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Abstract. We review how the international modelling community, encompassing Integrated Assessment models, global and 72 

regional Earth system and climate models, and impact models, have worked together over the past few decades, to advance 73 

understanding of Earth system change and its impacts on society and the environment, and thereby support international 74 

climate policy. We go on to recommend a number of priority research areas for the coming decade, a timescale that 75 

encompasses a number of newly starting international modelling activities, as well as the IPCC 7th Assessment Report 76 

(AR7) and the 2nd UNFCCC Global Stocktake. Progress in these priority areas will significantly advance our understanding 77 

of Earth system change and its impacts, increasing the quality and utility of science support to climate policy.  78 

 79 

We emphasize the need for continued improvement in our understanding of, and ability to simulate, the coupled Earth 80 

system and the impacts of Earth system change. There is an urgent need to investigate plausible pathways and emission 81 

scenarios that realize the Paris Climate Targets. For example, pathways that overshoot 1.5°C or 2°C global warming, before 82 

returning to these levels at some later date. Earth System models need to be capable of thoroughly assessing such warming 83 

overshoots, in particular, the efficacy of mitigation measures, such as negative CO2 emissions, in reducing atmospheric CO2 84 

and driving global cooling. An improved assessment of the long-term consequences of stabilizing climate at 1.5°C or 2°C 85 

above pre-industrial temperatures is also required. We recommend Earth system models run overshoot scenarios in CO2-86 

emission mode, to more fully represent coupled climate - carbon cycle feedbacks and, wherever possible, interactively 87 

simulate key Earth system phenomena at risk of rapid change during overshoot. Regional downscaling and impact models 88 

should use forcing data from these simulations, so impact and regional climate projections cover a more complete range of 89 

potential responses to a warming overshoot. An accurate simulation of the observed, historical record remains a fundamental 90 

requirement of models, as does accurate simulation of key metrics, such as the Effective Climate Sensitivity and the 91 

Transient climate response to cumulative carbon emissions. For adaptation, a key demand is improved guidance on potential 92 

changes in climate extremes and the modes of variability these extremes develop within. Such improvements will most likely 93 

be realized through a combination of increased model resolution, improvement of key model parameterizations, combined 94 

with an enhanced representation of key Earth system processes. We propose a deeper collaboration across modelling efforts 95 

targeting enhanced process realism and coupling, increased model resolution, parameterization improvement, and data-96 

driven Machine Learning methods.  97 

 98 

With respect to sampling future uncertainty, increased collaboration between approaches that emphasize large model 99 

ensembles and those focussed on statistical emulation is required. We recommend an increased focus on High Impact Low 100 

Likelihood (HILL) outcomes. In particular, the risk and consequences of exceeding critical tipping points during a warming 101 

overshoot and the potential impacts arising from this. For a comprehensive assessment of the impacts of Earth system 102 

change, including impacts arising directly as a result of climate mitigation actions, it is important spatially detailed, 103 
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disaggregated information used to generate future scenarios in Integrated Assessment Models are available for use in impact 104 

models. Conversely, methods need to be developed that enable potential societal responses to projected Earth system change 105 

to be incorporated into scenario development.  106 

 107 

The new models, simulations, data, and scientific advances, proposed in this article will not be possible without long-term 108 

development and maintenance of a robust, globally connected infrastructure ecosystem. This system must be easily 109 

accessible and useable by modelling communities across the world, allowing the global research community to be fully 110 

engaged in developing and delivering new scientific knowledge to support international climate policy. 111 

1 Introduction 112 

Given the rapidly developing climate crisis, and the negative consequences for planetary habitability and human well-being, 113 

there is an increasing need for accurate, reliable, and actionable information encompassing the full spectrum of climate risk. 114 

This information is required at global to local scales, near to long timescales, and needs to be tailored to inform critical 115 

decision-making related to climate change mitigation and adaptation (e.g., in the context of UNFCCC negotiations, the UN 116 

Global Stocktake, IPCC assessments, and the World Adaptation Science Program; WASP), as well as the growing needs of 117 

climate service providers. Over the past few decades, coordinated by the World Climate Research Program (WCRP), the 118 

international modelling community has worked together to contribute simulations, data and knowledge to support decision 119 

making, in particular the cyclical IPCC Assessment Reports (AR). This has been achieved through a suite of interconnected 120 

modelling projects and initiatives, with the most important of these listed in Table 1, along with project acronyms and 121 

primary citations. Meehl (2023) discusses the synergistic interaction between climate science (particularly Global Climate 122 

and Earth system modelling) and the IPCC over the past 4 decades. 123 

 124 

With a new IPCC AR cycle (AR7) beginning, it is timely to review how the international modelling community has 125 

supported climate policy in the past, including earlier AR cycles, and ask what advances can be made in the overall quality 126 

and availability of science to support policy needs. In addition, it is pertinent to review our current understanding of, and 127 

ability to model, coupled Earth system change, as well as the societal and environmental impacts associated with this change 128 

and ask whether plausible, safe pathways can be developed for the Earth system that avoid the worst impacts of this change. 129 

Many of the international projects listed in Table 1, that provide the scientific knowledge on which IPCC reports are based, 130 

are beginning new cycles. For example, CMIP7 is starting to take shape, likely running through to ~2030. In this paper we 131 

outline a number of areas we believe the international modelling community can significantly advance our understanding of, 132 

and ability to simulate, past and future Earth system change, including the impacts of these changes. Progress in the 133 

proposed areas will also allow an improved investigation of mitigation options for limiting long-term global warming and its 134 

impacts to acceptable levels. Such developments will deliver enhanced scientific support to international climate policy, 135 

during and beyond AR7. The advances we propose assume the maintenance, expansion and integration of a robust and 136 

interconnected infrastructure ecosystem. Such an infrastructure has underpinned past international modelling collaborations 137 

and is a fundamental requirement for realizing the ambitious goals outlined here. The specific science, and science for 138 

policy, ambitions, as well as the necessary underpinning infrastructure, are discussed in more detail in subsequent sections. 139 

Each proposed focus area can be summarized by the following key goals: 140 

 141 

● Provision of a coordinated, internally consistent set of simulations, data, and knowledge to support IPCC 142 

assessments and international climate policy. The resulting data sets and knowledge should be based on the most 143 

recent and consistent set of Integrated Assessment Model (IAM) scenarios, global and regional Earth system model 144 
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(ESM) projections and simulated societal and environmental impacts. With consideration of impacts arising due to 145 

the projected Earth system change, and directly from any mitigation actions assumed in the IAM scenarios.  146 

 147 

● Improving understanding and guidance on future Earth system change, allowable emissions, net-zero 148 

responses, and safe, long-term pathways for planet Earth. Ensure global and regional ESMs, IAMs, and impact 149 

models include the required level of process realism, process interactions, and consistent forcing data to accurately 150 

simulate the response of the Earth system and human societies to future socio-economic, mitigation, emission, and 151 

land-use scenarios. Develop and analyse a range of future pathways that limit long-term global warming to less than 152 

1.5 or 2°C above pre-industrial levels, while minimizing the negative impacts on society and the environment. 153 

 154 

● Improving our understanding of, and ability to simulate key climate processes, climate variability, extreme 155 

events and regional impacts. Ensure global and regional climate models (GCMs and RCMs) accurately represent 156 

key processes, couplings, modes of variability and feedbacks that underpin global to regional climate change. Use 157 

these models to deliver robust and detailed projections of regional climate change, including changes in extreme 158 

events. Ensure the socio-economic information used to develop IAM mitigation and scenario data is suitably 159 

disaggregated and combined with climate projection data to support national to regional scale impact assessment, 160 

adaptation planning and climate services.  161 

 162 

● Increasing collaboration across approaches to further improve global and regional Earth system and climate 163 

models. Ensure strong collaboration across efforts to; increase process realism and coupling in ESMs, increase 164 

model resolution and improve physical parameterizations in climate models, and Machine Learning (ML) hybrid-165 

modelling approaches. Ensure each of these development paths are optimally combined to support development of 166 

the next generation of Earth system models.  167 

 168 

● Improving model simulations of the observational record and key metrics of climate change. Ensure 169 

improvement in the simulation and understanding of the observed, historical evolution of climate, particularly 170 

historical global and regional warming, encompassing the forcings, processes, and feedbacks that determine the rate 171 

and pattern of this warming. Improve our ability to constrain and simulate key climate change metrics, such as the 172 

Effective Climate Sensitivity (EffCS), Transient Climate Response (TCR), the Transient Climate Response to 173 

cumulative carbon Emissions (TCRE) and the Regional Warming to Global Warming ratio (RW/GW) 174 

 175 

● Sampling and quantifying future uncertainty. Develop and apply a hierarchy of models and methods to 176 

efficiently explore the range of uncertainty inherent in future Earth system change and its impacts. Ensure regional 177 

and national scale adaptation and mitigation is informed by a more complete sampling of the range of potential 178 

climate futures, including rare (high impact, low likelihood) outcomes, their local climate signature, and the 179 

potential consequences of these for society, the environment and climate policy. 180 

 181 

● The underpinning technological infrastructure. Further develop and maintain a robust, globally inter-connected 182 

infrastructure ecosystem to ensure efficient co-production and co-exploitation of internally consistent model 183 

simulations, via information, data and computational services that enable the rapid and reliable sharing of 184 

requirements, knowledge, data, and analysis tools. Such sharing needs to be both within and across multiple 185 

modelling projects and user communities, as well as providing suitable support to policymakers, planners, climate 186 

services, and the wider international research base.   187 
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 188 

 189 

Acronym Initiative or project name Website Main themes      Citation 

IAMC Integrated Assessment 

Modelling Consortium 

https://www.iamconsort

ium.org 

Future socio-economic pathways, 

emission and land use scenarios 

Moss et al., 2010 

WCRP CMIP Coupled Model 

Intercomparison Project 

https://wcrp-cmip.org/ Earth system and Global Climate 

modelling 

Eyring et al., 2016 

ScenarioMIP ScenarioMIP https://wcrp-

cmip.org/model-

intercomparison-

projects-

mips/scenariomip/  

Further develop IAM scenarios 

into emission, concentration and 

land-use scenarios for CMIP and 

CORDEX.  

O’Neill et al., 2016 

WCRP 

CORDEX 

Coordinated Regional 

Downscaling Experiment 

https://cordex.org Regional climate downscaling Giorgi et al., 2009 

VIACS AB Vulnerability, Impacts, 

Adaptation & Climate 

Services Advisory Board 

https://viacsab.gerics.de

/ 

Advisory body for linking CMIP 

and CORDEX to the impacts and 

climate services communities 

Ruane et al., 2016 

ISIMIP Inter-Sectoral Impact 

Model Intercomparison 

Project 

https://www.isimip.org Global and regional impact 

modelling for multiple sectors 

Frieler et al., 2017 

ESGF Earth System Grid 

Federation 

https://esgf.llnl.gov/ Data curation and distribution 

system for CMIP and CORDEX 

Balaji et al., 2018 

 190 
Table 1. Examples of the main international projects contributing to the provision of simulations, data and scientific knowledge to 191 
support climate policy, particularly IPCC assessment reports, including a main reference for each activity. CMIP and CORDEX 192 
are coordinated by the World Climate Research Program. 193 

The recommendations in this paper summarize the opinions of a group of European scientists who have been engaged in, and 194 

in a number of cases helped lead, major international modelling exercises that have delivered into past IPCC assessment cycles. 195 

Examples include; earlier and the latest (7th) phase of CMIP (including leadership of numerous CMIP MIPs; e.g. ScenarioMIP, 196 

C4MIP, HighResMIP, AerchemMIP), IAMC, CORDEX, and ISIMIP. Members of the group have also played a leading role 197 

designing and delivering the underpinning infrastructure required for such large, international modelling projects, in particular 198 

the Earth System Grid Federation (ESGF). While this perspective is therefore a European one, it is informed by many years of 199 

active involvement and collaboration in numerous international projects. 200 

2 Provision of a coordinated, internally consistent set of simulations, data, and knowledge to support IPCC 201 

assessments and international climate policy. 202 

The process by which the aforementioned activities have, in the past, delivered data and knowledge into the science and 203 

policy arenas is summarized in Fig. 1. IAMs develop a range of future global pathways, based on narratives for socio-204 

economic, political, and technological development, as well as climate policy. For methodological reasons these scenarios do 205 

not (yet) consider the impacts of future climate change on human behaviour. The pathways are typically quantified in terms 206 

of highly aggregated information on future population and economic development, energy and food system development, 207 

and environmental consequences. For each pathway, marker anthropogenic emission and land-use scenarios are selected 208 

(van Vuuren et al., 2011; O’Neill et al., 2016; Riahi et al., 2017). These scenarios are combined with observation-based 209 

estimates for the historical past, resulting in a time series of emission and land use data covering ~1850 to 2100 (Hurtt et al., 210 

2011; Gidden et al., 2019). Using simple climate models (e.g. MAGICC; Meinshausen et al., 2011) and chemistry-climate 211 

https://www.iamconsortium.org/
https://www.iamconsortium.org/
https://wcrp-cmip.org/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/
https://cordex.org/
https://viacsab.gerics.de/
https://viacsab.gerics.de/
https://www.isimip.org/
https://esgf.llnl.gov/
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models (Lamarque et al., 2011), the emissions are converted into atmospheric concentration time series. The concentration 212 

timeseries, along with the land-use scenarios, are used to “force” ESMs in CMIP to investigate potential changes in the Earth 213 

system arising from each scenario. The ESMs deliver time-varying, spatially discrete estimates of the past and future 214 

evolution of the Earth system, sampling the range of available emission and/or concentration scenarios (Tebaldi et al., 2021). 215 

CMIP simulations are extensively used to inform policymaking addressing global climate change risks. They are also made 216 

available to the international research community via the ESGF, where they are used to increase understanding of the Earth 217 

system and Earth system change, and to highlight areas requiring further model improvement.  218 

 219 

 220 

Figure 1: A schematic illustration of how earlier rounds of IAMC, CMIP, CORDEX and impact modelling activities, such as ISIMIP, 221 
have worked together to develop and apply future socio-economic and emission scenarios (IAMC), increase the scientific 222 
understanding of, and ability to simulate the coupled Earth system (CMIP and CORDEX), and investigated the impacts of Earth 223 
system change on societies and the natural environment (ISIMIP etc). In the figure dark blue lines illustrate the main (generally 224 
two-way) exchanges of scientific knowledge between the different projects. Dotted green lines indicate the main (simulation) data 225 
transfer between projects, while grey lines show the main data exchanges outside of these projects (e.g. onto the ESGF for open use 226 
by the global research community or into regional or national data distribution sites). Thin orange lines illustrate the new exchanges 227 
proposed in Sect. 2 of this paper. Finally, the thick green lines illustrate the main knowledge and data exchange routes between the 228 
different projects, the global research community, and the IPCC assessment process, as well as with multiple policymakers, 229 
practitioners, and climate service providers around the world.   230 

 231 

CMIP simulations are used extensively as boundary forcing for regional downscaling (e.g. CORDEX) to generate climate 232 

information at spatial scales relevant for adaptation policy and climate services, as well as to drive impact model simulations 233 

(e.g. crop models in AgMIP (Ruane et al., 2017), fisheries and marine ecosystem models in FishMIP (Tittensor et al., 2018), 234 

and a range of impact models that contribute coordinated simulations to ISIMIP (Frieler et al., 2017), addressing impacts 235 

such as, biome changes, water resources, human health, energy systems and biodiversity). Regional downscaling follows two 236 

main pathways; (i) dynamical downscaling generate high-resolution regional simulations consistent with the ESM boundary 237 
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condition data (Ruti et al., 2016; Jacob et al., 2020; Teichmann et al., 2021) and (ii) empirical-statistical downscaling 238 

(including ML methods) combine observations and models to translate large-scale features simulated by the ESMs to high-239 

resolution, local scale climate information (Gutiérrez et al., 2018; Lange, 2019; Karger et al., 2023). Impact models use both 240 

CMIP and CORDEX climate data, as well as socio-economic data and information on mitigation actions from the IAM 241 

scenarios (e.g. population distributions and land use patterns that include information on mitigation measures), as forcing to 242 

assess the societal and environmental impacts arising from the range of simulated futures (Frieler et al., 2017).  243 

 244 

The combined outcome of this international effort are a set of simulations, data and resulting knowledge covering the past 245 

~175 and future ~100 years (and sometimes longer) that sample; (i) plausible future global socio-economic development 246 

pathways, (ii) emission, concentration and land-use scenarios commensurate with these pathways, (iii) global and regional 247 

Earth system changes associated with each future pathway and (iv) the societal and environmental impacts arising from the 248 

simulated Earth system changes, as well as direct impacts associated with the socio-economic and/or mitigation measures 249 

applied in the IAM scenarios. 250 

 251 

There are numerous challenges involved in running the number and variety of model simulations across this range of 252 

activities, including cross-project and cross-model dependencies. As a consequence, to date it has not been possible to 253 

develop a single, coordinated dataset of forcings, simulations and findings from all four activities (IAMs, CMIP, CORDEX, 254 

impact modelling), based on a common set of socio-economic assumptions, scenarios, and driving data, within a single IPCC 255 

Assessment cycle. This limitation reduces the overall consistency and utility of information entering the three IPCC working 256 

groups (WGs). For example, Global (CMIP) and Regional (CORDEX) simulations are often out of sync, with CORDEX 257 

RCMs using boundary data derived from an earlier phase of CMIP. A similar example holds for impact models that often 258 

use a mix of global and regional forcing from different phases of CMIP and CORDEX. Furthermore, impact models forced 259 

by CMIP/CORDEX climate data, do not include all the socio-economic and climate policy information that underpin the 260 

driving IAM emission and land-use scenarios. This is particularly acute with respect to a number of direct human forcings. 261 

These forcings are aggregated across multiple sectors and large spatial scales in the IAM scenarios, but need to be 262 

disaggregated and harmonized with observed historical data, to more detailed spatial scales and individual sectors, to allow 263 

an accurate estimate of their impact on society and the environment, in combination with the impacts due to Earth system 264 

change (e.g. see Direct Human Forcings, as listed on Table 1, Frieler et al., 2024). An improved accounting of such direct 265 

human forcings will be increasingly important as future scenario pathways include major (human) interventions likely 266 

required to deliver the negative CO2 emissions required to achieve the Paris Agreement targets. Such interventions 267 

themselves can have important direct impacts on food production and biodiversity and therefore need to be accounted for in 268 

impact assessments.   269 

 270 

Partly for methodological reasons, the impacts of climate change (and the potential societal responses to these changes) have 271 

not been included in IAM scenarios describing future socio-economic trajectories (i.e. Shared Socio-economic Pathways 272 

(SSPs), O’Neill et al., 2020). As climate change is expected to have a considerable impact on society, it is important methods 273 

are developed that allow these feedbacks to be included in future scenario development (Pirani et al., 2024). Ideally 274 

information on the impacts of climate change would be fed back into the IAMs to iteratively generate new future socio-275 

economic and policy pathways that include the societal responses to both the applied climate mitigation measures and to the 276 

impacts of climate change. For example, future land use will need to be adjusted to satisfy global food production, while 277 

accounting for the impacts of climate change on crop yields and changes in available land resulting from any land-based 278 

climate mitigation measures. These iterative adjustments to future socio-economic scenarios are one way to represent 279 

societal adaptation to projected climate change. Given the tight timelines it will not be possible to fully develop such 280 
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iterative and interactive steps within the IPCC AR7 cycle. Nevertheless, we recommend urgently addressing this link as the 281 

envisioned modification of workflows has the potential to significantly improve the overall coherency of future scenarios, 282 

integrating important information across socio-economic, Earth system and impact projections.  283 

 284 

The lack of consistency, of both data and knowledge entering IPCC and national climate change assessments, reduces its 285 

overall utility and makes the interpretation of uncertainties across the various data sources a challenge. This can lead to 286 

inconsistent data and knowledge being used to develop climate policy, with some data being more than 10 years old. We 287 

believe the time is right to much more tightly link these key international activities, with more extensive and rapid sharing of 288 

simulations, data, knowledge, tools, and personnel, moving such critical science for policy work towards an operational 289 

footing. Such a change has been proposed earlier (e.g. Jakob et al., 2023; Stevens, 2024). We agree with these proposals but 290 

stress the need for “operationalization” across the entire workflow involved in developing and delivering robust and useable 291 

scientific knowledge. This includes; generation of IAM scenarios and associated forcing data, global and regional Earth 292 

system model simulations based on these scenarios, impact model simulations, post-simulation evaluation and analysis, 293 

uncertainty quantification, science to policy knowledge translation, and the technical infrastructure needed to support the 294 

entire endeavour. To maximize the relevance and utility of the resulting science for policy, we further propose such 295 

operational activities employ a co-development and co-exploitation approach, where a cross-section of intended users of the 296 

science are involved throughout the process. 297 

 298 

Such developments require support across a number of international coordinating bodies, as well as mechanisms to 299 

coordinate or pool the significant funding required, for what is inherently an international, multi-institutional and multi-300 

disciplinary endeavour. The building blocks for this do exist, represented by IAMC, CMIP, CORDEX, VIACS, ISIMIP and 301 

the ESGF. To date, the bulk of the effort to realize these interconnected projects have been funded through short-term, 302 

competitive research grants, with the availability and international coordination of this funding arising partly by chance and 303 

often thanks to common IPCC timelines (Meehl, 2023). While such a development requires significant effort, funding and 304 

coordination, the long-term benefits for climate policy are potentially very significant. While moving the policy and service 305 

oriented aspects of climate projections and impact assessment towards a more operational approach is important, we stress 306 

the paramount importance of maintaining a strong science understanding, model improvement, and open data access, 307 

approach across all these activities. This will help maintain global participation and ensure continual improvement in the 308 

quality of data and knowledge entering the climate policy and service arenas.  Fully achieving these goals on the timescale of 309 

IPCC AR7 will not be possible. Nevertheless, a first step in this direction is under development as part of the planning for 310 

CMIP7, which will operate a dual timescale approach. A set of CMIP7 Fast Track (FT) simulations, specifically intended to 311 

support IPCC AR7, is under development. The CMIP7 FT aims for a small set of policy relevant experiments that can be 312 

rapidly performed and made available for analysis by early 2027. In addition to the Fast Track, the bulk of CMIP7 will 313 

operate on a slower timescale, roughly from 2025 to 2030, with individual science-oriented MIPs (Model Intercomparison 314 

Projects) developing and realising a range of experiments and analyses to address outstanding questions and challenges in 315 

Earth system modelling. 316 

 317 

Starting to develop a more joined up and efficient workflow across projects, along with increased internal consistency of 318 

data and knowledge emanating from these projects to support IPCC will be an important step towards a durable, more 319 

operational approach to delivering scientific support to climate policy and climate services.   320 
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3  Improving knowledge and guidance on future Earth system change, allowable emissions, net-zero responses, 321 

and safe landing pathways for planet Earth. 322 

3.1  The Paris Agreement: The risk of warming overshoot, allowable emissions, net-zero and negative emissions, 323 

and Earth system feedbacks. 324 

The 2015 Paris Agreement (with an aim to limit long-term global warming to well below 2°C above pre-industrial 325 

temperatures and pursue efforts to limit warming to 1.5°C; Riahi et al., 2021) focused the attention of policymakers and the 326 

public onto the risks and consequences of exceeding these key targets. Partly in response to such policy needs, work 327 

accelerated on quantifying allowable carbon emission budgets commensurate with the Paris goals (Millar et al., 2017; Rogelj 328 

et al.,2019; Lamboll et al., 2023). It became increasingly clear that to provide accurate guidance on such allowable budgets, 329 

Earth system models needed to improve their representation of the carbon cycle and its interaction with physical climate 330 

processes. In addition, further improvement was required in representing non-CO2 climate forcers, such as methane, nitrous 331 

oxide and aerosols. Focus also turned to the risk of triggering feedbacks that might push temperatures further from a given 332 

target, once the target was exceeded, as well as on the risk of exceeding Earth system tipping points, with potentially major 333 

regional impacts. Lastly, recognition that international policy would likely lead to the climate being stabilized at 334 

temperatures warmer than pre-industrial or present-day, stimulated work to better quantify the long-term consequences 335 

associated with such a stabilized warmer world (King et al., 2021).  336 

 337 

Over the past decade significant progress has led to several ESMs now including a full representation of the carbon cycle, 338 

interactively coupled to the physical climate (Arora et al., 2020). This progress has motivated calls for CMIP7 to more 339 

strongly focus on CO2-emission driven simulations, where a more complete representation of future climate – carbon cycle 340 

feedbacks can occur (Sanderson et al., 2023). A number of ESMs are also incorporating and coupling other Earth system 341 

processes required to properly investigate future emission pathways that realise the Paris Targets, as well as the 342 

consequences of long-term stabilization. Developments include; nutrient limitation on terrestrial carbon uptake (Lawrence et 343 

al., 2019; Wiltshire et al., 2021), interactive methane cycles with the ability to run in emission-mode for methane (Folberth et 344 

al., 2022), interactive treatment of nitrogen and iron cycles (Dunne et al., 2020), interactive permafrost (Burke et al., 2020, 345 

Schädel et al., 2024), interactive fires (Mezuman et al., 2020; Teixeira et al., 2021), full atmosphere chemistry (Gettelman et 346 

al., 2019; Archibald et al., 2020) coupled to advanced aerosol models (Mulcahy et al., 2020), as well as interactive 347 

Greenland and Antarctic ice sheets (Smith et al., 2021; Muntjewerf et al., 2021). Many of these developments, occurring 348 

across several ESMs, have either recently entered use in their coupled model, or are in an advanced stage of development 349 

and planned for use in CMIP7. As a result, the Earth system modelling community, collectively, are entering a period where 350 

simulation of the full Earth system during overshoot, recovery, and long-term stabilization can deliver critical new insights 351 

that are urgently required by international climate policy.  352 

 353 

An important focus for CMIP7 and ScenarioMIP (O’Neill et al., 2016; van Vuuren et al., 2023) therefore, is investigation of 354 

plausible emission scenarios and global warming pathways that successfully realize the Paris Agreement. Key questions 355 

within this activity encompass; What is the feasibility of actually realizing the Paris targets? Whether a temporary warming 356 

overshoot is inevitable? And, if so, of what magnitude? Also, is it feasible to return to a target warming level on a reasonable 357 

timescale once an overshoot has occurred (Bauer et al., 2023)? To provide robust policy guidance on the plausibility and 358 

consequences of such pathways, several additional questions need to be addressed: Can accurate predictions of carbon 359 

emission budgets (and budgets of other radiatively important greenhouse gases) be made that are commensurate with 360 

different warming targets, with or without overshoot (Ramboll et al., 2023)? What is the role of anthropogenic aerosol 361 

emissions with respect to future warming and achievability of the Paris targets (Jenkins et al., 2022) What is the risk of 362 

amplifying feedbacks being triggered during overshoot (Melnikova et al., 2022), and is there a risk of exceeding tipping 363 
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point thresholds in the Earth system, society or the natural environment, during overshoot (Wunderling et al., 2023)? If 364 

plausible negative emission pathways do exist, that return the Earth system to an acceptable temperature at an acceptable 365 

rate, once overshoot has occurred, what will be the environmental consequences of following these pathways? Furthermore, 366 

during the overshoot phase, if major changes or impacts (e.g. ecosystem degradation, population displacement, economic 367 

damages) do occur, or tipping points are exceeded (either in society or the Earth system), are these changes reversible when 368 

temperatures return back below a target level (Kim et al., 2022; Reed et al., 2023; Santana-Falcón et al., 2023) and how long 369 

will such a recovery take (Albrich et al., 2020, Meier et al., 2012)?  370 

 371 

Existing mitigation pathways that rely on negative CO2 emissions assume a significant stimulation of terrestrial carbon 372 

uptake through extensive modifications to land-use (Smith et al., 2016). How the carbon cycle will respond to these 373 

interventions is not well quantified. Nor is the actual efficacy of these interventions in reducing temperatures (Schleussner et 374 

al., 2023), or the ensuing impacts on the natural world, particularly biodiversity. A dominant part of the negative CO2 375 

emissions in present IAM scenarios is assumed to come from the AFOLU (agriculture, forestry and other land use) sector, 376 

through large scale deployment of bioenergy with carbon capture and storage (BECCS). It is of the utmost importance 377 

ESMs, with a comprehensive process-based representation of the carbon cycle, are used to assess the efficacy of such 378 

AFOLU scenarios in terms of realized negative emissions and temperature response, accounting for interactions with the 379 

natural carbon cycle and regional climate. Such major changes to the land surface will likely also lead to significant impacts 380 

on water availability, biodiversity and a range of human activities (Séférian et al., 2018; Hof et al., 2018), both directly from 381 

the change in land use and indirectly through induced changes in regional climates. Such potential impacts need to be 382 

carefully assessed with impact models, with any negative impacts balanced against the positive impact of the mitigation 383 

actions on global warming. New negative CO2 emissions technologies that encompass marine-based CO2 removal (mCDR) 384 

are increasing in interest. Such approaches aim to increase marine carbon uptake through ocean alkalinization (Kwiatowski 385 

et al., 2023; Palmieri and Yool, 2024) or increase the storage of ocean carbon via marine afforestation (Bach et al., 2021). 386 

These new approaches have the potential to reduce the demand on land-based CDR, reducing the impacts of these techniques 387 

on the land. However, such ocean techniques can lead to negative consequences for marine ecosystems and organisms, by 388 

altering marine nutrients cycles. It is important to emphasise that the full Earth system response to marine CDR is as 389 

uncertain as its land counterpart. Uncertainties in its efficacy to remove and store CO2 remain poorly quantified and 390 

estimating the lifetime of CO2 storage in the water column represents an additional challenge compared to the land-based 391 

CDR, due to the complicating role of ocean circulation and potential redistribution of CO2. 392 

 393 

In addition to negative CO2 emissions, Solar Radiation Management (SRM) has been proposed as an alternative (or 394 

additional) route to limiting global warming to 1.5°C. While there remain concerns around the unintended consequences of 395 

SRM (Bonou et al., 2023), as well as the long-term governance of such technology (Pasztor and Harrison, 2021), the 396 

international SRM community recently designed a set of scenarios that allow investigation of both the efficacy and potential 397 

climate impacts of such technology (MacMartin et al., 2022; Baur et al., 2023; Baur et al., 2024). The same community 398 

recently proposed an experiment protocol for the CMIP7 Fast Track (Visioni et al., 2024) that targets recovery of the global 399 

mean surface temperature to 1.5°C threshold after overshoot. As the world continues to get closer to the 1.5°C threshold, 400 

interest in SRM and geoengineering more broadly is likely to increase. The science community will be asked to provide the 401 

best possible guidance on the efficacy of SRM, the potential climatic and ecological impacts of SRM, as well as information 402 

on the scales (temporal, spatial and quantity) required for this technology to deliver long-term, safe climate stabilization. 403 

Such work on climate ‘solutions’ including SRM should be organized under the WCRP Lighthouse Activity on Climate 404 

Intervention, which brings together international research communities focussing on both CDR and SRM. 405 

 406 
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 407 

Finally, once an “acceptable” warming level is reached, it remains to be established whether the Earth system can be 408 

stabilized, long-term at this level (Jones et al., 2019)? And, if so, what the consequences across the Earth system and for 409 

society will be from such stabilization (King et al., 2021; Palazzo Corner et al., 2023)? All these questions have major 410 

implications for international climate policy. Reliable answers are urgently needed. The international research community is 411 

beginning to address such questions, and increasingly has the modelling tools capable of providing answers. We believe the 412 

new round of international modelling projects have the potential to make major advances towards delivering robust answers. 413 

 414 

Past CMIP cycles, including the most recent phase CMIP6 (Eyring et al., 2016a), emphasized CO2-concentration driven 415 

simulations, where atmospheric CO2 concentrations are prescribed and simulated carbon cycle – climate feedbacks cannot 416 

influence atmospheric CO2. This approach was taken largely for pragmatic and inclusivity reasons (i.e. there was only a 417 

relatively small number of models with robust and stable coupled climate and carbon cycles). Thanks to efforts such as 418 

C4MIP (Friedlingstein et al., 2006, Arora et al., 2020), this is no longer the case, with a significant number of ESMs now 419 

including advanced carbon cycles coupled to their physical climate (Sanderson et al., 2023). Due to the small remaining 420 

carbon budgets involved in realizing the Paris targets, and uncertainty in how the carbon cycle will respond to negative and 421 

net zero emissions, it is imperative more ESMs in CMIP7 run in CO2-emission mode, with full interaction between the 422 

physical climate and carbon cycle, including prognostic atmospheric CO2 (Sanderson et al., 2023; Gier et al., 2024). This 423 

will support an improved assessment of feedbacks involving the physical climate and the carbon cycle, addressing 424 

consequences for allowable future carbon emissions, the amount of negative emissions required after different overshoot to 425 

achieve different stabilization targets, and the associated risks, impacts and potential for irreversible change across the Earth 426 

system. Only through such a coupled, prognostic approach can anthropogenic CO2 emission scenarios, intended to realize 427 

key warming targets, be connected with the Earth system response and the impact of these on atmospheric CO2 and realized 428 

warming/cooling pathways.  429 

 430 

We propose other important aspects of the coupled Earth system, at risk of rapid change, should also be run in a more 431 

coupled and prognostic manner in CMIP7. Assessment of coupled interactions and risks across the entire Earth system, 432 

including potential tipping point risks (Ritchie et al., 2021), is severely lacking in earlier IPCC Assessment Reports. Giving 433 

greater emphasis to coupled and prognostic interactions across the Earth system (particularly those thought to play a major 434 

role in determining the magnitude of future change) in an internally consistent framework will allow a more complete 435 

assessment of Earth system change, beyond that focussed solely on the physical climate. In addition, we emphasize the need 436 

to assess the impact of specific and targeted human actions (designed to mitigate future climate change or to adapt to 437 

expected future change) on regional climate, as well as on other aspects of the coupled Earth system, including resilience of 438 

the natural environment, biodiversity, and consequences for other human activities (e.g. food security, energy production or 439 

air quality).  The current scientific priorities with respect to such interactions, along with (in italics) the key phenomena, 440 

feedbacks and consequences such coupled simulation would enable improved assessment of, are listed below: 441 

  442 

(i) Water, vegetation and biogeochemical cycles of carbon, nitrogen, phosphorous; improved estimates of vegetation 443 

change, terrestrial carbon uptake, regional water cycles and ecosystem tipping risks. 444 

 445 

(ii) Climate, vegetation, and fire: improved assessment of future fire risk and interactions with carbon uptake, 446 

atmospheric composition and ecosystem tipping risks. 447 

 448 
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(iii) Permafrost, climate, vegetation, and carbon: stability of permafrost under warming and long-term warming 449 

stabilization, carbon/methane release from thawing permafrost, ecosystem expansion into thawing permafrost zones. 450 

 451 

(iv) Climate, ice sheets, and sea level: improved assessment of potentially irreversible loss of Antarctic and Greenland ice 452 

mass and consequences for sea level rise, ocean circulation and ocean heat uptake. 453 

 454 

(v) Climate, atmospheric composition, and air quality: internally consistent assessment of regional radiative forcing, 455 

climate change and air quality. 456 

 457 

(vi) Ocean physics, biogeochemistry and ecosystems: assessment of ocean warming, marine carbon uptake and long-term 458 

storage, ocean acidification and impacts on marine ecosystems. 459 

 460 

(vii) Human-Earth System interaction: assessment of the direct impact of human activities on the Earth system, regional 461 

climate, society, and the environment. e.g. Mitigation actions designed to address air quality and/or climate change, 462 

such as major land use change, nature-based solutions, climate interventions (geoengineering). Adaptation measures 463 

designed to address regional to national scale climate risk.  464 

 465 

(vii) The interplay between global change, regional climate variability, changes in climate and weather extremes, and 466 

resulting impacts across the Earth system.  467 

3.2  Regional Earth system change; assessing societal and environmental impacts. 468 

In addition to changing how global ESMs are run, we propose that regional downscaling (for example dynamical 469 

downscaling or Regional Climate Modelling, as used in CORDEX) also advance their representation of key regional Earth 470 

system processes (beyond the physical atmosphere-land system; Giorgi and Prein, 2022; Nabat et al., 2020; Sevault et al., 471 

2014). Here we refer to regional climate modelling or dynamical downscaling in the broadest sense, encompassing any 472 

physics-based dynamical model targeting a fine-scale representation of the climate over a specific region of the world. This 473 

includes limited-area models (LAM), variable-resolution GCMs (VRGCM) and, more recently, regional earth system 474 

models, convection-permitting regional models, and two-way coupled systems. In addition, atmosphere-land only global 475 

models are beginning to run for decadal timescales (and likely longer in the coming decade) and can be driven by sea surface 476 

temperatures and sea ice derived from ESM projections, providing a global downscaling option for coupled ESM 477 

projections. Whatever the technical choices used to perform such dynamical downscaling in future projection mode, forcings 478 

from global ESMs and GCMs will always be required, either as lateral, surface, or inner model boundary condition data. 479 

Similarly, we use the term statistical downscaling in a very broad sense, covering established statistical methods for 480 

transferring simulated large-scale climate data to local scales, as well as the increasing range of machine learning (ML) 481 

techniques, including recent deep learning applications (Gerges et al., 2023, Soares et al., 2024). 482 

 483 

To better sample the uncertainty range of global projections, dynamical and statistical downscaling should preferentially use 484 

CO2 emission-driven ESMs as boundary forcing and employ an efficient (as automated as possible) method to select an ESM 485 

ensemble for a given region and rapidly generate the required boundary condition data. The resulting combination of global 486 

emission-driven ESMs, regional ESMs, and advanced statistical/ML-based downscaling, all running in a tightly linked 487 

framework, will allow a more complete assessment of potential changes across the global and regional environment at scales 488 

required by policymakers and planners. Given the rapid development of a diversity of dynamical, statistical and ML-based 489 

methods to generate high-resolution regional data, it is important a common evaluation framework is developed that is 490 
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applicable across global to local scales (and across the implied model resolutions) as well as being agnostic to the methods 491 

employed, so different downscaling approaches can be objectively evaluated against each other, region by region and 492 

application by application.  493 

 494 

We further recommend impact models use a coordinated, multi-model ensemble of (global and regional) simulation-data, 495 

based on the CMIP7 CO2-emission driven ESMs, that capture a representative fraction of the uncertainty space of global and 496 

regional projections. In addition, impact models should aim to sample multiple members of individual ESMs, and the 497 

downscaling of these ESMs, to better quantify the importance of internal (natural) variability in regional climate impacts. 498 

Forcing impact models, either directly by global ESM output or by appropriately downscaled data, themselves driven by the 499 

same ESM simulations, will ensure global consistency of the impact simulations and comparability of impacts resulting from 500 

global and regionally downscaled forcing over the same region. In addition to coordinated forcing from ESM and 501 

downscaled data, a more complete, disaggregated set of IAM scenario data describing socio-economic development and 502 

potential mitigation or adaptation measures will ensure greater coherency between global and regional impact assessments 503 

and the underpinning IAM, ESM and regional forcing data. The resulting global models and downscaling combinations can 504 

be also used to assess the efficacy and potential impacts associated with different regional climate change mitigation or 505 

adaptation actions, offering scientific assessment of such proposed climate solutions.   506 

4 Improving our understanding of, and ability to model key climate processes, climate variability, extreme 507 

events and regional impacts. 508 

4.1  Improving key phenomena and couplings in global climate models. 509 

Some of the key uncertainties in Earth system model projections relate to errors in simulating important regional climate 510 

processes and phenomena, including interactions across spatial scales and regions. For some of these phenomena, model 511 

resolution has been shown to be a key factor. Hewitt et al. (2022) showed that increasing ocean model resolution, in 512 

particular better resolving the ocean mesoscale, is important for accurately representing a number of key processes, 513 

including; ocean eddies in the Southern Ocean and North Atlantic (with implications for simulated marine heat and carbon 514 

uptake, ice sheets and sea-level rise), ocean deep water formation in the Labrador and Nordic Seas and on the Antarctic shelf 515 

(with implications for the global ocean overturning circulation and heat uptake), the Atlantic Meridional Overturning 516 

Circulation (with implications for heat and carbon uptake, as well as regional climate), ocean upwelling regions (with 517 

implications for marine carbon uptake, productivity and fisheries). Increased resolution, in both the atmosphere and ocean, is 518 

also important for simulating large-scale hydrological processes (Vannière et al., 2019) (with important implications for 519 

regional water cycles, water availability and food security), as well as modes of climate variability, such as the El Niño 520 

Southern Oscillation (ENSO) and associated teleconnections (with implications for the rate of ocean heat uptake and 521 

regional climate variability). While increased model resolution (to better resolve the ocean mesoscale or the synoptic scale 522 

in the atmosphere) is an important component of reducing several systematic biases in coupled models, it is equally 523 

important to improve key parameterization schemes for processes that continue to be unresolved, even at horizontal 524 

resolutions of ~10km/0.1° in coupled models. In particular, it is critical to ensure further improvement in parameterizations 525 

at the heart of uncertainty in simulated Effective Climate Sensitivity (EffCS) and Transient Climate Response (TCR) (Meehl 526 

et al., 2020; see Sect. 6 of this paper) 527 

 528 

Upscale effects from many of these small-scale processes can be important. For example, oceanic mesoscale eddies tend to 529 

drive atmospheric mesoscale storms in the extra tropics (Liu et al., 2021), while at larger scales the atmosphere can drive 530 

ocean variability (Frankignoul, 1985). These effects are apparent only in coupled systems and their large-scale 531 
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consequences, such as the preferred location and orientation of the jet stream, mid-latitude storm tracks, and related air-sea 532 

fluxes, can only be captured in large-domain models with mesoscale or better resolution (Seo et al., 2023). Furthermore, 533 

couplings between the heat, water, and carbon cycles, means improving the representation (and parameterization) of physical 534 

processes will deliver important benefits for simulating the carbon, and other biogeochemical, cycles. In addition to the 535 

large-scale impacts, higher resolution models also offer an improved simulation of climate variability, in particular weather 536 

extremes such as; tropical cyclones (Roberts et al., 2020), extreme precipitation (You et al., 2023), atmospheric rivers (Liang 537 

and Yangyang, 2023), jet streams and atmospheric blocking (Schiemann et al., 2020) with consequences for the frequency 538 

and location of extreme weather (Athanasiadis et al., 2022), which both depend on SST realism delivered by resolving the 539 

ocean mesoscale. All these events have important impacts across the coupled Earth system, including upscale effects, e.g. 540 

drying of the atmospheric column by tropical cyclones over the Maritime Continent, with impacts on ENSO (Scoccimarro et 541 

al., 2021). Similarly, in the ocean increased resolution can improve the representation of important dynamical phenomena, 542 

such as marine heatwaves (Plecha and Soares, 2020) the representation of bottom water formation (Heuzé, 2021) and mixed 543 

layer eddies (Calvert et al., 2020). 544 

 545 

Increasing model resolution alone does not guarantee improvement in all simulated metrics and leads to important challenges 546 

related to model spin-up, equilibration, calibration, and uncertainty quantification. Simulation improvements are often best 547 

realized through a combination of increased model resolution and targeted improvement to key parameterization schemes. 548 

While the compute cost increases considerably as model resolution is increased, recent studies suggest increased resolution 549 

can deliver important insights into some long-standing model biases, and perhaps reconcile mismatches between simulated 550 

and observed historic trends. For example, Rackow et al. (2022) show that resolving the ocean mesoscale improves the 551 

simulation of Antarctic sea-ice trends, Chang et al. (2023) illustrate increased realism in ocean upwelling as model resolution 552 

is increased, and ongoing work suggests higher resolution simulations can better capture recent observed trends in the 553 

Eastern Pacific that are not captured in CMIP6 models (Seager et al., 2022). Such improvements will have important 554 

implications for predicting future extreme events, such as tropical cyclones, floods, droughts and heatwaves. 555 

 556 

There is strong evidence a coordinated set of simulations for CMIP7, with resolutions enhanced over those typically used 557 

(e.g. 10-25 km in the atmosphere and ~0.1° in the ocean), can deliver an improved simulation and understanding of key 558 

regional climate processes and a more robust assessment of future changes in many of these processes, with benefits for 559 

impact and adaptation planning. Chang et al. (2020) demonstrated that CMIP-length simulations, with an equilibrated 560 

coupled model, are now possible at resolutions of ~10-25km/0.1°. Many groups produced simulations following the CMIP6 561 

HighResMIP protocol (Haarsma et al., 2016), though generally with very limited ensemble sizes. Given increased model 562 

efficiency and available compute resources, CMIP7 provides an opportunity to further investigate the benefits of increased 563 

coupled model resolution, alongside increased ensemble size, longer simulations, methods for improved model equilibration 564 

and initialization, and enhanced process realism. Given current structural limitations of coupled climate models, of whatever 565 

resolution, sampling model diversity, through multi-model CMIP-style exercises, remains critical for providing robust 566 

estimates of projection uncertainties and risks (see Section 7). This is particularly the case with respect to regional climate 567 

change, where processes may be resolution-dependent (e.g. Moreno-Chamarro et al., 2022) and therefore sensitive to biases 568 

common across lower resolution models. A diversity of enhanced resolution coupled models thus needs to be promoted, but 569 

also optimized across the competing demands for delivering future projection data that is of maximum quality and utility 570 

both for the science and policy communities. 571 

 572 
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4.2  Increased model resolution from global to regional scales for regional impact assessment and adaptation. 573 

Like their global counterparts, Regional Climate Models have also increased in resolution, with a growing set of models now 574 

running at convection-permitting resolutions (~1-3km resolution; Ban et al., 2021; Hohenegger et al., 2023). In addition to 575 

an improved simulation of the convective scale, high-resolution itself brings direct benefits, by delivering climate 576 

information closer to impact and adaptation relevant scales and by better resolving local climate in regions of strong 577 

orographic forcing, complex land-sea-lake structures, or heterogeneous land surface types. Moreover, explicitly resolving 578 

convective events, including the self-organization and self-intensification of these events, brings physical grounding to 579 

simulated precipitation extremes (Kendon et al., 2021; Caillaud et al., 2024), including the ability to evaluate models against 580 

observations at common spatial scales (Caillaud et al., 2021). A growing set of regional projections, employing convection-581 

resolving models (Pichelli et al., 2021; Chapman et al., 2022; Kawase et al., 2023; Kendon et al., 2023), is shedding new 582 

light on the interaction between future climate change and regional hydrological responses. Convective-scale regional 583 

models can also be deployed for shorter, targeted purposes. For example, by focusing downscaling onto event sets where 584 

such high regional resolution is expected to add value to coarser scale models, or by sub-selecting global projections that 585 

allow a broad range of climate hazards, needed for robust adaptation, to be simulated regionally at high resolution.  586 

 587 

While the combination of high-resolution coupled global climate models (~10-25 km in the atmosphere and ~0.1° in the 588 

ocean) and convection-permitting regional climate models (~1-3 km) are computationally demanding, the potential to deliver 589 

radically new findings and policy support, at scales required by national and regional planners, means they are an 590 

increasingly important input to national climate scenarios, adaptation planning, and climate services. This is particularly the 591 

case with respect to risks associated with extreme weather events. In the next phase of CMIP and CORDEX, we propose a 592 

significant emphasis be placed on increasing collaboration, as well as data and knowledge sharing, between high-resolution 593 

global climate models, convection-resolving regional models, and statistical/ML-based downscaling, with the goal of 594 

producing a coordinated ensemble of high-resolution global projections, downscaled by an ensemble of convection-resolving 595 

regional models, augmented by state of the art statistical and ML-based downscaling. We further recommend the resulting 596 

high-resolution (global and regional) projection data are used to force a range of impact models (e.g. in ISIMIP, AgMIP and 597 

FishMIP). As the future impacts felt by natural and human systems is not only dependent on climate change, but also on the 598 

direct human forcing of climate arising from the underpinning scenarios themselves, it will be important to also represent 599 

these drivers at high spatial resolution. The resulting set of climate change and impacts data will be of enormous value to 600 

national climate change impact assessments, adaptation planning and climate services. To maximize the quality and 601 

consistency of this multi-scale, multi-method data set, it is important systems are developed and employed to allow careful 602 

evaluation of the cascade of information across systems, scales, regions, as well as from climate to impacts, highlighting 603 

both value-added and consistency-lost across the entire chain.  604 

 605 

     4.3 Global Storm Resolving models and the path to global km-scale 606 

Global models with grid spacing in the range 1-10km are often referred to as Global Storm Resolving Models (GSRMs, e.g., 607 

Hohenegger et al., 2020; Judt et al., 2020: Caldwell et al., 2021). GSRMs running at ~3-5km global resolution currently 608 

achieve a throughput of ~0.5 simulated years per day (SYPD), with an aim to reach 1 SYPD in the coming years. GSRMs 609 

originated within the international DYAMOND initiative (Stevens et al., 2021) and the GRSM community are currently 610 

designing year-long experiment protocols (Takasuka et al., 2024, submitted). In addition, within the EU-sponsored 611 

Destination Earth (DestinE; Wedi et al., 2022) two coupled GCMs have run a reduced HighResMIP experiment (for the 612 

period 1990 to 2040) with grid spacing of 5km.  613 

 614 

Examples of scientific highlights realised by GSRMs include; a realistic representation of the interannual frequency of 615 

Tropical Cyclones (TC) in major basins, comprising a realistic distribution of all severity categories (Judt et al., 2020), as 616 
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well as realistic representation of the rate of TC intensification, possible as resolutions reach 3km or better. Recent 617 

comparative studies among km-scale ocean models show large-scale features that affect the storm tracks and air-sea coupling 618 

(e.g., Gulf Stream separation) are more consistent in these models than in coarser resolution ocean models. Internal 619 

variability is also substantially larger in eddy-rich models (Chang et al., 2020; Jüling et al., 2021), including stronger SST 620 

responses to AMOC variations. In terms of coupled phenomena, realistic representation of the North Atlantic storm track has 621 

been shown to be sensitive to resolution of the ocean mesoscale, including instantaneous features (eddies) and climatological 622 

features (western boundary currents) (Moreno Chamorro et al., 2022). Representation of the full spectrum of precipitation 623 

processed by cyclones, including their frontal structures, organised convection, such as Mesoscale Convective Systems and 624 

squall are generally more realistic as model resolution is increased (Vellinga et al., 2016). 625 

 626 

Many of these achievements have been in the realm of convection-permitting Regional Climate Models (see section 4.2) for 627 

the past ~5 years. GSRMs offer the additional value of being able to simulate upscale effects from small scales onto larger 628 

scales, e.g. how the Hadley and Walker circulations are affected, including meridional transports of energy, as well as 629 

implications for global teleconnections, mediated by atmospheric wave propagation. Many of these achievements were 630 

realised thanks to the development of new dynamical cores, capable of reducing the total number of computations, by use of 631 

uniformly spaced global grids, or by models running more efficiently through advanced numerical schemes in time and 632 

space, and by exploiting multiple parallelisation paradigms on the latest supercomputers, including those equipped with 633 

GPUs. With the advent of even more powerful new classes of GPU, such as the NVIDIA Hopper or AMD MI300 series, 634 

completing a selection of typical CMIP6 experimental protocols at ~3km resolution, with a total turnaround of order of one 635 

year, will soon be possible.  636 

 637 

Data output and analysis constitutes a major challenge at these resolutions: output of order petabytes per day are 638 

commonplace, and storing multiple ensemble members for centennial-scale simulations is not feasible. Multiple approaches 639 

are being tested to alleviate this problem, such as performing the most data-intensive and multi-variate analyses while the 640 

models are running, reduced data precision, or holding data on fast disks for very brief time periods to allow immediate 641 

consumption by users. Other approaches include the use of hierarchical data layers, which can be output and handled in 642 

parallel, with incremental expense, as exemplified by the HEALPIX standard. 643 

An ambitious vision for addressing such data challenges, including co-design, co-production, and global access, is provided 644 

in the Earth Virtualisation Engines concept (Stevens et al., 2024). 645 

   646 

5 Increasing collaboration across approaches to improve global and regional Earth system and climate models.   647 

The accuracy of numerous simulated Earth system and biogeochemical phenomena strongly depends on the quality of 648 

simulated physical climate drivers (Doney et al., 1999). Examples of such dependencies include, but are not limited to; (i) 649 

vegetation growth/loss, terrestrial carbon uptake, and the simulated water cycle; (ii) wildfires and simulated precipitation, 650 

soil moisture and winds; (iii) marine productivity and the dynamics of ocean upwelling, (iv) mass loss from marine ice 651 

sheets and regional ocean circulation; (v) global ocean heat and carbon uptake, and representation of deep water formation, 652 

(vi) regional air pollution and modes of atmospheric circulation. Conversely, in the real-world, carbon cycle – climate 653 

feedbacks (as well as other Earth system feedbacks) change the fraction of anthropogenic CO2 (and other gases, such as CH4 654 

or N2O) that remain in the atmosphere to cause warming, and thereby influence the magnitude of physical climate feedbacks 655 

(e.g. water vapour, lapse-rate, cloud or sea ice feedbacks). Furthermore, while an accurate simulation of the mean climate (in 656 

time and space), as well as trends in this measure of climate, are extremely important, an accurate representation of 657 

variability (in both time and space) of the underpinning physical climate can often be as important for simulating the Earth 658 

system response to a changing climate. Such variability is also a critical driver of the impacts of climate change. Regional 659 

climate variability, particularly the width of the distribution of such variability (i.e. the extreme tails of future climate 660 
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distributions), is generally better represented as resolution is increased, both in global and regional models (Wehner et al., 661 

2014; IPCC, Doblas-Reyes et al., 2021; Ban et al., 2021).  662 

 663 

High-resolution coupled global climate models can be viewed as the physical core of the next generation of Earth system 664 

models, offering an improved simulation of the driving physical climate, including climate variability and extreme events. 665 

Collaboration across the development of high-resolution physical climate models, and Earth system models that emphasize 666 

enhanced process-realism, needs to deepen both in CMIP7 (with respect to global models, Dunne et al., 2023) and CORDEX 667 

(with respect to regional models). Such collaboration can benefit from, and feed into, ongoing efforts under the WCRP LHA 668 

Explaining and Predicting Earth System Change (https://www.wcrp-climate.org/epesc), and offers an unprecedented 669 

opportunity to bring advances from both areas together to support development of the next generation of Earth system 670 

models. Such a meeting point between these two model development paths offers a unique testbed for assessing 671 

technological advances (e.g. hybrid-resolution ESMs, Berthet et al., 2019; AI-based emulation approaches, Son et al., 2024), 672 

as well as conceptual challenges in Earth system modelling (e.g. in quantifying and optimizing the benefits and trade-offs 673 

between resolution, complexity and ensemble size). Machine Learning (ML) has the potential to reduce long-standing 674 

systematic errors in ESMs and enhance the overall projection capability of these models. This needs to be further explored 675 

(Eyring et al., 2023a), with increased sharing of methodologies and findings across ML-based, and more traditional 676 

approaches, to model development. Increased collaboration and knowledge sharing across these efforts will lead to a step 677 

change in our overall ability to provide robust climate information that meets the needs for mitigation and adaptation across 678 

spatial and temporal scales (Eyring et al., 2023b). 679 

 680 

A number of initiatives are beginning to develop “Digital Twins of the Earth” (DTEs), (e.g. the WCRP Digital Earth LHA, 681 

https://www.wcrp-climate.org/digital-earths) targeting an optimal fusion of Earth system modelling and observations, to 682 

deliver fit-for-purpose and actionable information to society. These approaches combine forward modelling, data 683 

assimilation, and machine learning tools with user models designed to answer specific questions. A number of (global and 684 

regional) DTEs are beginning to provide samples of km-scale information, with the majority of DTEs to-date being 685 

atmosphere-land only models. For application to future climate change, such models presently require sea surface and sea ice 686 

boundary condition data (or atmospheric boundary conditions) derived from coupled ESM projections. As DTEs further 687 

develop to include other components of the Earth system (e.g. oceans, cryosphere, carbon cycle etc) it will be important they 688 

are carefully evaluated against existing approaches to deliver high-resolution future climate information (either via 689 

uninitialized projections or observation-initialised predictions). It will also be important to document the uncertainties in 690 

DTE projections/predictions arising from different modelling choices, different external forcings and emission scenarios, as 691 

well as from internal variability. This is particularly important with respect to predicted or projected changes in future 692 

extreme weather events, which by definition are rare occurrences, with low predictability. 693 

 694 

Only a few efforts to date are trying to develop two key aspects of digital twins; linking inputs to observations and outputs to 695 

human systems. In Europe, Destination Earth (https://destination-earth.eu/) experiments with weather and climate twins, 696 

down to resolutions of 2.5 km, and aims to make its experimental design respond to user needs, so models store a minimal 697 

amount of data, but are re-run on a regular basis, incorporating the latest data requests in each update. In the US, the 698 

Department of Energy has tested combining physical models (e.g. the Energy Exascale Earth System Model, E3SM (Golaz 699 

et al., 2022)) with human system models, including Integrated Assessment or Energy Grid models. In addition, ultra-high-700 

resolution global storm-resolving models (GSRMs, Stevens et al., 2019; Lee and Hohenegger, 2024) run at 1-5 km 701 

resolution may provide further understanding and insights into biases, complementing CMIP7/CORDEX simulations. While 702 

the approaches employed and timescales involved are somewhat different, sharing of methodologies, successes, and 703 

https://www.wcrp-climate.org/epesc
https://www.wcrp-climate.org/digital-earths
https://destination-earth.eu/
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problem-solving across communities will benefit all strands of work, improving our combined ability to model the coupled 704 

Earth system and deliver robust and actionable climate information to policymakers and society. 705 

6 Improving model simulations of the observational record and key metrics of climate change    706 

To increase confidence in future projections it is important models accurately reproduce the observed historical record. This 707 

requirement encompasses multiple variables and timescales, with long-term trends in global mean surface air temperature 708 

(GMSAT), including the forcings and feedbacks controlling these trends, of first order importance. In CMIP6 a number of 709 

ESMs exhibited EffCS values (of 5°C or greater) that are higher than the 5-95% range, as assessed by multiple lines of 710 

evidence (Sherwood et al., 2020). Some of these models also simulated global warming rates over recent decades (~1980 to 711 

2014) greater than seen in observations (Tokarska et al., 2020), leading to suggestions these “hot models” were unrealistic 712 

and should be filtered out from climate impact assessments (Hausfather et al., 2022).  713 

 714 

Cloud feedbacks are the largest contributor to uncertainty in EffCS. Perhaps surprisingly, CMIP6 ESMs with high EffCS 715 

often evaluate better against observations for present-day clouds than earlier or lower EffCS models (Bock and Lauer, 2024; 716 

Kuma et al., 2023), and also accurately reproduce recent trends in cloud-radiation when driven by observed sea surface 717 

temperatures (SSTs, e.g. Loeb et al., 2020). These ESMs also represent a number (though not all) cloud feedback processes 718 

more accurately than earlier models, particularly those related to mixed phase clouds over the Southern Ocean (Jiang et al., 719 

2023). Nevertheless, studies continue to highlight problems across the majority of CMIP6 models with respect to Southern 720 

Ocean clouds (Schuddeboom and McDonald, 2021) and, in particular, low-level tropical marine clouds (Konsta et al., 2022), 721 

with observation-based constraints of the latter cloud type suggesting an EffCS closer to 3°C (Myers et al., 2021). It is 722 

therefore possible some high EffCS CMIP6 models improved one cloud feedback (e.g. mid-latitude, mixed phase clouds 723 

leading to a less negative cloud phase feedback) that exposed other feedback errors (e.g. too positive low-level, tropical 724 

marine cloud feedback) that previously compensated each other with respect to the total cloud feedback. Such one-sided 725 

improvement can result in an increased positive total cloud feedback and high EffCS. Continued improvement in the 726 

representation of cloud processes and feedbacks across all relevant cloud types, including exploitation of new observational 727 

data and analysis methods, will be crucial for better constraining EffCS in CMIP7 and improving the simulation of historical 728 

climate and rates of global warming. 729 

 730 

While a number of high EffCS models in CMIP6 simulated too strong global warming over the period ~1980 to 2014, 731 

establishing a direct link between EffCS and historical warming is not straightforward. This is mainly due to the 732 

confounding role of aerosols, as well as the important role played by natural variability. In CMIP7 historical forcings are 733 

planned to be extended to 2022 (i.e. 8 years longer than in CMIP6). Recent studies indicate anthropogenic effective radiative 734 

forcing (ERF) has become more positive, by ~50%, between the decades 2000-2009 and 2010-2019, mainly due to a 735 

reduction in the negative aerosol ERF (Jenkins et al., 2022; Hodnebrog et al., 2024). This change has been accompanied by 736 

almost a doubling of the GMSAT warming trend between these two decades. Jenkins et al. (2022) suggest that while some of 737 

the increased GMSAT trend is very likely due to reduced aerosol cooling, long-term variability in ENSO may also 738 

contribute. Modelling studies by Wang et al. (2023) further suggest that decreasing aerosol emissions may outweigh 739 

decreasing CO2 emissions in terms of their impact on warming and climate extremes during the path to global net-zero 740 

carbon emissions. Kang et al. (2023a, b) suggest the SST pattern observed in the Pacific between ~1979 and 2013, which 741 

induces a negative cloud feedback term (that is not captured in most coupled ESMs), is linked to cooling SST trends in the 742 

Southern Ocean over this period (also not captured in coupled ESMs). They suggest that as Southern Ocean SSTs begin to 743 

warm, the tropical Pacific SST pattern may decay, resulting in a more positive cloud feedback and potentially an increased 744 
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rate of global warming. Understanding, and simulating in coupled ESMs, the drivers of such SST trends, as well as their 745 

interaction with climate feedbacks and global warming, will be crucial to increase confidence in future projections.  746 

 747 

Constraining future feedbacks and evaluating model processes controlling these feedbacks is a difficult challenge. Emergent 748 

Constraints, which use a multi-model ensemble to identify relationships between observable Earth System variations and 749 

projected future changes, are an attractive way to constrain future feedbacks based on observations (Hall et al., 2019; Nijsse 750 

et al., 2020) and thereby reduce uncertainty in future projections. To date, assumed emergent relationships are often simple 751 

linear regressions. Machine Learning techniques are a promising route for identifying multi-dimensional, non-linear 752 

relationships between contemporary observables and the future state of the Earth System (Schlund et al., 2020) and may 753 

therefore improve the constraints on future feedbacks and even allow an evaluation of model processes controlling these 754 

feedbacks. An improved simulation of the historical past, combined with improved constraints on key feedbacks and the 755 

processes controlling these feedbacks, will increase confidence in ESM projections and improve estimates of key climate 756 

change metrics such as EffCS, TCR and TCRE with implications for estimates of allowable carbon emissions for different 757 

policy targets. 758 

 759 

Both global and Regional ESMs struggle to accurately represent observed regional climate trends, as underlined for Western 760 

Europe by recent literature (Ribes et al., 2022; Schumacher et al., 2023; Vautard et al., 2023). This may be partly linked to 761 

poor quality lateral and surface boundary conditions (e.g. most recently from CMIP6 ESMs), but may also be a result of 762 

missing, or poorly represented, regional forcings and/or feedbacks in the RCMs (Nabat et al., 2014; Boé et al., 2020; Taranu 763 

et al., 2022, e.g. the representation of aerosol-climate interactions or the simulation of regional/coastal SST trends). For 764 

RCMs too short evaluation runs and lack of adequate calibration strategies may also contribute to these problems. Tackling 765 

such weaknesses, combined with development of an evaluation system applicable across the scales and downscaling 766 

methods involved, will be important for increasing trust in high-resolution, regional climate projections that will be used in 767 

numerous national climate scenarios and impact assessments. 768 

7 Sampling and quantifying future uncertainty 769 

Multi-model ensemble projections (MME), such as those from CMIP and CORDEX, sample a number of plausible IAM 770 

emission and land-use scenarios. The MMEs often include a small number of ensemble members per individual model, each 771 

sampling internal variability (as represented by that model). The MME approach, to a limited extent, also addresses 772 

structural modelling uncertainty. The degree this aspect of uncertainty is sampled is ultimately constrained by the resolution 773 

and process realism of the models involved, and by the degree of commonality of approaches to representing unresolved and 774 

uncertain model processes (Merrifield et al., 2023). 775 

7.1  High Impact Low Likelihood (HILL) outcomes. 776 

While such MMEs sample a fraction of the uncertainty in future Earth system change, this sampling is far from complete, 777 

particularly with respect to the extreme, low-likelihood end of potential Earth system change. Such responses are referred to 778 

as HILL (High Impact, Low Likelihood) outcomes (Wood et al., 2023). While HILL outcomes have a low likelihood of 779 

happening, there remains a small chance they will occur. One example would be if the Earth’s equilibrium climate sensitivity 780 

(ECS) turned out to be ~5°C. While this outcome is highly unlikely (IPCC AR6 quotes the very likely range (5-95% 781 

probability) of ECS as between 2°C and 5°; see Fig. 7.18, in IPCC, 2021, Ch7, Forster et al. 2021), if it did occur the impacts 782 

on society would be extremely large.  783 

 784 
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HILL events may also occur at lower levels of warming (Armstrong-McKay, 2020) and impact numerous parts of the Earth 785 

system across a range of regions and timescales. For example, a HILL event may be triggered if a threshold of Antarctic ice 786 

loss is exceeded, which may then accelerate and become irreversible, with important consequences for sea level rise and 787 

coastal communities (Garbe et al., 2020; Taherkhani et al., 2020). Similar, poorly quantified, and poorly understood, risks 788 

exist for other potential Tipping Points in the Earth system, such as collapse of the Atlantic Meridional Overturning 789 

Circulation (AMOC, Klose et al., 2023), dieback of the Amazon rainforest (Parry et al., 2022), or rapid permafrost thaw 790 

(Turetsky et al., 2020). Tipping points also exist in the natural environment and in society and may be triggered at modest 791 

levels of warming. Examples include climate driven species loss already occurring at today’s levels of global warming (e.g. 792 

first species extinction attributed to climate change; IPCC 2023 SPM), mass mortality in coral reef ecosystems (Donner et 793 

al., 2017; Hughes et al., 2018; Hughes et al., 2019), shift from kelp- to urchin-dominated coastal communities (Rogers-794 

Bennett and Catton, 2019; McPherson et al., 2021). HILL events, both in the natural Earth system and society are not only 795 

sensitive to changes in the mean climate, but also to changes in climate variability. Increased inter-annual variability can 796 

have major impacts on society and ecosystems (von Trentini et al., 2020). Systematic shifts, even in sub-seasonal climate can 797 

significantly impact society (e.g. changes in the frequency distribution of hot summer days and nights, human mortality; 798 

Schär et al., 2004).  799 

 800 

The signal of natural internal variability (in models expressed as internal variability across a model ensemble) increases in 801 

importance, relative to the signal of human forced climate change, as spatial and temporal averaging scales decrease, and 802 

projection timescales become shorter (Hawkins and Sutton, 2009). A consequence of this is that larger ensembles are 803 

required to reliably detect a forced climate change signal from an extreme realization of natural variability. The shorter 804 

duration and/or rarer the event, the larger the ensemble size likely required to be confident a (forced) signal is outside the 805 

range of natural variability. This is important information for reliable and cost-effective adaptation to potential future climate 806 

risks. Several groups have produced large ensembles covering the historical past and future (Olonscheck et al., 2023; Maher 807 

et al., 2021; Deser et al., 2020), using 50 to 100 realizations, often started from different initial conditions taken from the 808 

model’s pre-industrial simulation. Such large ensembles are ideal for detecting forced regional changes (as simulated by the 809 

particular model) from internal (natural) variability (also as simulated by the particular model). Due to the high 810 

computational cost involved, to date such large ensembles are generally based on relatively low-resolution models that do 811 

not carry the process complexity of full ESMs. This can limit their overall utility. For example, low resolution models 812 

struggle to simulate intense weather events, such as tropical cyclones or extreme precipitation. As a result, their utility for 813 

investigating changes in extreme weather is limited, although this limitation could be addressed, for specific regions at least, 814 

by building ensembles consisting of both Global and Regional models run in tight coordination.   815 

 816 

Recently single model initial condition large ensembles (SMILEs) have been combined to form multi-model ensembles of 817 

SMILEs (Lehner et al., 2020), increasing the sampled uncertainty beyond internal variability to also encompass (to some 818 

degree) structural model uncertainty. Techniques have been developed to optimally combine individual SMILEs, with 819 

different ensemble numbers, to produce an unbiased multi-model SMILE that even considers present-day model 820 

performance in its design (Merrifield et al., 2020). New Machine Learning techniques offer the potential for a more efficient 821 

and comprehensive assessment of the future projection uncertainty space and can be used to guide, and in some cases realise, 822 

the creation of large ensembles, including ones targeted onto extreme event risks (Eyring et al., 2023a). 823 

7.2  Internal variability, parameter uncertainty and model structural uncertainty. 824 

An additional approach for investigating modelling uncertainty is the Perturbed Parameter Ensemble (PPE) (Murphy et al., 825 

2007). In the PPE approach uncertain, often difficult to constrain, model parameters are varied within reasonable limits, 826 
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where possible constrained by observations (Booth et al., 2017). The resulting PPE members can be further filtered to retain 827 

only skilful members in terms of present-day climate and/or historical trends (e.g., Sexton et al., 2021; Peatier et al., 2022). 828 

Recent advances in model calibration (e.g., Hourdin et al., 2021, 2023) will be instrumental in better designing future PPE. 829 

Using the PPE approach, it is sometimes possible to mimic key measures of future projection uncertainty (e.g. the range of 830 

climate feedbacks and ECS in a CMIP MME) using only a single model (Collins et al., 2011). Applying the PPE approach 831 

across multiple global and regional model systems allows probabilistic regional climate projections that sample a significant 832 

fraction of future projection uncertainty (Evi et al., 2021). Such approaches support assessment of regional impacts sampling 833 

uncertainty in the future driving global and regional climate, including changes in climate and weather variability.  834 

 835 

In addition to physically based models, advanced statistical methods such as emulators (Meinhausen et al., 2011; Leach et 836 

al., 2021) and Machine-Learning (ML) (Watson-Parris, 2021; Eyring et al., 2023a) are increasingly being used to more fully, 837 

and rapidly, investigate uncertainty in future Earth system change. Emulators and ML methods can be trained either on an 838 

individual model or an ensemble of historical and future projections made by ESMs (Beusch et al., 2020; Nath et al., 2022) 839 

or RCMs (Doury et al., 2022, 2024) and used to investigate a large range of future emission and land-use scenarios, or to 840 

focus on specific aspects of projection uncertainty (e.g. high ECS futures). Observations can also be brought into the 841 

emulation process, enabling the resulting emulators to mimic the behaviour of the more complex ESMs, while weighting this 842 

behaviour towards better performing models (Beusch et al., 2020; Sanderson et al., 2017). Statistical emulation approaches 843 

are also used to assess the sensitivity of ESMs to uncertain model parameters (expanding the PPE approach), both for 844 

parameterization development (Silva et al., 2021; Rasp et al., 2018) and for developing and selecting ESMs that combine 845 

acceptable present-day performance with constraints on their future response (e.g. constraining ECS to lie within a specified 846 

range (Peatier et al., 2022)). Emulators were used extensively alongside global and regional projections in IPCC AR6 to 847 

deliver observation-constrained future projections (Nicholls et al., 2022). Emulators and ML tools can enhance the provision 848 

of climate information (Pfleiderer et al., 2024) and support interdisciplinary integration, allowing direct coupling to IAM 849 

scenarios and thus supporting cross-working group collaboration in IPCC AR7 and beyond.   850 

7.3  Assessing uncertainty across all the steps in providing actionable climate information. 851 

The new round of international modelling projects presents an opportunity to bring together the range of approaches and 852 

methods used to assess and quantify uncertainty across IAM models and scenarios, global and regional models (considering 853 

internal model variability, parameter uncertainty and structural model differences), and impact models (both in terms of the 854 

climate forcing used and uncertain model parameters). This collaboration should also extend to work closely with 855 

communities developing, improving and applying emulators and simple climate models (Séférian et al., 2024). Collaboration 856 

across communities and activities will help increase the range of uncertainty space that can be analysed, and lead to a more 857 

systematic and coordinated approach to uncertainty assessment across the full suite of modelling activities that delivers 858 

science knowledge and data to climate policy and climate services. We further recommend significant effort be devoted to 859 

the communication of uncertainty and conversely, communication of what is expected to occur in the future, and the level of 860 

certainty/confidence that can be attached to these outcomes, with the target audiences being climate change policymakers, 861 

planners, and practitioners.  862 

 863 

Going forwards, a key demand on the international modelling community, with respect to supporting IPCC AR7 and the 864 

UNFCCC Global Stocktake, will be the development and analysis of realizable future pathways that limit global warming to 865 

the targets of the Paris Agreement. These pathways are likely to include an overshoot of the warming targets and therefore 866 

the need for negative CO2 emissions (i.e. active removal of CO2 from the atmosphere). How these negative emissions will be 867 

realized in practice and what magnitude is feasible, remain open questions. A thorough analysis and quantification of the full 868 
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cascade of uncertainty associated with such pathways is an important demand on the science community. This analysis needs 869 

to encompass uncertainty in; how the necessary negative CO2 emissions will be realized (i.e. the mitigation actions 870 

themselves), the response of the carbon cycle to decreasing atmospheric CO2, the efficacy of any CO2 removal in reducing 871 

global temperatures, and the regional climate responses that may arise from such cooling pathways.  In addition, 872 

uncertainties in the (expected) reduction in the societal and environmental impacts of Earth system change, as global 873 

warming is reduced, need to be assessed, and the impacts avoided compared to any impacts arising directly from the 874 

mitigation actions themselves. Along the entirety of this chain of events and responses there is deep uncertainty. The science 875 

community needs to analyse, quantify, and communicate this uncertainty as thoroughly and clearly as possible.  876 

 877 

Robust climate adaptation requires information on the range of potential future changes (which represent the climate hazard 878 

in risk decision frameworks). While great strides have been made in quantifying global and large-scale impacts arising from 879 

the range of climate change drivers, this has only been partially successful with respect to translating the range of these 880 

impacts to the local scales needed to assess climate impact and develop local to national adaptation plans. CMIP7 offers an 881 

opportunity to more fully include and propagate the wider CO2-emission driven uncertainties through to local-scale climate 882 

information (as outlined in Sect. 3.2).  An equally important dimension is the role natural variability plays in climate change, 883 

especially on the timescale of the next 10 to 40 years (that frames many adaptation decisions). On these timescales and at the 884 

local scale, natural variability typically dominates the forced climate change signal, for example for precipitation and 885 

temperature. This information is ever more critical as society adapts to climate change in a mitigating world, where such 886 

mitigation aims to limit the climate change signal. Large initial condition ensembles are a key tool for understanding and 887 

quantifying the role natural variability plays. The expense (computational, data storage) of generating and sharing Lateral 888 

Boundary Conditions (LBCs) required to drive Regional Climate models has limited the availability of LBC data, and hence 889 

the potential for regional scale simulations (such as CORDEX) to sample the role of regional natural variability in the 890 

context of the wider climate hazard space, at impact relevant scales. Commitments for new LBCs are often made before a 891 

simulation’s credibility can be assessed and before any understanding of where the realisation of variability plus feedbacks 892 

places a particular simulation in the wider potential projection space. There will be value, therefore, in exploring iterative 893 

approaches between ESM and regional modelling groups to identify optimal ESM simulations to be rerun for LBC 894 

generation.   895 

 896 

Statistical downscaling may provide the most effective route to link wider ESM projections to what they imply at the local 897 

level (Gutiérrez et al., 2019), as these approaches are not restricted by the limited availability of LBCs. Emerging Neural 898 

Network Machine Learning techniques trained on existing regional (RCM and Convection Permitting RCM (CPM)) 899 

simulations, are showings promise in capturing spatial and temporal climate change, at local scales, based on large scale 900 

drivers simulated by ESMs (Baño-Medina et al., 2021; Doury et al., 2022). Whilst there is still work to be done (e.g. 901 

achieving multi-variate coherence (González-Abad et al., 2023), transferability to other ESMs (Baño-Medina et al., 2024), 902 

building frameworks to verify ML downscaled results) their emergence is likely to represent a transformative change in how 903 

the science community provides local scale climate Information, as they enable the production of this information to be 904 

determined by realisations that can inform on the range of local scale climate hazard (bottom up) rather than the limited 905 

availability of LBCs by ESM modellers (top down) as is currently done. ML-based downscaling therefore has the potential 906 

to translate coarse-scale Earth system model output directly to spatial scales of utility for impact models, impact assessment 907 

and local adaptation planning (Eyring et al., 2023b). Such developments can be transformative in other senses, too. For 908 

example, given adequate prior ESM to RCM/CPM training data, CMIP7 has the potential to be downscaled almost as soon 909 

as the ESM simulations are completed, something which could help inform, for the first time, IPCC AR7 with consistent 910 

global and regional projection data, and associated impact simulations (see Sect. 2). Similarly, ML may offer ways to 911 
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address the prohibitive storage costs of conventional high resolution local data by enabling the availability of such data on 912 

demand based on large scale variables (which are much cheaper to store). Ultimately, incorporating Machine Learning into 913 

the production of high-resolution regional climate information is likely to open further benefits due to the flexibility such 914 

tools enable. For example, ML downscaling will be amenable to approaches that use observations to bias correct the regional 915 

data, directly. Similarly, as insights from new modelling (e.g. resolving convective scales, interactive atmosphere-shelf sea-916 

wave models) come online, similar ML downscaling tools may be able to produce new high resolution regional climate data 917 

reflecting these insights, if the new modelling experiments are designed to inform the required ML training. 918 

8 The underpinning technological infrastructure 919 

The ambitious science and science for policy aims discussed in this paper cannot be realized without a state-of-the-art 920 

underpinning computational and data infrastructure, supported by experienced personnel. Our recommendations require the 921 

co-design of certain experiments, followed by the production, quality-control and sharing of numerous datasets from a 922 

diverse range of modelling systems, between producers and a heterogenous set of consumers separated in time and space. An 923 

aspiration for IPCC AR7, as described earlier, is to deliver a coordinated and coherent set of data from across the most recent 924 

IAM scenarios, global (CMIP7) and regional (CORDEX) simulations, as well as impact model results based on these 925 

scenarios and climate forcing. To achieve this will require more efficient and rapid sharing of both requirements and data 926 

across all communities, including where feasible user communities. We therefore stress the need to improve the 927 

underpinning infrastructure ecosystem that supports these international modelling efforts to enable the co-development of 928 

suitable experiment protocols, followed by the production, evaluation, and exploitation of datasets, which themselves can be 929 

used as input to other simulation workflows, with different production, validation, and exploitation cycles. This will need to 930 

be realized for far more numerous and larger volume datasets, and across a broader and more disparate set of requirements 931 

and communities than was previously the case. 932 

 933 

CMIP6, like CMIP5, benefited from a globally coordinated data infrastructure, the Earth System Grid Federation (ESGF), 934 

linked to a large array of other important and necessary services (Balaji et al., 2018). The CMIP6 ESGF is now more than a 935 

decade old, largely not maintained and is therefore not fit for the scale of the challenge outlined above. The array of services 936 

linked to the ESGF include: standards-based data, model and experiment descriptions; citation and errata services for 937 

simulation data and derived products; and data quality control procedures (addressing the presence of required data, 938 

standards compliance etc, not to be confused with procedures for assessing the scientific quality of the data). The data 939 

infrastructure itself needs to support systematic (and efficient) simulation evaluation, and support replication of data from 940 

source to “super-nodes” that can host large volumes of multi-model data and provide sufficient local computational resource 941 

to allow analysis with minimal requirement for data movement (Eyring et al., 2016). Local computing services will need to 942 

include both specific “well known” computational services such as those necessary to generate on-demand statistics, and 943 

those necessary to support user-generated analysis pipelines that may include AI and ML techniques. To realize the 944 

ambitions outlined in this paper, the volumes of data that will need to be hosted at such super-nodes will be significantly 945 

larger than for CMIP6, and the services will need to be easier to navigate for a more heterogeneous community, extending 946 

beyond the modellers and analysts of earlier CMIP cycles.  947 

 948 

There are several activities underway that aim to address some of these requirements. Notable amongst these are the 949 

development of reusable evaluation and analysis workflows such as ESMValTool (Eyring et al., 2020; Righi et al., 2020) 950 

with the goal of fully integrating these into the CMIP publication workflow (Eyring et al., 2016b), the democratisation of the 951 

use of cloud computing via Pangeo (Abernathy et al., 2021), the use of new data formats such as HealPix (Chang et al., 952 
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2023), and the development of new technologies aimed at a future ESGF (Hoffman et al., 2022). However, there are also 953 

significant areas where little or no development is underway. These include enhanced documentation, errata, and citation 954 

services, many of which are relying on best efforts and need dedicated investment and effort in new techniques and modes of 955 

deployment. Considerable work will be required to bring all of these strands together into a coherent system that can be 956 

deployed and supported world-wide and sustained throughout the next IPCC cycle (and beyond). 957 

 958 

This new ecosystem will need to support and coordinate efficient methods for data reduction and sharing, cross model 959 

analysis and evaluation, with an emphasis on bringing together existing and new observational and reanalysis datasets, 960 

models, emulators, and advanced analysis tools for rapid and in-depth analysis and exploitation. The new system will need to 961 

interface with other major data holdings, for example those of the WCRP Lighthouse activities1 (Flato et al., 2023), the 962 

Destination Earth2 data holdings, the existing ISIMIP data repository3, the Copernicus Climate Change Service (C3S)4 and 963 

new data holdings that may arise from the EVE (Earth Visualization Engines)5 initiative. It will need to conform to FAIR 964 

(Findable, Accessible, Interoperable, and Reusable) principles (Wilkinson et al., 2016) and meet the needs and requirements 965 

arising not just from CMIP7, but from the range of communities involved in IAMC, CORDEX and VIACS/ISIMIP. 966 

Critically, the system will need to be fully supported by dedicated data managers, capable of addressing community 967 

questions pertaining to data quality, model and data documentation, as well as supporting users of embedded infrastructure 968 

tools to facilitate the rapid use and reuse of data and tools across communities. It is this rapid use and reuse that will deliver 969 

the internal consistency, across models and research communities, key to the transformative impact expected for 970 

international climate policy from the science and modelling efforts proposed in this article. 971 

9 Summary and recommendations for the way forward 972 

Over the past three decades, internationally coordinated modelling projects have delivered a wealth of simulations, data, and 973 

scientific knowledge to support policy actions addressing climate change mitigation and adaptation. As a new round of these 974 

projects start up, and a new 7th IPCC assessment cycle begins, we have reviewed how these projects have collectively 975 

provided science support to international climate policy. We propose a number of science, technology and collaboration 976 

priorities that we believe these projects should jointly focus on over the coming decade. Progress in these areas will increase 977 

the quality and utility of science support to climate policy, while increasing our understanding of Earth system change, 978 

including the impacts on society and the natural world, as well as our ability to project such future changes and the 979 

associated impacts.  980 

 981 

One key proposal is for the involved modelling communities, spanning integrated assessment, scenario generation, global 982 

and regional Earth system modelling, and impacts modelling, to work much more closely together during the next round of 983 

projects, with an aim to deliver a coordinated set of scenarios, projections and impact assessments all based on the same 984 

underpinning socio-economic and mitigation scenarios and using the most up to date model configurations. This will 985 

significantly improve the quality and consistency of scientific knowledge available to the upcoming (AR7) and future IPCC 986 

assessments, as well as to the 5-yearly UNFCCC Global Stocktakes. Building on interactions developed over the past 5-10 987 

years, and the increasing suggestion that simulations supporting international climate policy become more operational in 988 

structure, we suggest the time is right to actively develop a tighter and more efficient set of links across the relevant 989 

 
1 https://www.wcrp-climate.org/lha-overview 
2 https://destination-earth.eu/ 
3 https://data.isimip.org/ 
4 https://cds.climate.copernicus.eu/ 
5 https://eve4climate.org/  

https://www.wcrp-climate.org/lha-overview
https://destination-earth.eu/
https://data.isimip.org/
https://cds.climate.copernicus.eu/
https://eve4climate.org/
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modelling projects. Fully realizing this ambition within the AR7 timeframe is likely not possible. Nevertheless, significant 990 

effort to achieve such internal consistency and efficient sharing of data, knowledge, and personnel, will lead to future 991 

workflows better suited to fully realize this ambition. In addition, we highlight the need for impact models to receive more 992 

detailed information (disaggregated, spatially and by sector) on the socio-economic assumptions underpinning the IAM 993 

scenarios. Conversely, increased effort is required to allow knowledge of projected future climate impacts, and the societal 994 

responses to these impacts, to be iteratively incorporated into the generation of emission and land-use scenarios. Thanks to 995 

CMIP5 and CMIP6 cycles, there is an increasing set of well-established links between IAM scenario production teams, Earth 996 

system modelling groups, CORDEX downscaling teams, and impact modellers, with the majority of the modelling in these 997 

activities using a common data infrastructure system. These established connections and shared infrastructure make the 998 

potential for a more efficient, inter-connected workflow across all these activities a real possibility in the coming years.  999 

 1000 

The programme of work we outline addresses numerous key knowledge gaps, several of which were highlighted in IPCC 1001 

AR6 (IPCC, 2021). Given the increasing number of ESMs capable of running in CO2-emission mode, including simulation 1002 

of the climate and carbon cycle as well a range of other Earth system phenomena, combined with an increasing number of 1003 

coupled GCMs running for centennial timescales at ~10km resolution, we believe many of these knowledge gaps can be 1004 

successfully addressed over the coming decade. Exploitation of CMIP6 was identified as limited in AR6, pointing to a need 1005 

to support and better focus coordinated international modelling projects, including links between projects. Plausible 1006 

overshoot scenarios that return to the Paris Climate targets by the end of the century or later (e.g. by 2130), were limited in 1007 

CMIP6 and need to be a greater focus of CMIP7. To address this, it is crucial ESMs are extended to allow a more thorough 1008 

assessment of the efficacy of proposed land and marine CO2 removal techniques in reducing atmospheric CO2 and driving 1009 

global cooling, while accounting for potential Earth system feedbacks (IPCC 2021; Canadell et al., IPCC 2021). ESMs need 1010 

to be capable of assessing both CO2 and non-CO2 feedbacks during overshoot (e.g. a changing efficiency of CO2 uptake by 1011 

natural reservoirs as CO2 is removed from the atmosphere, or methane release into the atmosphere from wetlands or 1012 

permafrost (Canadell et al., IPCC 2021)), as well as the potential for, and consequences of, rapid change in key Earth system 1013 

components during overshoot, such as ice sheet loss or forest dieback (Canadell et al., IPCC 2021; Fox-Kemper et al., IPCC 1014 

2021). In addition, interactions between CO2 warming and trends in aerosol emissions need to be thoroughly assessed, so the 1015 

impact of decreasing aerosol emissions on the near-term rate of global warming and achievability of the Paris targets can be 1016 

better quantified. Such analysis needs to be complemented by analysis of the (societal and environmental) impacts of a 1017 

warming overshoot, the degree of reversibility of these impacts once cooling to a target level is achieved, and the impacts 1018 

resulting from long-term stabilization at a warming level (assuming it is warmer than today). The majority of IAM scenarios, 1019 

designed to realize the Paris Agreement, assume extensive deployment of land-based (and in a very limited number of cases, 1020 

marine-based) atmospheric CO2 removal technology. The direct impact of these mitigation actions on society and the 1021 

environment needs to be assessed and contrasted with the impacts avoided from the resulting reduction in global warming. 1022 

An additional set of approaches to limit the magnitude of future warming, referred to as geoengineering, are increasingly 1023 

discussed in policy circles and the media. The most widely known being Solar Radiation Management (SRM; Lawrence et 1024 

al., 2018; Visioni et al., 2023). While there remain concerns around the safety and governance of such actions, it is 1025 

increasingly important the research community actively assesses the efficacy of these approaches, including the risks and 1026 

potential consequences of deployment of this technology at the scales required. Projections beyond 2100 were not 1027 

comprehensively covered in CMIP6 (Chen et al., IPCC 2021). This is important for understanding committed changes and 1028 

the consequences of long-term stabilization at temperatures warmer than today. This is particularly acute with respect to sea-1029 

level rise (Fox-Kemper et al., IPCC 2021), with Antarctic and Greenland ice sheets representing the largest uncertainty in 1030 

future sea-level projections. It is vital these systems are better modelled in CMIP7 and beyond. 1031 

 1032 
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More accurately simulating the observed, historical evolution of the climate system (i.e. reducing systematic model biases), 1033 

including the representation of the forcings and feedbacks driving the observed warming, is crucial for increasing confidence 1034 

in model projections and for maximizing the use observations in model improvement. Associated with this, we advocate the 1035 

use of new approaches (for example, combining Machine Learning and Emergent Constraint techniques) to enable more 1036 

extensive use of observations to constrain model projections and future feedbacks. A key requirement remains improved 1037 

constraints on key metrics of Earth system sensitivity (e.g. EffCS, TCR, TCRE and the Regional to Global Warming ratio) 1038 

and that models accurately simulate these metrics, as well as the processes underpinning them. 1039 

 1040 

Due to their exceptional impact, we highlight the need for improved knowledge of, and ability to simulate, extreme weather 1041 

events, including potential future changes in such events. We further stress the importance of assessing the impact of 1042 

extreme events on society and the environment, considering the level of uncertainty inherent in projections of such rare 1043 

events. This requirement also extends to the modes of climate variability that extreme events develop within (including 1044 

natural variations, future changes and extreme realizations of these modes). Looking towards the next generation of Earth 1045 

system and climate models, we propose significantly increased collaboration across communities investigating enhanced 1046 

Earth system process realism, those working on increased model resolution, and improved physical parameterizations, as 1047 

well as groups working on ML-based hybrid modelling. Increased collaboration across these communities will optimize 1048 

findings from each approach for development of the next generation of Earth system models. This recommendation holds 1049 

equally for global and regional modelling, including collaboration between these two communities. 1050 

 1051 

With respect to uncertainty, in future emission scenarios, in Earth system change, and in the impacts, we propose extensive 1052 

collaboration across the range of approaches addressing these issues. Wherever possible work should assess, quantify, and 1053 

emulate uncertainty as it propagates through the stages of IAM scenarios, ESM projections, regional downscaling, and 1054 

impact simulations, so a more complete assessment of total uncertainty can be provided to policymakers. An additional 1055 

consideration is to better quantify what can be predicted (i.e. based on model predictions started from observed initial 1056 

conditions) versus projected (i.e. changes in future climate statistics relative to simulated past or present statistics due to a set 1057 

of external forcings). An important challenge in this area is to accurately quantify the level of predictability for different 1058 

variables and regions, and at what lead times and spatial scales.  We highlight the need for improved modelling and 1059 

assessment of the risk and consequences of potential future High Impact Low Likelihood (HILL) outcomes, with the 1060 

possible exceedance of tipping points in the Earth system, the environment, or society, being of critical importance. Given 1061 

there will always be some level of uncertainty in the future climate, it is important to focus on the communication of this 1062 

uncertainty, or possibly more importantly, communication of what is expected in the future and with what level of 1063 

confidence. This is a key area in the science-policy interface. 1064 

 1065 

The transformative goals outlined in this paper require the support of a robust, efficient, and internationally connected 1066 

infrastructure. While components of such an infrastructure exist, much work is needed to design, build, deliver and sustain 1067 

an integrated system that meets the objectives outlined here, and maximises the benefits of existing initiatives and 1068 

investments. The resulting infrastructure must exploit common tools and standards and be designed and delivered with both 1069 

a long-term perspective and a well-trained workforce. It will need to handle increasing volumes of data, support the use of 1070 

new techniques for data analysis (such as remote analysis of big data using ML and AI techniques), and facilitate the easy 1071 

exchange of data, knowledge, and analysis tools.  Without such an infrastructure, many of the aims outlined here will not be 1072 

met in a timely manner, if at all. 1073 

 1074 
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Finally, to expand the reach and benefits of international modelling, including the uptake and use of model simulations, to a 1075 

more truly global scale and thus deliver underpinning scientific support for global climate policy, there is an urgent need for 1076 

increased involvement of Global South scientists. WCRP leads a number of important efforts in this area. These need to be 1077 

ramped up significantly and put on a sound long-term footing. Given the global nature of the climate crisis, that the impacts 1078 

are, and will continue to be, most strongly felt by Global South countries, a globally inclusive response is a necessity. This 1079 

makes both scientific sense (to draw on local expertise for understanding and predicting local Earth system change and its 1080 

impacts), as well as political sense (climate policy is generally better tailored to a specific country’s needs if it is based on 1081 

local expert advice that is accessible over the long-term). We (this group of scientists all working in Europe) encourage our 1082 

governments and funding agencies to provide sufficient, long-term support to further develop and maintain a strong and 1083 

globally inclusive scientific collaboration over the coming decades. 1084 
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