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Abstract. We review how the international modelling community, encompassing Integrated Assessment models, global and 72 

regional Earth system and climate models, and impact models, have worked together over the past few decades, to advance 73 

understanding of Earth system change and its impacts on society and the environment, and thereby support international 74 

climate policy. We go on to recommend a number of priority research areas for the coming decade, a timescale that 75 

encompasses a number of newly starting international modelling activities, as well as the IPCC 7th Assessment Report 76 

(AR7) and the 2nd UNFCCC Global Stocktake. Progress in these priority areas will significantly advance our understanding 77 

of Earth system change and its impacts, increasing the quality and utility of science support to climate policy.  78 

 79 

We emphasize the need for continued improvement in our understanding of, and ability to simulate, the coupled Earth 80 

system and the impacts of Earth system change. There is an urgent need to investigate plausible pathways and emission 81 

scenarios that realize the Paris Climate Targets. For example, pathways that overshoot 1.5°C or 2°C global warming, before 82 

returning to these levels at some later date. Earth System models need to be capable of thoroughly assessing such warming 83 

overshoots, in particular, the efficacy of mitigation measures, such as negative CO2 emissions, in reducing atmospheric CO2 84 

and driving global cooling. An improved assessment of the long-term consequences of stabilizing climate at 1.5°C or 2°C 85 

above pre-industrial temperatures is also required. We recommend Earth system models run overshoot scenarios in CO2-86 

emission mode, to more fully represent coupled climate - carbon cycle feedbacks and, wherever possible, interactively 87 

simulate other key Earth system phenomena at risk of rapid change during overshoot. Regional downscaling and impact 88 

models should use forcing data from these simulations, so impact and regional climate projections cover a more complete 89 

range of potential responses to a warming overshoot. An accurate simulation of the observed, historical record remains a 90 

fundamental requirement of models, as does accurate simulation of key metrics, such as the Effective Climate Sensitivity 91 

and the Transient climate response to cumulative carbon emissions. For adaptation, a key demand is improved guidance on 92 

potential changes in climate extremes and the modes of variability these extremes develop within. Such improvements will 93 

most likely be realized through a combination of increased model resolution, improvement of key model parameterizations, 94 

enhanced representation of important Earth system processes, combined with targeted use of new Artificial Intelligence (AI) 95 

and Machine Learning (ML) techniques. We propose a deeper collaboration across such efforts over the coming decade.  96 

 97 

With respect to sampling future uncertainty, increased collaboration between approaches that emphasize large model 98 

ensembles and those focussed on statistical emulation is required. We recommend an increased focus on High Impact Low 99 

Likelihood (HILL) outcomes. In particular, the risk and consequences of exceeding critical tipping points during a warming 100 

overshoot and the potential impacts arising from this. For a comprehensive assessment of the impacts of Earth system 101 

change, including impacts arising directly as a result of climate mitigation actions, it is important spatially detailed, 102 

disaggregated information used to generate future scenarios in Integrated Assessment Models are available for use in impact 103 
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models. Conversely, methods need to be developed that enable potential societal responses to projected Earth system change 104 

to be incorporated into scenario development.  105 

 106 

The new models, simulations, data, and scientific advances, proposed in this article will not be possible without long-term 107 

development and maintenance of a robust, globally connected infrastructure ecosystem. This system must be easily 108 

accessible and useable by modelling communities across the world, allowing the global research community to be fully 109 

engaged in developing and delivering new scientific knowledge to support international climate policy. 110 

1 Introduction 111 

Given the rapidly developing climate crisis, and the negative consequences for planetary habitability and human well-being, 112 

there is an increasing need for accurate, reliable, and actionable information encompassing the full spectrum of climate risk. 113 

This information is required at global to local scales, near to long timescales, and needs to be tailored to inform critical 114 

decision-making related to climate change mitigation and adaptation (e.g., in the context of UNFCCC negotiations, the UN 115 

Global Stocktake, IPCC assessments, and the World Adaptation Science Program; WASP), as well as the growing needs of 116 

climate service providers. Over the past few decades, coordinated by the World Climate Research Program (WCRP), the 117 

international modelling community has worked together to contribute simulations, data and knowledge to support decision 118 

making, in particular the cyclical IPCC Assessment Reports (AR). This has been achieved through a suite of interconnected 119 

modelling projects and initiatives, with the most important of these listed in Table 1, along with project acronyms and 120 

primary citations. Meehl (2023) discusses the synergistic interaction between climate science (particularly Global Climate 121 

and Earth system modelling) and the IPCC over the past 4 decades. 122 

 123 

With a new IPCC AR cycle (AR7) beginning, it is timely to review how the international modelling community has 124 

supported climate policy in the past, including earlier AR cycles, and ask what advances can be made in the overall quality 125 

and availability of science to support policy needs. In addition, it is pertinent to review our current understanding of, and 126 

ability to model, coupled Earth system change, as well as the societal and environmental impacts associated with this change 127 

and ask whether plausible, safe pathways can be developed for the Earth system that avoid the worst impacts of this change. 128 

Many of the international projects listed in Table 1, that provide the scientific knowledge on which IPCC reports are based, 129 

are beginning new cycles. For example, CMIP7 is starting to take shape, likely running through to ~2030 or beyond. In this 130 

paper we outline a number of areas we believe the international modelling community can significantly advance our 131 

understanding of, and ability to simulate, past and future Earth system change, including the impacts of these changes. 132 

Progress in the proposed areas will also allow an improved investigation of mitigation options for limiting long-term global 133 

warming, and its impacts, to acceptable levels. Such developments will deliver enhanced scientific support to international 134 

climate policy, during and beyond AR7. The advances we propose assume continued development, expansion, maintenance, 135 

and integration of a robust and interconnected infrastructure ecosystem. Such an infrastructure has underpinned past 136 

international modelling collaborations and is a fundamental requirement for realizing the ambitious goals outlined here. The 137 

specific science, and science for policy, ambitions, as well as the necessary underpinning infrastructure, are discussed in 138 

more detail in subsequent sections. Each proposed focus area can be summarized by the following key goals: 139 

 140 

● Provision of a coordinated, internally consistent set of simulations, data, and knowledge to support IPCC 141 

assessments and international climate policy. The resulting data sets and knowledge should be based on the most 142 

recent and consistent set of Integrated Assessment Model (IAM) scenarios, global and regional Earth system model 143 
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(ESM) projections and simulated societal and environmental impacts. With consideration of impacts arising both 144 

due to the projected Earth system change, and directly from any mitigation actions assumed in the IAM scenarios.  145 

 146 

● Improving understanding and guidance on future Earth system change, allowable emissions, net-zero 147 

responses, and safe, long-term pathways for planet Earth. Ensure global and regional ESMs, IAMs, and impact 148 

models include the required level of process realism, process interactions, and consistent forcing data to accurately 149 

simulate the response of the Earth system and human societies to future socio-economic, mitigation, emission, and 150 

land-use scenarios. Develop and analyse a range of future pathways that limit long-term global warming to less than 151 

1.5 or 2°C above pre-industrial levels, while minimizing the negative impacts on society and the environment. 152 

 153 

● Improving our understanding of, and ability to simulate key climate processes, climate variability, extreme 154 

events and regional impacts. Ensure global and regional climate models (GCMs and RCMs) accurately represent 155 

key processes, couplings, modes of variability and feedbacks that underpin global to regional climate change. Use 156 

these models to deliver robust and detailed projections of regional climate change, including changes in extreme 157 

events. Ensure the socio-economic information used to develop IAM mitigation and scenario data is suitably 158 

disaggregated and combined with climate projection data to support national to regional scale impact assessment, 159 

adaptation planning and climate services.  160 

 161 

● Increasing collaboration across approaches to further improve global and regional Earth system and climate 162 

models. Ensure strong collaboration across efforts to; increase process realism and coupling in ESMs, increase 163 

model resolution and improve physical parameterizations, including ML hybrid-modelling approaches. Ensure 164 

these approaches are optimally combined to deliver the best possible development pathway for the next generation 165 

of Earth system models.  166 

 167 

● Improving model simulations of the observational record and key metrics of climate change. Ensure 168 

improvement in the simulation and understanding of the observed, historical evolution of climate, particularly 169 

historical global and regional warming, encompassing the forcings, processes, and feedbacks that determine the rate 170 

and pattern of this warming. Improve our ability to constrain and simulate key climate change metrics, such as the 171 

Effective Climate Sensitivity (EffCS), Transient Climate Response (TCR), the Transient Climate Response to 172 

cumulative carbon Emissions (TCRE) and the Regional Warming to Global Warming ratio (RW/GW) 173 

 174 

● Sampling and quantifying future uncertainty. Develop and apply a hierarchy of models and methods to 175 

efficiently explore the range of uncertainty inherent in future Earth system change and its impacts. Ensure regional 176 

and national scale adaptation and mitigation is informed by a more complete sampling of the range of potential 177 

climate futures, including rare (high impact, low likelihood) outcomes, their local climate signature, and the 178 

potential consequences of these for society, the environment and climate policy. 179 

 180 

● The underpinning technological infrastructure. Further develop and maintain a robust, globally inter-connected 181 

infrastructure ecosystem to ensure efficient co-production and co-exploitation of internally consistent model 182 

simulations, via information, data and computational services that enable the rapid and reliable sharing of 183 

requirements, knowledge, data, and analysis tools. Such sharing needs to be both within and across multiple 184 

modelling projects and user communities, as well as providing suitable support to policymakers, planners, climate 185 

services, and the wider international research community.   186 
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 187 

 188 

Acronym Initiative or project name Website Main themes      Citation 

IAMC Integrated Assessment 

Modelling Consortium 

https://www.iamconsort

ium.org 

Future socio-economic pathways, 

emission and land use scenarios 

Moss et al., 2010 

WCRP CMIP Coupled Model 

Intercomparison Project 

https://wcrp-cmip.org/ Earth system and Global Climate 

modelling 

Eyring et al., 2016 

ScenarioMIP ScenarioMIP https://wcrp-

cmip.org/model-

intercomparison-

projects-

mips/scenariomip/  

Further develop IAM scenarios 

into emission, concentration and 

land-use scenarios for CMIP and 

CORDEX.  

O’Neill et al., 2016 

WCRP 

CORDEX 

Coordinated Regional 

Downscaling Experiment 

https://cordex.org Regional climate downscaling Giorgi et al., 2009 

VIACS AB Vulnerability, Impacts, 

Adaptation & Climate 

Services Advisory Board 

https://viacsab.gerics.de

/ 

Advisory body for linking CMIP 

and CORDEX to the impacts and 

climate services communities 

Ruane et al., 2016 

ISIMIP Inter-Sectoral Impact 

Model Intercomparison 

Project 

https://www.isimip.org Global and regional impact 

modelling for multiple sectors 

Frieler et al., 2017 

ESGF Earth System Grid 

Federation 

https://esgf.llnl.gov/ Data curation and distribution 

system for CMIP and CORDEX 

Balaji et al., 2018 

 189 
Table 1. Examples of the main international projects contributing to the provision of simulations, data and scientific knowledge to 190 
support climate policy, particularly IPCC assessment reports, including a main reference for each activity. CMIP and CORDEX 191 
are coordinated by the World Climate Research Program. 192 

Over the past few years a number of papers offer important perspectives on future priorities for Earth system and climate 193 

modelling, focussing on; the benefits of increased model resolution (Satoh et al., 2019; Palmer and Stevens, 2019; Slingo et 194 

al., 2022), the role of AI and ML in model development (Bauer et al., 2023; Eyring et al., 2024b; Schneider et al., 2024), 195 

development of Digital Twins (Bauer et al., 2021; Hoffman et al., 2023; Bauer et al., 2024), priority areas for CMIP7 (Dunne 196 

et al., 2023; Sanderson et al., 2023), proposals for an operational approach to CMIP (Jakob et al., 2023; Stevens, 2024), and 197 

future scenarios to support the IPCC process (Pirani et al., 2024). The recommendations we present here should be viewed in 198 

the light of these papers and summarize the views of a group of European scientists who have been engaged in, and in a number 199 

of cases led, major international modelling exercises that have delivered critical support to past IPCC assessment cycles. A 200 

similar perspective piece, from a number of U.S. climate modelling centres, has also recently been published (Mariotti et al., 201 

2024). Our perspective aims to address the range of activities involved in delivering actionable scientific support to 202 

international and national climate policy and therefore encompasses; IAM-based socio-economic, emission and land use 203 

scenarios, global and regional Earth system and climate models, regional downscaling and calibration, projection ensembles 204 

and emulators, uncertainty quantification, sectoral and environmental impact models, as well as the computational 205 

infrastructure necessary to realise and disseminate this complex workflow. 206 

. 207 

https://www.iamconsortium.org/
https://www.iamconsortium.org/
https://wcrp-cmip.org/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://cordex.org/
https://viacsab.gerics.de/
https://viacsab.gerics.de/
https://www.isimip.org/
https://esgf.llnl.gov/
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2 Provision of a coordinated, internally consistent set of simulations, data, and knowledge to support IPCC 208 

assessments and international climate policy. 209 

The process by which the aforementioned activities have, in the past, delivered data and knowledge into the science and 210 

policy arenas is summarized in Fig. 1. IAMs develop a range of future global pathways, based on narratives for socio-211 

economic, political, and technological development, as well as climate policy. For methodological reasons these scenarios do 212 

not (yet) consider the impacts of future climate change on human behaviour. The pathways are typically quantified in terms 213 

of highly aggregated information on future population and economic development, energy and food system development, 214 

and environmental consequences. For each pathway, marker anthropogenic emission and land-use scenarios are selected 215 

(van Vuuren et al., 2011; O’Neill et al., 2016; Riahi et al., 2017). These scenarios are combined with observation-based 216 

estimates for the historical past, resulting in a time series of emission and land use data covering ~1850 to 2100 (Hurtt et al., 217 

2011; Gidden et al., 2019). Using simple climate models (e.g. MAGICC; Meinshausen et al., 2011) and chemistry-climate 218 

models (Lamarque et al., 2011), the emissions are converted into atmospheric concentration time series. The concentration 219 

timeseries, along with the land-use scenarios, are used to “force” ESMs in CMIP to investigate potential changes in the Earth 220 

system arising from each scenario. The ESMs deliver time-varying, spatially discrete estimates of the past and future 221 

evolution of the Earth system, sampling the range of available emission and/or concentration scenarios (Tebaldi et al., 2021). 222 

CMIP simulations are extensively used to inform policymaking addressing global climate change risks. They are also made 223 

available to the international research community via the ESGF, where they are used to increase understanding of the Earth 224 

system and Earth system change, and to highlight areas requiring further model improvement.  225 

 226 

 227 

Figure 1: A schematic illustration of how earlier rounds of IAMC, CMIP, CORDEX and impact modelling activities, such as ISIMIP, 228 
have worked together to develop and apply future socio-economic and emission scenarios (IAMC), increase the scientific 229 
understanding of, and ability to simulate the coupled Earth system (CMIP and CORDEX), and investigated the impacts of Earth 230 
system change on societies and the natural environment (ISIMIP etc). In the figure dark blue lines illustrate the main (generally 231 
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two-way) exchanges of scientific knowledge between the different projects. Dotted green lines indicate the main (simulation) data 232 
transfer between projects, while grey lines show the main data exchanges outside of these projects (e.g. onto the ESGF for open use 233 
by the global research community or into regional or national data distribution sites). Thin orange lines illustrate the new exchanges 234 
proposed in Sect. 2 of this paper. Finally, the thick green lines illustrate the main knowledge and data exchange routes between the 235 
different projects, the global research community, and the IPCC assessment process, as well as with multiple policymakers, 236 
practitioners, and climate service providers around the world.   237 

 238 

CMIP simulations are used extensively as boundary forcing for regional downscaling (e.g. CORDEX) to generate climate 239 

information at spatial scales relevant for adaptation policy and climate services, as well as to drive impact model simulations 240 

(e.g. crop models in AgMIP (Ruane et al., 2017), fisheries and marine ecosystem models in FishMIP (Tittensor et al., 2018), 241 

and a range of impact models that contribute coordinated simulations to ISIMIP (Frieler et al., 2017), addressing impacts 242 

such as, biome changes, water resources, human health, energy systems and biodiversity). Regional downscaling follows two 243 

main pathways; (i) dynamical downscaling generates high-resolution regional simulations consistent with the ESM boundary 244 

condition data (Ruti et al., 2016; Jacob et al., 2020; Teichmann et al., 2021) and (ii) empirical-statistical downscaling 245 

(including ML methods) combine observations and models to translate large-scale features simulated by the ESMs to high-246 

resolution, local scale climate information (Gutiérrez et al., 2018; Lange, 2019; Karger et al., 2023). Impact models use both 247 

CMIP and CORDEX climate data, as well as socio-economic data and information on mitigation actions from the IAM 248 

scenarios (e.g. population distributions and land use patterns that include information on mitigation measures), as forcing to 249 

assess the societal and environmental impacts arising from the range of simulated futures (Frieler et al., 2017).  250 

 251 

The combined outcome of this international effort are a set of simulations, data and resulting knowledge covering the past 252 

~175 and future ~100 years (and sometimes longer) that sample; (i) plausible future global socio-economic development 253 

pathways, (ii) emission, concentration and land-use scenarios commensurate with these pathways, (iii) global and regional 254 

Earth system changes associated with each future pathway and (iv) the societal and environmental impacts arising from the 255 

simulated Earth system changes, as well as direct impacts associated with the socio-economic and/or mitigation measures 256 

applied in the IAM scenarios. 257 

 258 

There are numerous challenges involved in running the number and variety of model simulations across this range of 259 

activities, including cross-project and cross-model dependencies. As a consequence, to date it has not been possible to 260 

develop a single, coordinated dataset of forcings, simulations and findings from all four activities (IAMs, CMIP, CORDEX, 261 

impact modelling), based on a common set of socio-economic assumptions, scenarios, and driving data, within a single IPCC 262 

Assessment cycle. This limitation reduces the overall consistency and utility of information entering the three IPCC working 263 

groups (WGs). For example, Global (CMIP) and Regional (CORDEX) simulations are often out of sync, with CORDEX 264 

RCMs using boundary data derived from an earlier phase of CMIP. A similar example holds for impact models that often 265 

use a mix of global and regional forcing from different phases of CMIP and CORDEX. Furthermore, impact models forced 266 

by CMIP/CORDEX climate data, do not include all the socio-economic and climate policy information that underpin the 267 

driving IAM emission and land-use scenarios. This is particularly acute with respect to a number of direct human forcings. 268 

These forcings are aggregated across multiple sectors and large spatial scales in the IAM scenarios, but need to be 269 

disaggregated and harmonized with observed historical data, to more detailed spatial scales and individual sectors, to allow 270 

an accurate estimate of their impact on society and the environment, in combination with the impacts due to Earth system 271 

change (e.g. see Direct Human Forcings, as listed on Table 1, Frieler et al., 2024). An improved accounting of such direct 272 

human forcings will be increasingly important as future scenario pathways include major (human) interventions likely 273 

required to deliver the negative CO2 emissions necessary to achieve the Paris Agreement targets. Such interventions 274 

themselves can have important direct impacts on food production and biodiversity and therefore need to be accounted for in 275 

impact assessments.   276 
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 277 

Partly for methodological reasons, the impacts of climate change (and the potential societal responses to these changes) have 278 

not been included in IAM scenarios describing future socio-economic trajectories (i.e. Shared Socio-economic Pathways 279 

(SSPs), O’Neill et al., 2020). As climate change is expected to have a considerable impact on society, it is important methods 280 

are developed that allow these feedbacks to be included in future scenario development (Pirani et al., 2024). Ideally 281 

information on the impacts of climate change would be fed back into the IAMs to iteratively generate new future socio-282 

economic and policy pathways that include the societal responses to both the applied climate mitigation measures and to the 283 

impacts of climate change. For example, future land use will need to be adjusted to satisfy global food production, while 284 

accounting for the impacts of climate change on crop yields and changes in available land resulting from any land-based 285 

climate mitigation measures. These iterative adjustments to future socio-economic scenarios are one way to represent 286 

societal adaptation to projected climate change. Given the tight timelines it will not be possible to fully develop such 287 

iterative and interactive steps within the IPCC AR7 cycle. Nevertheless, we recommend urgently addressing this link as the 288 

envisioned modification of workflows has the potential to significantly improve the overall consistency of future scenarios, 289 

integrating important information across socio-economic, Earth system and impact projections.  290 

 291 

The lack of consistency, of both data and knowledge entering IPCC and national climate change assessments, reduces its 292 

overall utility and makes the interpretation of uncertainties across the various data sources a challenge. This can lead to 293 

inconsistent data and knowledge being used to develop climate policy, with some data being more than 10 years old. We 294 

believe the time is right to much more tightly link these key international activities, with more extensive and rapid sharing of 295 

simulations, data, knowledge, tools, and personnel, moving such critical science for policy work towards an operational 296 

footing. Such a change has been proposed earlier (e.g. Jakob et al., 2023; Stevens, 2024). We agree with these proposals but 297 

stress the need for “operationalization” across the entire workflow involved in developing and delivering robust and useable 298 

scientific knowledge. This includes; generation of IAM scenarios and associated forcing data, global and regional Earth 299 

system model simulations based on these scenarios, impact model simulations, post-simulation evaluation and analysis, 300 

uncertainty quantification, science to policy knowledge translation, and the technical infrastructure needed to support the 301 

entire endeavour. To maximize the relevance and utility of the resulting science for policy, we further propose such 302 

operational activities employ a co-development and co-exploitation approach, where a cross-section of intended users of the 303 

science are involved throughout the process. 304 

 305 

Such developments require support across a number of international coordinating bodies, as well as mechanisms to 306 

coordinate or pool the significant funding required, for what is inherently an international, multi-institutional and multi-307 

disciplinary endeavour. The building blocks for this do exist, represented by IAMC, CMIP, CORDEX, VIACS, ISIMIP and 308 

the ESGF. To date, the bulk of the effort to realize these interconnected projects have been funded through short-term, 309 

competitive research grants, with the availability and international coordination of this funding arising partly by chance and 310 

often thanks to shared IPCC timelines (Meehl, 2023). While such a development requires significant effort, funding and 311 

coordination, the long-term benefits for climate policy are potentially very significant. While moving the policy- and service- 312 

oriented aspects of climate projections and impact assessment towards a more operational approach is important, we stress 313 

the paramount importance of maintaining a strong science understanding, model improvement, and open data access, 314 

approach across all these activities. This will help maintain global participation and ensure continual improvement in the 315 

quality of data and knowledge entering the climate policy and service arenas.  Fully achieving these goals on the timescale of 316 

IPCC AR7 will not be possible. Nevertheless, a first step in this direction is under development as part of the planning for 317 

CMIP7, which will operate a dual timescale approach. A set of CMIP7 Fast Track (FT) simulations, specifically intended to 318 

support IPCC AR7, is under development. The CMIP7 FT aims for a small set of policy relevant experiments that can be 319 
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rapidly performed and made available for analysis by early 2027. In addition to the Fast Track, the bulk of CMIP7 will 320 

operate on a slower timescale, roughly from 2025 to 2030, with individual science-oriented MIPs (Model Intercomparison 321 

Projects) developing and realising a range of experiments and analyses to address outstanding questions and challenges in 322 

Earth system modelling. 323 

 324 

Starting to develop a more joined up and efficient workflow across projects, along with increased internal consistency of 325 

data and knowledge emanating from these projects, will be an important step towards a durable, more operational approach 326 

to delivering scientific support to climate policy and climate services.  327 

 328 

 3  Improving knowledge and guidance on future Earth system change, allowable emissions, net-zero responses, 329 

and safe landing pathways for planet Earth. 330 

3.1  The Paris Agreement: The risk of warming overshoot, allowable emissions, net-zero and negative emissions, 331 

and Earth system feedbacks. 332 

The 2015 Paris Agreement (with an aim to limit long-term global warming to well below 2°C above pre-industrial 333 

temperatures and pursue efforts to limit warming to 1.5°C; Riahi et al., 2021) focused the attention of policymakers and the 334 

public onto the risks and consequences of exceeding these key targets. Partly in response to such policy needs, work 335 

accelerated on quantifying allowable carbon emission budgets commensurate with the Paris goals (Millar et al., 2017; Rogelj 336 

et al.,2019; Lamboll et al., 2023). It became increasingly clear that to provide accurate guidance on such allowable budgets, 337 

Earth system models needed to improve their representation of the carbon cycle and its interaction with physical climate 338 

processes. In addition, further improvement was required in representing non-CO2 climate forcers, such as methane, nitrous 339 

oxide and aerosols. Focus also turned to the risk of triggering feedbacks that might push temperatures further from a given 340 

target, once the target was exceeded, as well as on the risk of exceeding Earth system tipping points, with potentially major 341 

regional impacts. Lastly, recognition that international policy would likely lead to the climate being stabilized at 342 

temperatures warmer than pre-industrial or present-day, stimulated work to better quantify the long-term consequences 343 

associated with such a stabilized warmer world (King et al., 2021).  344 

 345 

Over the past decade significant progress has led to several ESMs now including a full representation of the carbon cycle, 346 

interactively coupled to the physical climate (Arora et al., 2020). This progress has motivated calls for CMIP7 to more 347 

strongly focus on CO2-emission driven simulations, where a more complete representation of future climate – carbon cycle 348 

feedbacks can occur (Sanderson et al., 2023). A number of ESMs are also incorporating and coupling other Earth system 349 

processes required to properly investigate future emission pathways that realise the Paris Targets, as well as the 350 

consequences of long-term stabilization. Developments include; nutrient limitation on terrestrial carbon uptake (Lawrence et 351 

al., 2019; Wiltshire et al., 2021), interactive methane cycles with the ability to run in emission-mode for methane (Folberth et 352 

al., 2022), interactive treatment of nitrogen and iron cycles (Dunne et al., 2020), interactive permafrost (Burke et al., 2020, 353 

Schädel et al., 2024), interactive fires (Mezuman et al., 2020; Teixeira et al., 2021), full atmosphere chemistry (Gettelman et 354 

al., 2019; Archibald et al., 2020) coupled to advanced aerosol models (Mulcahy et al., 2020), as well as interactive 355 

Greenland and Antarctic ice sheets (Smith et al., 2021; Muntjewerf et al., 2021). Many of these developments, occurring 356 

across several ESMs, have either recently entered use in coupled model configurations, or are in an advanced stage of 357 

development and planned for use in CMIP7. As a result, the Earth system modelling community are entering a period where 358 

simulation of the full Earth system during overshoot, recovery, and long-term stabilization can deliver critical new insights 359 

that are urgently required to inform international climate policy.  360 

 361 
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An important focus for CMIP7 and ScenarioMIP (O’Neill et al., 2016; van Vuuren et al., 2023) therefore, will be 362 

investigation of plausible emission scenarios and global warming pathways that successfully realize the Paris Agreement. 363 

Key questions within this activity include; What is the feasibility of actually realizing the Paris targets? Whether a temporary 364 

warming overshoot is inevitable? If so, what rate and magnitude of warming is likely to occur, and how sensitive is the Earth 365 

system to such factors? Additionally, is it feasible to return to a target warming level on a reasonable timescale once an 366 

overshoot has occurred (Bauer et al., 2023)? To provide robust policy guidance on the plausibility and consequences of such 367 

pathways, several additional questions need to be addressed: Can accurate predictions of carbon emission budgets (and 368 

budgets of other radiatively important greenhouse gases) be made that are commensurate with different warming targets, 369 

with or without overshoot (Ramboll et al., 2023)? What is the role of anthropogenic aerosol emissions with respect to future 370 

warming and achievability of the Paris targets (Jenkins et al., 2022; Wang et al., 2023) What is the risk of amplifying 371 

feedbacks being triggered during overshoot (Melnikova et al., 2022), and is there a risk of exceeding tipping point thresholds 372 

in the Earth system, society or the natural environment, during overshoot (Wunderling et al., 2023)? If plausible negative 373 

emission pathways do exist, that return the Earth system to an acceptable temperature at an acceptable rate, once overshoot 374 

has occurred, what will be the environmental consequences of following these pathways? Furthermore, during the overshoot 375 

phase, if major changes or impacts (e.g. ecosystem degradation, population displacement, economic damages) do occur, or 376 

tipping points are exceeded (either in society or the Earth system), are these changes reversible when temperatures return 377 

back below a target level (Kim et al., 2022; Reed et al., 2023; Santana-Falcón et al., 2023) and how long will such a recovery 378 

take (Albrich et al., 2020, Meier et al., 2012)?  379 

 380 

Existing mitigation pathways that rely on negative CO2 emissions assume a significant stimulation of terrestrial carbon 381 

uptake through extensive modifications to land-use (Smith et al., 2016). How the carbon cycle will respond to these 382 

interventions is not well quantified. Nor is the actual efficacy of these interventions in reducing temperatures (Schleussner et 383 

al., 2023), or the ensuing impacts on the natural world, particularly biodiversity. A dominant part of the negative CO2 384 

emissions in present IAM scenarios is assumed to come from the AFOLU (agriculture, forestry and other land use) sector, 385 

through large scale deployment of bioenergy with carbon capture and storage (BECCS). It is of the utmost importance 386 

ESMs, with a comprehensive process-based representation of the carbon cycle, are used to assess the efficacy of such 387 

AFOLU scenarios in terms of realized negative emissions and temperature response, accounting for interactions with the 388 

natural carbon cycle and regional climate. Such major changes to the land surface will likely also lead to significant impacts 389 

on water availability, biodiversity and a range of human activities (Séférian et al., 2018; Hof et al., 2018), both directly from 390 

the change in land use and indirectly through induced changes in regional climates. Such potential impacts need to be 391 

carefully assessed with impact models, with any negative impacts contrasted against the positive impact of the mitigation 392 

actions on global warming. New negative CO2 emissions technologies that encompass marine-based CO2 removal (mCDR) 393 

are increasing in interest. Such approaches aim to increase marine carbon uptake through ocean alkalinization (Kwiatowski 394 

et al., 2023; Palmieri and Yool, 2024) or increase the storage of ocean carbon via marine afforestation (Bach et al., 2021). 395 

These new approaches have the potential to reduce the demand on land-based CDR, reducing the impacts of these techniques 396 

on land. However, such ocean techniques can lead to negative consequences for marine ecosystems and organisms, by 397 

altering marine nutrients cycles. It is important to emphasise that the full Earth system response to marine CDR is as 398 

uncertain as its land counterpart. Uncertainties in its efficacy to remove and store CO2 remain poorly quantified and 399 

estimating the lifetime of CO2 storage in the water column represents an additional challenge compared to the land-based 400 

CDR, due to the complicating role of ocean circulation and potential redistribution of CO2. 401 

 402 

In addition to negative CO2 emissions, Solar Radiation Management (SRM) has been proposed as an alternative (or 403 

additional) route to limiting global warming to 1.5°C. While there remain concerns around the unintended consequences of 404 
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SRM (Bonou et al., 2023), as well as the long-term governance of such technology (Pasztor and Harrison, 2021), the 405 

international SRM community recently designed a set of scenarios that allow investigation of both the efficacy and potential 406 

climate impacts of such technology (MacMartin et al., 2022; Baur et al., 2023; Baur et al., 2024). The same community have 407 

proposed an experiment protocol for the CMIP7 Fast Track (Visioni et al., 2024) that targets recovery of the global mean 408 

surface temperature to 1.5°C threshold after overshoot. As the world continues to get closer to the 1.5°C threshold, interest in 409 

SRM and geoengineering more broadly is likely to increase. The science community will be asked to provide the best 410 

possible guidance on the efficacy of SRM, the potential climatic and ecological impacts of SRM, as well as information on 411 

the scales (temporal, spatial and quantity) required for this technology to deliver long-term, safe climate stabilization. Such 412 

work on climate ‘solutions’ including SRM should be organized under the WCRP Lighthouse Activity on Climate 413 

Intervention, which brings together international research communities focussing on both CDR and SRM. 414 

Finally, once an “acceptable” warming level is reached, it remains to be established whether the Earth system can be 415 

stabilized, long-term at this level (Jones et al., 2019)? And, if so, what the consequences across the Earth system and for 416 

society will be from such stabilization (King et al., 2021; Palazzo Corner et al., 2023)? All these questions have major 417 

implications for international climate policy. Reliable answers are urgently needed. The international research community is 418 

beginning to address such questions, and increasingly has the tools capable of providing answers. We believe the new round 419 

of international modelling projects have the potential to make major advances towards delivering robust answers. 420 

 421 

Past CMIP cycles, including the most recent phase CMIP6 (Eyring et al., 2016a), emphasized CO2-concentration driven 422 

simulations, where atmospheric CO2 concentrations are prescribed and simulated carbon cycle – climate feedbacks cannot 423 

influence atmospheric CO2. This approach was taken largely for pragmatic and inclusivity reasons (i.e. there was only a 424 

relatively small number of models with robust and stable coupled climate and carbon cycles). Thanks to efforts such as 425 

C4MIP (Friedlingstein et al., 2006, Arora et al., 2020), this is no longer the case, with a significant number of ESMs now 426 

including advanced carbon cycles coupled to their physical climate (Sanderson et al., 2023). Due to the small remaining 427 

carbon budgets involved in realizing the Paris targets, and uncertainty in how the carbon cycle will respond to negative and 428 

net zero emissions, it is imperative more ESMs in CMIP7 run in CO2-emission mode, with full interaction between the 429 

physical climate and carbon cycle, including prognostic atmospheric CO2 (Sanderson et al., 2023; Gier et al., 2024). This 430 

will support an improved assessment of feedbacks involving the physical climate and the carbon cycle, addressing 431 

consequences for allowable future carbon emissions, the amount of negative emissions required after different overshoot to 432 

achieve different stabilization goals, and the associated risks, impacts and potential for irreversible change across the Earth 433 

system. Only through such a coupled, prognostic approach can anthropogenic CO2 emission scenarios, intended to realize 434 

key warming targets, be connected with the Earth system response and the impact of these responses on atmospheric CO2 435 

and realized warming/cooling pathways.  436 

 437 

We propose other important aspects of the coupled Earth system, at risk of rapid change, should also be run in a more 438 

coupled and prognostic manner in CMIP7. Assessment of coupled interactions and risks across the entire Earth system, 439 

including potential tipping point risks (Ritchie et al., 2021), is severely lacking in earlier IPCC Assessment Reports. Giving 440 

greater emphasis to coupled and prognostic interactions across the Earth system (particularly those thought to play a major 441 

role in determining the magnitude of future change) in an internally consistent framework will allow a more complete 442 

assessment of Earth system change, beyond that focussed solely on the physical climate. In addition, we emphasize the need 443 

to assess the impact of specific and targeted human actions (designed to mitigate future climate change or to adapt to 444 

expected future change) on regional climate, as well as on other aspects of the coupled Earth system, including resilience of 445 

the natural environment, biodiversity, and consequences for other human activities (e.g. food security, energy production or 446 
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air quality).  The current scientific priorities with respect to such interactions, along with (in italics) the key phenomena, 447 

feedbacks and consequences such coupled simulation would enable improved assessment of, are listed below: 448 

  449 

(i) Water, vegetation and biogeochemical cycles of carbon, nitrogen, phosphorous; improved estimates of vegetation 450 

change, terrestrial carbon uptake, regional water cycles and ecosystem tipping risks. 451 

 452 

(ii) Climate, vegetation, and fire: improved assessment of future fire risk and interactions with carbon uptake, 453 

atmospheric composition and ecosystem tipping risks. 454 

 455 

(iii) Permafrost, climate, vegetation, and carbon: stability of permafrost under warming and long-term warming 456 

stabilization, carbon/methane release from thawing permafrost, ecosystem expansion into thawing permafrost zones. 457 

 458 

(iv) Climate, ice sheets, and sea level: improved assessment of potentially irreversible loss of Antarctic and Greenland ice 459 

mass and consequences for sea level rise, ocean circulation and ocean heat uptake. 460 

 461 

(v) Climate, atmospheric composition, and air quality: internally consistent assessment of regional radiative forcing, 462 

climate change and air quality. 463 

 464 

(vi) Ocean physics, biogeochemistry and ecosystems: assessment of ocean warming, marine carbon uptake and long-term 465 

storage, ocean acidification and impacts on marine ecosystems. 466 

 467 

(vii) Human-Earth System interaction: assessment of the direct impact of human activities on the Earth system, regional 468 

climate, society, and the environment. e.g. Mitigation actions designed to address air quality and/or climate change, 469 

such as major land use change, nature-based solutions, climate interventions (geoengineering). Adaptation measures 470 

designed to address regional to national scale climate risk.  471 

 472 

(vii) The interplay between global change, regional climate variability, changes in climate and weather extremes, and 473 

resulting impacts across the Earth system.  474 

3.2  Regional Earth system change; assessing societal and environmental impacts. 475 

In addition to changing how global ESMs are run, we propose that regional downscaling (for example dynamical 476 

downscaling or Regional Climate Modelling, as used in CORDEX) also advance their representation of key regional Earth 477 

system processes (beyond the physical atmosphere-land system; Giorgi and Prein, 2022; Nabat et al., 2020; Sevault et al., 478 

2014). Here we refer to regional climate modelling or dynamical downscaling in the broadest sense, encompassing any 479 

physics-based dynamical model targeting a fine-scale representation of the climate over a specific region of the world. This 480 

includes limited-area models (LAM), variable-resolution GCMs (VRGCM) and, more recently, regional earth system 481 

models, convection-permitting regional models, and two-way coupled systems. In addition, atmosphere-land only global 482 

models are beginning to run for decadal timescales (and likely longer in the coming decade) and can be driven by sea surface 483 

temperatures and sea ice derived from ESM projections, providing a global downscaling option for coupled ESM 484 

projections. Whatever the technical choices used to perform such dynamical downscaling in future projection mode, forcings 485 

from global ESMs and GCMs will be required, either as lateral, surface, or inner model boundary condition data. Similarly, 486 

we use the term statistical downscaling in a very broad sense, covering established statistical methods for transferring 487 
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simulated large-scale climate data to local scales, as well as the increasing range of machine learning (ML) techniques, 488 

including recent deep learning applications (Gerges et al., 2023; Soares et al., 2024). 489 

 490 

To better sample the uncertainty range of global projections, dynamical and statistical downscaling should preferentially use 491 

CO2 emission-driven ESMs as boundary forcing and employ an efficient (as automated as possible) method to select an ESM 492 

ensemble for a given region and rapidly generate the required boundary condition data. The resulting combination of global 493 

emission-driven ESMs, regional ESMs, and advanced statistical/ML-based downscaling, running in a tightly linked 494 

framework, will allow a more complete assessment of potential changes across the global and regional environment at scales 495 

required by policymakers and planners. Given the rapid development of a diversity of dynamical, statistical and ML-based 496 

methods to generate high-resolution regional data, it is important a common evaluation framework is developed that is 497 

applicable across global to local scales (and across the implied model resolutions) as well as being agnostic to the methods 498 

employed, so different downscaling approaches can be objectively evaluated against each other, region by region and 499 

application by application.  500 

 501 

We further recommend impact models use a coordinated, multi-model ensemble of (global and regional) simulation-data, 502 

based on the CMIP7 CO2-emission driven ESMs, that capture a representative fraction of the uncertainty space of global and 503 

regional projections. In addition, impact models should aim to sample multiple members of individual ESMs, and the 504 

downscaling of these ESMs, to better quantify the importance of internal (natural) variability in regional climate impacts. 505 

Forcing impact models, either directly by global ESM output or by appropriately downscaled data, themselves driven by the 506 

same ESM simulations, will ensure global consistency of the impact simulations and comparability of impacts resulting from 507 

global and regionally downscaled forcing over the same region. In addition to coordinated forcing from ESM and 508 

downscaled data, a more complete, disaggregated set of IAM scenario data describing socio-economic development and 509 

potential mitigation or adaptation measures will ensure greater coherency between global and regional impact assessments 510 

and the underpinning IAM, ESM and regional forcing data. The resulting global models and downscaling combinations can 511 

also be used to assess the efficacy and potential impacts associated with different regional climate change mitigation or 512 

adaptation actions, offering scientific assessment of such proposed climate solutions.   513 

4 Improving our understanding of, and ability to model key climate processes, climate variability, extreme 514 

events and regional impacts. 515 

4.1  Improving key phenomena and couplings in global climate models. 516 

Some of the key uncertainties in Earth system model projections relate to errors in simulating important regional climate 517 

processes and phenomena, including interactions across spatial scales and regions. For some of these phenomena, model 518 

resolution has been shown to be a key factor. Hewitt et al. (2022) showed that increasing ocean model resolution, in 519 

particular better resolving the ocean mesoscale, is important for accurately representing a number of key processes, 520 

including; ocean eddies in the Southern Ocean and North Atlantic (with implications for simulated marine heat and carbon 521 

uptake, ice sheets and sea-level rise), ocean deep water formation in the Labrador and Nordic Seas and on the Antarctic shelf 522 

(with implications for the global ocean overturning circulation and heat uptake), the Atlantic Meridional Overturning 523 

Circulation (with implications for heat and carbon uptake, as well as regional climate), ocean upwelling regions (with 524 

implications for marine carbon uptake, productivity and fisheries). Increased resolution, in both the atmosphere and ocean, is 525 

also important for simulating large-scale hydrological processes (Vannière et al., 2019) (with important implications for 526 

regional water cycles, water availability and food security), as well as modes of climate variability, such as the El Niño 527 

Southern Oscillation (ENSO) and associated teleconnections (with implications for the rate of ocean heat uptake and 528 
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regional climate variability). While increased model resolution (to better resolve the meso- or the synoptic scales) is an 529 

important component of reducing several systematic biases in coupled models, it is equally important to improve key 530 

parameterization schemes for processes that continue to be unresolved, even at horizontal resolutions of ~10km/0.1° in 531 

coupled models. In particular, it is critical to ensure further improvement in parameterizations at the heart of uncertainty in 532 

the simulated Effective Climate Sensitivity (EffCS), Transient Climate Response (TCR) (Meehl et al., 2020) and aerosol-533 

cloud forcing (see Sect. 6 of this paper).  534 

 535 

Upscale effects from many small-scale processes can be important. For example, oceanic mesoscale eddies tend to drive 536 

atmospheric mesoscale storms in the extra tropics (Liu et al., 2021), while at larger scales the atmosphere can drive ocean 537 

variability (Frankignoul, 1985). These effects are apparent only in coupled systems and their large-scale consequences, such 538 

as the preferred location and orientation of the jet stream, mid-latitude storm tracks, and related air-sea fluxes, can only be 539 

captured in large-domain models with mesoscale or better resolution (Seo et al., 2023). Furthermore, couplings between the 540 

heat, water, and carbon cycles, means improving the representation (and parameterization) of physical processes will deliver 541 

important benefits for simulating the carbon, and other biogeochemical, cycles. In addition to the large-scale impacts, higher 542 

resolution models also offer an improved simulation of climate variability, in particular weather extremes such as; tropical 543 

cyclones (Roberts et al., 2020), extreme precipitation (You et al., 2023), atmospheric rivers (Liang and Yangyang, 2023), jet 544 

streams and atmospheric blocking (Schiemann et al., 2020) with consequences for the frequency and location of extreme 545 

weather (Athanasiadis et al., 2022), which both depend on SST realism delivered by resolving the ocean mesoscale. All these 546 

events have important impacts across the coupled Earth system, including upscale effects, e.g. drying of the atmospheric 547 

column by tropical cyclones over the Maritime Continent, with impacts on ENSO (Scoccimarro et al., 2021). Similarly, in 548 

the ocean increased resolution can improve the representation of important dynamical phenomena, such as marine heatwaves 549 

(Plecha and Soares, 2020) the representation of bottom water formation (Heuzé, 2021) and mixed layer eddies (Calvert et al., 550 

2020). 551 

 552 

Increasing model resolution alone does not guarantee improvement in all simulated metrics and leads to significant 553 

challenges related to model spin-up, model equilibration, calibration, and uncertainty quantification. Simulation 554 

improvements are often best realized through a combination of increased model resolution and targeted improvement to key 555 

parameterization schemes. While the compute cost increases considerably as model resolution is increased, recent studies 556 

suggest increased resolution can deliver important insights into some long-standing model biases, and perhaps reconcile 557 

mismatches between simulated and observed historic trends. For example, Rackow et al. (2022) show that resolving the 558 

ocean mesoscale improves the simulation of Antarctic sea-ice trends, Chang et al. (2023) illustrate increased realism in 559 

ocean upwelling as model resolution is increased, and ongoing work suggests higher resolution simulations can better 560 

capture recent observed trends in the Eastern Pacific that are not captured in CMIP6 models (Seager et al., 2022). Such 561 

improvements will increase confidence in future model projections and have important implications for predicting future 562 

extreme events, such as tropical cyclones, floods, droughts, and heatwaves. 563 

 564 

There is strong evidence a coordinated set of simulations for CMIP7, with resolutions enhanced over those typically used 565 

(e.g. 10-20 km in the atmosphere and ~0.1° in the ocean), can deliver an improved simulation and understanding of key 566 

regional climate processes and a more robust assessment of future changes in many of these processes, with benefits for 567 

impact and adaptation planning. Chang et al. (2020) demonstrated that CMIP-length simulations, with an equilibrated 568 

coupled model, are now possible at resolutions of ~10-20 km/0.1°. Many groups produced simulations following the CMIP6 569 

HighResMIP protocol (Haarsma et al., 2016), though generally with very limited ensemble sizes. Given increased model 570 

efficiency and available compute resources, CMIP7 provides an opportunity to further investigate the benefits of increased 571 
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coupled model resolution, alongside increased ensemble size, longer simulation length, methods for improved model 572 

equilibration and initialization, and enhanced process realism. Given current structural limitations of coupled climate 573 

models, of whatever resolution, sampling model diversity, through multi-model CMIP-style exercises, remains critical for 574 

providing robust estimates of projection uncertainties and risks (see Section 7). This is particularly the case with respect to 575 

regional climate change, where processes may be resolution-dependent (e.g. Moreno-Chamarro et al., 2022) and therefore 576 

sensitive to biases common across lower resolution models. A diversity of enhanced resolution coupled models thus needs to 577 

be promoted, but also optimized across the competing demands for delivering future projection data that is of maximum 578 

quality and utility both for the science and policy communities. 579 

 580 

4.2  Increased model resolution from global to regional scales for regional impact assessment and adaptation. 581 

Like their global counterparts, Regional Climate Models have also increased in resolution, with a growing set of models now 582 

running at convection-permitting resolutions (~1-3km resolution; Ban et al., 2021; Hohenegger et al., 2023). In addition to 583 

an improved simulation of the convective scale, high-resolution itself brings direct benefits, by delivering climate 584 

information closer to impact and adaptation relevant scales and by better resolving local climate in regions of strong 585 

orographic forcing, complex land-sea-lake structures, or heterogeneous land surface types. Moreover, explicitly resolving 586 

convective events, including the self-organization and self-intensification of these events, brings physical grounding to 587 

simulated precipitation extremes (Kendon et al., 2021; Caillaud et al., 2024), including the ability to evaluate models against 588 

observations at common spatial scales (Caillaud et al., 2021). A growing set of regional projections, employing convection-589 

resolving models (Pichelli et al., 2021; Chapman et al., 2022; Kawase et al., 2023; Kendon et al., 2023), is shedding new 590 

light on the interaction between future climate change and regional hydrological responses. Convective-scale regional 591 

models can also be deployed for shorter, targeted purposes. For example, by focusing downscaling onto event sets where 592 

such high regional resolution is expected to add value to coarser scale models, or by sub-selecting global projections that 593 

allow a broad range of climate hazards, needed for robust adaptation, to be simulated regionally at high resolution.  594 

 595 

While the combination of high-resolution coupled global climate models (~10-20 km in the atmosphere and ~0.1° in the 596 

ocean) and convection-permitting regional climate models (~1-3 km) is computationally demanding, the potential to deliver 597 

radically new findings and policy support, at scales required by national and regional planners, means they are an 598 

increasingly important input to national climate scenarios and climate services. This is particularly the case with respect to 599 

extreme weather events. In the next phase of CMIP and CORDEX, we propose increased collaboration, as well as increased 600 

data and knowledge sharing, between high-resolution global climate models, convection-resolving regional models, and 601 

statistical/ML-based downscaling, with the goal of producing a coordinated ensemble of state-of-the-art, high-resolution 602 

global and regional projections. We further recommend the resulting (global and regional) projections are used to drive a 603 

range of impact models (e.g. in ISIMIP, AgMIP and FishMIP). As the future impacts felt by natural and human systems is 604 

not only dependent on climate change, but also on the direct human forcing of climate arising from the underpinning 605 

scenarios themselves, it will be important to also represent these drivers at high spatial resolution. The resulting set of 606 

climate change and impacts data will be of enormous value to national climate change impact assessments, adaptation 607 

planning and climate services. To maximize the quality and consistency of this multi-scale, multi-method data set, it is 608 

important systems are developed and employed to support careful evaluation of the cascade of information across methods, 609 

scales, and regions, as well as from climate to impacts, highlighting both value-added and consistency-lost across the entire 610 

chain.  611 

 612 

     4.3 Global Storm Resolving models and the path to global km-scale 613 
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Global models with grid spacing in the range 1-10km are often referred to as Global Storm Resolving Models (GSRMs, e.g., 614 

Hohenegger et al., 2020; Judt et al., 2020: Caldwell et al., 2021). GSRMs running at ~3-5km global resolution currently 615 

achieve a throughput of ~0.5 simulated years per day (SYPD), with an aim to reach 1 SYPD in the coming years. GSRMs 616 

originated within the international DYAMOND initiative (Stevens et al., 2021) and the GRSM community are currently 617 

designing year-long experiment protocols (Takasuka et al., 2024, submitted). In addition, within the EU-sponsored 618 

Destination Earth (DestinE; Wedi et al., 2022) two coupled GCMs have run a reduced HighResMIP experiment (for the 619 

period 1990 to 2040) with grid spacing of 5km.  620 

 621 

Examples of scientific highlights realised by GSRMs include; a realistic representation of the interannual frequency of 622 

Tropical Cyclones (TC) in major basins, comprising a realistic distribution of all severity categories (Judt et al., 2020), as 623 

well as realistic representation of the rate of TC intensification, possible as resolutions reach 3km or better. Recent 624 

comparative studies among km-scale ocean models show large-scale features that affect the storm tracks and air-sea coupling 625 

(e.g., Gulf Stream separation) are more consistent in these models than in coarser resolution ocean models. Internal 626 

variability is also substantially larger in eddy-rich models (Chang et al., 2020; Jüling et al., 2021), including stronger SST 627 

responses to AMOC variations. In terms of coupled phenomena, realistic representation of the North Atlantic storm track has 628 

been shown to be sensitive to resolution of the ocean mesoscale, including instantaneous (eddies) and climatological features 629 

(western boundary currents) (Moreno Chamorro et al., 2022). Representation of the full spectrum of precipitation processed 630 

by cyclones, including their frontal structures, organised convection, such as Mesoscale Convective Systems and squall lines 631 

are generally more realistic as model resolution is increased (Vellinga et al., 2016). 632 

 633 

Many of these achievements have been in the realm of convection-permitting Regional Climate Models (see section 4.2) for 634 

the past ~5 years. GSRMs offer the additional value of being able to simulate upscale effects from small scales onto larger 635 

scales, e.g. how the Hadley and Walker circulations are affected, including meridional transports of energy, as well as 636 

implications for global teleconnections, mediated by atmospheric wave propagation. Many of these achievements were 637 

realised thanks to the development of new dynamical cores capable of reducing the total number of computations, by use of 638 

uniformly spaced global grids, or by models running more efficiently through advanced numerical schemes in time and 639 

space, and by exploiting multiple parallelisation paradigms on the latest supercomputers, including those equipped with 640 

GPUs. With the advent of even more powerful new classes of GPU, such as the NVIDIA Hopper or AMD MI300 series, 641 

completing a selection of typical CMIP6 experimental protocols at ~3km resolution, with a total turnaround of order of one 642 

year, will soon be possible.  643 

 644 

Data output and analysis constitutes a major challenge at these resolutions: output of order petabytes per day are 645 

commonplace, and storing multiple ensemble members for centennial-scale simulations is not feasible. Multiple approaches 646 

are being tested to alleviate this problem, such as performing the most data-intensive and multi-variate analyses while the 647 

models are running, reduced data precision, or holding data on fast disks for very brief time periods to allow immediate 648 

consumption by users. Other approaches include the use of hierarchical data layers, which can be output and handled in 649 

parallel, with incremental expense, as exemplified by the HEALPIX standard. An ambitious vision for addressing such data 650 

challenges, including co-design, co-production, and global access, is provided in the Earth Virtualisation Engines concept 651 

(Stevens et al., 2024). 652 

   653 

5 Increasing collaboration across approaches to improve global and regional Earth system and climate models.   654 

The accuracy of numerous simulated Earth system and biogeochemical phenomena strongly depends on the quality of 655 

simulated physical climate drivers (Doney et al., 1999). Examples of such dependencies include, but are not limited to; (i) 656 

vegetation growth/loss, terrestrial carbon uptake, and the simulated water cycle; (ii) wildfires and simulated precipitation, 657 

soil moisture and winds; (iii) marine productivity and the dynamics of ocean upwelling, (iv) mass loss from marine ice 658 
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sheets and regional ocean circulation; (v) global ocean heat and carbon uptake, and representation of deep water formation, 659 

(vi) regional air pollution and modes of atmospheric circulation. Conversely, in the real-world, carbon cycle – climate 660 

feedbacks (as well as other Earth system feedbacks) change the fraction of anthropogenic CO2 (and other gases, such as CH4 661 

or N2O) that remain in the atmosphere to cause warming, thereby influencing the magnitude of physical climate feedbacks 662 

(e.g. water vapour, lapse-rate, cloud or sea ice feedbacks). Furthermore, while an accurate simulation of the mean climate (in 663 

time and space), as well as trends in this measure of climate, are important, an accurate representation of variability (in both 664 

time and space) of the underpinning physical climate can often be as important for simulating the Earth system response to a 665 

changing climate. Such variability is also a critical driver of the impacts of climate change. Regional climate variability, 666 

particularly the width of the distribution of such variability (i.e. the extreme tails of future climate distributions), is generally 667 

better represented as resolution is increased, both in global and regional models (Wehner et al., 2014; IPCC, Doblas-Reyes et 668 

al., 2021; Ban et al., 2021).  669 

 670 

High-resolution coupled global climate models can be viewed as the physical core of the next generation of Earth system 671 

models, offering an improved simulation of the driving physical climate, including climate variability and extreme events. 672 

Collaboration across the development of high-resolution physical climate models, and Earth system models that emphasize 673 

enhanced process-realism, needs to deepen both in CMIP7 (with respect to global models, Dunne et al., 2023) and CORDEX 674 

(with respect to regional models). Such collaboration can benefit from, and feed into, ongoing efforts under the WCRP LHA 675 

Explaining and Predicting Earth System Change (https://www.wcrp-climate.org/epesc), and offers an unprecedented 676 

opportunity to bring advances from both areas together to support development of the next generation of Earth system 677 

models. Such a meeting point between these two model development paths offers a unique testbed for assessing 678 

technological advances (e.g. hybrid-resolution ESMs, Berthet et al., 2019; AI-based emulation approaches, Son et al., 2024), 679 

as well as conceptual challenges in Earth system modelling (e.g. quantifying and optimizing the benefits and trade-offs 680 

between resolution, complexity and ensemble size). AI/ML-based approaches also have the potential to improve model 681 

parameterizations, while potentially also increasing computational efficiency, enhancing the overall projection capability of 682 

these models. This needs to be further explored (Eyring et al., 2024a), with increased sharing of methodologies and findings 683 

across ML-based, and more traditional (process-based) approaches to model development (Schneider et al., 2024). Increased 684 

collaboration and knowledge sharing across these efforts can lead to a step change in our overall ability to provide robust 685 

climate information at scales that meets the needs for mitigation and adaptation decision-making (Eyring et al., 2024b). 686 

 687 

A number of initiatives are beginning to develop “Digital Twins of the Earth” (DTEs, Bauer et al., 2021; Hoffman et al., 688 

2023), (e.g. the WCRP Digital Earth LHA, https://www.wcrp-climate.org/digital-earths) targeting an optimal fusion of Earth 689 

system modelling and observations, to deliver fit-for-purpose and actionable information to society. These approaches 690 

combine forward modelling, data assimilation, and machine learning tools with user models designed to answer specific 691 

questions. A number of (global and regional) DTEs are beginning to provide samples of km-scale information, with the 692 

majority of DTEs to-date being atmosphere-land only models. For application to future climate change, such models 693 

presently require sea surface and sea ice boundary condition data (or atmospheric boundary conditions) derived from 694 

coupled ESM projections. As DTEs further develop to include other components of the Earth system (e.g. oceans, 695 

cryosphere, carbon cycle etc) it will be important they are carefully evaluated against existing approaches to deliver high-696 

resolution future climate information (either via uninitialized projections or observation-initialised predictions). It will also 697 

be important to document the uncertainties in DTE projections/predictions arising from different modelling choices, different 698 

external forcings and emission scenarios, as well as from internal variability. This is particularly important with respect to 699 

predicted or projected changes in future extreme weather events, which by definition are rare occurrences, with low 700 

predictability. 701 

https://www.wcrp-climate.org/epesc
https://www.wcrp-climate.org/digital-earths
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 702 

Only a few efforts to date are trying to develop two key aspects of digital twins; linking inputs to observations and outputs to 703 

human systems. In Europe, Destination Earth (https://destination-earth.eu/) experiments with weather and climate twins, 704 

down to resolutions of 2.5 km, and aims to make its experimental design respond to user needs, so models store a minimal 705 

amount of data, but are re-run on a regular basis, incorporating the latest data requests in each update. In the US, the 706 

Department of Energy has tested combining physical models (e.g. the Energy Exascale Earth System Model, E3SM (Golaz 707 

et al., 2022)) with human system models, including Integrated Assessment or Energy Grid models. In addition, ultra-high-708 

resolution global storm-resolving models (GSRMs, Stevens et al., 2019; Lee and Hohenegger, 2024) run at 1-5 km 709 

resolution may provide further understanding and insights into biases, complementing CMIP7/CORDEX simulations.  710 

Increased sharing across the range of modelling communities will benefit all strands of work, improving our combined 711 

ability to model the Earth system and deliver robust and actionable information to policymakers and society. 712 

6 Improving model simulations of the observational record and key metrics of climate change    713 

To increase confidence in future projections it is important models accurately reproduce the observed historical record. This 714 

requirement encompasses multiple variables and timescales, with long-term trends in global mean surface air temperature 715 

(GMSAT), including the forcings and feedbacks controlling these trends, of first order importance. In CMIP6 a number of 716 

ESMs exhibited EffCS values (of 5°C or greater) that are higher than the 5-95% range, as assessed by multiple lines of 717 

evidence (Sherwood et al., 2020). Some of these models also simulated global warming rates over recent decades (~1980 to 718 

2014) greater than seen in observations (Tokarska et al., 2020), leading to suggestions these “hot models” were unrealistic 719 

and should be filtered out from climate impact assessments (Hausfather et al., 2022).  720 

 721 

Cloud feedbacks are the largest contributor to uncertainty in EffCS. Perhaps surprisingly, CMIP6 ESMs with high EffCS 722 

often evaluate better against observations for present-day clouds than earlier or lower EffCS models (Bock and Lauer, 2024; 723 

Kuma et al., 2023), and also accurately reproduce recent trends in cloud-radiation when driven by observed sea surface 724 

temperatures (SSTs, e.g. Loeb et al., 2020). These ESMs also represent a number (though not all) cloud feedback processes 725 

more accurately than earlier models, particularly those related to mixed phase clouds over the Southern Ocean (Jiang et al., 726 

2023). Nevertheless, studies continue to highlight problems across the majority of CMIP6 models with respect to Southern 727 

Ocean clouds (Schuddeboom and McDonald, 2021) and, in particular, low-level tropical marine clouds (Konsta et al., 2022), 728 

with observation-based constraints of the latter cloud type suggesting an EffCS closer to 3°C (Myers et al., 2021). It is 729 

therefore possible some high EffCS CMIP6 models improved one cloud feedback (e.g. mid-latitude, mixed phase clouds 730 

leading to a less negative cloud phase feedback) that exposed other feedback errors (e.g. too positive low-level, tropical 731 

marine cloud feedback) that previously compensated each other with respect to the total cloud feedback. Such one-sided 732 

improvement can result in an increased positive total cloud feedback and high EffCS. Continued improvement in the 733 

representation of cloud processes and feedbacks across all relevant cloud types, including exploitation of new observational 734 

data and analysis methods, will be crucial for better constraining EffCS in CMIP7 and improving the simulation of historical 735 

climate and rates of global warming. 736 

 737 

While a number of high EffCS models in CMIP6 simulated too strong global warming over the period ~1980 to 2014, 738 

establishing a direct link between EffCS and historical warming is not straightforward. This is mainly due to the 739 

confounding role of aerosols, as well as the important role played by natural variability. In CMIP7 historical forcings are 740 

planned to be extended to 2022 (i.e. 8 years longer than in CMIP6). Recent studies suggest anthropogenic effective radiative 741 

forcing (ERF) has become more positive, by ~50%, between the decades 2000-2009 and 2010-2019, mainly due to a 742 

https://destination-earth.eu/
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reduction in the negative aerosol ERF (Jenkins et al., 2022; Hodnebrog et al., 2024). This change has been accompanied by 743 

almost a doubling of the GMSAT warming trend between these two decades. Jenkins et al. (2022) suggest that while some of 744 

the increased GMSAT trend is very likely due to reduced aerosol cooling, long-term variability in ENSO may also 745 

contribute. Modelling studies by Wang et al. (2023) further suggest that decreasing aerosol emissions may outweigh 746 

decreasing CO2 emissions in terms of their impact on warming and climate extremes during the path to global net-zero 747 

carbon emissions. Kang et al. (2023a, b) suggest the SST pattern observed in the Pacific between ~1979 and 2013, which 748 

induces a negative cloud feedback term (that is not captured in most coupled ESMs), is linked to cooling SST trends in the 749 

Southern Ocean over this period (also not captured in coupled ESMs). They suggest that as Southern Ocean SSTs begin to 750 

warm, the tropical Pacific SST pattern may decay, resulting in a more positive cloud feedback and potentially an increased 751 

rate of global warming. Understanding and simulating the drivers of such SST trends, as well as their interaction with 752 

climate feedbacks and global warming, will be crucial to increase confidence in future projections.  753 

 754 

Constraining future feedbacks and evaluating model processes controlling these feedbacks is a difficult challenge. Emergent 755 

Constraints, which use a multi-model ensemble to identify relationships between observable Earth System variations and 756 

projected future changes, are an attractive way to constrain future feedbacks based on observations (Hall et al., 2019; Nijsse 757 

et al., 2020) and thereby reduce uncertainty in future projections. To date, assumed emergent relationships are often simple 758 

linear regressions. Machine Learning techniques are a promising route for identifying multi-dimensional, non-linear 759 

relationships between contemporary observables and the future state of the Earth System (Schlund et al., 2020) and may 760 

therefore improve the constraints on future feedbacks and even allow an evaluation of model processes controlling these 761 

feedbacks. An improved simulation of the historical past, combined with improved constraints on key feedbacks and the 762 

processes controlling these feedbacks, will increase confidence in ESM projections and improve estimates of key climate 763 

change metrics such as EffCS, TCR and TCRE with implications for estimates of allowable carbon emissions commensurate 764 

with different policy targets. 765 

 766 

Both global and Regional ESMs struggle to accurately represent observed regional climate trends, as underlined for Western 767 

Europe by recent literature (Ribes et al., 2022; Schumacher et al., 2023; Vautard et al., 2023). This may be partly linked to 768 

poor quality lateral and surface boundary conditions (e.g. most recently from CMIP6 ESMs), but may also be a result of 769 

missing, or poorly represented, regional forcings and/or feedbacks in the RCMs themselves (Nabat et al., 2014; Boé et al., 770 

2020; Taranu et al., 2022, e.g. the representation of aerosol-climate interactions or the simulation of regional/coastal SST 771 

trends). For RCMs, too short evaluation runs, and lack of adequate calibration strategies may also contribute to these 772 

problems. Tackling such weaknesses, combined with development of an evaluation system applicable across the scales and 773 

downscaling methods involved, will be important for increasing trust in high-resolution, regional projections that are used in 774 

numerous national climate scenarios and impact assessments. 775 

7 Sampling and quantifying future uncertainty 776 

Multi-model ensemble projections (MME), such as those from CMIP and CORDEX, sample a number of plausible IAM 777 

emission and land-use scenarios. The MMEs often include a small number of ensemble members per individual model, each 778 

sampling internal variability (as represented by that model). The MME approach, to a limited extent, also addresses 779 

structural modelling uncertainty. The degree this aspect of uncertainty is sampled is ultimately constrained by the resolution 780 

and process realism of the models involved, and by the degree of commonality of approaches to representing unresolved and 781 

uncertain model processes (Merrifield et al., 2023). 782 
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7.1  High Impact Low Likelihood (HILL) outcomes. 783 

While such MMEs sample a fraction of the uncertainty in future Earth system change, this sampling is far from complete, 784 

particularly with respect to the extreme, low-likelihood end of potential Earth system change. Such responses are referred to 785 

as HILL (High Impact, Low Likelihood) outcomes (Wood et al., 2023). While HILL outcomes have a low likelihood of 786 

happening, there remains a small chance they will occur. One example would be if the Earth’s equilibrium climate sensitivity 787 

(ECS) turned out to be ~5°C. While this outcome is highly unlikely (IPCC AR6 quotes the very likely range (5-95% 788 

probability) of ECS as between 2°C and 5°; see Fig. 7.18, in IPCC, 2021, Ch7, Forster et al. 2021), if it did occur the impacts 789 

on society would be extremely large.  790 

 791 

HILL events may also occur at lower levels of warming (Armstrong-McKay, 2020) and impact numerous parts of the Earth 792 

system across a range of regions and timescales. For example, a HILL event may be triggered if a threshold of Antarctic ice 793 

loss is exceeded, which may then accelerate and become irreversible, with consequences for sea level rise and coastal 794 

communities (Garbe et al., 2020; Taherkhani et al., 2020). Similar, poorly quantified, and poorly understood, risks exist for 795 

other potential Tipping Points in the Earth system, such as collapse of the Atlantic Meridional Overturning Circulation 796 

(AMOC, Klose et al., 2023), dieback of the Amazon rainforest (Parry et al., 2022), or rapid permafrost thaw (Turetsky et al.,  797 

2020). Tipping points also exist in the natural environment and in society and may be triggered at modest levels of warming. 798 

Examples include climate driven species loss already occurring at today’s levels of global warming (e.g. first species 799 

extinction attributed to climate change; IPCC 2023 SPM), mass mortality in coral reef ecosystems (Donner et al., 2017; 800 

Hughes et al., 2018; Hughes et al., 2019), shift from kelp- to urchin-dominated coastal communities (Rogers-Bennett and 801 

Catton, 2019; McPherson et al., 2021). HILL events, both in the natural Earth system and society are not only sensitive to 802 

changes in the mean climate, but also to changes in climate variability. Increased inter-annual variability can have major 803 

impacts on society and ecosystems (von Trentini et al., 2020). Systematic shifts, even in sub-seasonal climate can 804 

significantly impact society (e.g. changes in the frequency distribution of hot summer days and nights, and human mortality; 805 

Schär et al., 2004).  806 

 807 

The signal of natural variability (in models expressed as internal variability across a model ensemble) increases in 808 

importance, relative to the signal of human forced climate change, as spatial and temporal averaging scales decrease, and 809 

projection timescales become shorter (Hawkins and Sutton, 2009). A consequence of this is that larger ensembles are 810 

required to reliably detect a forced climate change signal from an extreme realization of natural variability. The shorter 811 

duration and/or rarer the event, the larger the ensemble size likely required to be confident a (forced) signal is outside the 812 

range of natural variability. This is important information for reliable and cost-effective adaptation to potential future climate 813 

risks. Several groups have produced large ensembles covering the historical past and future (Olonscheck et al., 2023; Maher 814 

et al., 2021; Deser et al., 2020), using 50 to 100 realizations, often started from different initial conditions taken from the 815 

model’s pre-industrial simulation. Such large ensembles are ideal for detecting forced regional changes (as simulated by that 816 

particular model) from internal (natural) variability (also as simulated by the particular model). Due to the high 817 

computational cost involved, to date such large ensembles are generally based on relatively low-resolution models that do 818 

not carry the process complexity of full ESMs. This can limit their overall utility. For example, low resolution models 819 

struggle to simulate intense weather events, such as tropical cyclones or extreme precipitation. As a result, their utility for 820 

investigating changes in extreme weather is limited, although this limitation could be addressed, for specific regions at least, 821 

by building ensembles consisting of both Global and Regional models run in tight coordination.   822 

 823 

Recently, single model initial condition large ensembles (SMILEs) have been combined to form multi-model ensembles of 824 

SMILEs (Lehner et al., 2020), increasing the sampled uncertainty beyond internal variability to also encompass (to some 825 
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degree) structural model uncertainty. Techniques have been developed to optimally combine individual SMILEs, with 826 

different ensemble numbers, to produce an unbiased multi-model SMILE that also considers present-day model performance 827 

in its design (Merrifield et al., 2020). New Machine Learning techniques offer the potential for a more efficient and 828 

comprehensive assessment of the future projection uncertainty space and can be used to guide, and in some cases realise, the 829 

creation of large ensembles, including ones targeted onto extreme event risks (Eyring et al., 2024a). 830 

7.2  Internal variability, parameter uncertainty and model structural uncertainty. 831 

An additional approach for investigating modelling uncertainty is the Perturbed Parameter Ensemble (PPE) (Murphy et al., 832 

2007). In the PPE approach uncertain, often difficult to constrain, model parameters are varied within reasonable limits, 833 

where possible constrained by observations (Booth et al., 2017). The resulting PPE members can be further filtered to retain 834 

only skilful members in terms of present-day climate and/or historical trends (e.g., Sexton et al., 2021; Peatier et al., 2022). 835 

Recent advances in model calibration (e.g., Hourdin et al., 2021, 2023) will be instrumental in better designing future PPEs. 836 

Using the PPE approach, it is sometimes possible to mimic key measures of future projection uncertainty (e.g. the range of 837 

climate feedbacks and ECS in a CMIP MME) using only a single model (Collins et al., 2011). Applying the PPE approach 838 

across multiple global and regional model systems allows probabilistic regional climate projections that sample a significant 839 

fraction of the future projection uncertainty (Evi et al., 2021). Such approaches support an assessment of regional impacts 840 

sampling uncertainty in the future driving global and regional climate, including changes in climate and weather variability.  841 

 842 

In addition to physically based models, advanced statistical methods such as emulators (Meinhausen et al., 2011; Leach et 843 

al., 2021) and Machine-Learning (ML) (Watson-Parris, 2021; Eyring et al., 2024a) are increasingly being used to more fully, 844 

and rapidly, investigate uncertainty in future Earth system change. Emulators and ML methods can be trained either on an 845 

individual model or an ensemble of historical and future projections made by ESMs (Beusch et al., 2020; Nath et al., 2022) 846 

or RCMs (Doury et al., 2022, 2024) and used to investigate a large range of future emission and land-use scenarios, or to 847 

focus on specific aspects of projection uncertainty (e.g. high ECS futures). Process understanding and observations can also 848 

be brought into the emulation process, enabling the resulting emulators to mimic the behaviour of the more complex ESMs 849 

(Séférian et al., 2024), while weighting this behaviour towards better performing models (Beusch et al., 2020; Sanderson et 850 

al., 2017). Statistical emulation approaches are also used to assess the sensitivity of ESMs to uncertain model parameters 851 

(expanding the PPE approach), both for parameterization development (Silva et al., 2021; Rasp et al., 2018) and for 852 

developing and selecting ESMs that combine acceptable present-day performance with constraints on their future response 853 

(e.g. constraining ECS to lie within a specified range (Peatier et al., 2022)). Emulators were used extensively alongside 854 

global and regional projections in IPCC AR6 to deliver observation-constrained future projections (Nicholls et al., 2022). 855 

Emulators and ML tools can enhance the provision of climate information (Pfleiderer et al., 2024) and support 856 

interdisciplinary integration, allowing direct coupling to IAM scenarios and thus supporting cross-working group 857 

collaboration in IPCC AR7 and beyond.   858 

7.3  Assessing uncertainty across all the steps in providing actionable climate information. 859 

The new round of international modelling projects presents an opportunity to bring together the range of approaches and 860 

methods used to assess and quantify uncertainty across IAM models and scenarios, global and regional models (considering 861 

internal model variability, parameter uncertainty and structural model differences), and impact models (both in terms of the 862 

climate forcing used and uncertain impact model parameters). This collaboration should also extend to communities 863 

developing, improving and applying emulators and simple climate models (Séférian et al., 2024). Collaboration across 864 

communities and activities will help increase the range of uncertainty space that can be analysed, and lead to a more 865 

systematic and coordinated approach to uncertainty assessment across the full suite of modelling activities delivering 866 
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knowledge and data to climate policy and services. We further recommend significant effort be devoted to the 867 

communication of uncertainty and conversely, communication of what is expected to occur in the future, and the level of 868 

certainty/confidence that can be attached to these outcomes, with the target audiences being climate change policymakers, 869 

planners, and practitioners.  870 

 871 

Going forwards, a key demand on the international modelling community, with respect to supporting IPCC AR7 and the 872 

UNFCCC Global Stocktake, will be the development and analysis of realizable future pathways that limit global warming to 873 

the targets of the Paris Agreement. These pathways are likely to include an overshoot of the warming targets and therefore 874 

the need for negative CO2 emissions (i.e. active removal of CO2 from the atmosphere). How these negative emissions will be 875 

realized in practice and what magnitude is feasible, remain open questions. A thorough analysis and quantification of the full 876 

cascade of uncertainty associated with such pathways is an important demand on the science community. This analysis needs 877 

to encompass uncertainty in; how the necessary negative CO2 emissions will be realized (i.e. the mitigation actions 878 

themselves), the response of the carbon cycle to decreasing atmospheric CO2, the efficacy of any CO2 removal in reducing 879 

global temperatures, and the regional climate responses that may arise from such cooling pathways.  In addition, 880 

uncertainties in the (expected) reduction in the societal and environmental impacts of Earth system change, as global 881 

warming is reduced, need to be assessed, and the impacts avoided compared to any impacts arising directly from the 882 

mitigation actions themselves. Along the entirety of this chain of events and responses there is deep uncertainty. The science 883 

community needs to analyse, quantify, and communicate this uncertainty as thoroughly and clearly as possible.  884 

 885 

Robust climate adaptation requires information on the range of potential future changes (which represent the climate hazard 886 

in risk decision frameworks). While progress has been made in quantifying global and large-scale impacts arising from a 887 

range of climate change drivers, this has only been partially successful with respect to translating these impacts to the scales 888 

needed to develop local to national adaptation plans. CMIP7 offers an opportunity to more fully include and propagate the 889 

wider CO2-emission driven uncertainties through to local-scale climate information (as outlined in Sect. 3.2).  An equally 890 

important dimension is the role natural variability plays in climate change, especially on the timescale of the next 10 to 40 891 

years (that frames many adaptation decisions). On these timescales and at the local scale, natural variability typically 892 

dominates the forced climate change signal, for example for precipitation and temperature. This information is ever more 893 

critical as society adapts to climate change in a mitigating world, where such mitigation aims to limit the climate change 894 

signal. Large initial condition ensembles are a key tool for understanding and quantifying the role natural variability plays. 895 

The expense (computational, data storage) of generating and sharing Lateral Boundary Conditions (LBCs) required to drive 896 

Regional Climate models has limited the availability of LBC data, and hence the potential for regional scale simulations 897 

(such as CORDEX) to sample the role of regional natural variability in the context of the wider climate hazard space, at 898 

impact relevant scales. Commitments for new LBCs are often made before a simulation’s credibility can be assessed and 899 

before any understanding of where the realisation of variability plus feedbacks places a particular simulation in the wider 900 

potential projection space. There will be value, therefore, in exploring iterative approaches between ESM and regional 901 

modelling groups to identify optimal ESM simulations to be rerun for LBC generation.   902 

 903 

Statistical downscaling may provide the most effective route to link wider ESM projections to what they imply at the local 904 

level (Gutiérrez et al., 2019), as these approaches are not restricted by the limited availability of LBCs. Emerging Neural 905 

Network Machine Learning techniques trained on existing regional (RCM and Convection Permitting RCM (CPM)) 906 

simulations, are showings promise in capturing spatial and temporal climate change, at local scales, based on large scale 907 

drivers simulated by ESMs (Baño-Medina et al., 2021; Doury et al., 2022). Whilst there is still work to be done (e.g. 908 

achieving multi-variate coherence (González-Abad et al., 2023), transferability to other ESMs (Baño-Medina et al., 2024), 909 
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and building frameworks to verify ML downscaled results), their emergence is likely to transform how the science 910 

community provides local scale climate Information, as they allow the production of this information to be determined by 911 

realisations that can inform on the range of local scale climate hazard (bottom up) rather than the limited availability of Earth 912 

system model LBCs (top down). ML-based downscaling therefore has the potential to translate coarse-scale Earth system 913 

model output directly to spatial scales of utility for impact models, impact assessment and local adaptation planning (Eyring 914 

et al., 2024b). Such developments can be transformative in other senses, too. For example, given adequate prior ESM to 915 

RCM/CPM training data, CMIP7 has the potential to be downscaled almost as soon as the ESM simulations are completed, 916 

something which could help inform, for the first time, IPCC AR7 with consistent global and regional projection data, and 917 

associated impact simulations (see Sect. 2). Similarly, ML may offer ways to address the prohibitive storage costs of 918 

conventional high resolution local data by enabling the availability of such data on demand based on large scale variables 919 

(which are much cheaper to store). Ultimately, incorporating Machine Learning into the production of high-resolution 920 

regional climate information is likely to open further benefits due to the flexibility such tools enable. For example, ML 921 

downscaling will be amenable to approaches that use observations to bias correct the regional data, directly. Similarly, as 922 

insights from new modelling (e.g. resolving convective scales, interactive atmosphere-shelf sea-wave models) come online, 923 

ML downscaling tools may be able to produce new high resolution regional climate data reflecting these insights, if 924 

modelling experiments are designed to inform the required ML training. 925 

8 The underpinning technological infrastructure 926 

The ambitious science and science for policy aims discussed in this paper cannot be realized without a state-of-the-art 927 

underpinning computational and data infrastructure, supported by experienced personnel. Our recommendations require the 928 

co-design of certain experiments, followed by the production, quality-control and sharing of numerous datasets from a 929 

diverse range of modelling systems, between producers and a heterogenous set of consumers separated in time and space. An 930 

aspiration for IPCC AR7, as described earlier, is to deliver a coordinated and coherent set of data from across the most recent 931 

IAM scenarios, global projections (CMIP7) and regional downscaling (CORDEX), as well as impact model results based on 932 

these scenarios and climate forcing. To achieve this will require more efficient and rapid sharing of both requirements and 933 

data across all communities, including where feasible user communities. We therefore stress the need to improve the 934 

underpinning infrastructure ecosystem that supports these modelling efforts to enable the co-development of suitable 935 

experiment protocols, followed by the production, evaluation, and exploitation of datasets, which themselves can be used as 936 

input to other simulation workflows, with different production, validation, and exploitation cycles. This will need to be 937 

realized for far more numerous and larger volume datasets, and across a broader and more disparate set of requirements and 938 

communities than was previously the case. 939 

 940 

CMIP6, like CMIP5, benefited from a globally coordinated data infrastructure, the Earth System Grid Federation (ESGF), 941 

linked to a large array of other important and necessary services (Balaji et al., 2018). The CMIP6 ESGF is now more than a 942 

decade old, largely not maintained and is therefore not fit for the scale of the challenge outlined above. The array of services 943 

linked to the ESGF include: standards-based data, model and experiment descriptions; citation and errata services for 944 

simulation data and derived products; and data quality control procedures (addressing the presence of required data, 945 

standards compliance etc, not to be confused with procedures for assessing the scientific quality of the data). The data 946 

infrastructure itself needs to support systematic (and efficient) simulation evaluation, and support replication of data from 947 

source to “super-nodes” that can host large volumes of multi-model data and provide sufficient local computational resource 948 

to allow analysis with minimal requirement for data movement (Eyring et al., 2016). Local computing services will need to 949 

include both specific “well known” computational services such as those necessary to generate on-demand statistics, and 950 
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those necessary to support user-generated analysis pipelines that may include AI and ML techniques. To realize the 951 

ambitions outlined in this paper, the volumes of data that will need to be hosted at such super-nodes will be significantly 952 

larger than for CMIP6, and the services will need to be easier to navigate for a more heterogeneous community, extending 953 

beyond the modellers and analysts of earlier CMIP cycles.  954 

 955 

There are several activities underway that aim to address some of these requirements. Notable amongst these are the 956 

development of reusable evaluation and analysis workflows such as ESMValTool (Eyring et al., 2020; Righi et al., 2020) 957 

with the goal of fully integrating these into the CMIP publication workflow (Eyring et al., 2016b), the democratisation of the 958 

use of cloud computing via Pangeo (Abernathy et al., 2021), the use of new data formats such as HealPix (Chang et al., 959 

2023), and the development of new technologies aimed at a future ESGF (Hoffman et al., 2022). However, there are also 960 

significant areas where little or no development is underway. These include enhanced documentation, errata, and citation 961 

services, many of which are relying on best efforts and need dedicated investment and effort in new techniques and modes of 962 

deployment. Considerable work will be required to bring all of these strands together into a coherent system that can be 963 

deployed and supported world-wide and sustained throughout the next IPCC cycle (and beyond). 964 

 965 

This new ecosystem will need to support and coordinate efficient methods for data reduction and sharing, cross model 966 

analysis and evaluation, with an emphasis on bringing together existing and new observational and reanalysis datasets, 967 

models, emulators, and advanced analysis tools for rapid and in-depth analysis and exploitation. The new system will need to 968 

interface with other major data holdings, for example those of the WCRP Lighthouse activities1 (Flato et al., 2023), the 969 

Destination Earth2 data holdings, the existing ISIMIP data repository3, the Copernicus Climate Change Service (C3S)4 and 970 

new data holdings that may arise from the EVE (Earth Visualization Engines)5 initiative. It will need to conform to FAIR 971 

(Findable, Accessible, Interoperable, and Reusable) principles (Wilkinson et al., 2016) and meet the needs and requirements 972 

arising not just from CMIP7, but from the range of communities involved in IAMC, CORDEX and VIACS/ISIMIP. 973 

Critically, the system will need to be fully supported by dedicated data managers, capable of addressing community 974 

questions pertaining to data quality, model and data documentation, as well as supporting users of embedded infrastructure 975 

tools to facilitate the rapid use and reuse of data and tools across communities. It is this rapid use and reuse that will deliver 976 

the internal consistency, across models and research communities, that is key to the transformative impact expected for 977 

international climate policy from the science and modelling efforts proposed in this article. 978 

9 Summary and recommendations for the way forward 979 

Over the past three decades, internationally coordinated modelling projects have delivered a wealth of simulations, data, and 980 

scientific knowledge to support policy actions addressing climate change mitigation and adaptation. As a new round of these 981 

projects start up, and a 7th IPCC assessment cycle begins, we have reviewed how these projects collectively have delivered 982 

science support to international climate policy. We propose a number of science, technology and collaboration priorities that 983 

we believe these projects should jointly focus on over the coming decade. Progress in these areas will increase the quality 984 

and utility of science support to climate policy, while also increasing our understanding of Earth system change, including 985 

the impacts on society and the natural world, as well as our ability to model such future changes and the associated impacts.  986 

 987 

 
1 https://www.wcrp-climate.org/lha-overview 
2 https://destination-earth.eu/ 
3 https://data.isimip.org/ 
4 https://cds.climate.copernicus.eu/ 
5 https://eve4climate.org/  

https://www.wcrp-climate.org/lha-overview
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One key proposal is for the involved modelling communities, spanning integrated assessment, scenario generation, global 988 

and regional Earth system modelling, regional downscaling, and impacts modelling, to work much more closely together 989 

during the next round of projects, with an aim to deliver a coordinated set of scenarios, projections and impact assessments 990 

all based on the same underpinning socio-economic and mitigation scenarios and using the most up to date model 991 

configurations. This will significantly improve the quality and consistency of scientific knowledge available to the upcoming 992 

(AR7) and future IPCC assessments, as well as to the 5-yearly UNFCCC Global Stocktakes. Building on interactions 993 

developed over the past 5-10 years, and proposals for simulations supporting international climate policy to become more 994 

operational in structure, the time is right to actively develop a tighter and more efficient set of links across the relevant 995 

modelling projects. Realizing this ambition within the AR7 timeframe is likely not possible. Nevertheless, significant effort 996 

to achieve such internal consistency and efficient sharing of data, knowledge, and personnel, will lead to future workflows 997 

better suited to fully realizing this ambition. In addition, we highlight the need for impact models to receive more detailed 998 

information (disaggregated, spatially and by sector) on the socio-economic assumptions underpinning the IAM scenarios. 999 

Conversely, increased effort is required to allow knowledge of projected future climate impacts, and the likely societal 1000 

responses to these impacts, to be iteratively incorporated into the generation of emission and land-use scenarios. Thanks to 1001 

CMIP5 and CMIP6 cycles, there is an increasing set of well-established links between IAM scenario production teams, Earth 1002 

system modelling groups, CORDEX downscaling teams, and impact modellers, with the majority of the modelling in these 1003 

activities using a common data infrastructure system. These established connections and shared infrastructure make the 1004 

potential for a more efficient, inter-connected workflow across all these activities a real possibility in the coming years.  1005 

 1006 

The programme of work we outline addresses numerous key knowledge gaps, several of which were highlighted in IPCC 1007 

AR6 (IPCC, 2021). Given the increasing number of ESMs capable of running in CO2-emission mode, including simulation 1008 

of the coupled climate and carbon cycle, as well a range of other Earth system phenomena, combined with an increasing 1009 

number of coupled GCMs running for centennial timescales at ~10km resolution, we believe many of these knowledge gaps 1010 

can be successfully addressed over the coming decade. Exploitation of CMIP6 was identified as limited in AR6, pointing to 1011 

a need to support and better focus coordinated international modelling projects, including links between projects. Plausible 1012 

overshoot scenarios that return to the Paris Climate targets by the end of the century or later (e.g. by 2130), were limited in 1013 

CMIP6 and need to be a greater focus in CMIP7. To address this, it is crucial ESMs are extended to allow a more thorough 1014 

assessment of the efficacy of proposed land and marine CO2 removal techniques in reducing atmospheric CO2 and driving 1015 

global cooling, while accounting for potential Earth system feedbacks (IPCC 2021; Canadell et al., IPCC 2021). ESMs need 1016 

to be capable of assessing both CO2 and non-CO2 feedbacks during overshoot (e.g. a changing efficiency of CO2 uptake by 1017 

natural reservoirs as CO2 is removed from the atmosphere, or methane release into the atmosphere from wetlands or 1018 

permafrost (Canadell et al., IPCC 2021)), as well as the potential for, and consequences of, rapid change in key Earth system 1019 

components during overshoot, such as ice sheet loss or forest dieback (Canadell et al., IPCC 2021; Fox-Kemper et al., IPCC 1020 

2021). In addition, interactions between CO2 warming and trends in aerosol emissions need to be thoroughly assessed, so the 1021 

impact of decreasing aerosol emissions on the near-term rate of global warming and achievability of the Paris targets can be 1022 

better quantified. Such analysis needs to be complemented by analysis of the (societal and environmental) impacts of a 1023 

warming overshoot, the degree of reversibility of these impacts once cooling to a target level is achieved, and the impacts 1024 

resulting from long-term stabilization at a target warming level (assuming it is warmer than today). The majority of IAM 1025 

scenarios, designed to realize the Paris Agreement, assume extensive deployment of land-based (and in a very limited 1026 

number of cases, marine-based) atmospheric CO2 removal technology. The direct impact of these mitigation actions on 1027 

society and the environment needs to be assessed and contrasted with the impacts avoided from the resulting reduction in 1028 

global warming. An additional set of approaches to limit the magnitude of future warming, referred to as geoengineering, are 1029 

increasingly discussed in policy circles and the media. The most widely known being Solar Radiation Management (SRM; 1030 
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Lawrence et al., 2018; Visioni et al., 2023). While there remain concerns around the safety and governance of such actions, it 1031 

is increasingly important the research community actively assesses the efficacy of these approaches, including the risks and 1032 

potential consequences of deployment of this technology at the scales required. Projections beyond 2100 were not 1033 

comprehensively covered in CMIP6 (Chen et al., IPCC 2021). This is important for understanding committed changes and 1034 

the consequences of long-term stabilization at temperatures warmer than today. This is particularly acute with respect to sea-1035 

level rise (Fox-Kemper et al., IPCC 2021), with Antarctic and Greenland ice sheets representing the largest uncertainty in 1036 

future sea-level projections. It is vital these systems are better modelled in CMIP7 and beyond. 1037 

 1038 

More accurately simulating the observed, historical evolution of the climate system (i.e. reducing systematic model biases), 1039 

including the representation of the forcings and feedbacks driving the observed warming, is crucial for increasing confidence 1040 

in model projections and for maximizing the use observations in model improvement. Associated with this, we advocate the 1041 

use of new approaches (for example, combining Machine Learning and Emergent Constraint techniques) to enable more 1042 

extensive use of observations to constrain model projections and future feedbacks. A key requirement remains improved 1043 

constraints on key metrics of Earth system sensitivity (e.g. EffCS, TCR, TCRE and the Regional to Global Warming ratio) 1044 

and that models accurately simulate these metrics, including the processes underpinning them. 1045 

 1046 

Due to their exceptional impact, we highlight the need for improved knowledge of, and ability to simulate, extreme weather 1047 

events, including potential future changes in such events. We further stress the importance of assessing the impact of 1048 

extreme events on society and the environment, considering the level of uncertainty inherent in projections of such rare 1049 

events. This requirement also extends to the modes of climate variability that extreme events develop within (including 1050 

natural variations, future changes and extreme realizations of these modes). Looking towards the next generation of Earth 1051 

system and climate models, we propose significantly increased collaboration across communities investigating enhanced 1052 

Earth system process realism, those working on increased model resolution, and improved physical parameterizations, as 1053 

well as groups working on ML-based hybrid modelling. Increased collaboration across these communities will optimize 1054 

findings from each approach for development of the next generation of Earth system models. This recommendation holds 1055 

equally for global and regional models, including collaboration between these communities. 1056 

 1057 

With respect to uncertainty, in future emission scenarios, in Earth system change, and in the impacts, we propose extensive 1058 

collaboration across the range of approaches addressing these issues. Wherever possible work should assess, quantify, and 1059 

emulate uncertainty as it propagates through the stages of IAM scenarios, ESM projections, regional downscaling, and 1060 

impact simulations, so a more complete assessment of total uncertainty can be provided to policymakers. An additional 1061 

consideration is to better quantify what can be predicted (based on model predictions started from observed initial 1062 

conditions) versus projected (changes in future climate statistics relative to past or present statistics resulting from external 1063 

forcing). An important challenge in this area is to accurately quantify the level of predictability at different time and spatial 1064 

scales, for different variables and regions.  We highlight the need for improved modelling and assessment of potential High 1065 

Impact Low Likelihood (HILL) outcomes, with the possible exceedance of tipping points in the Earth system, in the 1066 

environment, or in society, being of critical importance. Given there will always be some level of uncertainty in the future 1067 

climate, it is important to focus on the communication of this uncertainty, or possibly more importantly, communication of 1068 

what is expected in the future and with what level of confidence. This is a key area in the science-policy interface. 1069 

 1070 

The transformative goals outlined in this paper require the support of a robust, efficient, and internationally connected 1071 

infrastructure. While components of such an infrastructure exist, much work is needed to design, build, deliver and sustain 1072 

an integrated system that meets the objectives outlined here, and maximises the benefits of existing initiatives and 1073 
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investments. The resulting infrastructure must exploit common tools and standards and be designed and delivered with both 1074 

a long-term perspective and a well-trained workforce. It will need to handle increasing volumes of data, support the use of 1075 

new techniques for data analysis (such as remote analysis of big data using ML and AI techniques), and facilitate the easy 1076 

exchange of data, knowledge, and analysis tools.  Without such an infrastructure, many of the aims outlined in this paper will 1077 

not be met in a timely manner, if at all. 1078 

 1079 

Finally, to expand the reach and benefits of international modelling, including the uptake and use of model simulations, to a 1080 

more global scale and thus deliver underpinning scientific support for global climate policy, there is an urgent need for 1081 

increased involvement of Global South scientists. WCRP leads a number of important efforts in this area. These need to be 1082 

ramped up significantly and put on a sound long-term footing. Given the global nature of the climate crisis, that the impacts 1083 

are, and will continue to be, most strongly felt by Global South countries, a globally inclusive response is a necessity. This 1084 

makes both scientific sense (to draw on local expertise for understanding and predicting local Earth system change and its 1085 

impacts), as well as political sense (climate policy is generally better tailored to a specific country’s needs if it is based on 1086 

local expert advice that is accessible over the long-term). We (a group of European scientists) encourage our governments 1087 

and funding agencies to provide sufficient, long-term support to further develop and maintain a strong and globally inclusive 1088 

scientific collaboration over the coming decades. 1089 
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