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Abstract. We review how the international modelling community, encompassing Integrated Assessment models, global and 72 

regional Earth system and climate models, and impact models, have worked together over the past few decades, to advance 73 

understanding of Earth system change and its impacts on society and the environment, and thereby support international 74 

climate policy. We go on to recommend a number of priority research areas for the coming decade, a timescale that 75 

encompasses a number of newly starting international modelling activities, as well as the IPCC 7th Assessment Report 76 

(AR7) and the 2nd UNFCCC Global Stocktake. Progress in these priority areas will significantly advance our understanding 77 

of Earth system change and its impacts, increasing the quality and utility of science support to climate policy.  78 

 79 

We emphasize the need for continued improvement in our understanding of, and ability to simulate, the coupled Earth 80 

system and the impacts of Earth system change. There is an urgent need to investigate plausible pathways and emission 81 

scenarios that realize the Paris Climate Targets. For example, pathways that overshoot 1.5°C or 2°C global warming, before 82 

returning to these levels at some later date. Earth System models need to be capable of thoroughly assessing such warming 83 

overshoots, in particular, the efficacy of mitigation measures, such as negative CO2 emissions, in reducing atmospheric CO2 84 

and driving global cooling. An improved assessment of the long-term consequences of stabilizing climate at 1.5°C or 2°C 85 

above pre-industrial temperatures is also required. We recommend Earth system models run overshoot scenarios in CO2-86 

emission mode, to more fully represent coupled climate - carbon cycle feedbacks and, wherever possible, interactively 87 

simulate other key Earth system phenomena at risk of rapid change during overshoot. Regional downscaling and impact 88 

models should use forcing data from these simulations, so impact and regional climate projections cover a more complete 89 

range of potential responses to a warming overshoot. An accurate simulation of the observed, historical record remains a 90 

fundamental requirement of models, as does accurate simulation of key metrics, such as the Effective Climate Sensitivity 91 

and the Transient climate response to cumulative carbon emissions. For adaptation, a key demand is improved guidance on 92 

potential changes in climate extremes and the modes of variability these extremes develop within. Such improvements will 93 

most likely be realized through a combination of increased model resolution, improvement of key model parameterizations, 94 

combined with an enhanced representation of keyimportant Earth system processes., combined with targeted use of new 95 

Artificial Intelligence (AI) and Machine Learning (ML) techniques. We propose a deeper collaboration across 96 

modellingsuch efforts targeting enhanced process realism and coupling, increased model resolution, parameterization 97 

improvement, and data-driven Machine Learning methodsover the coming decade.  98 

 99 

With respect to sampling future uncertainty, increased collaboration between approaches that emphasize large model 100 

ensembles and those focussed on statistical emulation is required. We recommend an increased focus on High Impact Low 101 

Likelihood (HILL) outcomes. In particular, the risk and consequences of exceeding critical tipping points during a warming 102 

overshoot and the potential impacts arising from this. For a comprehensive assessment of the impacts of Earth system 103 
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change, including impacts arising directly as a result of climate mitigation actions, it is important spatially detailed, 104 

disaggregated information used to generate future scenarios in Integrated Assessment Models are available for use in impact 105 

models. Conversely, methods need to be developed that enable potential societal responses to projected Earth system change 106 

to be incorporated into scenario development.  107 

 108 

The new models, simulations, data, and scientific advances, proposed in this article will not be possible without long-term 109 

development and maintenance of a robust, globally connected infrastructure ecosystem. This system must be easily 110 

accessible and useable by modelling communities across the world, allowing the global research community to be fully 111 

engaged in developing and delivering new scientific knowledge to support international climate policy. 112 

1 Introduction 113 

Given the rapidly developing climate crisis, and the negative consequences for planetary habitability and human well-being, 114 

there is an increasing need for accurate, reliable, and actionable information encompassing the full spectrum of climate risk. 115 

This information is required at global to local scales, near to long timescales, and needs to be tailored to inform critical 116 

decision-making related to climate change mitigation and adaptation (e.g., in the context of UNFCCC negotiations, the UN 117 

Global Stocktake, IPCC assessments, and the World Adaptation Science Program; WASP), as well as the growing needs of 118 

climate service providers. Over the past few decades, coordinated by the World Climate Research Program (WCRP), the 119 

international modelling community has worked together to contribute simulations, data and knowledge to support decision 120 

making, in particular the cyclical IPCC Assessment Reports (AR). This has been achieved through a suite of interconnected 121 

modelling projects and initiatives, with the most important of these listed in Table 1, along with project acronyms and 122 

primary citations. Meehl (2023) discusses the synergistic interaction between climate science (particularly Global Climate 123 

and Earth system modelling) and the IPCC over the past 4 decades. 124 

 125 

With a new IPCC AR cycle (AR7) beginning, it is timely to review how the international modelling community has 126 

supported climate policy in the past, including earlier AR cycles, and ask what advances can be made in the overall quality 127 

and availability of science to support policy needs. In addition, it is pertinent to review our current understanding of, and 128 

ability to model, coupled Earth system change, as well as the societal and environmental impacts associated with this change 129 

and ask whether plausible, safe pathways can be developed for the Earth system that avoid the worst impacts of this change. 130 

Many of the international projects listed in Table 1, that provide the scientific knowledge on which IPCC reports are based, 131 

are beginning new cycles. For example, CMIP7 is starting to take shape, likely running through to ~2030 or beyond. In this 132 

paper we outline a number of areas we believe the international modelling community can significantly advance our 133 

understanding of, and ability to simulate, past and future Earth system change, including the impacts of these changes. 134 

Progress in the proposed areas will also allow an improved investigation of mitigation options for limiting long-term global 135 

warming, and its impacts, to acceptable levels. Such developments will deliver enhanced scientific support to international 136 

climate policy, during and beyond AR7. The advances we propose assume thecontinued development, expansion, 137 

maintenance, expansion and integration of a robust and interconnected infrastructure ecosystem. Such an infrastructure has 138 

underpinned past international modelling collaborations and is a fundamental requirement for realizing the ambitious goals 139 

outlined here. The specific science, and science for policy, ambitions, as well as the necessary underpinning infrastructure, 140 

are discussed in more detail in subsequent sections. Each proposed focus area can be summarized by the following key 141 

goals: 142 

 143 
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● Provision of a coordinated, internally consistent set of simulations, data, and knowledge to support IPCC 144 

assessments and international climate policy. The resulting data sets and knowledge should be based on the most 145 

recent and consistent set of Integrated Assessment Model (IAM) scenarios, global and regional Earth system model 146 

(ESM) projections and simulated societal and environmental impacts. With consideration of impacts arising both 147 

due to the projected Earth system change, and directly from any mitigation actions assumed in the IAM scenarios.  148 

 149 

● Improving understanding and guidance on future Earth system change, allowable emissions, net-zero 150 

responses, and safe, long-term pathways for planet Earth. Ensure global and regional ESMs, IAMs, and impact 151 

models include the required level of process realism, process interactions, and consistent forcing data to accurately 152 

simulate the response of the Earth system and human societies to future socio-economic, mitigation, emission, and 153 

land-use scenarios. Develop and analyse a range of future pathways that limit long-term global warming to less than 154 

1.5 or 2°C above pre-industrial levels, while minimizing the negative impacts on society and the environment. 155 

 156 

● Improving our understanding of, and ability to simulate key climate processes, climate variability, extreme 157 

events and regional impacts. Ensure global and regional climate models (GCMs and RCMs) accurately represent 158 

key processes, couplings, modes of variability and feedbacks that underpin global to regional climate change. Use 159 

these models to deliver robust and detailed projections of regional climate change, including changes in extreme 160 

events. Ensure the socio-economic information used to develop IAM mitigation and scenario data is suitably 161 

disaggregated and combined with climate projection data to support national to regional scale impact assessment, 162 

adaptation planning and climate services.  163 

 164 

● Increasing collaboration across approaches to further improve global and regional Earth system and climate 165 

models. Ensure strong collaboration across efforts to; increase process realism and coupling in ESMs, increase 166 

model resolution and improve physical parameterizations in climate models, and Machine Learning (, including 167 

ML) hybrid-modelling approaches. Ensure each of these development pathsapproaches are optimally combined to 168 

supportdeliver the best possible development ofpathway for the next generation of Earth system models.  169 

 170 

● Improving model simulations of the observational record and key metrics of climate change. Ensure 171 

improvement in the simulation and understanding of the observed, historical evolution of climate, particularly 172 

historical global and regional warming, encompassing the forcings, processes, and feedbacks that determine the rate 173 

and pattern of this warming. Improve our ability to constrain and simulate key climate change metrics, such as the 174 

Effective Climate Sensitivity (EffCS), Transient Climate Response (TCR), the Transient Climate Response to 175 

cumulative carbon Emissions (TCRE) and the Regional Warming to Global Warming ratio (RW/GW) 176 

 177 

● Sampling and quantifying future uncertainty. Develop and apply a hierarchy of models and methods to 178 

efficiently explore the range of uncertainty inherent in future Earth system change and its impacts. Ensure regional 179 

and national scale adaptation and mitigation is informed by a more complete sampling of the range of potential 180 

climate futures, including rare (high impact, low likelihood) outcomes, their local climate signature, and the 181 

potential consequences of these for society, the environment and climate policy. 182 

 183 

● The underpinning technological infrastructure. Further develop and maintain a robust, globally inter-connected 184 

infrastructure ecosystem to ensure efficient co-production and co-exploitation of internally consistent model 185 

simulations, via information, data and computational services that enable the rapid and reliable sharing of 186 
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requirements, knowledge, data, and analysis tools. Such sharing needs to be both within and across multiple 187 

modelling projects and user communities, as well as providing suitable support to policymakers, planners, climate 188 

services, and the wider international research basecommunity.   189 

 190 

 191 

Acronym Initiative or project name Website Main themes      Citation 

IAMC Integrated Assessment 

Modelling Consortium 

https://www.iamconsort

ium.org 

Future socio-economic pathways, 

emission and land use scenarios 

Moss et al., 2010 

WCRP CMIP Coupled Model 

Intercomparison Project 

https://wcrp-cmip.org/ Earth system and Global Climate 

modelling 

Eyring et al., 2016 

ScenarioMIP ScenarioMIP https://wcrp-

cmip.org/model-

intercomparison-

projects-

mips/scenariomip/  

Further develop IAM scenarios 

into emission, concentration and 

land-use scenarios for CMIP and 

CORDEX.  

O’Neill et al., 2016 

WCRP 

CORDEX 

Coordinated Regional 

Downscaling Experiment 

https://cordex.org Regional climate downscaling Giorgi et al., 2009 

VIACS AB Vulnerability, Impacts, 

Adaptation & Climate 

Services Advisory Board 

https://viacsab.gerics.de

/ 

Advisory body for linking CMIP 

and CORDEX to the impacts and 

climate services communities 

Ruane et al., 2016 

ISIMIP Inter-Sectoral Impact 

Model Intercomparison 

Project 

https://www.isimip.org Global and regional impact 

modelling for multiple sectors 

Frieler et al., 2017 

ESGF Earth System Grid 

Federation 

https://esgf.llnl.gov/ Data curation and distribution 

system for CMIP and CORDEX 

Balaji et al., 2018 

 192 
Table 1. Examples of the main international projects contributing to the provision of simulations, data and scientific knowledge to 193 
support climate policy, particularly IPCC assessment reports, including a main reference for each activity. CMIP and CORDEX 194 
are coordinated by the World Climate Research Program. 195 

The recommendations in this paper summarize the opinions of a group of European scientists who have been engaged in, and 196 

in a number of cases helped lead, major international modelling exercises that have delivered into past IPCC assessment cycles. 197 

Examples include; earlier and the latest (7th) phase of CMIP (including leadership of numerous CMIP MIPs; e.g. ScenarioMIP, 198 

C4MIP, HighResMIP, AerchemMIP), IAMC, CORDEX, and ISIMIP. Members of the group have also played a leading role 199 

designing and delivering the underpinning infrastructure required for such large, international modelling projects, in particular 200 

the Earth System Grid Federation (ESGF). While this perspective is therefore a European one, it is informed by many years of 201 

active involvement and collaboration in numerous international projects. 202 

Over the past few years a number of papers offer important perspectives on future priorities for Earth system and climate 203 

modelling, focussing on; the benefits of increased model resolution (Satoh et al. 2019, Palmer and Stevens 2019, Slingo et al. 204 

2022), the role of AI and ML in model development (Bauer et al. 2023, Eyring et al. 2024b, Schneider et al. 2024), development 205 

of Digital Twins (Bauer et al. 2021, Hoffman et al. 2023, Bauer et al. 2024), priority areas for CMIP7 (Dunne et al. 2023, 206 

Sanderson et al. 2023), proposals for an operational approach to CMIP (Jakob et al. 2023, Stevens 2024), and future scenarios 207 

to support the IPCC process (Pirani et al. 2024). The recommendations we present here should be viewed in the light of these 208 

papers and summarize the views of a group of European scientists who have been engaged in, and in a number of cases led, 209 

major international modelling exercises that have delivered critical support to past IPCC assessment cycles. A similar 210 

perspective piece, from a number of U.S. climate modelling centres, has also recently been published (Mariotti et al. 2024). 211 

Our perspective aims to address the range of activities involved in delivering actionable scientific support to international and 212 

Formatted Table
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national climate policy and therefore encompasses; IAM-based socio-economic, emission and land use scenarios, global and 213 

regional Earth system and climate models, regional downscaling and calibration, projection ensembles and emulators, 214 

uncertainty quantification, sectoral and environmental impact models, as well as the computational infrastructure necessary to 215 

realise and disseminate this complex workflow. 216 

. 217 

2 Provision of a coordinated, internally consistent set of simulations, data, and knowledge to support IPCC 218 

assessments and international climate policy. 219 

The process by which the aforementioned activities have, in the past, delivered data and knowledge into the science and 220 

policy arenas is summarized in Fig. 1. IAMs develop a range of future global pathways, based on narratives for socio-221 

economic, political, and technological development, as well as climate policy. For methodological reasons these scenarios do 222 

not (yet) consider the impacts of future climate change on human behaviour. The pathways are typically quantified in terms 223 

of highly aggregated information on future population and economic development, energy and food system development, 224 

and environmental consequences. For each pathway, marker anthropogenic emission and land-use scenarios are selected 225 

(van Vuuren et al., 2011; O’Neill et al., 2016; Riahi et al., 2017). These scenarios are combined with observation-based 226 

estimates for the historical past, resulting in a time series of emission and land use data covering ~1850 to 2100 (Hurtt et al., 227 

2011; Gidden et al., 2019). Using simple climate models (e.g. MAGICC; Meinshausen et al., 2011) and chemistry-climate 228 

models (Lamarque et al., 2011), the emissions are converted into atmospheric concentration time series. The concentration 229 

timeseries, along with the land-use scenarios, are used to “force” ESMs in CMIP to investigate potential changes in the Earth 230 

system arising from each scenario. The ESMs deliver time-varying, spatially discrete estimates of the past and future 231 

evolution of the Earth system, sampling the range of available emission and/or concentration scenarios (Tebaldi et al., 2021). 232 

CMIP simulations are extensively used to inform policymaking addressing global climate change risks. They are also made 233 

available to the international research community via the ESGF, where they are used to increase understanding of the Earth 234 

system and Earth system change, and to highlight areas requiring further model improvement.  235 

 236 
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 237 

Figure 1: A schematic illustration of how earlier rounds of IAMC, CMIP, CORDEX and impact modelling activities, such as ISIMIP, 238 
have worked together to develop and apply future socio-economic and emission scenarios (IAMC), increase the scientific 239 
understanding of, and ability to simulate the coupled Earth system (CMIP and CORDEX), and investigated the impacts of Earth 240 
system change on societies and the natural environment (ISIMIP etc). In the figure dark blue lines illustrate the main (generally 241 
two-way) exchanges of scientific knowledge between the different projects. Dotted green lines indicate the main (simulation) data 242 
transfer between projects, while grey lines show the main data exchanges outside of these projects (e.g. onto the ESGF for open use 243 
by the global research community or into regional or national data distribution sites). Thin orange lines illustrate the new exchanges 244 
proposed in Sect. 2 of this paper. Finally, the thick green lines illustrate the main knowledge and data exchange routes between the 245 
different projects, the global research community, and the IPCC assessment process, as well as with multiple policymakers, 246 
practitioners, and climate service providers around the world.   247 

 248 

CMIP simulations are used extensively as boundary forcing for regional downscaling (e.g. CORDEX) to generate climate 249 

information at spatial scales relevant for adaptation policy and climate services, as well as to drive impact model simulations 250 

(e.g. crop models in AgMIP (Ruane et al., 2017), fisheries and marine ecosystem models in FishMIP (Tittensor et al., 2018), 251 

and a range of impact models that contribute coordinated simulations to ISIMIP (Frieler et al., 2017), addressing impacts 252 

such as, biome changes, water resources, human health, energy systems and biodiversity). Regional downscaling follows two 253 

main pathways; (i) dynamical downscaling generategenerates high-resolution regional simulations consistent with the ESM 254 

boundary condition data (Ruti et al., 2016; Jacob et al., 2020; Teichmann et al., 2021) and (ii) empirical-statistical 255 

downscaling (including ML methods) combine observations and models to translate large-scale features simulated by the 256 

ESMs to high-resolution, local scale climate information (Gutiérrez et al., 2018; Lange, 2019; Karger et al., 2023). Impact 257 

models use both CMIP and CORDEX climate data, as well as socio-economic data and information on mitigation actions 258 

from the IAM scenarios (e.g. population distributions and land use patterns that include information on mitigation measures), 259 

as forcing to assess the societal and environmental impacts arising from the range of simulated futures (Frieler et al., 2017).  260 

 261 
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The combined outcome of this international effort are a set of simulations, data and resulting knowledge covering the past 262 

~175 and future ~100 years (and sometimes longer) that sample; (i) plausible future global socio-economic development 263 

pathways, (ii) emission, concentration and land-use scenarios commensurate with these pathways, (iii) global and regional 264 

Earth system changes associated with each future pathway and (iv) the societal and environmental impacts arising from the 265 

simulated Earth system changes, as well as direct impacts associated with the socio-economic and/or mitigation measures 266 

applied in the IAM scenarios. 267 

 268 

There are numerous challenges involved in running the number and variety of model simulations across this range of 269 

activities, including cross-project and cross-model dependencies. As a consequence, to date it has not been possible to 270 

develop a single, coordinated dataset of forcings, simulations and findings from all four activities (IAMs, CMIP, CORDEX, 271 

impact modelling), based on a common set of socio-economic assumptions, scenarios, and driving data, within a single IPCC 272 

Assessment cycle. This limitation reduces the overall consistency and utility of information entering the three IPCC working 273 

groups (WGs). For example, Global (CMIP) and Regional (CORDEX) simulations are often out of sync, with CORDEX 274 

RCMs using boundary data derived from an earlier phase of CMIP. A similar example holds for impact models that often 275 

use a mix of global and regional forcing from different phases of CMIP and CORDEX. Furthermore, impact models forced 276 

by CMIP/CORDEX climate data, do not include all the socio-economic and climate policy information that underpin the 277 

driving IAM emission and land-use scenarios. This is particularly acute with respect to a number of direct human forcings. 278 

These forcings are aggregated across multiple sectors and large spatial scales in the IAM scenarios, but need to be 279 

disaggregated and harmonized with observed historical data, to more detailed spatial scales and individual sectors, to allow 280 

an accurate estimate of their impact on society and the environment, in combination with the impacts due to Earth system 281 

change (e.g. see Direct Human Forcings, as listed on Table 1, Frieler et al., 2024). An improved accounting of such direct 282 

human forcings will be increasingly important as future scenario pathways include major (human) interventions likely 283 

required to deliver the negative CO2 emissions requirednecessary to achieve the Paris Agreement targets. Such interventions 284 

themselves can have important direct impacts on food production and biodiversity and therefore need to be accounted for in 285 

impact assessments.   286 

 287 

Partly for methodological reasons, the impacts of climate change (and the potential societal responses to these changes) have 288 

not been included in IAM scenarios describing future socio-economic trajectories (i.e. Shared Socio-economic Pathways 289 

(SSPs), O’Neill et al., 2020). As climate change is expected to have a considerable impact on society, it is important methods 290 

are developed that allow these feedbacks to be included in future scenario development (Pirani et al., 2024). Ideally 291 

information on the impacts of climate change would be fed back into the IAMs to iteratively generate new future socio-292 

economic and policy pathways that include the societal responses to both the applied climate mitigation measures and to the 293 

impacts of climate change. For example, future land use will need to be adjusted to satisfy global food production, while 294 

accounting for the impacts of climate change on crop yields and changes in available land resulting from any land-based 295 

climate mitigation measures. These iterative adjustments to future socio-economic scenarios are one way to represent 296 

societal adaptation to projected climate change. Given the tight timelines it will not be possible to fully develop such 297 

iterative and interactive steps within the IPCC AR7 cycle. Nevertheless, we recommend urgently addressing this link as the 298 

envisioned modification of workflows has the potential to significantly improve the overall coherencyconsistency of future 299 

scenarios, integrating important information across socio-economic, Earth system and impact projections.  300 

 301 

The lack of consistency, of both data and knowledge entering IPCC and national climate change assessments, reduces its 302 

overall utility and makes the interpretation of uncertainties across the various data sources a challenge. This can lead to 303 

inconsistent data and knowledge being used to develop climate policy, with some data being more than 10 years old. We 304 
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believe the time is right to much more tightly link these key international activities, with more extensive and rapid sharing of 305 

simulations, data, knowledge, tools, and personnel, moving such critical science for policy work towards an operational 306 

footing. Such a change has been proposed earlier (e.g. Jakob et al., 2023; Stevens, 2024). We agree with these proposals but 307 

stress the need for “operationalization” across the entire workflow involved in developing and delivering robust and useable 308 

scientific knowledge. This includes; generation of IAM scenarios and associated forcing data, global and regional Earth 309 

system model simulations based on these scenarios, impact model simulations, post-simulation evaluation and analysis, 310 

uncertainty quantification, science to policy knowledge translation, and the technical infrastructure needed to support the 311 

entire endeavour. To maximize the relevance and utility of the resulting science for policy, we further propose such 312 

operational activities employ a co-development and co-exploitation approach, where a cross-section of intended users of the 313 

science are involved throughout the process. 314 

 315 

Such developments require support across a number of international coordinating bodies, as well as mechanisms to 316 

coordinate or pool the significant funding required, for what is inherently an international, multi-institutional and multi-317 

disciplinary endeavour. The building blocks for this do exist, represented by IAMC, CMIP, CORDEX, VIACS, ISIMIP and 318 

the ESGF. To date, the bulk of the effort to realize these interconnected projects have been funded through short-term, 319 

competitive research grants, with the availability and international coordination of this funding arising partly by chance and 320 

often thanks to commonshared IPCC timelines (Meehl, 2023). While such a development requires significant effort, funding 321 

and coordination, the long-term benefits for climate policy are potentially very significant. While moving the policy- and 322 

service- oriented aspects of climate projections and impact assessment towards a more operational approach is important, we 323 

stress the paramount importance of maintaining a strong science understanding, model improvement, and open data access, 324 

approach across all these activities. This will help maintain global participation and ensure continual improvement in the 325 

quality of data and knowledge entering the climate policy and service arenas.  Fully achieving these goals on the timescale of 326 

IPCC AR7 will not be possible. Nevertheless, a first step in this direction is under development as part of the planning for 327 

CMIP7, which will operate a dual timescale approach. A set of CMIP7 Fast Track (FT) simulations, specifically intended to 328 

support IPCC AR7, is under development. The CMIP7 FT aims for a small set of policy relevant experiments that can be 329 

rapidly performed and made available for analysis by early 2027. In addition to the Fast Track, the bulk of CMIP7 will 330 

operate on a slower timescale, roughly from 2025 to 2030, with individual science-oriented MIPs (Model Intercomparison 331 

Projects) developing and realising a range of experiments and analyses to address outstanding questions and challenges in 332 

Earth system modelling. 333 

 334 

Starting to develop a more joined up and efficient workflow across projects, along with increased internal consistency of 335 

data and knowledge emanating from these projects to support IPCC, will be an important step towards a durable, more 336 

operational approach to delivering scientific support to climate policy and climate services.   337 

 338 

 3  Improving knowledge and guidance on future Earth system change, allowable emissions, net-zero responses, 339 

and safe landing pathways for planet Earth. 340 

3.1  The Paris Agreement: The risk of warming overshoot, allowable emissions, net-zero and negative emissions, 341 

and Earth system feedbacks. 342 

The 2015 Paris Agreement (with an aim to limit long-term global warming to well below 2°C above pre-industrial 343 

temperatures and pursue efforts to limit warming to 1.5°C; Riahi et al., 2021) focused the attention of policymakers and the 344 

public onto the risks and consequences of exceeding these key targets. Partly in response to such policy needs, work 345 

accelerated on quantifying allowable carbon emission budgets commensurate with the Paris goals (Millar et al., 2017; Rogelj 346 
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et al.,2019; Lamboll et al., 2023). It became increasingly clear that to provide accurate guidance on such allowable budgets, 347 

Earth system models needed to improve their representation of the carbon cycle and its interaction with physical climate 348 

processes. In addition, further improvement was required in representing non-CO2 climate forcers, such as methane, nitrous 349 

oxide and aerosols. Focus also turned to the risk of triggering feedbacks that might push temperatures further from a given 350 

target, once the target was exceeded, as well as on the risk of exceeding Earth system tipping points, with potentially major 351 

regional impacts. Lastly, recognition that international policy would likely lead to the climate being stabilized at 352 

temperatures warmer than pre-industrial or present-day, stimulated work to better quantify the long-term consequences 353 

associated with such a stabilized warmer world (King et al., 2021).  354 

 355 

Over the past decade significant progress has led to several ESMs now including a full representation of the carbon cycle, 356 

interactively coupled to the physical climate (Arora et al., 2020). This progress has motivated calls for CMIP7 to more 357 

strongly focus on CO2-emission driven simulations, where a more complete representation of future climate – carbon cycle 358 

feedbacks can occur (Sanderson et al., 2023). A number of ESMs are also incorporating and coupling other Earth system 359 

processes required to properly investigate future emission pathways that realise the Paris Targets, as well as the 360 

consequences of long-term stabilization. Developments include; nutrient limitation on terrestrial carbon uptake (Lawrence et 361 

al., 2019; Wiltshire et al., 2021), interactive methane cycles with the ability to run in emission-mode for methane (Folberth et 362 

al., 2022), interactive treatment of nitrogen and iron cycles (Dunne et al., 2020), interactive permafrost (Burke et al., 2020, 363 

Schädel et al., 2024), interactive fires (Mezuman et al., 2020; Teixeira et al., 2021), full atmosphere chemistry (Gettelman et 364 

al., 2019; Archibald et al., 2020) coupled to advanced aerosol models (Mulcahy et al., 2020), as well as interactive 365 

Greenland and Antarctic ice sheets (Smith et al., 2021; Muntjewerf et al., 2021). Many of these developments, occurring 366 

across several ESMs, have either recently entered use in their coupled model configurations, or are in an advanced stage of 367 

development and planned for use in CMIP7. As a result, the Earth system modelling community, collectively, are entering a 368 

period where simulation of the full Earth system during overshoot, recovery, and long-term stabilization can deliver critical 369 

new insights that are urgently required byto inform international climate policy.  370 

 371 

An important focus for CMIP7 and ScenarioMIP (O’Neill et al., 2016; van Vuuren et al., 2023) therefore, iswill be 372 

investigation of plausible emission scenarios and global warming pathways that successfully realize the Paris Agreement. 373 

Key questions within this activity encompassinclude; What is the feasibility of actually realizing the Paris targets? Whether a 374 

temporary warming overshoot is inevitable? And, ifIf so, of what rate and magnitude? Also of warming is likely to occur, 375 

and how sensitive is the Earth system to such factors? Additionally, is it feasible to return to a target warming level on a 376 

reasonable timescale once an overshoot has occurred (Bauer et al., 2023)? To provide robust policy guidance on the 377 

plausibility and consequences of such pathways, several additional questions need to be addressed: Can accurate predictions 378 

of carbon emission budgets (and budgets of other radiatively important greenhouse gases) be made that are commensurate 379 

with different warming targets, with or without overshoot (Ramboll et al., 2023)? What is the role of anthropogenic aerosol 380 

emissions with respect to future warming and achievability of the Paris targets (Jenkins et al., 2022, Wang et al. 2023) What 381 

is the risk of amplifying feedbacks being triggered during overshoot (Melnikova et al., 2022), and is there a risk of exceeding 382 

tipping point thresholds in the Earth system, society or the natural environment, during overshoot (Wunderling et al., 2023)? 383 

If plausible negative emission pathways do exist, that return the Earth system to an acceptable temperature at an acceptable 384 

rate, once overshoot has occurred, what will be the environmental consequences of following these pathways? Furthermore, 385 

during the overshoot phase, if major changes or impacts (e.g. ecosystem degradation, population displacement, economic 386 

damages) do occur, or tipping points are exceeded (either in society or the Earth system), are these changes reversible when 387 

temperatures return back below a target level (Kim et al., 2022; Reed et al., 2023; Santana-Falcón et al., 2023) and how long 388 

will such a recovery take (Albrich et al., 2020, Meier et al., 2012)?  389 
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 390 

Existing mitigation pathways that rely on negative CO2 emissions assume a significant stimulation of terrestrial carbon 391 

uptake through extensive modifications to land-use (Smith et al., 2016). How the carbon cycle will respond to these 392 

interventions is not well quantified. Nor is the actual efficacy of these interventions in reducing temperatures (Schleussner et 393 

al., 2023), or the ensuing impacts on the natural world, particularly biodiversity. A dominant part of the negative CO2 394 

emissions in present IAM scenarios is assumed to come from the AFOLU (agriculture, forestry and other land use) sector, 395 

through large scale deployment of bioenergy with carbon capture and storage (BECCS). It is of the utmost importance 396 

ESMs, with a comprehensive process-based representation of the carbon cycle, are used to assess the efficacy of such 397 

AFOLU scenarios in terms of realized negative emissions and temperature response, accounting for interactions with the 398 

natural carbon cycle and regional climate. Such major changes to the land surface will likely also lead to significant impacts 399 

on water availability, biodiversity and a range of human activities (Séférian et al., 2018; Hof et al., 2018), both directly from 400 

the change in land use and indirectly through induced changes in regional climates. Such potential impacts need to be 401 

carefully assessed with impact models, with any negative impacts balancedcontrasted against the positive impact of the 402 

mitigation actions on global warming. New negative CO2 emissions technologies that encompass marine-based CO2 removal 403 

(mCDR) are increasing in interest. Such approaches aim to increase marine carbon uptake through ocean alkalinization 404 

(Kwiatowski et al., 2023; Palmieri and Yool, 2024) or increase the storage of ocean carbon via marine afforestation (Bach et 405 

al., 2021). These new approaches have the potential to reduce the demand on land-based CDR, reducing the impacts of these 406 

techniques on the land. However, such ocean techniques can lead to negative consequences for marine ecosystems and 407 

organisms, by altering marine nutrients cycles. It is important to emphasise that the full Earth system response to marine 408 

CDR is as uncertain as its land counterpart. Uncertainties in its efficacy to remove and store CO2 remain poorly quantified 409 

and estimating the lifetime of CO2 storage in the water column represents an additional challenge compared to the land-410 

based CDR, due to the complicating role of ocean circulation and potential redistribution of CO2. 411 

 412 

In addition to negative CO2 emissions, Solar Radiation Management (SRM) has been proposed as an alternative (or 413 

additional) route to limiting global warming to 1.5°C. While there remain concerns around the unintended consequences of 414 

SRM (Bonou et al., 2023), as well as the long-term governance of such technology (Pasztor and Harrison, 2021), the 415 

international SRM community recently designed a set of scenarios that allow investigation of both the efficacy and potential 416 

climate impacts of such technology (MacMartin et al., 2022; Baur et al., 2023; Baur et al., 2024). The same community 417 

recentlyhave proposed an experiment protocol for the CMIP7 Fast Track (Visioni et al., 2024) that targets recovery of the 418 

global mean surface temperature to 1.5°C threshold after overshoot. As the world continues to get closer to the 1.5°C 419 

threshold, interest in SRM and geoengineering more broadly is likely to increase. The science community will be asked to 420 

provide the best possible guidance on the efficacy of SRM, the potential climatic and ecological impacts of SRM, as well as 421 

information on the scales (temporal, spatial and quantity) required for this technology to deliver long-term, safe climate 422 

stabilization. Such work on climate ‘solutions’ including SRM should be organized under the WCRP Lighthouse Activity on 423 

Climate Intervention, which brings together international research communities focussing on both CDR and SRM. 424 

 425 

 426 

Finally, once an “acceptable” warming level is reached, it remains to be established whether the Earth system can be 427 

stabilized, long-term at this level (Jones et al., 2019)? And, if so, what the consequences across the Earth system and for 428 

society will be from such stabilization (King et al., 2021; Palazzo Corner et al., 2023)? All these questions have major 429 

implications for international climate policy. Reliable answers are urgently needed. The international research community is 430 

beginning to address such questions, and increasingly has the modelling tools capable of providing answers. We believe the 431 

new round of international modelling projects have the potential to make major advances towards delivering robust answers. 432 
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 433 

Past CMIP cycles, including the most recent phase CMIP6 (Eyring et al., 2016a), emphasized CO2-concentration driven 434 

simulations, where atmospheric CO2 concentrations are prescribed and simulated carbon cycle – climate feedbacks cannot 435 

influence atmospheric CO2. This approach was taken largely for pragmatic and inclusivity reasons (i.e. there was only a 436 

relatively small number of models with robust and stable coupled climate and carbon cycles). Thanks to efforts such as 437 

C4MIP (Friedlingstein et al., 2006, Arora et al., 2020), this is no longer the case, with a significant number of ESMs now 438 

including advanced carbon cycles coupled to their physical climate (Sanderson et al., 2023). Due to the small remaining 439 

carbon budgets involved in realizing the Paris targets, and uncertainty in how the carbon cycle will respond to negative and 440 

net zero emissions, it is imperative more ESMs in CMIP7 run in CO2-emission mode, with full interaction between the 441 

physical climate and carbon cycle, including prognostic atmospheric CO2 (Sanderson et al., 2023; Gier et al., 2024). This 442 

will support an improved assessment of feedbacks involving the physical climate and the carbon cycle, addressing 443 

consequences for allowable future carbon emissions, the amount of negative emissions required after different overshoot to 444 

achieve different stabilization targetsgoals, and the associated risks, impacts and potential for irreversible change across the 445 

Earth system. Only through such a coupled, prognostic approach can anthropogenic CO2 emission scenarios, intended to 446 

realize key warming targets, be connected with the Earth system response and the impact of these responses on atmospheric 447 

CO2 and realized warming/cooling pathways.  448 

 449 

We propose other important aspects of the coupled Earth system, at risk of rapid change, should also be run in a more 450 

coupled and prognostic manner in CMIP7. Assessment of coupled interactions and risks across the entire Earth system, 451 

including potential tipping point risks (Ritchie et al., 2021), is severely lacking in earlier IPCC Assessment Reports. Giving 452 

greater emphasis to coupled and prognostic interactions across the Earth system (particularly those thought to play a major 453 

role in determining the magnitude of future change) in an internally consistent framework will allow a more complete 454 

assessment of Earth system change, beyond that focussed solely on the physical climate. In addition, we emphasize the need 455 

to assess the impact of specific and targeted human actions (designed to mitigate future climate change or to adapt to 456 

expected future change) on regional climate, as well as on other aspects of the coupled Earth system, including resilience of 457 

the natural environment, biodiversity, and consequences for other human activities (e.g. food security, energy production or 458 

air quality).  The current scientific priorities with respect to such interactions, along with (in italics) the key phenomena, 459 

feedbacks and consequences such coupled simulation would enable improved assessment of, are listed below: 460 

  461 

(i) Water, vegetation and biogeochemical cycles of carbon, nitrogen, phosphorous; improved estimates of vegetation 462 

change, terrestrial carbon uptake, regional water cycles and ecosystem tipping risks. 463 

 464 

(ii) Climate, vegetation, and fire: improved assessment of future fire risk and interactions with carbon uptake, 465 

atmospheric composition and ecosystem tipping risks. 466 

 467 

(iii) Permafrost, climate, vegetation, and carbon: stability of permafrost under warming and long-term warming 468 

stabilization, carbon/methane release from thawing permafrost, ecosystem expansion into thawing permafrost zones. 469 

 470 

(iv) Climate, ice sheets, and sea level: improved assessment of potentially irreversible loss of Antarctic and Greenland ice 471 

mass and consequences for sea level rise, ocean circulation and ocean heat uptake. 472 

 473 

(v) Climate, atmospheric composition, and air quality: internally consistent assessment of regional radiative forcing, 474 

climate change and air quality. 475 
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 476 

(vi) Ocean physics, biogeochemistry and ecosystems: assessment of ocean warming, marine carbon uptake and long-term 477 

storage, ocean acidification and impacts on marine ecosystems. 478 

 479 

(vii) Human-Earth System interaction: assessment of the direct impact of human activities on the Earth system, regional 480 

climate, society, and the environment. e.g. Mitigation actions designed to address air quality and/or climate change, 481 

such as major land use change, nature-based solutions, climate interventions (geoengineering). Adaptation measures 482 

designed to address regional to national scale climate risk.  483 

 484 

(vii) The interplay between global change, regional climate variability, changes in climate and weather extremes, and 485 

resulting impacts across the Earth system.  486 

3.2  Regional Earth system change; assessing societal and environmental impacts. 487 

In addition to changing how global ESMs are run, we propose that regional downscaling (for example dynamical 488 

downscaling or Regional Climate Modelling, as used in CORDEX) also advance their representation of key regional Earth 489 

system processes (beyond the physical atmosphere-land system; Giorgi and Prein, 2022; Nabat et al., 2020; Sevault et al., 490 

2014). Here we refer to regional climate modelling or dynamical downscaling in the broadest sense, encompassing any 491 

physics-based dynamical model targeting a fine-scale representation of the climate over a specific region of the world. This 492 

includes limited-area models (LAM), variable-resolution GCMs (VRGCM) and, more recently, regional earth system 493 

models, convection-permitting regional models, and two-way coupled systems. In addition, atmosphere-land only global 494 

models are beginning to run for decadal timescales (and likely longer in the coming decade) and can be driven by sea surface 495 

temperatures and sea ice derived from ESM projections, providing a global downscaling option for coupled ESM 496 

projections. Whatever the technical choices used to perform such dynamical downscaling in future projection mode, forcings 497 

from global ESMs and GCMs will always be required, either as lateral, surface, or inner model boundary condition data. 498 

Similarly, we use the term statistical downscaling in a very broad sense, covering established statistical methods for 499 

transferring simulated large-scale climate data to local scales, as well as the increasing range of machine learning (ML) 500 

techniques, including recent deep learning applications (Gerges et al., 2023, Soares et al., 2024). 501 

 502 

To better sample the uncertainty range of global projections, dynamical and statistical downscaling should preferentially use 503 

CO2 emission-driven ESMs as boundary forcing and employ an efficient (as automated as possible) method to select an ESM 504 

ensemble for a given region and rapidly generate the required boundary condition data. The resulting combination of global 505 

emission-driven ESMs, regional ESMs, and advanced statistical/ML-based downscaling, all running in a tightly linked 506 

framework, will allow a more complete assessment of potential changes across the global and regional environment at scales 507 

required by policymakers and planners. Given the rapid development of a diversity of dynamical, statistical and ML-based 508 

methods to generate high-resolution regional data, it is important a common evaluation framework is developed that is 509 

applicable across global to local scales (and across the implied model resolutions) as well as being agnostic to the methods 510 

employed, so different downscaling approaches can be objectively evaluated against each other, region by region and 511 

application by application.  512 

 513 

We further recommend impact models use a coordinated, multi-model ensemble of (global and regional) simulation-data, 514 

based on the CMIP7 CO2-emission driven ESMs, that capture a representative fraction of the uncertainty space of global and 515 

regional projections. In addition, impact models should aim to sample multiple members of individual ESMs, and the 516 

downscaling of these ESMs, to better quantify the importance of internal (natural) variability in regional climate impacts. 517 
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Forcing impact models, either directly by global ESM output or by appropriately downscaled data, themselves driven by the 518 

same ESM simulations, will ensure global consistency of the impact simulations and comparability of impacts resulting from 519 

global and regionally downscaled forcing over the same region. In addition to coordinated forcing from ESM and 520 

downscaled data, a more complete, disaggregated set of IAM scenario data describing socio-economic development and 521 

potential mitigation or adaptation measures will ensure greater coherency between global and regional impact assessments 522 

and the underpinning IAM, ESM and regional forcing data. The resulting global models and downscaling combinations can 523 

be also be used to assess the efficacy and potential impacts associated with different regional climate change mitigation or 524 

adaptation actions, offering scientific assessment of such proposed climate solutions.   525 

4 Improving our understanding of, and ability to model key climate processes, climate variability, extreme 526 

events and regional impacts. 527 

4.1  Improving key phenomena and couplings in global climate models. 528 

Some of the key uncertainties in Earth system model projections relate to errors in simulating important regional climate 529 

processes and phenomena, including interactions across spatial scales and regions. For some of these phenomena, model 530 

resolution has been shown to be a key factor. Hewitt et al. (2022) showed that increasing ocean model resolution, in 531 

particular better resolving the ocean mesoscale, is important for accurately representing a number of key processes, 532 

including; ocean eddies in the Southern Ocean and North Atlantic (with implications for simulated marine heat and carbon 533 

uptake, ice sheets and sea-level rise), ocean deep water formation in the Labrador and Nordic Seas and on the Antarctic shelf 534 

(with implications for the global ocean overturning circulation and heat uptake), the Atlantic Meridional Overturning 535 

Circulation (with implications for heat and carbon uptake, as well as regional climate), ocean upwelling regions (with 536 

implications for marine carbon uptake, productivity and fisheries). Increased resolution, in both the atmosphere and ocean, is 537 

also important for simulating large-scale hydrological processes (Vannière et al., 2019) (with important implications for 538 

regional water cycles, water availability and food security), as well as modes of climate variability, such as the El Niño 539 

Southern Oscillation (ENSO) and associated teleconnections (with implications for the rate of ocean heat uptake and 540 

regional climate variability). While increased model resolution (to better resolve the ocean mesoscalemeso- or the synoptic 541 

scale in the atmospherescales) is an important component of reducing several systematic biases in coupled models, it is 542 

equally important to improve key parameterization schemes for processes that continue to be unresolved, even at horizontal 543 

resolutions of ~10km/0.1° in coupled models. In particular, it is critical to ensure further improvement in parameterizations 544 

at the heart of uncertainty in the simulated Effective Climate Sensitivity (EffCS) and), Transient Climate Response (TCR) 545 

(Meehl et al., 2020; ) and aerosol-cloud forcing (see Sect. 6 of this paper)).  546 

 547 

Upscale effects from many of these small-scale processes can be important. For example, oceanic mesoscale eddies tend to 548 

drive atmospheric mesoscale storms in the extra tropics (Liu et al., 2021), while at larger scales the atmosphere can drive 549 

ocean variability (Frankignoul, 1985). These effects are apparent only in coupled systems and their large-scale 550 

consequences, such as the preferred location and orientation of the jet stream, mid-latitude storm tracks, and related air-sea 551 

fluxes, can only be captured in large-domain models with mesoscale or better resolution (Seo et al., 2023). Furthermore, 552 

couplings between the heat, water, and carbon cycles, means improving the representation (and parameterization) of physical 553 

processes will deliver important benefits for simulating the carbon, and other biogeochemical, cycles. In addition to the 554 

large-scale impacts, higher resolution models also offer an improved simulation of climate variability, in particular weather 555 

extremes such as; tropical cyclones (Roberts et al., 2020), extreme precipitation (You et al., 2023), atmospheric rivers (Liang 556 

and Yangyang, 2023), jet streams and atmospheric blocking (Schiemann et al., 2020) with consequences for the frequency 557 

and location of extreme weather (Athanasiadis et al., 2022), which both depend on SST realism delivered by resolving the 558 
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ocean mesoscale. All these events have important impacts across the coupled Earth system, including upscale effects, e.g. 559 

drying of the atmospheric column by tropical cyclones over the Maritime Continent, with impacts on ENSO (Scoccimarro et 560 

al., 2021). Similarly, in the ocean increased resolution can improve the representation of important dynamical phenomena, 561 

such as marine heatwaves (Plecha and Soares, 2020) the representation of bottom water formation (Heuzé, 2021) and mixed 562 

layer eddies (Calvert et al., 2020). 563 

 564 

Increasing model resolution alone does not guarantee improvement in all simulated metrics and leads to importantsignificant 565 

challenges related to model spin-up, model equilibration, calibration, and uncertainty quantification. Simulation 566 

improvements are often best realized through a combination of increased model resolution and targeted improvement to key 567 

parameterization schemes. While the compute cost increases considerably as model resolution is increased, recent studies 568 

suggest increased resolution can deliver important insights into some long-standing model biases, and perhaps reconcile 569 

mismatches between simulated and observed historic trends. For example, Rackow et al. (2022) show that resolving the 570 

ocean mesoscale improves the simulation of Antarctic sea-ice trends, Chang et al. (2023) illustrate increased realism in 571 

ocean upwelling as model resolution is increased, and ongoing work suggests higher resolution simulations can better 572 

capture recent observed trends in the Eastern Pacific that are not captured in CMIP6 models (Seager et al., 2022). Such 573 

improvements will increase confidence in future model projections and have important implications for predicting future 574 

extreme events, such as tropical cyclones, floods, droughts, and heatwaves. 575 

 576 

There is strong evidence a coordinated set of simulations for CMIP7, with resolutions enhanced over those typically used 577 

(e.g. 10-2520 km in the atmosphere and ~0.1° in the ocean), can deliver an improved simulation and understanding of key 578 

regional climate processes and a more robust assessment of future changes in many of these processes, with benefits for 579 

impact and adaptation planning. Chang et al. (2020) demonstrated that CMIP-length simulations, with an equilibrated 580 

coupled model, are now possible at resolutions of ~10-25km20km/0.1°. Many groups produced simulations following the 581 

CMIP6 HighResMIP protocol (Haarsma et al., 2016), though generally with very limited ensemble sizes. Given increased 582 

model efficiency and available compute resources, CMIP7 provides an opportunity to further investigate the benefits of 583 

increased coupled model resolution, alongside increased ensemble size, longer simulationssimulation length, methods for 584 

improved model equilibration and initialization, and enhanced process realism. Given current structural limitations of 585 

coupled climate models, of whatever resolution, sampling model diversity, through multi-model CMIP-style exercises, 586 

remains critical for providing robust estimates of projection uncertainties and risks (see Section 7). This is particularly the 587 

case with respect to regional climate change, where processes may be resolution-dependent (e.g. Moreno-Chamarro et al., 588 

2022) and therefore sensitive to biases common across lower resolution models. A diversity of enhanced resolution coupled 589 

models thus needs to be promoted, but also optimized across the competing demands for delivering future projection data 590 

that is of maximum quality and utility both for the science and policy communities. 591 

 592 

4.2  Increased model resolution from global to regional scales for regional impact assessment and adaptation. 593 

Like their global counterparts, Regional Climate Models have also increased in resolution, with a growing set of models now 594 

running at convection-permitting resolutions (~1-3km resolution; Ban et al., 2021; Hohenegger et al., 2023). In addition to 595 

an improved simulation of the convective scale, high-resolution itself brings direct benefits, by delivering climate 596 

information closer to impact and adaptation relevant scales and by better resolving local climate in regions of strong 597 

orographic forcing, complex land-sea-lake structures, or heterogeneous land surface types. Moreover, explicitly resolving 598 

convective events, including the self-organization and self-intensification of these events, brings physical grounding to 599 

simulated precipitation extremes (Kendon et al., 2021; Caillaud et al., 2024), including the ability to evaluate models against 600 
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observations at common spatial scales (Caillaud et al., 2021). A growing set of regional projections, employing convection-601 

resolving models (Pichelli et al., 2021; Chapman et al., 2022; Kawase et al., 2023; Kendon et al., 2023), is shedding new 602 

light on the interaction between future climate change and regional hydrological responses. Convective-scale regional 603 

models can also be deployed for shorter, targeted purposes. For example, by focusing downscaling onto event sets where 604 

such high regional resolution is expected to add value to coarser scale models, or by sub-selecting global projections that 605 

allow a broad range of climate hazards, needed for robust adaptation, to be simulated regionally at high resolution.  606 

 607 

While the combination of high-resolution coupled global climate models (~10-2520 km in the atmosphere and ~0.1° in the 608 

ocean) and convection-permitting regional climate models (~1-3 km) areis computationally demanding, the potential to 609 

deliver radically new findings and policy support, at scales required by national and regional planners, means they are an 610 

increasingly important input to national climate scenarios, adaptation planning, and climate services. This is particularly the 611 

case with respect to risks associated with extreme weather events. In the next phase of CMIP and CORDEX, we propose a 612 

significant emphasis be placed on increasingincreased  collaboration, as well as increased data and knowledge sharing, 613 

between high-resolution global climate models, convection-resolving regional models, and statistical/ML-based 614 

downscaling, with the goal of producing a coordinated ensemble of state-of-the-art, high-resolution global and regional 615 

projections, downscaled by an ensemble of convection-resolving regional models, augmented by state of the art statistical 616 

and ML-based downscaling... We further recommend the resulting high-resolution (global and regional) projection 617 

dataprojections are used to forcedrive a range of impact models (e.g. in ISIMIP, AgMIP and FishMIP). As the future impacts 618 

felt by natural and human systems is not only dependent on climate change, but also on the direct human forcing of climate 619 

arising from the underpinning scenarios themselves, it will be important to also represent these drivers at high spatial 620 

resolution. The resulting set of climate change and impacts data will be of enormous value to national climate change impact 621 

assessments, adaptation planning and climate services. To maximize the quality and consistency of this multi-scale, multi-622 

method data set, it is important systems are developed and employed to allowsupport careful evaluation of the cascade of 623 

information across systemsmethods, scales, and regions, as well as from climate to impacts, highlighting both value-added 624 

and consistency-lost across the entire chain.  625 

 626 

     4.3 Global Storm Resolving models and the path to global km-scale 627 

Global models with grid spacing in the range 1-10km are often referred to as Global Storm Resolving Models (GSRMs, e.g., 628 

Hohenegger et al., 2020; Judt et al., 2020: Caldwell et al., 2021). GSRMs running at ~3-5km global resolution currently 629 

achieve a throughput of ~0.5 simulated years per day (SYPD), with an aim to reach 1 SYPD in the coming years. GSRMs 630 

originated within the international DYAMOND initiative (Stevens et al., 2021) and the GRSM community are currently 631 

designing year-long experiment protocols (Takasuka et al., 2024, submitted). In addition, within the EU-sponsored 632 

Destination Earth (DestinE; Wedi et al., 2022) two coupled GCMs have run a reduced HighResMIP experiment (for the 633 

period 1990 to 2040) with grid spacing of 5km.  634 

 635 

Examples of scientific highlights realised by GSRMs include; a realistic representation of the interannual frequency of 636 

Tropical Cyclones (TC) in major basins, comprising a realistic distribution of all severity categories (Judt et al., 2020), as 637 

well as realistic representation of the rate of TC intensification, possible as resolutions reach 3km or better. Recent 638 

comparative studies among km-scale ocean models show large-scale features that affect the storm tracks and air-sea coupling 639 

(e.g., Gulf Stream separation) are more consistent in these models than in coarser resolution ocean models. Internal 640 

variability is also substantially larger in eddy-rich models (Chang et al., 2020; Jüling et al., 2021), including stronger SST 641 

responses to AMOC variations. In terms of coupled phenomena, realistic representation of the North Atlantic storm track has 642 

been shown to be sensitive to resolution of the ocean mesoscale, including instantaneous features (eddies) and climatological 643 

features (western boundary currents) (Moreno Chamorro et al., 2022). Representation of the full spectrum of precipitation 644 
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processed by cyclones, including their frontal structures, organised convection, such as Mesoscale Convective Systems and 645 

squall lines are generally more realistic as model resolution is increased (Vellinga et al., 2016). 646 

 647 

Many of these achievements have been in the realm of convection-permitting Regional Climate Models (see section 4.2) for 648 

the past ~5 years. GSRMs offer the additional value of being able to simulate upscale effects from small scales onto larger 649 

scales, e.g. how the Hadley and Walker circulations are affected, including meridional transports of energy, as well as 650 

implications for global teleconnections, mediated by atmospheric wave propagation. Many of these achievements were 651 

realised thanks to the development of new dynamical cores, capable of reducing the total number of computations, by use of 652 

uniformly spaced global grids, or by models running more efficiently through advanced numerical schemes in time and 653 

space, and by exploiting multiple parallelisation paradigms on the latest supercomputers, including those equipped with 654 

GPUs. With the advent of even more powerful new classes of GPU, such as the NVIDIA Hopper or AMD MI300 series, 655 

completing a selection of typical CMIP6 experimental protocols at ~3km resolution, with a total turnaround of order of one 656 

year, will soon be possible.  657 

 658 

Data output and analysis constitutes a major challenge at these resolutions: output of order petabytes per day are 659 

commonplace, and storing multiple ensemble members for centennial-scale simulations is not feasible. Multiple approaches 660 

are being tested to alleviate this problem, such as performing the most data-intensive and multi-variate analyses while the 661 

models are running, reduced data precision, or holding data on fast disks for very brief time periods to allow immediate 662 

consumption by users. Other approaches include the use of hierarchical data layers, which can be output and handled in 663 

parallel, with incremental expense, as exemplified by the HEALPIX standard. 664 

 An ambitious vision for addressing such data challenges, including co-design, co-production, and global access, is provided 665 

in the Earth Virtualisation Engines concept (Stevens et al., 2024). 666 

   667 

5 Increasing collaboration across approaches to improve global and regional Earth system and climate models.   668 

The accuracy of numerous simulated Earth system and biogeochemical phenomena strongly depends on the quality of 669 

simulated physical climate drivers (Doney et al., 1999). Examples of such dependencies include, but are not limited to; (i) 670 

vegetation growth/loss, terrestrial carbon uptake, and the simulated water cycle; (ii) wildfires and simulated precipitation, 671 

soil moisture and winds; (iii) marine productivity and the dynamics of ocean upwelling, (iv) mass loss from marine ice 672 

sheets and regional ocean circulation; (v) global ocean heat and carbon uptake, and representation of deep water formation, 673 

(vi) regional air pollution and modes of atmospheric circulation. Conversely, in the real-world, carbon cycle – climate 674 

feedbacks (as well as other Earth system feedbacks) change the fraction of anthropogenic CO2 (and other gases, such as CH4 675 

or N2O) that remain in the atmosphere to cause warming, and thereby influenceinfluencing the magnitude of physical climate 676 

feedbacks (e.g. water vapour, lapse-rate, cloud or sea ice feedbacks). Furthermore, while an accurate simulation of the mean 677 

climate (in time and space), as well as trends in this measure of climate, are extremely important, an accurate representation 678 

of variability (in both time and space) of the underpinning physical climate can often be as important for simulating the Earth 679 

system response to a changing climate. Such variability is also a critical driver of the impacts of climate change. Regional 680 

climate variability, particularly the width of the distribution of such variability (i.e. the extreme tails of future climate 681 

distributions), is generally better represented as resolution is increased, both in global and regional models (Wehner et al., 682 

2014; IPCC, Doblas-Reyes et al., 2021; Ban et al., 2021).  683 

 684 

High-resolution coupled global climate models can be viewed as the physical core of the next generation of Earth system 685 

models, offering an improved simulation of the driving physical climate, including climate variability and extreme events. 686 

Collaboration across the development of high-resolution physical climate models, and Earth system models that emphasize 687 
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enhanced process-realism, needs to deepen both in CMIP7 (with respect to global models, Dunne et al., 2023) and CORDEX 688 

(with respect to regional models). Such collaboration can benefit from, and feed into, ongoing efforts under the WCRP LHA 689 

Explaining and Predicting Earth System Change (https://www.wcrp-climate.org/epesc), and offers an unprecedented 690 

opportunity to bring advances from both areas together to support development of the next generation of Earth system 691 

models. Such a meeting point between these two model development paths offers a unique testbed for assessing 692 

technological advances (e.g. hybrid-resolution ESMs, Berthet et al., 2019; AI-based emulation approaches, Son et al., 2024), 693 

as well as conceptual challenges in Earth system modelling (e.g. in quantifying and optimizing the benefits and trade-offs 694 

between resolution, complexity and ensemble size). Machine Learning (ML) hasAI/ML-based approaches also have the 695 

potential to reduce long-standing systematic errors in ESMs and enhanceimprove model parameterizations, while potentially 696 

also increasing computational efficiency, enhancing the overall projection capability of these models. This needs to be 697 

further explored (Eyring et al., 2023a2024a), with increased sharing of methodologies and findings across ML-based, and 698 

more traditional (process-based) approaches, to model development. (Schneider et al., 2024). Increased collaboration and 699 

knowledge sharing across these efforts willcan lead to a step change in our overall ability to provide robust climate 700 

information at scales that meets the needs for mitigation and adaptation across spatial and temporal scales decision-701 

making(Eyring et al., 2023b2024b). 702 

 703 

A number of initiatives are beginning to develop “Digital Twins of the Earth” (DTEs, Bauer et al. 2021, Hoffman et al. 704 

2023), (e.g. the WCRP Digital Earth LHA, https://www.wcrp-climate.org/digital-earths) targeting an optimal fusion of Earth 705 

system modelling and observations, to deliver fit-for-purpose and actionable information to society. These approaches 706 

combine forward modelling, data assimilation, and machine learning tools with user models designed to answer specific 707 

questions. A number of (global and regional) DTEs are beginning to provide samples of km-scale information, with the 708 

majority of DTEs to-date being atmosphere-land only models. For application to future climate change, such models 709 

presently require sea surface and sea ice boundary condition data (or atmospheric boundary conditions) derived from 710 

coupled ESM projections. As DTEs further develop to include other components of the Earth system (e.g. oceans, 711 

cryosphere, carbon cycle etc) it will be important they are carefully evaluated against existing approaches to deliver high-712 

resolution future climate information (either via uninitialized projections or observation-initialised predictions). It will also 713 

be important to document the uncertainties in DTE projections/predictions arising from different modelling choices, different 714 

external forcings and emission scenarios, as well as from internal variability. This is particularly important with respect to 715 

predicted or projected changes in future extreme weather events, which by definition are rare occurrences, with low 716 

predictability. 717 

 718 

Only a few efforts to date are trying to develop two key aspects of digital twins; linking inputs to observations and outputs to 719 

human systems. In Europe, Destination Earth (https://destination-earth.eu/) experiments with weather and climate twins, 720 

down to resolutions of 2.5 km, and aims to make its experimental design respond to user needs, so models store a minimal 721 

amount of data, but are re-run on a regular basis, incorporating the latest data requests in each update. In the US, the 722 

Department of Energy has tested combining physical models (e.g. the Energy Exascale Earth System Model, E3SM (Golaz 723 

et al., 2022)) with human system models, including Integrated Assessment or Energy Grid models. In addition, ultra-high-724 

resolution global storm-resolving models (GSRMs, Stevens et al., 2019; Lee and Hohenegger, 2024) run at 1-5 km 725 

resolution may provide further understanding and insights into biases, complementing CMIP7/CORDEX simulations. While 726 

the approaches employed and timescales involved are somewhat different, Increased sharing across the range of 727 

methodologies, successes, and problem-solving acrossmodelling communities will benefit all strands of work, improving our 728 

combined ability to model the coupled Earth system and deliver robust and actionable climate information to policymakers 729 

and society. 730 
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6 Improving model simulations of the observational record and key metrics of climate change    731 

To increase confidence in future projections it is important models accurately reproduce the observed historical record. This 732 

requirement encompasses multiple variables and timescales, with long-term trends in global mean surface air temperature 733 

(GMSAT), including the forcings and feedbacks controlling these trends, of first order importance. In CMIP6 a number of 734 

ESMs exhibited EffCS values (of 5°C or greater) that are higher than the 5-95% range, as assessed by multiple lines of 735 

evidence (Sherwood et al., 2020). Some of these models also simulated global warming rates over recent decades (~1980 to 736 

2014) greater than seen in observations (Tokarska et al., 2020), leading to suggestions these “hot models” were unrealistic 737 

and should be filtered out from climate impact assessments (Hausfather et al., 2022).  738 

 739 

Cloud feedbacks are the largest contributor to uncertainty in EffCS. Perhaps surprisingly, CMIP6 ESMs with high EffCS 740 

often evaluate better against observations for present-day clouds than earlier or lower EffCS models (Bock and Lauer, 2024; 741 

Kuma et al., 2023), and also accurately reproduce recent trends in cloud-radiation when driven by observed sea surface 742 

temperatures (SSTs, e.g. Loeb et al., 2020). These ESMs also represent a number (though not all) cloud feedback processes 743 

more accurately than earlier models, particularly those related to mixed phase clouds over the Southern Ocean (Jiang et al., 744 

2023). Nevertheless, studies continue to highlight problems across the majority of CMIP6 models with respect to Southern 745 

Ocean clouds (Schuddeboom and McDonald, 2021) and, in particular, low-level tropical marine clouds (Konsta et al., 2022), 746 

with observation-based constraints of the latter cloud type suggesting an EffCS closer to 3°C (Myers et al., 2021). It is 747 

therefore possible some high EffCS CMIP6 models improved one cloud feedback (e.g. mid-latitude, mixed phase clouds 748 

leading to a less negative cloud phase feedback) that exposed other feedback errors (e.g. too positive low-level, tropical 749 

marine cloud feedback) that previously compensated each other with respect to the total cloud feedback. Such one-sided 750 

improvement can result in an increased positive total cloud feedback and high EffCS. Continued improvement in the 751 

representation of cloud processes and feedbacks across all relevant cloud types, including exploitation of new observational 752 

data and analysis methods, will be crucial for better constraining EffCS in CMIP7 and improving the simulation of historical 753 

climate and rates of global warming. 754 

 755 

While a number of high EffCS models in CMIP6 simulated too strong global warming over the period ~1980 to 2014, 756 

establishing a direct link between EffCS and historical warming is not straightforward. This is mainly due to the 757 

confounding role of aerosols, as well as the important role played by natural variability. In CMIP7 historical forcings are 758 

planned to be extended to 2022 (i.e. 8 years longer than in CMIP6). Recent studies indicatesuggest anthropogenic effective 759 

radiative forcing (ERF) has become more positive, by ~50%, between the decades 2000-2009 and 2010-2019, mainly due to 760 

a reduction in the negative aerosol ERF (Jenkins et al., 2022; Hodnebrog et al., 2024). This change has been accompanied by 761 

almost a doubling of the GMSAT warming trend between these two decades. Jenkins et al. (2022) suggest that while some of 762 

the increased GMSAT trend is very likely due to reduced aerosol cooling, long-term variability in ENSO may also 763 

contribute. Modelling studies by Wang et al. (2023) further suggest that decreasing aerosol emissions may outweigh 764 

decreasing CO2 emissions in terms of their impact on warming and climate extremes during the path to global net-zero 765 

carbon emissions. Kang et al. (2023a, b) suggest the SST pattern observed in the Pacific between ~1979 and 2013, which 766 

induces a negative cloud feedback term (that is not captured in most coupled ESMs), is linked to cooling SST trends in the 767 

Southern Ocean over this period (also not captured in coupled ESMs). They suggest that as Southern Ocean SSTs begin to 768 

warm, the tropical Pacific SST pattern may decay, resulting in a more positive cloud feedback and potentially an increased 769 

rate of global warming. Understanding, and simulating in coupled ESMs, the drivers of such SST trends, as well as their 770 

interaction with climate feedbacks and global warming, will be crucial to increase confidence in future projections.  771 

 772 
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Constraining future feedbacks and evaluating model processes controlling these feedbacks is a difficult challenge. Emergent 773 

Constraints, which use a multi-model ensemble to identify relationships between observable Earth System variations and 774 

projected future changes, are an attractive way to constrain future feedbacks based on observations (Hall et al., 2019; Nijsse 775 

et al., 2020) and thereby reduce uncertainty in future projections. To date, assumed emergent relationships are often simple 776 

linear regressions. Machine Learning techniques are a promising route for identifying multi-dimensional, non-linear 777 

relationships between contemporary observables and the future state of the Earth System (Schlund et al., 2020) and may 778 

therefore improve the constraints on future feedbacks and even allow an evaluation of model processes controlling these 779 

feedbacks. An improved simulation of the historical past, combined with improved constraints on key feedbacks and the 780 

processes controlling these feedbacks, will increase confidence in ESM projections and improve estimates of key climate 781 

change metrics such as EffCS, TCR and TCRE with implications for estimates of allowable carbon emissions 782 

forcommensurate with different policy targets. 783 

 784 

Both global and Regional ESMs struggle to accurately represent observed regional climate trends, as underlined for Western 785 

Europe by recent literature (Ribes et al., 2022; Schumacher et al., 2023; Vautard et al., 2023). This may be partly linked to 786 

poor quality lateral and surface boundary conditions (e.g. most recently from CMIP6 ESMs), but may also be a result of 787 

missing, or poorly represented, regional forcings and/or feedbacks in the RCMs themselves (Nabat et al., 2014; Boé et al., 788 

2020; Taranu et al., 2022, e.g. the representation of aerosol-climate interactions or the simulation of regional/coastal SST 789 

trends). For RCMs, too short evaluation runs, and lack of adequate calibration strategies may also contribute to these 790 

problems. Tackling such weaknesses, combined with development of an evaluation system applicable across the scales and 791 

downscaling methods involved, will be important for increasing trust in high-resolution, regional climate projections that 792 

will beare used in numerous national climate scenarios and impact assessments. 793 

7 Sampling and quantifying future uncertainty 794 

Multi-model ensemble projections (MME), such as those from CMIP and CORDEX, sample a number of plausible IAM 795 

emission and land-use scenarios. The MMEs often include a small number of ensemble members per individual model, each 796 

sampling internal variability (as represented by that model). The MME approach, to a limited extent, also addresses 797 

structural modelling uncertainty. The degree this aspect of uncertainty is sampled is ultimately constrained by the resolution 798 

and process realism of the models involved, and by the degree of commonality of approaches to representing unresolved and 799 

uncertain model processes (Merrifield et al., 2023). 800 

7.1  High Impact Low Likelihood (HILL) outcomes. 801 

While such MMEs sample a fraction of the uncertainty in future Earth system change, this sampling is far from complete, 802 

particularly with respect to the extreme, low-likelihood end of potential Earth system change. Such responses are referred to 803 

as HILL (High Impact, Low Likelihood) outcomes (Wood et al., 2023). While HILL outcomes have a low likelihood of 804 

happening, there remains a small chance they will occur. One example would be if the Earth’s equilibrium climate sensitivity 805 

(ECS) turned out to be ~5°C. While this outcome is highly unlikely (IPCC AR6 quotes the very likely range (5-95% 806 

probability) of ECS as between 2°C and 5°; see Fig. 7.18, in IPCC, 2021, Ch7, Forster et al. 2021), if it did occur the impacts 807 

on society would be extremely large.  808 

 809 

HILL events may also occur at lower levels of warming (Armstrong-McKay, 2020) and impact numerous parts of the Earth 810 

system across a range of regions and timescales. For example, a HILL event may be triggered if a threshold of Antarctic ice 811 

loss is exceeded, which may then accelerate and become irreversible, with important consequences for sea level rise and 812 
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coastal communities (Garbe et al., 2020; Taherkhani et al., 2020). Similar, poorly quantified, and poorly understood, risks 813 

exist for other potential Tipping Points in the Earth system, such as collapse of the Atlantic Meridional Overturning 814 

Circulation (AMOC, Klose et al., 2023), dieback of the Amazon rainforest (Parry et al., 2022), or rapid permafrost thaw 815 

(Turetsky et al., 2020). Tipping points also exist in the natural environment and in society and may be triggered at modest 816 

levels of warming. Examples include climate driven species loss already occurring at today’s levels of global warming (e.g. 817 

first species extinction attributed to climate change; IPCC 2023 SPM), mass mortality in coral reef ecosystems (Donner et 818 

al., 2017; Hughes et al., 2018; Hughes et al., 2019), shift from kelp- to urchin-dominated coastal communities (Rogers-819 

Bennett and Catton, 2019; McPherson et al., 2021). HILL events, both in the natural Earth system and society are not only 820 

sensitive to changes in the mean climate, but also to changes in climate variability. Increased inter-annual variability can 821 

have major impacts on society and ecosystems (von Trentini et al., 2020). Systematic shifts, even in sub-seasonal climate can 822 

significantly impact society (e.g. changes in the frequency distribution of hot summer days and nights, and human mortality; 823 

Schär et al., 2004).  824 

 825 

The signal of natural internal variability (in models expressed as internal variability across a model ensemble) increases in 826 

importance, relative to the signal of human forced climate change, as spatial and temporal averaging scales decrease, and 827 

projection timescales become shorter (Hawkins and Sutton, 2009). A consequence of this is that larger ensembles are 828 

required to reliably detect a forced climate change signal from an extreme realization of natural variability. The shorter 829 

duration and/or rarer the event, the larger the ensemble size likely required to be confident a (forced) signal is outside the 830 

range of natural variability. This is important information for reliable and cost-effective adaptation to potential future climate 831 

risks. Several groups have produced large ensembles covering the historical past and future (Olonscheck et al., 2023; Maher 832 

et al., 2021; Deser et al., 2020), using 50 to 100 realizations, often started from different initial conditions taken from the 833 

model’s pre-industrial simulation. Such large ensembles are ideal for detecting forced regional changes (as simulated by 834 

thethat particular model) from internal (natural) variability (also as simulated by the particular model). Due to the high 835 

computational cost involved, to date such large ensembles are generally based on relatively low-resolution models that do 836 

not carry the process complexity of full ESMs. This can limit their overall utility. For example, low resolution models 837 

struggle to simulate intense weather events, such as tropical cyclones or extreme precipitation. As a result, their utility for 838 

investigating changes in extreme weather is limited, although this limitation could be addressed, for specific regions at least, 839 

by building ensembles consisting of both Global and Regional models run in tight coordination.   840 

 841 

Recently, single model initial condition large ensembles (SMILEs) have been combined to form multi-model ensembles of 842 

SMILEs (Lehner et al., 2020), increasing the sampled uncertainty beyond internal variability to also encompass (to some 843 

degree) structural model uncertainty. Techniques have been developed to optimally combine individual SMILEs, with 844 

different ensemble numbers, to produce an unbiased multi-model SMILE that evenalso considers present-day model 845 

performance in its design (Merrifield et al., 2020). New Machine Learning techniques offer the potential for a more efficient 846 

and comprehensive assessment of the future projection uncertainty space and can be used to guide, and in some cases realise, 847 

the creation of large ensembles, including ones targeted onto extreme event risks (Eyring et al., 2023a2024a). 848 

7.2  Internal variability, parameter uncertainty and model structural uncertainty. 849 

An additional approach for investigating modelling uncertainty is the Perturbed Parameter Ensemble (PPE) (Murphy et al., 850 

2007). In the PPE approach uncertain, often difficult to constrain, model parameters are varied within reasonable limits, 851 

where possible constrained by observations (Booth et al., 2017). The resulting PPE members can be further filtered to retain 852 

only skilful members in terms of present-day climate and/or historical trends (e.g., Sexton et al., 2021; Peatier et al., 2022). 853 

Recent advances in model calibration (e.g., Hourdin et al., 2021, 2023) will be instrumental in better designing future 854 
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PPEPPEs. Using the PPE approach, it is sometimes possible to mimic key measures of future projection uncertainty (e.g. the 855 

range of climate feedbacks and ECS in a CMIP MME) using only a single model (Collins et al., 2011). Applying the PPE 856 

approach across multiple global and regional model systems allows probabilistic regional climate projections that sample a 857 

significant fraction of the future projection uncertainty (Evi et al., 2021). Such approaches support an assessment of regional 858 

impacts sampling uncertainty in the future driving global and regional climate, including changes in climate and weather 859 

variability.  860 

 861 

In addition to physically based models, advanced statistical methods such as emulators (Meinhausen et al., 2011; Leach et 862 

al., 2021) and Machine-Learning (ML) (Watson-Parris, 2021; Eyring et al., 2023a2024a) are increasingly being used to more 863 

fully, and rapidly, investigate uncertainty in future Earth system change. Emulators and ML methods can be trained either on 864 

an individual model or an ensemble of historical and future projections made by ESMs (Beusch et al., 2020; Nath et al., 865 

2022) or RCMs (Doury et al., 2022, 2024) and used to investigate a large range of future emission and land-use scenarios, or 866 

to focus on specific aspects of projection uncertainty (e.g. high ECS futures). ObservationsProcess understanding and 867 

observations can also be brought into the emulation process, enabling the resulting emulators to mimic the behaviour of the 868 

more complex ESMs, (Séférian et al. 2024), while weighting this behaviour towards better performing models (Beusch et al., 869 

2020; Sanderson et al., 2017). Statistical emulation approaches are also used to assess the sensitivity of ESMs to uncertain 870 

model parameters (expanding the PPE approach), both for parameterization development (Silva et al., 2021; Rasp et al., 871 

2018) and for developing and selecting ESMs that combine acceptable present-day performance with constraints on their 872 

future response (e.g. constraining ECS to lie within a specified range (Peatier et al., 2022)). Emulators were used extensively 873 

alongside global and regional projections in IPCC AR6 to deliver observation-constrained future projections (Nicholls et al., 874 

2022). Emulators and ML tools can enhance the provision of climate information (Pfleiderer et al., 2024) and support 875 

interdisciplinary integration, allowing direct coupling to IAM scenarios and thus supporting cross-working group 876 

collaboration in IPCC AR7 and beyond.   877 

7.3  Assessing uncertainty across all the steps in providing actionable climate information. 878 

The new round of international modelling projects presents an opportunity to bring together the range of approaches and 879 

methods used to assess and quantify uncertainty across IAM models and scenarios, global and regional models (considering 880 

internal model variability, parameter uncertainty and structural model differences), and impact models (both in terms of the 881 

climate forcing used and uncertain impact model parameters). This collaboration should also extend to work closely with 882 

communities developing, improving and applying emulators and simple climate models (Séférian et al., 2024). Collaboration 883 

across communities and activities will help increase the range of uncertainty space that can be analysed, and lead to a more 884 

systematic and coordinated approach to uncertainty assessment across the full suite of modelling activities that delivers 885 

sciencedelivering knowledge and data to climate policy and climate services. We further recommend significant effort be 886 

devoted to the communication of uncertainty and conversely, communication of what is expected to occur in the future, and 887 

the level of certainty/confidence that can be attached to these outcomes, with the target audiences being climate change 888 

policymakers, planners, and practitioners.  889 

 890 

Going forwards, a key demand on the international modelling community, with respect to supporting IPCC AR7 and the 891 

UNFCCC Global Stocktake, will be the development and analysis of realizable future pathways that limit global warming to 892 

the targets of the Paris Agreement. These pathways are likely to include an overshoot of the warming targets and therefore 893 

the need for negative CO2 emissions (i.e. active removal of CO2 from the atmosphere). How these negative emissions will be 894 

realized in practice and what magnitude is feasible, remain open questions. A thorough analysis and quantification of the full 895 

cascade of uncertainty associated with such pathways is an important demand on the science community. This analysis needs 896 
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to encompass uncertainty in; how the necessary negative CO2 emissions will be realized (i.e. the mitigation actions 897 

themselves), the response of the carbon cycle to decreasing atmospheric CO2, the efficacy of any CO2 removal in reducing 898 

global temperatures, and the regional climate responses that may arise from such cooling pathways.  In addition, 899 

uncertainties in the (expected) reduction in the societal and environmental impacts of Earth system change, as global 900 

warming is reduced, need to be assessed, and the impacts avoided compared to any impacts arising directly from the 901 

mitigation actions themselves. Along the entirety of this chain of events and responses there is deep uncertainty. The science 902 

community needs to analyse, quantify, and communicate this uncertainty as thoroughly and clearly as possible.  903 

 904 

Robust climate adaptation requires information on the range of potential future changes (which represent the climate hazard 905 

in risk decision frameworks). While great strides haveprogress has been made in quantifying global and large-scale impacts 906 

arising from thea range of climate change drivers, this has only been partially successful with respect to translating the range 907 

of these impacts to the local scales needed to assess climate impact and develop local to national adaptation plans. CMIP7 908 

offers an opportunity to more fully include and propagate the wider CO2-emission driven uncertainties through to local-scale 909 

climate information (as outlined in Sect. 3.2).  An equally important dimension is the role natural variability plays in climate 910 

change, especially on the timescale of the next 10 to 40 years (that frames many adaptation decisions). On these timescales 911 

and at the local scale, natural variability typically dominates the forced climate change signal, for example for precipitation 912 

and temperature. This information is ever more critical as society adapts to climate change in a mitigating world, where such 913 

mitigation aims to limit the climate change signal. Large initial condition ensembles are a key tool for understanding and 914 

quantifying the role natural variability plays. The expense (computational, data storage) of generating and sharing Lateral 915 

Boundary Conditions (LBCs) required to drive Regional Climate models has limited the availability of LBC data, and hence 916 

the potential for regional scale simulations (such as CORDEX) to sample the role of regional natural variability in the 917 

context of the wider climate hazard space, at impact relevant scales. Commitments for new LBCs are often made before a 918 

simulation’s credibility can be assessed and before any understanding of where the realisation of variability plus feedbacks 919 

places a particular simulation in the wider potential projection space. There will be value, therefore, in exploring iterative 920 

approaches between ESM and regional modelling groups to identify optimal ESM simulations to be rerun for LBC 921 

generation.   922 

 923 

Statistical downscaling may provide the most effective route to link wider ESM projections to what they imply at the local 924 

level (Gutiérrez et al., 2019), as these approaches are not restricted by the limited availability of LBCs. Emerging Neural 925 

Network Machine Learning techniques trained on existing regional (RCM and Convection Permitting RCM (CPM)) 926 

simulations, are showings promise in capturing spatial and temporal climate change, at local scales, based on large scale 927 

drivers simulated by ESMs (Baño-Medina et al., 2021; Doury et al., 2022). Whilst there is still work to be done (e.g. 928 

achieving multi-variate coherence (González-Abad et al., 2023), transferability to other ESMs (Baño-Medina et al., 2024), 929 

and building frameworks to verify ML downscaled results)), their emergence is likely to represent a transformative change 930 

intransform how the science community provides local scale climate Information, as they enableallow the production of this 931 

information to be determined by realisations that can inform on the range of local scale climate hazard (bottom up) rather 932 

than the limited availability of Earth system model LBCs by ESM modellers (top down) as is currently done.). ML-based 933 

downscaling therefore has the potential to translate coarse-scale Earth system model output directly to spatial scales of utility 934 

for impact models, impact assessment and local adaptation planning (Eyring et al., 2023b2024b). Such developments can be 935 

transformative in other senses, too. For example, given adequate prior ESM to RCM/CPM training data, CMIP7 has the 936 

potential to be downscaled almost as soon as the ESM simulations are completed, something which could help inform, for 937 

the first time, IPCC AR7 with consistent global and regional projection data, and associated impact simulations (see Sect. 2). 938 

Similarly, ML may offer ways to address the prohibitive storage costs of conventional high resolution local data by enabling 939 
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the availability of such data on demand based on large scale variables (which are much cheaper to store). Ultimately, 940 

incorporating Machine Learning into the production of high-resolution regional climate information is likely to open further 941 

benefits due to the flexibility such tools enable. For example, ML downscaling will be amenable to approaches that use 942 

observations to bias correct the regional data, directly. Similarly, as insights from new modelling (e.g. resolving convective 943 

scales, interactive atmosphere-shelf sea-wave models) come online, similar ML downscaling tools may be able to produce 944 

new high resolution regional climate data reflecting these insights, if the new modelling experiments are designed to inform 945 

the required ML training. 946 

8 The underpinning technological infrastructure 947 

The ambitious science and science for policy aims discussed in this paper cannot be realized without a state-of-the-art 948 

underpinning computational and data infrastructure, supported by experienced personnel. Our recommendations require the 949 

co-design of certain experiments, followed by the production, quality-control and sharing of numerous datasets from a 950 

diverse range of modelling systems, between producers and a heterogenous set of consumers separated in time and space. An 951 

aspiration for IPCC AR7, as described earlier, is to deliver a coordinated and coherent set of data from across the most recent 952 

IAM scenarios, global projections (CMIP7) and regional downscaling (CORDEX) simulations,), as well as impact model 953 

results based on these scenarios and climate forcing. To achieve this will require more efficient and rapid sharing of both 954 

requirements and data across all communities, including where feasible user communities. We therefore stress the need to 955 

improve the underpinning infrastructure ecosystem that supports these international modelling efforts to enable the co-956 

development of suitable experiment protocols, followed by the production, evaluation, and exploitation of datasets, which 957 

themselves can be used as input to other simulation workflows, with different production, validation, and exploitation cycles. 958 

This will need to be realized for far more numerous and larger volume datasets, and across a broader and more disparate set 959 

of requirements and communities than was previously the case. 960 

 961 

CMIP6, like CMIP5, benefited from a globally coordinated data infrastructure, the Earth System Grid Federation (ESGF), 962 

linked to a large array of other important and necessary services (Balaji et al., 2018). The CMIP6 ESGF is now more than a 963 

decade old, largely not maintained and is therefore not fit for the scale of the challenge outlined above. The array of services 964 

linked to the ESGF include: standards-based data, model and experiment descriptions; citation and errata services for 965 

simulation data and derived products; and data quality control procedures (addressing the presence of required data, 966 

standards compliance etc, not to be confused with procedures for assessing the scientific quality of the data). The data 967 

infrastructure itself needs to support systematic (and efficient) simulation evaluation, and support replication of data from 968 

source to “super-nodes” that can host large volumes of multi-model data and provide sufficient local computational resource 969 

to allow analysis with minimal requirement for data movement (Eyring et al., 2016). Local computing services will need to 970 

include both specific “well known” computational services such as those necessary to generate on-demand statistics, and 971 

those necessary to support user-generated analysis pipelines that may include AI and ML techniques. To realize the 972 

ambitions outlined in this paper, the volumes of data that will need to be hosted at such super-nodes will be significantly 973 

larger than for CMIP6, and the services will need to be easier to navigate for a more heterogeneous community, extending 974 

beyond the modellers and analysts of earlier CMIP cycles.  975 

 976 

There are several activities underway that aim to address some of these requirements. Notable amongst these are the 977 

development of reusable evaluation and analysis workflows such as ESMValTool (Eyring et al., 2020; Righi et al., 2020) 978 

with the goal of fully integrating these into the CMIP publication workflow (Eyring et al., 2016b), the democratisation of the 979 

use of cloud computing via Pangeo (Abernathy et al., 2021), the use of new data formats such as HealPix (Chang et al., 980 
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2023), and the development of new technologies aimed at a future ESGF (Hoffman et al., 2022). However, there are also 981 

significant areas where little or no development is underway. These include enhanced documentation, errata, and citation 982 

services, many of which are relying on best efforts and need dedicated investment and effort in new techniques and modes of 983 

deployment. Considerable work will be required to bring all of these strands together into a coherent system that can be 984 

deployed and supported world-wide and sustained throughout the next IPCC cycle (and beyond). 985 

 986 

This new ecosystem will need to support and coordinate efficient methods for data reduction and sharing, cross model 987 

analysis and evaluation, with an emphasis on bringing together existing and new observational and reanalysis datasets, 988 

models, emulators, and advanced analysis tools for rapid and in-depth analysis and exploitation. The new system will need to 989 

interface with other major data holdings, for example those of the WCRP Lighthouse activities1 (Flato et al., 2023), the 990 

Destination Earth2 data holdings, the existing ISIMIP data repository3, the Copernicus Climate Change Service (C3S)4 and 991 

new data holdings that may arise from the EVE (Earth Visualization Engines)5 initiative. It will need to conform to FAIR 992 

(Findable, Accessible, Interoperable, and Reusable) principles (Wilkinson et al., 2016) and meet the needs and requirements 993 

arising not just from CMIP7, but from the range of communities involved in IAMC, CORDEX and VIACS/ISIMIP. 994 

Critically, the system will need to be fully supported by dedicated data managers, capable of addressing community 995 

questions pertaining to data quality, model and data documentation, as well as supporting users of embedded infrastructure 996 

tools to facilitate the rapid use and reuse of data and tools across communities. It is this rapid use and reuse that will deliver 997 

the internal consistency, across models and research communities, that is key to the transformative impact expected for 998 

international climate policy from the science and modelling efforts proposed in this article. 999 

9 Summary and recommendations for the way forward 1000 

Over the past three decades, internationally coordinated modelling projects have delivered a wealth of simulations, data, and 1001 

scientific knowledge to support policy actions addressing climate change mitigation and adaptation. As a new round of these 1002 

projects start up, and a new 7th IPCC assessment cycle begins, we have reviewed how these projects have collectively 1003 

providedhave delivered science support to international climate policy. We propose a number of science, technology and 1004 

collaboration priorities that we believe these projects should jointly focus on over the coming decade. Progress in these areas 1005 

will increase the quality and utility of science support to climate policy, while also increasing our understanding of Earth 1006 

system change, including the impacts on society and the natural world, as well as our ability to projectmodel such future 1007 

changes and the associated impacts.  1008 

 1009 

One key proposal is for the involved modelling communities, spanning integrated assessment, scenario generation, global 1010 

and regional Earth system modelling, regional downscaling, and impacts modelling, to work much more closely together 1011 

during the next round of projects, with an aim to deliver a coordinated set of scenarios, projections and impact assessments 1012 

all based on the same underpinning socio-economic and mitigation scenarios and using the most up to date model 1013 

configurations. This will significantly improve the quality and consistency of scientific knowledge available to the upcoming 1014 

(AR7) and future IPCC assessments, as well as to the 5-yearly UNFCCC Global Stocktakes. Building on interactions 1015 

developed over the past 5-10 years, and the increasing suggestion thatproposals for simulations supporting international 1016 

climate policy to become more operational in structure, we suggest the time is right to actively develop a tighter and more 1017 

 
1 https://www.wcrp-climate.org/lha-overview 
2 https://destination-earth.eu/ 
3 https://data.isimip.org/ 
4 https://cds.climate.copernicus.eu/ 
5 https://eve4climate.org/  

https://www.wcrp-climate.org/lha-overview
https://destination-earth.eu/
https://data.isimip.org/
https://cds.climate.copernicus.eu/
https://eve4climate.org/
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efficient set of links across the relevant modelling projects. Fully realizingRealizing this ambition within the AR7 timeframe 1018 

is likely not possible. Nevertheless, significant effort to achieve such internal consistency and efficient sharing of data, 1019 

knowledge, and personnel, will lead to future workflows better suited to fully realizerealizing this ambition. In addition, we 1020 

highlight the need for impact models to receive more detailed information (disaggregated, spatially and by sector) on the 1021 

socio-economic assumptions underpinning the IAM scenarios. Conversely, increased effort is required to allow knowledge 1022 

of projected future climate impacts, and the likely societal responses to these impacts, to be iteratively incorporated into the 1023 

generation of emission and land-use scenarios. Thanks to CMIP5 and CMIP6 cycles, there is an increasing set of well-1024 

established links between IAM scenario production teams, Earth system modelling groups, CORDEX downscaling teams, 1025 

and impact modellers, with the majority of the modelling in these activities using a common data infrastructure system. 1026 

These established connections and shared infrastructure make the potential for a more efficient, inter-connected workflow 1027 

across all these activities a real possibility in the coming years.  1028 

 1029 

The programme of work we outline addresses numerous key knowledge gaps, several of which were highlighted in IPCC 1030 

AR6 (IPCC, 2021). Given the increasing number of ESMs capable of running in CO2-emission mode, including simulation 1031 

of the coupled climate and carbon cycle, as well a range of other Earth system phenomena, combined with an increasing 1032 

number of coupled GCMs running for centennial timescales at ~10km resolution, we believe many of these knowledge gaps 1033 

can be successfully addressed over the coming decade. Exploitation of CMIP6 was identified as limited in AR6, pointing to 1034 

a need to support and better focus coordinated international modelling projects, including links between projects. Plausible 1035 

overshoot scenarios that return to the Paris Climate targets by the end of the century or later (e.g. by 2130), were limited in 1036 

CMIP6 and need to be a greater focus ofin CMIP7. To address this, it is crucial ESMs are extended to allow a more thorough 1037 

assessment of the efficacy of proposed land and marine CO2 removal techniques in reducing atmospheric CO2 and driving 1038 

global cooling, while accounting for potential Earth system feedbacks (IPCC 2021; Canadell et al., IPCC 2021). ESMs need 1039 

to be capable of assessing both CO2 and non-CO2 feedbacks during overshoot (e.g. a changing efficiency of CO2 uptake by 1040 

natural reservoirs as CO2 is removed from the atmosphere, or methane release into the atmosphere from wetlands or 1041 

permafrost (Canadell et al., IPCC 2021)), as well as the potential for, and consequences of, rapid change in key Earth system 1042 

components during overshoot, such as ice sheet loss or forest dieback (Canadell et al., IPCC 2021; Fox-Kemper et al., IPCC 1043 

2021). In addition, interactions between CO2 warming and trends in aerosol emissions need to be thoroughly assessed, so the 1044 

impact of decreasing aerosol emissions on the near-term rate of global warming and achievability of the Paris targets can be 1045 

better quantified. Such analysis needs to be complemented by analysis of the (societal and environmental) impacts of a 1046 

warming overshoot, the degree of reversibility of these impacts once cooling to a target level is achieved, and the impacts 1047 

resulting from long-term stabilization at a target warming level (assuming it is warmer than today). The majority of IAM 1048 

scenarios, designed to realize the Paris Agreement, assume extensive deployment of land-based (and in a very limited 1049 

number of cases, marine-based) atmospheric CO2 removal technology. The direct impact of these mitigation actions on 1050 

society and the environment needs to be assessed and contrasted with the impacts avoided from the resulting reduction in 1051 

global warming. An additional set of approaches to limit the magnitude of future warming, referred to as geoengineering, are 1052 

increasingly discussed in policy circles and the media. The most widely known being Solar Radiation Management (SRM; 1053 

Lawrence et al., 2018; Visioni et al., 2023). While there remain concerns around the safety and governance of such actions, it 1054 

is increasingly important the research community actively assesses the efficacy of these approaches, including the risks and 1055 

potential consequences of deployment of this technology at the scales required. Projections beyond 2100 were not 1056 

comprehensively covered in CMIP6 (Chen et al., IPCC 2021). This is important for understanding committed changes and 1057 

the consequences of long-term stabilization at temperatures warmer than today. This is particularly acute with respect to sea-1058 

level rise (Fox-Kemper et al., IPCC 2021), with Antarctic and Greenland ice sheets representing the largest uncertainty in 1059 

future sea-level projections. It is vital these systems are better modelled in CMIP7 and beyond. 1060 
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 1061 

More accurately simulating the observed, historical evolution of the climate system (i.e. reducing systematic model biases), 1062 

including the representation of the forcings and feedbacks driving the observed warming, is crucial for increasing confidence 1063 

in model projections and for maximizing the use observations in model improvement. Associated with this, we advocate the 1064 

use of new approaches (for example, combining Machine Learning and Emergent Constraint techniques) to enable more 1065 

extensive use of observations to constrain model projections and future feedbacks. A key requirement remains improved 1066 

constraints on key metrics of Earth system sensitivity (e.g. EffCS, TCR, TCRE and the Regional to Global Warming ratio) 1067 

and that models accurately simulate these metrics, as well asincluding the processes underpinning them. 1068 

 1069 

Due to their exceptional impact, we highlight the need for improved knowledge of, and ability to simulate, extreme weather 1070 

events, including potential future changes in such events. We further stress the importance of assessing the impact of 1071 

extreme events on society and the environment, considering the level of uncertainty inherent in projections of such rare 1072 

events. This requirement also extends to the modes of climate variability that extreme events develop within (including 1073 

natural variations, future changes and extreme realizations of these modes). Looking towards the next generation of Earth 1074 

system and climate models, we propose significantly increased collaboration across communities investigating enhanced 1075 

Earth system process realism, those working on increased model resolution, and improved physical parameterizations, as 1076 

well as groups working on ML-based hybrid modelling. Increased collaboration across these communities will optimize 1077 

findings from each approach for development of the next generation of Earth system models. This recommendation holds 1078 

equally for global and regional modellingmodels, including collaboration between these two communities. 1079 

 1080 

With respect to uncertainty, in future emission scenarios, in Earth system change, and in the impacts, we propose extensive 1081 

collaboration across the range of approaches addressing these issues. Wherever possible work should assess, quantify, and 1082 

emulate uncertainty as it propagates through the stages of IAM scenarios, ESM projections, regional downscaling, and 1083 

impact simulations, so a more complete assessment of total uncertainty can be provided to policymakers. An additional 1084 

consideration is to better quantify what can be predicted (i.e. based on model predictions started from observed initial 1085 

conditions) versus projected (i.e. changes in future climate statistics relative to simulated past or present statistics due to a set 1086 

ofresulting from external forcingsforcing). An important challenge in this area is to accurately quantify the level of 1087 

predictability at different time and spatial scales, for different variables and regions, and at what lead times and spatial 1088 

scales..  We highlight the need for improved modelling and assessment of the risk and consequences of potential future High 1089 

Impact Low Likelihood (HILL) outcomes, with the possible exceedance of tipping points in the Earth system, in the 1090 

environment, or in society, being of critical importance. Given there will always be some level of uncertainty in the future 1091 

climate, it is important to focus on the communication of this uncertainty, or possibly more importantly, communication of 1092 

what is expected in the future and with what level of confidence. This is a key area in the science-policy interface. 1093 

 1094 

The transformative goals outlined in this paper require the support of a robust, efficient, and internationally connected 1095 

infrastructure. While components of such an infrastructure exist, much work is needed to design, build, deliver and sustain 1096 

an integrated system that meets the objectives outlined here, and maximises the benefits of existing initiatives and 1097 

investments. The resulting infrastructure must exploit common tools and standards and be designed and delivered with both 1098 

a long-term perspective and a well-trained workforce. It will need to handle increasing volumes of data, support the use of 1099 

new techniques for data analysis (such as remote analysis of big data using ML and AI techniques), and facilitate the easy 1100 

exchange of data, knowledge, and analysis tools.  Without such an infrastructure, many of the aims outlined herein this paper 1101 

will not be met in a timely manner, if at all. 1102 

 1103 
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Finally, to expand the reach and benefits of international modelling, including the uptake and use of model simulations, to a 1104 

more truly global scale and thus deliver underpinning scientific support for global climate policy, there is an urgent need for 1105 

increased involvement of Global South scientists. WCRP leads a number of important efforts in this area. These need to be 1106 

ramped up significantly and put on a sound long-term footing. Given the global nature of the climate crisis, that the impacts 1107 

are, and will continue to be, most strongly felt by Global South countries, a globally inclusive response is a necessity. This 1108 

makes both scientific sense (to draw on local expertise for understanding and predicting local Earth system change and its 1109 

impacts), as well as political sense (climate policy is generally better tailored to a specific country’s needs if it is based on 1110 

local expert advice that is accessible over the long-term). We (thisa group of European scientists all working in Europe) 1111 

encourage our governments and funding agencies to provide sufficient, long-term support to further develop and maintain a 1112 

strong and globally inclusive scientific collaboration over the coming decades. 1113 
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