maps

::::
over

:::
the

::::::
whole

::::::::::::
Mediterranean

::::
Sea.

::::
The

::::::::::
combination

:::
of

:::
the

::::::::::::
super-resolved

::::
tiles

::
is

:::::
made

::::::::::
considering

:
a
:::::
linear

:::::::::::
combination

::
of

:::
the

::::::
values

:::::::
obtained

:::
for

:::
the

:::::
same

:::::
pixel,

::::::::
weighted

:::::::::
according

::
to

::::
their

:::::::
position

:::::
within

:::
the

::::
tile.

::::
That

:::
is,

:::
the

::::::::
coefficient

:::
of

::::
each

:::::
value

::::::::
decreases

::
as

:::
its

:::::::
distance

:::::::
becomes

:::::
larger

:::::
from

:::
the

::::::
central

::::
pixel

::
of

:::
the

::::
tile.

:::::::
Finally,

:::
the

::::
large

:::::
scale

::::
field

:::::::
initially

::::::::
removed

::
to

::::::
isolate

:::
the

:::::
small

::::
scale

:::::::
features

::
is

:::::
added

:::::
back

::
to

::::::
obtain

:::
the220

::::::
original

::::
SST

:::::
field.

3 Results and discussion

Our aim is to verify whether the dADR-SR network, trained by means of satellite-derived observations, is able to improve

the effective resolution of the SST fields in the areas where our interpolation technique removes most of the spatial variability

associated with mesoscale and submesoscale processes.
::::
Due

::
to

::::::::::::
computational

:::::
costs,

:
a
::::::::::
preliminary

:::::
study

:::::
based

::
on

::
a
::::::::
restricted225

:::
test

::::::
dataset

:::
was

::::::::::
performed.

:::
The

::::::::::::
performances

::
of

:::
the

::::::
dADR

:::::::
network

::
in

::::::::::
comparison

::::
with

::::
other

:::::
deep

:::::::
learning

:::::::::
algorithms

:::
and

::
a

::::::::
sensitivity

:::::::
analysis

:::
on

:::
the

:::::
impact

:::
of

:::::::
different

::::::
choices

:::
for

:::
the

::::::::::
architecture

::
is

::::::::
presented

::
in

::::
Sec.

::::
3.1.

::::::
Finally,

::
an

:::::::::
additional

:::
test

:::
on

::
an

::::::::::
independent

::::::
dataset

::::
built

:::
on

:::
one

::::
year

::::
long

:::::
series

::
of

::::
SST

:::::
fields

::::
was

::::::
carried

:::
out

::::
(Sec.

:::::
3.2).

3.1
::::::::::
Preliminary

:::::::::
validation

:::::
study

Figure 4 shows the comparison of the result obtained on one of the SST fields included in the test dataset which corresponds to230

the SST daily map of 1st
:
1 August 2020. In the top panel we can observe the

:::
The reconstruction of the dADR-SR network at

9



1/100◦ spatial resolution over the Mediterranean Sea
:
is

::::::
shown

::
in

:::
the

:::
top

:::::
panel. In order to visually evaluate the reconstruction

of the network, the corresponding L3
:::
L3S

:
SST merged field observed by Sentinel 3A and 3B (central panel) and the First Guess

map used in the optimal interpolation algorithm (bottom panel) are shown below the network output. We can observe
::::::
Evident

::::
from

:::
this

:::::
figure

::
is
:
that the SST features estimated by the CNN appears

::::::
appear much sharper than the ones approximated by the235

low resolution map, showing promising capabilities to effectively reconstruct dynamical features.

To highlight the ability of the CNN method to more accurately capture small scale features with respect to the statistical

algorithm,
::
we

:::::
show

:
in Figure 5 we can observe in details

::::
three smaller panels corresponding to a zoomed area of the same

map of
::::::::
zoomed-in

:::::::
regions

::
of

:::
the

:::::
fields

::::::
shown

::
in
:

Fig. 4 delimited by the coordinates [30, 40]◦N and [19, 36]◦E, with the

correspondent SST spatial gradients (calculated using the Sobel operator) for the dADR-SR reconstruction, L3S ground-truth240

data and the first guess approximation (from top to bottom, respectively). This particularly structure-rich area is an excellent

example to demonstrate the ability of the network to capture dynamical processes which are quite clear in the high resolution

SLSTR data (shown in the central panels). In fact, SST fronts are strongly connected with the surface dynamics and they are

generally associated with energetic motions at the mesoscale and submesoscale. While the CNN is able to capture at least the

most energetic structures (as shown in the top panels of Fig. 5), the optimal interpolation algorithm produces an extremely245

smooth field, where all the small scale features have been filtered out even when high resolution data are present.

This visual analysis is quantitatively confirmed by the maps in Figure 6, displaying the difference between the error made by

the low resolution approximation and the dADR-SR model , respectively, with respect to the original L3 image, averaged on 1◦

× 1◦ boxes. Here, red indicates an improvement of the CNN with respect to the low resolution image and blue a degradation.

A clear predominance of red boxes is found both in the SST and the SST gradients error maps.250

In Table 1, the comparison is summarized quantitatively, with the network reconstruction presenting a RMSE = 0.31◦C

(against the 0.33◦C obtained from the OI approximation), a mean PSNR equal to 37.9 and a SSIM equal to 0.54, both

larger than the low resolution result.
::
To

::::::::
highlight

:::
the

::::::
quality

:::
of

:::
the

::::::
dADR

::::::::::::
reconstruction

:::
we

:::::::::
performed

:::
the

::::
same

::::
test

:::::
using

::::
other

:::::
deep

:::::::
learning

:::::::::::::
super-resolution

:::::::
models:

::::
the

::::::::
Enhanced

:::::
Deep

::::::::
Residual

:::::::
network

:::
for

:::::::::::::::
Super-Resolution

:::::::
(EDSR)

::::::::
proposed

::
by

:::::::::::::::
(Lim et al., 2017),

:::
the

::::::::
Adaptive

:::::
Deep

::::::::
Residual

:::::::
Network

:::
for

:::::::::::::::
Super-Resolution

::::::
(ADR)

:::::::::
developed

::
by

:::::::::::::::
(Liu et al., 2019)

:::
and255

::
the

::::::
dADR

::::::::
proposed

:::
by

:::::::::::::::::::::::::::::
(Buongiorno Nardelli et al., 2022)

:::::
setting

:::
the

:::::::
number

::
of

::::::::
M-ARB

:::::
equal

::
to

:::
six

::::::
instead

:::
of

:::
12

::::::
(called

:::::::::
dADRSR/2

::::::::::
hereinafter).

:
We recall that while the RMSE should be low to ensure a good approximation, for the other two quan-

tities high values indicate an improvement.
:::
The

::::::
dADR

:::::
output

:::::::
achieves

:::
the

::::
best

:::::
value

:::
for

::
all

:::
the

:::::::::
evaluation

:::::::
methods

:::::::::
presented.

To analyse the effectiveness of the high resolution reconstruction, we compare the Power Spectral Density (PSD) of the260

network output with the L3 product and the First Guess map over three selected zones. We compute the PSD via Fast Fourier

Transform (FFT) with a Blackman–Harris window over the three areas corresponding to the boxes with labels a, b and c in

Figure 7. The zones are chosen in order to have the maximum number of valid pixels available in the L3 observations and

represent different dynamical regimes:

a - A region over the Sea of Sardinia with a smooth
::
of

:::
low

:
spatial variability.265
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Figure 4. Comparison of the SST fields of 1st August 2020 provided by the reconstruction of the dADR-SR-CNN (top panel), the collated

L3 data measured by Sentinel 3A and 3B (central panel) and the Optimal Interpolated First Guess (bottom panel).

b - A region over the Ionian Sea with an important SST variability between the eastern and the western part of the area.
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Figure 5. Comparison of the SST (on the left) and SST gradients (on the right) provided by the reconstruction of the dADR-SR-CNN (top

panels), the collated L3 data measured by Sentinel 3A and 3B (central panels) and the Optimal Interpolated First Guess (bottom panels) in

the selected region delimited by the coordinates [30, 40]◦N in latitude and [19, 36]◦E in longitude.

Table 1. Error estimations of the SST dADR-SR output and
::::
given

::
by

:
the First Guess map

:
,
:::
the

:::::
EDSR

::::::
network

:::::::::::::
(Lim et al., 2017)

:
,
::
the

:::::
ADR

::::::::::
reconstruction

:::::::::::::
(Liu et al., 2019),

:::
the

:::::::
dADRSR

::::
built with

:::
half

::
of

::
the

:::::::
M-ARB

:::::
(called

:::::::::
dADRSR/2)

:::
and

:::
the

:::::::
dADRSR

:::::
output

::::
with respect to the

L3S ground-truth: the RMSE given by Equations (3) and the corresponding confidence interval calculated by the bootstrapping procedure,

the Peak-Signal to Noise Ratio obtained by (4) and the Structural Similarity Index Measure given by (5).

Model RMSE (◦C) PSNR SSIM

dADRSR
:::
Low

:::::::::
Resolution

0.31
:::
0.33

:
±7× 10−5

:::
37.5

:::
0.53

:::::
EDSR

:::
0.32

:::::::::
±6× 10−5

: :::
37.7

:::
0.54

::::
ADR

:::
0.32

:::::::::
±6× 10−5

:

37.9 0.54

Low Resolution
:::::::::
dADRSR/2

0.33
:::
0.32

:::::::::
±8× 10−5

:::
37.7

:::
0.54

:::::::
dADRSR

::::
0.31 ±7× 10−5 37.5

::::
37.9 0.53

:::
0.54

c - A region over the Levantine Sea characterized by small scale structures.
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Figure 6. Comparison of the performance of the SST (top) and ∇SST (bottom) dADR-SR reconstruction and the L4 First Guess with

respect to the L3 data measured by Sentinel 3A and 3B satellites. Red positive values show an improvement of the network reconstruction

with respect to the optimal interpolated First Guess.

The three central panels of Figure 7 show the PSD, presented as a function of the wavenumber, of the SST reconstructed

by the dADR-SR (in yellow), the first guess map (in red) and the high resolution observations (in blue) over the three zones

delimited by the black rectangles over the L3 SST field on the top panel. In all the cases we can observe
::::
note that the PSD270

follows the same behavior for wavenumbers smaller than 1 deg−1, i.e.for scales higher ;
::::
i.e.,

:::
for

:::::
scales

:::::
larger

:
than 100 km.
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This means that for such scales the SST field
::::
fields

:
reconstructed by both the CNN and the OI algorithm equally characterize

the
::::::::::
characterize

::::
well

:
large mesoscale features. Conversely, for the regions over the boxes

::::::
regions

:
a and b, both the Low

Resolution and the network reconstruction exhibit an important a
::::::::::

significant PSD decrease for wavenumbers higher than

1 deg−1, but starting from approximately 10 deg−1, the LR
:::
first

:::::
guess

:
spectrum separates from the CNN spectrum (and275

consequently increases the distance from the HR one), indicating a poorer reconstruction of spatial features below 10 km. The

CNN spectrum, on the other hand, shows that the machine learning algorithm is able to capture those small scale features in

all the cases. An analogous behaviour is found for the spectra of the SST gradients over the same three regions (three bottom

panels). The abrupt decreases that we can observe are probably due to the artifacts introduced by the re-gridding, as already

mentioned in
::::::::
discussed

:::
by

:
Liberti et al. (2023), leading to the lack of physical meaning for the spectra from the "bumps"280

onwards (i.e. for the highest wavenumbers).
::::::
Overall,

:::
we

::::
can

:::::::
conclude

::::
that

:::
the

:::::
CNN

::::::
spectra

:::::
tracks

:::
the

::::::::
observed

::::::
spectra

:::::
from

:
1
::::::
deg−1

::
to

::
10

::::::
deg−1

::::
quite

:::::
well

:::::
while

:::
the

::
OI

:::::::
spectra

:::
are

::::
more

::::::::
energetic

::
in

::::
this

::::::
region.

:::
On

:::
the

:::::
other

:::::
hand,

:::
for

::::
wave

::::::::
numbers

::::::
greater

:::
that

:::
10

:::::
deg−1

:::
the

:::::
CNN

::::::
spectra

:::
are

::::
more

::::::::
energetic

::::
than

:::
the

::::::::
observed

::::::
spectra

:::
but

:::
still

:::::
more

:::::::::::
representative

:::
of

:::
the

::::::
spectra

::
on

:::
this

:::::::
portion

::
of

:::
the

:::::
curve

::::
than

:::
the

::
OI

:::::::
spectra.

::
To

:::::::
quantify

::::
the

:::::::::
differences

:::::::
between

:::
the

::::::::
effective

:::::::::
resolution

::
of

:::
the

::::::::
products,

:::
we

:::::::::
calculated

:::
the

::::
ratio

::::::::
between

:::
the

:::::::
spectral285

::::::
content

::
of

:::
the

:::::::
mapping

:::::
error

:::
and

:::
the

:::::::
spectral

::::::
content

::
of

:::
the

::::
L3S

::::::::::
observation

::
of

:::
the

::::
SST

:::
for

:::
the

:::::::::
dADR-SR

:::::::::::
reconstructed

:::::
fields

:::
and

:::
the

::::
first

:::::
guess

::::
map

::::
(see

:::
8)

::::
over

:::
the

:::::
three

:::::
zones

::::::::
delimited

:::
by

:::::
black

:::::::::
rectangles

:::
on

:::
the

:::
L3

::::
SST

::::
field

:::
on

::
1

::::::
August

:::::
2020

::::::::
presented

::
in

:::
the

::::::
bottom

:::::
panel

:::
of

:::::
Figure

:::
7.

:
,
:::
The

::::::::
effective

:::::::::
resolution

::
of

:::
the

::::::::
products,

:::::
based

:::
on

:::
the

::::::::::
intersection

:::::::
between

::::
this

::::
PSD

::::
ratio

:::
and

:::
the

:::::
ratio

:::::
equal

::
to

:::
0.5

::
as

:::::::
defined

::
by

:::::::::::::::::::
(Ballarotta et al., 2019)

:
,
:::::
shows

:::
the

::::::
ability

::
of

:::
the

::::::
dADR

:::::::
network

::
to
:::::::
resolve

::::::
smaller

::::::
scales.290

::
In

::::
order

:::
to

::::::::::
demonstrate

:::
the

:::::::
effective

::::::
spatial

:::::::::
resolution

:::::::::::
enhancement

::
of

:::
the

::::::::::::
super-resolved

::::::
images

:::::
under

::::::
cloudy

::::::::::
conditions,

::
we

:::::::::
performed

:
a
::::::
power

::::::
spectral

:::::::
density

:::::::
analysis

::
on

:::::::
different

::::
SST

:::::::
products

::::::::
available

::::
over

:::
the

::::::::::::
Mediterranean

:::
Sea

:::::::
(Figure

::
9).

::::
The

:::::::
products

::::
used

:::
are

:::
the

::
L4

::::
NRT

::::
HR

:
at
:::::::
nominal

:::::
1/16◦

:::
and

:::
the

:::
L4

::::
NRT

:::::
UHR

::
at

:::::::
nominal

:::::
1/100◦

::::::
spatial

::::::::
resolution

::::::::
provided

::
by

:::::
CNR

::
for

:::
the

::::::::::
Copernicus

::::::
Marine

::::::
Service

:
(https://doi.org/10.48670/moi-00172

:
),
:::
the

:::::::::
GLOBAL

:::::::
OCEAN

::::::
OSTIA

:::::::
product

::::::::
developed

:::
by

::
the

::::
UK

:::::
MET

:::::::
OFFICE

::
at
:::::
0.05◦

::
(https://doi.org/10.48670/moi-00165

::
),

:::
the

:::::::::
Multi-scale

:::::::::
Ultra-high

::::::::::
Resolution

::::::
(MUR)

:::::::
product295

:::::::
provided

:::
by

:::
the

::::::::::
NASA-JPL

::
at

:::::
0.01◦

::::::::::::::::
(Chin et al., 2017)

:::
and

:::
the

::::::::::::
super-resolved

::::
SST

::::
field

::::::::
obtained

:::
by

:::
the

:::::::::
application

:::
of

:::
the

::::::::
dADR-SR

:::::::
network

:::::::::
developed

::
in

::::
this

::::
work

::
at

::::::
0.01◦.

:::
The

::::
PSD

:::
are

:::::::::
computed

:::::
along

:::
the

::::
three

::::::::
transects

::
(a,

::
b

:::
and

::
c

::
in

:::
the

::::::
bottom

::::
panel

::
of

::::::
Figure

:::
9),

::::::
chosen

::
in

::::
three

:::::
areas

:::::::
affected

::
(at

::::::::
different

:::::
levels)

:::
by

:::::
cloud

::::::::
coverage.

::
In

::
all

:::
the

:::::
cases

:::
the

:::::
slope

::
of

:::
the

::::::
spectra

:
is
::::
very

:::::::
similar

::
for

:::
the

:::::
three

:::::::
products

::
at
::::::

higher
:::::::::
resolution

:::::::
(namely

:::
the

:::::
UHR,

:::
the

:::::
MUR

::::
and

:::
the

::::::
dADR

::::::::::::::
approximations),

:::::
while

::
we

::::
can

:::::::
observe

:::::
lower

:::::
values

:::
for

:::
the

::::
HR

:::
and

:::::::
OSTIA

:::::::
products

::::::
(which

::::
also

:::
do

:::
not

:::::
reach

::::::::::::
wavenumbers

:::::
larger

::::
than

:::
0.1

::::::
deg−1300

::
by

::::::::::::
construction).

:::
The

:::::
PSD

:::::::
analysis

::
for

:::::::
section

::
(a)

::::::
shows

::::
how

:::
the

::::::
dADR

::::::::::::
approximation

::
is

:::
not

:::::::
affected

:::
by

::::::::
excessive

::::
noise

:::
as

::
the

:::::
other

::::::::
products,

:::::::::
presenting

::::
PDS

::::::
values

::::::
higher

::::
than

:::
the

:::::
MUR

::::::::
spectrum

:::
and

:::
the

:::::
UHR

:::::::
product

:::::::::
(especially

::
at
:::::
small

:::::::
scales).

:::
For

:::::::
sections

:::
(b)

:::
and

:::
(c),

:::
the

:::::
green

::::
line

::::::::::
representing

:::
the

::::::
dADR

::::::::
spectrum

::::::
stands

:::::
above

::
all

:::
the

:::::
other

::::
lines

:::
for

::::::
almost

:::
the

::::::
whole

::::::::::
wavenumber

::::::
range.
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Figure 7.
:::
The

::::
PSD

::
of

::
the

::::
SST

::::::
(central

:::::
panels)

:::
and

::::
SST

:::::::
gradients

::::::
(bottom

::::::
panels)

::::::::::
reconstructed

::
by

:::
the

::::::::
dADR-SR

::
(in

::::::
yellow),

:::
the

:::
first

:::::
guess

:::
map

::
(in

::::
red)

:::
and

::
the

::::
high

::::::::
resolution

:::::::::
observations

::
(in

::::
blue)

::::
over

:::
the

::::
three

::::
zones

:::::::
delimited

::
by

:::::
black

:::::::
rectangles

:::
on

::
the

:::
L3

:::
SST

::::
field

::
on

:
1
::::::
August

::::
2020

:
in
:::

the
:::
top

:::::
panel.
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Figure 8.
::
The

::::
ratio

:::::::
between

:::
the

::::::
spectral

::::::
content

::
of

::
the

:::::::
mapping

::::
error

::::
and

::
the

:::::::
spectral

:::::
content

::
of
:::

the
::::
L3S

:::::::::
observation

::
of

:::
the

:::
SST

:::
for

:::
the

::::::::
dADR-SR

::::::::::
reconstructed

::::
fields

::
(in

::::::
yellow)

:::
and

:::
the

:::
first

:::::
guess

:::
map

:::
(in

:::
red)

::::
over

:::
the

::::
three

::::
zones

:::::::
delimited

:::
by

::::
black

::::::::
rectangles

::
on

:::
the

::
L3

::::
SST

:::
field

:::
on

:
1
::::::
August

::::
2020

::::::::
presented

::
in

::
the

::::::
bottom

:::::
panel

::
of

:::::
Figure

::
7.

:::
The

:::::
black

:::
line

::::::::
represents

:::
the

::::
ratio

::::
equal

::
to
::::
0.5,

::
the

::::::
dashed

::::
black

::::
line

:::
and

::
the

:::::
dotted

:::::
black

:::
line

:::::::
represent

:::
the

:::::::::
intersection

::::::
between

::::
PSD

::::
ratio

::
of

:::
the

:::
first

:::::
guess

:::
and

:::
the

:::::
dADR,

::::::::::
respectively,

::::::
showing

:::
the

:::::::
effective

:::::::
resolution

::
of

:::
the

:::::::
products.

Figure 9.
:::
The

:::::
Power

::::::
Spectral

:::::::
Density

:::::
profiles

:::::::
(bottom

:::::
panels)

::
of

:::::::
different

:::
SST

:::::::
products

:::::
under

:::::
cloudy

::::::::
conditions

::::::::
calculated

::::
along

:::
the

::::
three

::::::
transects

:::::
(black

:::::
lines)

::
on

::
the

:::
L3

:::
SST

::::
field

::
on

::
20

::::::::
December

::::
2020

:
in
:::
the

:::
top

::::
panel:

::
in

::::
blue

::
the

:::::
MED

::
L4

::::
NRT

:::
HR

:::::
product

::
at

:::::
1/16◦

::::::::::
(Copernicus),

:
in
:::
red

:::
the

::::
MED

:::
L4

::::
NRT

::::
UHR

:
at
::::::
1/100◦

::::::::::
(Copernicus),

::
in

:::::
yellow

:::
the

::::::::
GLOBAL

::::::
OCEAN

::::::
OSTIA

::::::
product

::
at

::::
0.05◦

::::::::::
(Copernicus),

::
in

:::::
purple

:::
the

::::::::
Multi-scale

::::::::
Ultra-high

::::::::
Resolution

::::::
(MUR)

::::::
product

::
at

::::
0.01◦

::::::::::
(NASA-JPL)

:::
and

::
in

:::::
green

::
the

:::::
dADR

:::::::::::
reconstruction

::::::::
developed

::
in

:::
this

::::
work.
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3.2
::

An
::::::::
extensive

::::
test

::::::
dataset305

::::
Once

::::::::::
established

:::
the

:::::::
potential

::::::
ability

::
of

:::
the

:::::::
network,

:::
we

:::::::::
performed

::
an

:::::::::
additional

::::::::
validation

:::
test

::::
with

:::
the

::::
aim

::
to

:::::::::
strengthen

:::
the

::::::::
robustness

:::
of

:::
the

::::::::
statistics.

:::::::::
Therefore,

:::
we

::::
built

:
a
::::
new

::::::
totally

::::::::::
independent

::::::
dataset

:::::::::
exploiting

:::
the

:::
L4

::::
SST

:::::
fields

::::
used

::
as

::::::
initial

::::
guess

:::
for

:::
the

:::
OI

::::::::
algorithm

::::::
which

:::::::
produces

:::::::
gap-free

::::
SST

:::::
maps

::::
over

:::
the

::::::::::::
Mediterranean

::::
Sea

::
for

:::
the

::::
year

:::::
2021

::
at

:::::
0.01◦

::
×

:::::
0.01◦

:::::
spatial

:::::::::
resolution.

:::::::
Before

::
to

::
be

::::
fed

::
to

:::
the

::::::
dADR

:::::::
network

::
in

:::::
order

::
to

::::::
obtain

:::
the

:::::
super

::::::::
resolved

::::
SST

:::::
fields,

::::
this

::::::
dataset

::::
was

::::::::::
preprocessed

:::::::::
following

:::
the

::::
same

:::::
steps

::::::::
described

::
in

::::
Sec.

::::
2.1.

:::
The

::::::::::
comparison

::
of

:::
the

::::::::
evolution

::
of

:::
the

:::::
daily,

::::::::::
basin-scale

::::::
RMSE310

::
for

:::
the

:::::
input

::
L4

:::::
SSTs

:::
and

:::
the

::::::
dADR

::::::::::::
reconstruction

:::::
along

:::
the

:::::
whole

::::
year

:::::::
confirms

:::
the

:::::::::::
improvement

::
of

:::
the

:::::::
network

::::::
output

::::
with

::::::
respect

::
to

:::
the

::::::::::
interpolated

:::::
fields

::::
(Fig.

::::
10).

::::
The

::::
mean

::::::
values

::
of

:::
the

::::::
RMSE

:::
for

:::
the

:::::
2021

:::
are

::
in

:::
line

::::
with

:::
the

:::::
ones

:::::
found

:::
for

:::
the

:::::::
previous

:::
test

::::
(i.e.,

::::::
0.31°C

:::
for

:::
the

::::::
dADR

:::::
output

:::::::
against

:::
the

::::::
0.33°C

::
of

:::
the

:::
low

:::::::::
resolution

:::::::::::::
approximation).

:
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Figure 10.
:::::::::
Comparison

::
of

:::
the

::::
daily

:::::
RMSE

::::
time

::::
series

::
of

:::
the

:::
SST

:::::::
obtained

:::
via

::::::::
dADR-SR

::::::::::
reconstruction

::::
(red)

:::
and

:::
the

::
L4

::::
First

:::::
Guess

:::::
(blue)

:::
with

::::::
respect

::
to

::
the

:::
L3

:::
data

:::::::
measured

:::
by

::::::
Sentinel

:::
3A

:::
and

::
3B

:::::::
satellites

:::::
during

:::
the

:::
year

:::::
2021.

:::
The

::::
jump

::
at

::::
Julian

:::
day

:::
134

::
is
:::
due

::
to

:::
the

::::::
absence

:
of
:::

L3
:::::::::
observation

::
for

:::
that

::::
day

::::
which

:::::
made

::::::::
impossible

:::
the

::::::::
comparison

::::
with

:::
the

::::
input

:::
and

:::
the

:::::
output

::
of

::
the

:::::::
network.

:::
The

:::::::::
analogous

::
of

::::
Fig.

:::
6,

:::::::
showing

:::
the

::::::::::
differences

::::::::
(averaged

:::
on

:::
1◦

::
×

:::
1◦

::::::
boxes)

:::::::
between

:::
the

::::::
errors

::
of

:::
the

::::
two

::::::::
methods

::::::::::::
approximating

:::
the

::
L3

::::::::
observed

:::::
data,

:::::::
presents

::
an

::::::
overall

:::::::::::
improvement

:::
of

:::
the

:::::
output

::
of

:::
the

::::::
dADR

:::::::
network

::::
with

:::::::
respect

::
to

:::
the315

::::::::::
interpolated

:::::
maps.

:::
The

:::
red

:::::::
positive

::::::
values

:::
are

:::::
found

::::::
almost

:::::::::
everywhere

:::
for

::::
both

::::
SST

::::
and

::::
SST

:::::::
gradients

::::::
fields.

4 Conclusions

The advancements
:::::::
advance obtained by the application of novel machine learning-based techniques for the improvement of the

effective resolution of remote sensing observations have recently opened a new way to approach to satellite-derived data pro-

cessing. The great advantages provided by making high resolution gap-free images available for a wide range of scientific users320

are severely limited by the number of valid L3 observations. In the case of sea surface temperature measurements, infrared data

are commonly contaminated by cloud cover, reducing the quality of the L4 data that can be obtained via statistical interpolation
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Figure 11. The PSD
:::::::::
Comparison of the

:::::::::
performance

::
of

:::
the SST (central panels

::
top) and SST gradients

:::::
∇SST

:
(bottompanels) reconstructed

by the dADR-SR (in yellow), the first guess map (in red)
::::::::::
reconstruction

:
and the high resolution observations (in blue) over

::
L4

::::
First

:::::
Guess

:::
with

::::::
respect

::
to the three zones delimited

::
L3

:::
data

::::::::
measured by black rectangles on

::::::
Sentinel

::
3A

:::
and

:::
3B

:::::::
satellites

:::::
during the L3 SST field on

1st August 2020 in
:::
year

:::::
2021.

:::
Red

::::::
positive

:::::
values

::::
show

:::
an

::::::::::
improvement

::
of the top panel

::::::
network

:::::::::::
reconstruction

::::
with

:::::
respect

::
to

:::
the

::::::
optimal

:::::::::
interpolated

:::
First

:::::
Guess.

techniques. The machine learning approach used here exploits the progresses
:::::::
progress made in the field of computer vision for

extrapolating high resolution features even when a direct measurement is missing. Learning directly from ground-truth data,

and taking advantage of both dilated convolution and attention mechanisms, the deep neural network employed here proved325

able to reproduce small scale signals generally smoothed out by Optimal Interpolation algorithms. The strong variability of the

SST in the Mediterranean Sea allowed us to obtain excellent results even considering just one year of data during the training
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phase. However, it would be important to investigate whether using longer time series may help to improve the network ability

to reconstruct SST fields, as well as to rely on more robust statistics. Moreover, given the inhomogeneity of the spatial error

distribution related to the interpolation technique, it would be interesting to expand the present investigation in order to take330

into account the OI error field as an additional predictor and to consider the contribution of the error of the SST gradients in

the loss function. Another aspect that would deserve further investigation concerns the applicability of the dADR-SR network

to different sea/ocean areas, even though a fine-tuning of the model would probably be needed.

::
In

:::
the

:::::
future,

:::
we

::::
also

::::
plan

::
to

:::::
study

:::::
other

:::::::::::::
super-resolution

:::::::::
techniques

:::::::
recently

:::::::
became

::::
very

::::::
popular

::
in
:::
the

::::
field

:::
of

::::::::
computer

:::::
vision.

::::::
Firstly,

:::
we

:::
are

::::::::
currently

:::::::::::
investigating

:::
the

::::::::
possibility

:::
to

:::::::
improve

:::
the

::::::::::::
reconstruction

::
of

:::::
small

::::
scale

:::::::
features

::
in

::::
SST

:::::
fields335

::
via

:::::
other

:::::::::
successful

:::::::::
generative

:::
AI,

::::
such

::
as
::::::

GANs
::
or

::::::::
diffusion

:::::::
models.

::::
The

::::::
former

:::::::
exploits

:::
the

::::::::
outcomes

::
of

::
a

:::::::
minmax

:::::
game

:::::::
between

:
a
:::::::::
generator

::
of

:::::::::::
reconstructed

:::::::
images

:::
and

::
a
:::::::::::
discriminator

::::::
which

::::
tries

::
to

::::::::::
distinguish

:::
the

::::
real

:::::
image

:::::
from

:::
the

::::::
output

::
of

:::
the

:::::
other

:::::::
network;

:::
the

:::::
latter

::::::
builds

::::::::::::
super-resolved

:::::
fields

:::::::
initially

::::::::::
introducing

:::::
noise

:::
into

::::
the

:::::
initial

:::::
signal

::
to
:::::

then
:::::::
reverses

:::
this

:::::::
process

::::
until

:::::::::::
convergences

:::
to

:::
the

::::::
desired

:::::::::::
distribution.

::::::::
However,

::::
this

::::
kind

::
of

::::::::
networks

:::::::
applied

::
to

::::::
remote

:::::::
sensing

:::::
data,

::::
while

:::::
have

::::
been

::::::
proven

::
to

:::
be

::::
able

::
to

:::::::::
reconstruct

::::
very

:::::::
realistic

:::::
small

:::::
scale

:::::::::
structures,

:::::
seems

::
to

:::
fail

::
to
::::::::

optimize
:
a
:::::::::::

point-match340

::::::::
evaluation

::
of
::

a
:::::::::::
reconstructed

::::::::::::
remote-sensed

:::::
SST.

::::::::
Secondly,

:::
we

::::::
would

:::
like

::
to
:::::::

explore
:::
the

:::::
usage

::
of

::::::
Vision

:::::::::::
Tranformers

:::::
(ViT)

::
for

::::::::::::
understanding

::::
and

::::::::::
reproducing

:::::::::
high-level

::::::::
structures

:::
by

:::::::::::
understanding

:::::::::
contextual

:::::::::::
relationships

:::::::
between

:::
the

:::::::
patches

::
of

:::
an

:::::
image.

:

The results achieved here, however, may already benefit a wide range of applications. Super-resolved SST fields would facil-

itate the challenging task of 2D/3D ocean dynamics reconstruction in synergy with other variables (e.g., Buongiorno Nardelli345

et al., 2022; Fablet et al., 2023) or the monitoring of ocean fronts in areas of particular interest (e.g., areas affected by verti-

cal exchange and upwelling regions). To enhance the effective resolution of SST data and especially SST gradients may also

benefit data assimilation in forecast modelling, given their proven sensibility to small structures of sea surface temperature

(Woollings et al., 2010)
::::::::::::::::::::::::::::::::::::::::::
(Woollings et al., 2010; Maloney and Chelton, 2006). We also plan to validate our results exploiting

the high resolution SST data derived by the CNN reconstruction within the operational SST chain in the framework of the350

Copernicus Marine Service.
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