

1 **Exploring the opportunities and challenges of using large language models to**
2 **represent institutional agency in land system modelling**

3

4 Yongchao Zeng¹, Calum Brown^{1,2}, Joanna Raymond¹, Mohamed Byari¹, Ronja Hotz¹, Mark Rounsevell^{1,3,4}

5

6 ¹ Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU),
7 Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany

8 ² Highlands Rewilding Limited, The Old School House, Bunloit, Drumnadrochit IV63 6XG, UK

9 ³ Institute of Geography and Geo-ecology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

10 ⁴ School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK

11 **Correspondence:** Yongchao Zeng (yongchao.zeng@kit.edu)

12

13

14 **Abstract** Public policy institutions play crucial roles in the land system, but modelling their policy-making
15 processes is challenging. Large Language Models (LLMs) offer a novel approach to simulating many
16 different types of human decision-making, including policy choices. This paper aims to investigate the
17 opportunities and challenges that LLMs bring to land system modelling by integrating LLM-powered
18 institutional agents within an agent-based, land use model. Four types of LLM agents are examined, all of
19 which, in the examples presented here, use taxes to steer meat production toward a target level. The LLM
20 agents provide simulated reasoning and policy action output. The agents' performance is benchmarked
21 against two baseline scenarios: one without policy interventions and another implementing optimal policy
22 actions determined through a genetic algorithm. The findings show that while LLM agents perform better
23 than the non-intervention scenario, they fall short of the performance achieved by optimal policy actions.
24 However, LLM agents demonstrate behaviour and decision-making, marked by policy consistency and
25 transparent reasoning. This includes generating strategies such as incrementalism, delayed policy action,
26 proactive policy adjustments, and balancing multiple stakeholder interests. Agents equipped with
27 experiential learning capabilities excel in achieving policy objectives through progressive policy actions.
28 The order in which reasoning and proposed policy actions are output has a notable effect on the agents'
29 performance, suggesting that enforced reasoning guides as well as explains LLM decisions. The approach
30 presented here points to promising opportunities and significant challenges. The opportunities include,
31 exploring naturalistic institutional decision-making, handling massive institutional documents, and human-
32 AI cooperation. Challenges mainly lie in the scalability, interpretability, and reliability of LLMs.

33

34 **1. Introduction**

35 Land system models are increasingly incorporating elements of agency in land use and management
36 decision-making. This process has several motivations, from theory-testing and exploration, to more
37 predictive outputs based on process-based knowledge (Groeneveld et al., 2017). Such models can be
38 particularly useful for understanding behavioural constraints on political strategies such as land-based
39 climate mitigation (Perkins et al., 2023) or nature conservation through protected areas (Staccione et al.,
40 2023). Agent-based land use models have now been applied from village to continental scales, revealing
41 numerous ways in which land manager behaviour affects the rate, spread, and impacts of land use change
42 (Brown et al., 2018; Kremmydas et al., 2018; Marvuglia et al., 2018; Matthews et al., 2007; Rounsevell et
43 al., 2014; Zeng et al., 2024a).

44 Despite the growth in land use models based on agency, and despite their frequent application to policy
45 questions, the nature and effects of agency among political and institutional actors have been relatively
46 neglected. Institutions in general (spanning a wide range from informal social groupings to highly formal
47 governance bodies) have almost exclusively been modelled as exogenous forces that alter model input
48 settings in pre-defined ways, rather than as active participants in simulated land use change decision-making
49 (Brown et al., 2017; Holman et al., 2019; Krawchenko and Tomaney, 2023). Meanwhile, evidence that
50 institutions play key roles in land use change processes, and that these roles are strongly mediated by the
51 agency of those institutions, has continued to grow (Dryzek, 2016; Dubash et al., 2022; Young et al., 2006).
52 These institutions display a variety of key behaviours including inertia in decision-making, interaction
53 among themselves, the use of partial or otherwise imperfect information, susceptibility to lobbying and
54 social norms, and occasional abrupt changes in objectives. These types of processes pose a substantial
55 challenge to representation in land system models.

56 The rise of Large Language Models (LLMs) provides a novel and potentially powerful approach to
57 modelling the decisions of institutional agents. LLMs are a class of Artificial Intelligence (AI) models
58 designed to understand and generate human-like language (Brown et al., 2020; Devlin et al., 2019; Vaswani
59 et al., 2023). LLMs typically have billions of parameters and are trained and fine-tuned on extensive corpora
60 to predict the next token (a sub-word, character, or word) in a sequence, based on both the input context and
61 previously generated tokens (Minaee et al., 2024). During training, LLMs are optimized to learn and capture
62 complex linguistic, semantic, and contextual patterns in the data (Liu et al., 2025). Models, such as GPT,
63 LLaMA, and Claude use this capability to generate coherent and contextually appropriate natural language
64 responses across a range of tasks (Minaee et al., 2024). They have recently been applied to computational
65 agent design bringing benefits for both fields (Sumers et al., 2023; Wang et al., 2023; Weng, 2023; Xi et al.,
66 2023; Yao et al., 2023). LLM-powered agents are by the nature of their design and training implicit models

67 of human decision-making and simulations using language agents that can mimic produce believable human
68 behaviour in various contexts (Horton, 2023; Park et al., 2023). They form generated simulated opinions,
69 interact with one another and with the user in natural language, learn from experience and make plans for
70 the future in ways that are similar to humans (Wang et al., 2023). This makes LLMs a powerful tool for
71 modelling the decision-making and behaviour of institutional agents which interact dynamically with their
72 environment.

73 Effective LLM-powered agents are pre-trained using massive amounts of textual data containing diverse
74 linguistic patterns. As demonstrated in Argyle et al. (2023), LLMs can serve as proxies for a variety of
75 human sub-groups by emulating nuanced demographically-correlated response patterns, indicating that
76 LLMs are powerful tools for researching multifaceted human attitudes and complex social-cultural
77 dynamics. In principle, therefore, LLM agents can consider a wider range of factors, transcend the paradigm
78 of economic rationality and generate more nuanced, context aware and adaptive responses to specific
79 problems. In contrast to traditional agents, they can generate novel or unexpected behaviour supported by
80 explicit reasoning, which provides an opportunity to search for novel insights into human behaviour in the
81 real world. Moreover, LLM agents can generate novel or underexplored behaviour supported by explicit
82 reasoning, which is considered an emergent ability of large language models (Huang and Chang, 2022) that
83 draws increasing interest and attention from researchers in many domains (see Zhang et al. (2024) for a
84 comprehensive review of strategic reasoning with LLMs and Yu et al. (2023) for Natural Language
85 Reasoning (NLR)). By combining philosophical perspectives and Natural Language Processing (NLP), Yu
86 et al. (2023) define NLR as “a process to integrate multiple knowledge to drive new conclusions about the
87 (realistic or hypothetical) world”, which is different from memorizing or providing first-hand information.
88 From a task-based view, natural language reasoning is seen as a crucial method for LLM agents to arrive at
89 reachable solutions based on available information (Yu et al., 2023). Recently, some researchers have argued
90 that specially-designed LLM agents are capable of generating research ideas that exceed human experts in
91 novelty (Si et al., 2024) and manifest the ability to automate open-ended scientific discovery (Lu et al.,
92 2024).

93 Although a fundamental mechanism underlying LLMs is predicting the “next word”, which lacks active
94 reasoning or genuine creativity, the emergent capability of LLM agents in finding solutions based on
95 available information through NLR presents the potential to mimic human behaviour in complex policy-
96 making scenarios. Conversely, if LLMs are used without sufficient understanding or interpretation, they can
97 act as amplifiers of biased or erroneous data, uninformative ‘black box’ models or distractions from more
98 useful approaches.

99 In this paper, we explore a novel application of LLMs to represent the behaviours of public policy
100 institutional agents in a large-scale, agent-based model of the land system. We seek to represent the decision
101 processes of policy agents through LLM simulations that are constructed through the support of a human
102 operator. We design a set of LLM-powered institutional agents and couple them with the CRAFTY land use
103 model (Murray-Rust et al., 2014). CRAFTY serves as an uncertain, dynamic environment where
104 institutional agents use limited information to achieve a well-defined policy goal by employing strategic
105 policy actions that influence land users' decision-making. The institutional agents' performance and
106 behavioural patterns are evaluated and analysed and the reasoning behind a sequence of selected policy
107 actions is investigated in detail. The overall purpose is to explore the opportunities and challenges of LLM
108 in modelling policy institutions beyond existing (albeit limited) approaches.

109 **2. Methodology**

110 **2.1 Human-operator-centred prompt development**

111 In contrast to conventional approaches that hard-code agents' behaviours, an LLM-powered agent operates
112 based on prompts given in natural language. The efficacy of an LLM in a simulation hinges critically on the
113 quality of the LLM and the prompts employed. The quality of an LLM itself is largely dependent on the
114 LLM's providers. LLM end-users mainly leverage prompts to communicate with and instruct the LLM to
115 achieve specific goals. Although a prompt is simply a user input that an LLM is expected to respond to,
116 creating an effective prompt template is an intricate process, particularly when integrating LLM-powered
117 agents into specialized simulation environments. [A wide array of prompting techniques has been developed](#)
118 [aimed at utilising the full potential of LLMs. These include zero-shot prompting \(providing no examples in](#)
119 [the prompt to guide the model's output\) \(Radford et al., 2019\), few-shot prompting \(using a few examples](#)
120 [to help the model understand the task\) \(Brown et al., 2020\), and Chain-of-Thought \(CoT\) prompting \(Wei](#)
121 [et al., 2022\). CoT is a crucial technique that enhances LLM reasoning by instructing LLMs to produce step-](#)
122 [by-step reasoning, leading to numerous variants, such as Automatic Chain-of-Thought \(Zhang et al., 2022\),](#)
123 [Logical Chain-of-Thought \(Zhao et al., 2023\), and Tree-of-Thoughts \(Yao et al., 2024\) \(for a comprehensive](#)
124 [overview of prompting techniques, see the survey Sahoo et al. \(2024\)\).](#)

125 [While these techniques are effective in guiding LLM outputs, there remains a significant gap in the literature](#)
126 [regarding prompt design tailored for integration with existing simulation systems. In such systems, LLMs](#)
127 [often process dynamically updated inputs that evolve over time. This dynamic nature can cause variations](#)
128 [in model performance, making it more challenging for developers to refine prompts efficiently.](#)

129 [The framework proposed in this paper addresses this challenge by offering a systematic approach to](#)
130 [designing prompts specifically for LLM agents integrated with existing programmed systems. This](#)

131 framework can incorporate existing prompting techniques and enable modellers to streamline prompt
132 refinement in response to dynamic inputs.

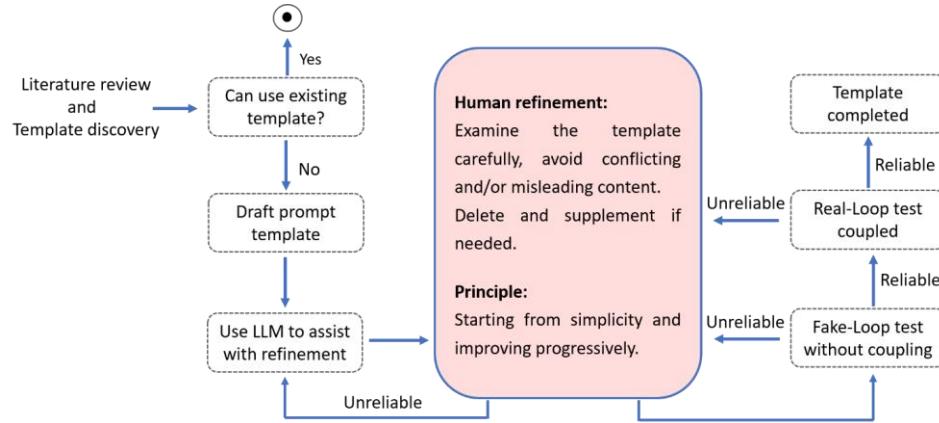
133 As shown in Fig. 1, our ~~Our~~ methodology for prompt development encompasses a four-stage process:
134 Discovery, Drafting, Fake-Loop Testing, and Real-Loop Testing, in which the LLM is supported by
135 continuous engagement and refinement by a human operator.

136 a. **Discovery:** Prompt engineering is a rapidly developing area and a wide range of useful prompt templates
137 have now been developed and published for various purposes. The initial phase is dedicated to
138 comprehensive research, including reviewing relevant literature and online searches for existing
139 templates that might align with the simulation needs. Owing to the unique aspects of the simulation
140 model presented here, finding a fully formed template was not possible. However, valuable insights and
141 components can often be gleaned during this phase. For instance, few-shot learning (Brown et al., 2020)
142 and chain-of-thought (Wei et al., 2022) are both useful and generalizable prompt techniques that can
143 serve a variety of purposes.

144 b. **Drafting:** If a suitable pre-existing template cannot be found, the next step is to construct an initial draft.
145 This draft must clearly describe the tasks to be performed by the LLM. Utilising tools powered by
146 LLMs, such as ChatGPT, to improve prompts Utilizing ChatGPT as a drafting tool has the advantage of
147 its extensive pre-training data that may encompass a broad range of prompting techniques and high-
148 quality prompt templates. Nonetheless, the outputs generated by ChatGPT-LLMs must undergo rigorous
149 examination and iterative refinement by the human operator to ensure alignment with the simulation
150 objectives.

151 c. **Fake-Loop Testing:** Upon reaching a satisfactory draft, we proceed to the fake-loop test. This stage is
152 particularly beneficial when running actual simulation models is resource-intensive. Fake-loop test is
153 similar to the “mocking” technique in Object-Oriented Programming (OOP) (Xiao et al., 2024). Instead
154 of running real simulations, it mimics the behaviour of an actual simulation. Here, simulated data—
155 crafted by experts familiar with the simulation model—serve as a stand-in for simulation outcomes,
156 allowing for assessment of a prompt without the need for running an actual simulation. This enables
157 swift identification and rectification of issues within the prompt.

158 d. **Real-Loop Testing:** Successful fake-loop testing paves the way for the real-loop test, which entails the
159 integration of the LLM with the actual simulation model. However, challenges may arise, such as
160 outputs that disrupt the simulation due to formatting errors, necessitating a restart. To mitigate such
161 setbacks, a Human-in-Loop (HIL) approach is used during the real-loop testing phase to enhance the
162 prompt template’s robustness and reliability.



163

164 Figure 1 The operational flowchart of human-operator-centred prompt development

165 Through this structured approach, we refined the integration of LLM-powered agents within the simulation
 166 framework, ensuring that the prompt design was not only effective but also adaptable to the dynamic nature
 167 of real-world simulations.

168 **2.2 Applying Human-in-Loop (HIL) design to a real simulation**

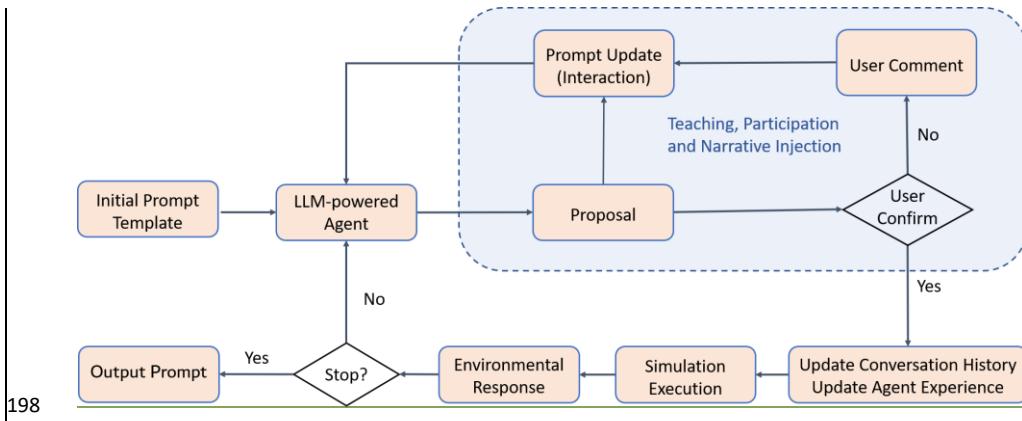
169 Incorporating a HIL approach in the real-loop testing phase offers substantial benefits, enhancing
 170 interactivity and adaptability, which can lead to significant time and cost savings throughout the
 171 development process. As depicted in Fig. 2, the process commences with an initial prompt template as input
 172 to the LLM model. This template includes foundational information for the LLM and placeholders for
 173 dynamic updates. Upon processing this input, the LLM formulates a policy proposal.

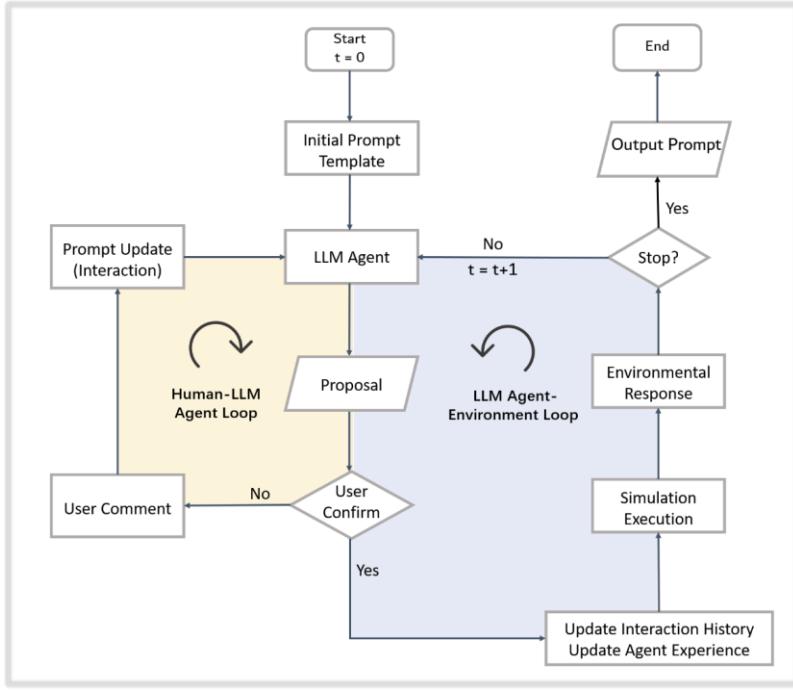
174 At this juncture, a human operator is required to assess the LLM's output for its rationality and formatting.
 175 Should the output fall short of expectations (e.g., misunderstanding the tasks, illogical output or inaccurate
 176 formatting), the operator marks a Boolean variable as false, signifying the proposal's rejection.
 177 Accompanying this action, the operator provides feedback intended to refine subsequent responses from the
 178 LLM. For instance, the LLM agent may misunderstand its objective and propose actions that are not
 179 considered in the land use model. The operator can leave a comment to emphasize its objective and the
 180 boundary of action space it should focus on. This commentary, alongside the original LLM proposal, is
 181 woven into a dialogue that iteratively informs the prompt's evolution.

182 The dialogue between the LLM and the operator is preserved in the agent's "memory", ensuring that the
 183 LLM's learning is cumulative and contextually aware. The actionable part of the LLM's final, operator-
 184 confirmed proposal is then extracted and incorporated into the simulation model. *This model represents the*

185 institutional environment within which the agent operates, and it generates outcomes based on the agent's
 186 actions. These outcomes, in turn, become part of the feedback loop, informing the agent's proposals in the
 187 subsequent iteration. This model represents the environment (such as the CRAFTY land use model) within
 188 which the agent operates. The model reacts to the agent's actions and produces data that in turn become part
 189 of the feedback loop, informing the agent's proposals in the subsequent iteration.

190 This HIL process is crucial for maintaining a dynamic and responsive testing environment, where human
 191 expertise plays a pivotal role in guiding the LLM to generate proposals that fit with the constraints of the
 192 task and the simulation to be coupled with. The HIL design can serve multiple objectives. Primarily, it
 193 leverages human examination to promptly identify and correct any issues with the LLM's responses. For
 194 instance, if the LLM misunderstands its instructions, a human operator can clarify the error via comments
 195 without halting the entire simulation. This capability is useful, especially in the initial stages of simulation
 196 when the prompt template may not be fully refined. It allows operators to observe a broader range of
 197 responses from the LLM, accumulating insights that are instrumental in subsequent prompt refinement.





199

200

201

202

203

Figure 2 Human-in-loop (HIL) design applied to a running simulation model. [In the Human-LLM Agent Loop, the LLM agent interacts with the human operator, while in the LLM Agent-Environment Loop, the LLM agent exchanges information with the programmed model such as the CRAFTY land use model.](#)

204

205 A simple illustrative case is when the LLM generates a satisfactory proposal that fails to meet specific
206 formatting requirements. An operator can guide the LLM by commenting, “Your proposal is plausible, but
207 it needs to be formatted as follows...”. Should the LLM continue to underperform after several interactions,
208 the operator has the option to instruct the LLM to output a predefined result, bypassing a complete
209 simulation restart. This approach not only salvages the current simulation run but also garners additional
210 data, enriching the prompt engineering process post-simulation. [A comparison of the initial prompt draft
and the final version can be found in *Supplementary Information*.](#)

211

2.3 Integration with the CRAFTY land use model

212

213 CRAFTY is an agent-based modelling framework designed for simulating large-scale, land use change
214 (Blanco et al., 2017; Brown et al., 2018; Murray-Rust et al., 2014). The framework mimics land use
215 dynamics arising from the competition between, and strategic decisions of, different land users. The land
users, represented by agents in CRAFTY, either individually or collectively, contribute to generating a

216 diverse range of ecosystem services, utilizing various forms of natural capital, which represent the
217 productive potential of the land and socio-economic capitals that represent the context within which agents
218 make decisions. The land user agents within the model are categorized into discrete Agent Functional Types
219 (AFTs) (Arneth et al., 2014). This categorization is based on several criteria, including the intensity of land
220 management and the characteristics of the agents' decision-making processes. Key factors in this
221 categorization encompass the degree to which profit generation is prioritised and their tendency to conserve
222 land. The basic model framework is described in Brown et al. (2018). This study uses a newly-developed
223 emulator of the CRAFTY_EU application (Brown et al., 2019; Brown et al., 2021) that allows for rapid and
224 easily-adaptable simulations to be performed (see *Supplementary Information* for the emulator design and
225 its output comparison with the main CRAFTY model).⁷

226 Here, the CRAFTY model is coupled with the LLM-powered-institutional agents that employ policy
227 instruments to influence the land users' decisions on ecosystem service production. Figure 3 illustrates the
228 model processes encompassing the ~~eight~~ ~~six~~ steps that were implemented here:

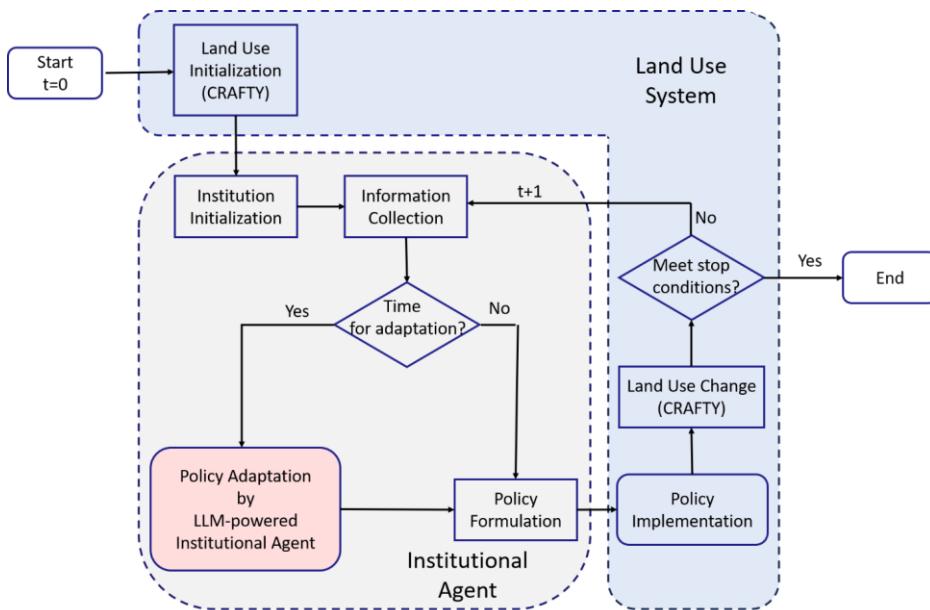
- 229 1) CRAFTY was initialized by establishing the distribution of AFTs, capital maps, and demand parameters
230 according to a specified Representative Concentration Pathway (RCP) (Van Vuuren et al., 2011) and
231 Shared Socioeconomic Pathway (SSP) (O'neill et al., 2014) of climate change and socio-economic
232 change scenarios, respectively (see *Supplementary Information* for more information).⁷
- 233 2) The institutional agents were initialized by defining policy types and policy goals. For LLM agents,
these were prescribed in their prompts.
- 234 3) ~~Data were collected from CRAFTY to capture the internal dynamics of the land use system.~~
- 235 4) ~~Policies were adapted based on system observations, institutional evaluation and deciding on policy~~
~~adjustments. If adaptation was necessary, the LLM agent suggested new policy actions. In the absence~~
~~of adaptation, existing policies were maintained.~~
- 236 5) ~~Policies were applied in the land use system (by changing the CRAFTY input for a specific iteration).~~
- 237 6) ~~The objectives were evaluated by assessing whether the desired outcomes were achieved. If objectives~~
~~were met, the process was concluded; if not, the cycle returned to Step 3 for further observation and~~
~~adjustment.~~
- 238 3) Data, such as ecosystem service supply, demand, and the gaps between them, were collected from
CRAFTY to capture the internal dynamics of the land use system.
- 239 4) Determining whether it was time for policy adaptation. This procedure was necessary to account for
time lags in policy-making (Brown et al., 2019b). If it was time for policy adaptation, the process
proceeded to step five; otherwise, existing policies were maintained.
- 240 5) Policies were adapted based on system observations, institutional evaluation and deciding on policy
adjustments as guided by the prompts. The LLM agent suggested new policy actions.

Formatted: Font: (Default) Times New Roman, Font color: Text 1

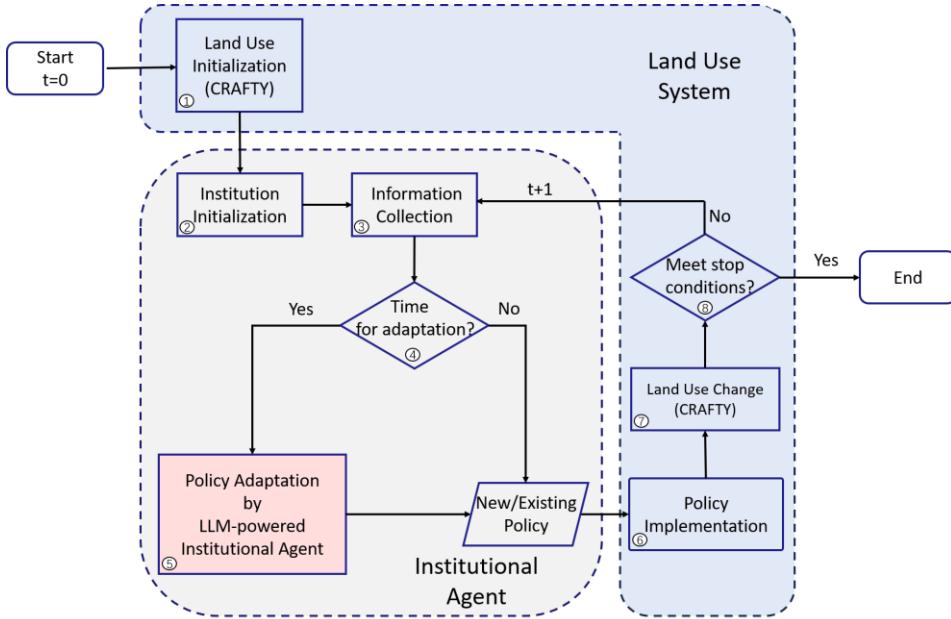
Formatted: Font: (Default) Times New Roman, Font color: Text 1

250 6) Policies were applied to change the utility of AFTs.
 251 7) CRAFTY processed with the AFTs under policy influence.
 252 8) Check whether the stopping condition (e.g., maximum iterations) was met; if not, the cycle returned to
 253 Step 3 for further observation and adjustment.

254



255



257 Figure 3 Coupling CRAFTY with LLM-powered institutional agents

258 **2.4 Experimental settings**

259 While CRAFTY considers a wide range of ecosystem products and services, the exploratory experiments
 260 presented here focused on a single ecosystem service, meat production, under the influence of institutional
 261 agents. Meat production has significant environmental impacts: it is a major contributor to deforestation,
 262 biodiversity loss and is the single most important global source of methane. Yet meat consumption continues
 263 to increase globally each year (Godfray et al., 2018), hence the [plausibility of desire for](#) policy interventions.
 264 A powerful economic incentive for changing consumption patterns is the implementation of meat taxes.
 265 Here, we assign the LLM-powered institutional agent the task of regulating meat supply through taxation,
 266 with the objective of aligning supply with a predetermined level. Although this task appears simple it
 267 presents significant challenges in terms of offsetting the impact of increasing demand for meat, dynamics
 268 with other connected ecosystem services, and the land use system not being fully known to the agent.

269 We designed six types of agents, including two non-LLM agent types, to conduct numerical experiments.
 270 The specifics of these agent types are given in Table 1. The prompts for the LLM-powered agent types are
 271 given in Appendix A. The LLM used here was gpt-4-1106-preview. All LLM agents were provided with
 272 two series of historical data for their decision-making: the gap between meat supply and the policy goal
 273 ('average errors'), and policy actions that were implemented. To mitigate linguistic confusion, the policy

274 actions are simplified into a finite space of eleven tax [change](#) levels, represented by integers ranging from -
 275 5 to 5 [to indicate different magnitudes of tax changes](#). The relevant equations and computations are given
 276 in Appendix B. [The source code and relevant data are available at \(Zeng, 2025a, b\).](#)

277 Table 1 Agent types included within the experiments and their corresponding features

Agent types	Key features	Description
B1	<ul style="list-style-type: none"> • Baseline agent; • Not powered by LLM; • Does nothing. 	The role of Agent B1 in the simulation is equivalent to the absence of an institutional agent, mirroring the baseline scenario without any policy intervention.
B2	<ul style="list-style-type: none"> • Baseline agent; • Not powered by LLM; • Policy optimizer. 	Compared with B1, B2 is another extreme. B2 conducts a sequence of policy actions derived from a genetic algorithm that seeks optimal actions (see Supplementary Information for implementation and setup details) .
S1.1	<ul style="list-style-type: none"> • Single agent; • Powered by LLM; • Outputting reasoning prior to final policy actions; • No experiential learning. 	S1.1 makes decisions based on the historical data provided but with no experiential learning, to ensure that reasoning is clear and non-iterative, and therefore easy to interpret.
S1.2	<ul style="list-style-type: none"> • Single agent; • Powered by LLM; • Outputting final policy actions prior to reasoning; • No experiential learning. 	S1.2 operates as S1.1 with the exception of the order in which its actions and reasoning occur. This variation is investigated because the output sequencing is found to significantly impact the institutional agent's performance.
S2	<ul style="list-style-type: none"> • Single agent; • Powered by LLM; • Output reasoning prior to final policy actions; • Using experiential learning to enhance decisions. 	S2 should mimic human decisions more accurately than S1.1 and S1.2 as its prompt incorporates a summary of its previous outputs for experiential learning as it uses experiential learning . This means that the agent produces substantially more textual output to explain its decision-making.
Q	<ul style="list-style-type: none"> • Quasi-multi-agents with five roles involved in decision-making; • Powered by LLM; • The five roles include policy analyst, government official, economist, meat producer representative, and environmentalist; • Output a conversation among five roles prior to policy actions; • No experiential learning. 	Unlike traditional multi-agent systems where each role is modelled as a separate entity, quasi-multi-agents employ LLMs to simulate a cohesive dialogue among these roles. This methodology avoids the difficulty in explicitly arranging the order in which agents act and setting criteria to end a conversation, saving time and token cost. This methodology avoids the difficulty in sequencing the roles, and conversation endpoint setting, but saves time and token cost .

← Formatted Table

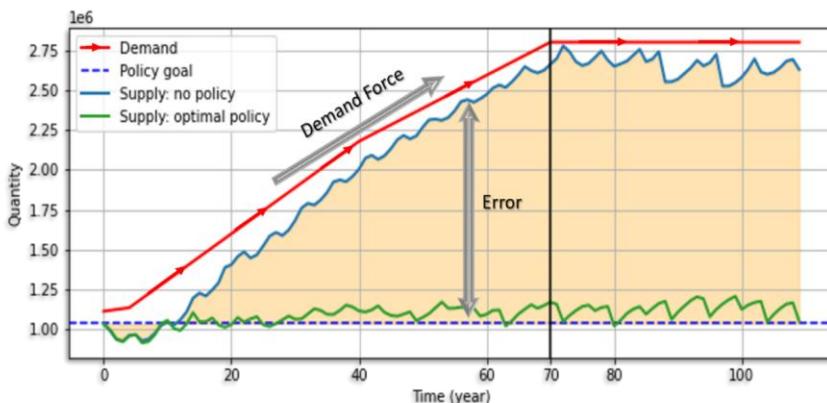
278
 279 To better illustrate the performance and behavioural patterns of the LLM-powered institutional agents, we
 280 used Agent B1 and B2 to set up two baseline scenarios. The first baseline scenario reflects the simulation
 281 without policy interventions; while the second used a genetic algorithm to seek optimal policy interventions
 282 in which meat supply follows the prescribed target supply level. The genetic algorithm searches for a
 283 sequence of policy actions that minimize the sum of squared average errors (gaps between meat supply and

284 the target level) across all the iterations in a simulation. These two baseline scenarios therefore give idealized
285 limits within which subsequent simulations can be situated.

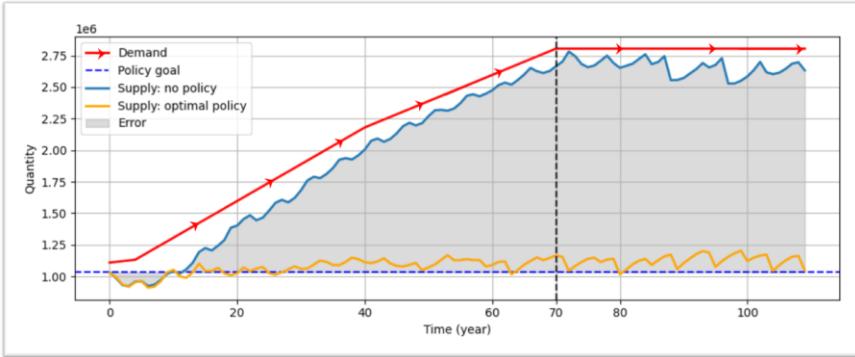
286 **3. Result analysis**

287 **3.1 Baseline scenarios**

288 Figure 4 depicts meat demand (red arrowed line) and supply (blue solid curve) without policy intervention.
289 Initially, the meat supply mirrors the rising demand, exhibiting only minor fluctuations. The data spans 71
290 years, from year 0 to year 70, with additional simulation years extending beyond this period using the same
291 input data as in the 70th year. This extension allows us to observe the agent's performance in a relatively
292 stable environment without being influenced by the evolving meat demand. The policy goal, depicted as a
293 dashed horizontal line, is to maintain meat supply at its initial level, challenging the agent to use taxation as
294 a tool to minimize the discrepancy between actual output and this target. In reality, both policy objectives
295 and market demands are crucial for balanced policy-making. However, for this experiment, the policy goal
296 was intentionally set at an unrealistic level to exert additional pressure on the agent. In contrast to the
297 scenario without policy intervention, the [orange solid curve](#) [green solid curve](#) represents the resultant meat
298 supply under the optimal policy interventions.



299



301 Figure 4 Changes in meat demand and supply without policy intervention. The policy goal (dashed
 302 horizontal line) is to maintain constant meat production. Fluctuations in supply are due to a lack of
 303 simulated behaviour affecting individual land manager agents' responses. [The unit of the vertical axis is
 304 omitted by normalization across different ecosystem services \(Brown et al., 2019a\).](#)
 305

306 To visualize the agents' behaviours and corresponding outcomes, we use plots with dual vertical axes that
 307 simultaneously reflect the variation in the policy actions and in the average errors in the two baseline
 308 scenarios:

309 *Baseline Scenario 1: Agent B1 With No Policy Intervention.* This scenario is depicted in Fig. 5a. It shows
 310 the average error in meat output relative to the policy goals (left axis) and the absence of policy actions
 311 taken by the institutional agent (right axis). [It is worth noting that the average error in Fig. 5a is essentially
 312 a re-presentation of that in Fig. 4. The average error is calculated as “policy goal minus meat supply”.](#) The
 313 average error trend reveals an increasing divergence from the policy goals, peaking at around the 70th year.
 314 After this period, the error rate stabilizes, reflecting a system in its steady state without further input updates.

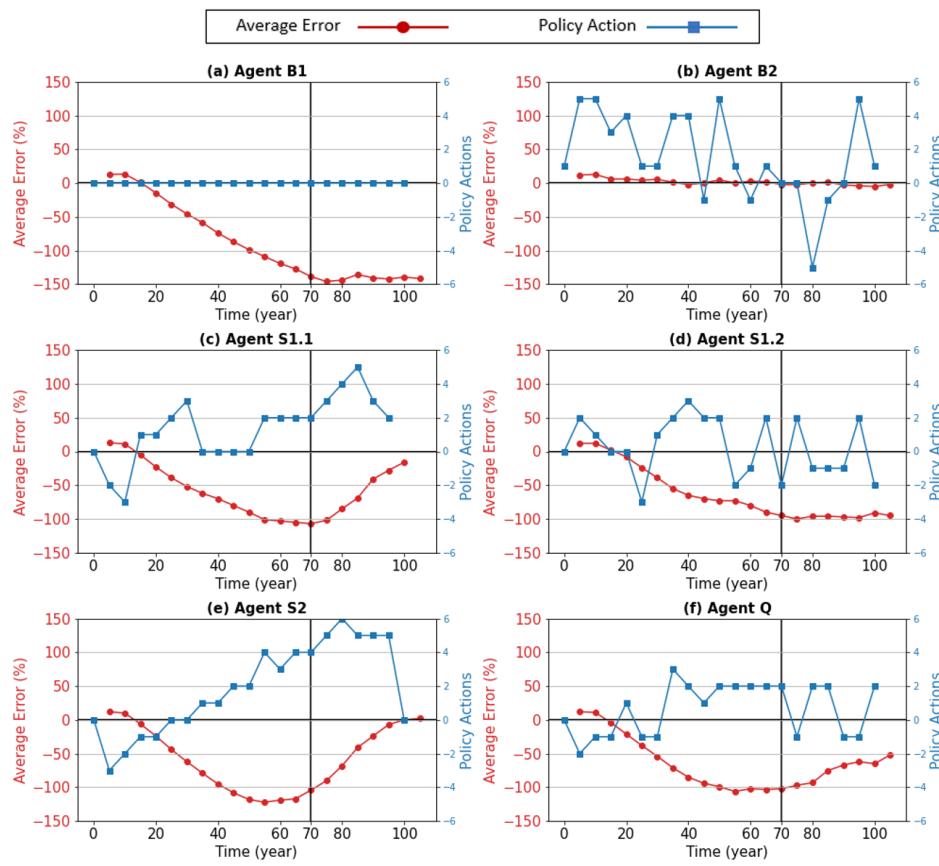
315 *Baseline Scenario 2: Agent B2 With Optimal Policy Actions.* Contrasting the first, the second scenario,
 316 shown in Fig. 5b, adopts an approach based on optimization. Here, the policy actions vary significantly over
 317 time, representing dramatic annual changes that are unlikely to represent real-world policy-making.
 318 However, the curve representing the average errors exhibits an evident tendency to closely follow the
 319 horizontal axis, indicating the efficacy of these policy actions.

320 **3.2 Performance of the LLM agent types**

321 **3.2.1 Performance of Agent S1.1**

322 Figure 5c shows the performance of institutional Agent S1.1. Compared with Agent B1 without policy
 323 intervention, S1.1 has a notable impact on meat supply. The average error peaks between -120% and -100%
 324 in the 70th year, in contrast with approximately -140% for the baseline scenario without policy intervention.

325 A noticeable significant difference occurs after the 70th year. The average error approaches zero steadily,
 326 indicating that institutional Agent S1.1 has at that point in time found effective policy actions to achieve the
 327 policy goal. The policy actions taken by S1.1 are generally understandable. Initially, the meat supply is
 328 slightly below the policy goal, resulting in a positive average error. S1.1 chose to incrementally decrease
 329 the tax. When meat supply increases (driven by increasing demand, which the institutional agents are
 330 unaware of), S1.1 started to maintain or increase the tax (in contrast to the optimizing Agent B2, which
 331 chose policy actions that fluctuated irregularly). Starting from the fourth policy action, all the following
 332 policy actions are non-negative, suggesting the agent might be making plausible moves because a higher tax
 333 is needed to counterbalance the oversupply of meat. The sudden drop in tax change at the eighth policy
 334 action seems unintuitive. The reason behind this is discussed in Sect. 3.3.



335

336 Figure 5 The average error in meat output relative to policy goals and the policy actions taken by the
337 institutional agents ([defined in Table 1](#)). The average error is calculated as policy goal minus meat supply.
338 Negative average errors indicate oversupply.

339 **3.2.2 Performance of Agent S1.2**

340 Figure 5d shows the performance of Agent S1.2. As described in Table 1, S1.2 uses the same prompt
341 template as S1.1 but with a small difference in the order of the required output. S1.2 is required to output
342 the final policy action before giving the rationale behind its decision. As can be seen, the policy actions
343 taken by S1.2 are much less consistent. S1.2 also performs poorly after the 70th year and is unable to
344 navigate meat supply towards the objective. We can see the reasoning behind its policy actions, using the
345 second policy action as an example, which is to increase the tax by two levels when the average error is
346 positive. As shown in Fig. C1 in Appendix C, it stated in the first sentence of its output that “A moderate
347 tax decrease could be one approach”, which is a reasonable action to mitigate the current under-supply issue.
348 However, in the next paragraph, it contradicts this by proposing “+2” for the policy action, indicating an
349 increase in tax. This decision was supported by complex reasoning: increasing tax can filter out inefficient
350 meat producers and spur meat production technologies, which are better for the long-term sustainability
351 goal. [In comparison with the output of S1.1, S1.2 seems to provide reasoning in hindsight to justify a](#)
352 [decision made in the absence of such reasoning.](#) Another crucial issue captured in the output text of S1.2 is
353 that some policy actions are given without a follow-up reasoning. Additionally, the required output format
354 is often not strictly followed.

355 **3.2.3 Performance of Agent S2**

356 When contrasted with S1.1, S2 exhibits a notably incremental approach to policy actions, as shown in Fig.
357 5e. The tax level adjustments are mainly minimal, consistent with the smallest possible change. This pattern
358 of incremental change is initiated from the second policy action and progressively escalates, reaching a
359 higher intensity towards the simulation’s end. Intriguingly, the policy action sharply reverts to zero in the
360 final phase, suggesting that S2 reaches a decision to maintain the current tax level, deeming it optimal. This
361 gradual and deliberate strategy in policy action results in a smoother meat supply curve, effectively meeting
362 the set policy goal. Such measured and incremental actions align more closely with human decision-making
363 processes, reflecting the nuanced impact of experiential learning in the scenario.

364 **3.2.4 Performance of Agent Q**

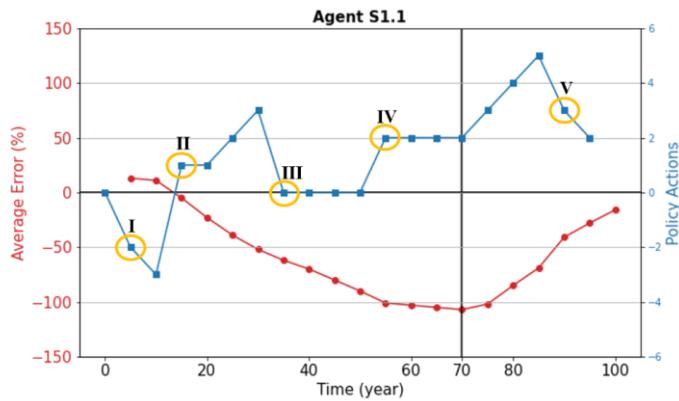
365 Agent Q epitomizes a quasi-multi-agent ensemble, embodying five distinct roles engaged in deliberation
366 and negotiation (as shown in Table 1). Despite a concerted effort, the average error curve (see Fig. 5f)
367 indicates that the group’s performance was suboptimal. While the error magnitude was less severe than that
368 of S1.2, it exceeded that of S1.1 and S2.

369 Upon examining the internal dialogues of Agent Q (Table A5 in Appendix A), the sophistication of the LLM
370 becomes apparent. Each role upholds unique priorities and responsibilities, contributing to a multifaceted
371 discussion. The discourse typically begins with the policy analyst, who accurately interprets the data and
372 highlights the supply shortfall relative to demand, reiterating the objective to sustain meat production at
373 baseline levels. The government official then synthesizes insights from the collective, while the economist
374 briefly evaluates the fiscal implications of tax adjustments. The meat producer representative and
375 environmentalist voice their sector-specific concerns and policy preferences. Ultimately, the government
376 official is tasked with formulating a policy response.

377 Although Agent Q's roles do not collectively achieve the policy goal, they offer an array of believable
378 stakeholder perspectives—an indispensable aspect that poses a considerable challenge for conventional
379 modelling approaches. The resulting policy actions reflect the inherent difficulty in harmonizing diverse
380 interests. Notably, the government official's actions are characterized by prudence, as evidenced by the
381 narrow range of policy adjustments, oscillating between -2 and +2, to avoid excessive opposition. This
382 conservative approach underscores the complexity of policy-making in a multi-stakeholder context where a
383 balancing act is as critical as the policy decisions themselves.

384 **3.3 Dive into the “brain”Brain**

385 While LLM models are often perceived as opaque, LLM-powered agents can offer the compelling ability to
386 articulate human-comprehensible reasoning for their actions, providing a window into the decision-making
387 processes that drive their behaviour. Such transparency is not only instrumental in validating the agents'
388 credibility but also serves as a source of inspiration for enhancing institutional models and informing real-
389 world policy decisions. One of the challenges, however, lies in the voluminous textual output generated
390 when these agents are integrated with simulation models—making it impractical to display and analyse
391 systematically.



392

393

Figure 6 Selected key policy actions executed by Agent S1.1.

394

395 To navigate this, we concentrate on a subset of the data that offers significant insights. Specifically, we have
 396 distilled the textual output down to five key policy actions executed by Agent S1.1, focusing on the rationale
 397 that underpins these decisions. Agent S1.1 is selected here because, in general, it demonstrated believable
 398 actions yet its reasoning is less history-dependent, which makes it easier to interpret through an in-depth
 399 investigation of the large volume of textual output. This investigation provides a valuable glimpse into the
 400 “thought processes” of the institutional agent. Figure 6 marks these pivotal moments, numbered using
 Roman numerals from I through V, allowing us to dissect and understand the logic applied at each juncture.

401 **Action I: How did the agent reason with insufficient information?**

402 The initial policy decision by an institutional agent is often the most challenging due to the lack of historical
 403 data. Detailed in Fig. C2 in Appendix C, the agent begins its reasoning by acknowledging this. The agent
 404 then turns to foundational economic principles to guide its decision-making process, aligning with the policy
 405 goal. The agent outlines the economic theory underlying the use of taxation to influence meat production
 406 levels before delving into the specifics of the policy action required. It considers the industry’s response
 407 time to policy changes and the potential for overreaction. After weighing these factors, the agent chose a
 408 conservative approach, adjusting the tax by a moderate “-2”. This decision reflects a strategic balancing act:
 409 it is cautious to mitigate the risk of radical industry reactions, yet still steers towards the policy goal.

410 **Action II: How did the agent deal with the first overshoot?**

411 Following a period of increased taxation, the institutional agent observed an overshoot in meat supply
 412 relative to the policy target. The agent conducted an analysis to identify the cause of this discrepancy. It
 413 concluded that the overshoot was a result of its earlier decision to reduce the tax by three levels. From the

414 modeller's perspective, it is apparent that the primary driver of the overshoot was the rapidly increasing
415 demand, rather than the tax adjustment, but the agent is not aware of this fact. Given the limited data
416 available to the agent, its attribution, while inaccurate, is understandable.

417 As shown in Fig. C3 in Appendix C, in response to this perceived causation, the agent selected a conservative
418 corrective measure, implementing a modest tax increase of “+1” to rectify the minor discrepancy.
419 Interestingly, the agent seemingly confuses the policy goal of maintaining supply levels with an
420 erroneous~~the~~ objective of matching supply to demand. This confusion likely stems from the stochasticity
421 inherent in its generative response and the data with which it was provided. During the development of the
422 prompts, we observed the agent’s recurring misunderstanding of the objectives. To prevent further confusion
423 and to streamline the agent’s decision-making, we intentionally omitted demand information from the
424 prompts. This decision highlights the challenge in prompt engineering, where the inclusion or exclusion of
425 specific data points can significantly influence the agent’s understanding and subsequent actions.

426 ***Action III: How did the agent explain this counter-intuitive action?***

427 The third highlighted decision point presents a somewhat counterintuitive choice by the institutional agent,
428 especially in the context of the rapidly expanding average error. Logic would suggest that the agent should
429 further increase the tax to mitigate the excess in meat supply overshooting the policy target. However, as
430 detailed in Fig. C4 in Appendix C, the agent opted to maintain the current tax level. This decision was based
431 on its assessment that the market required more time to fully respond to its previous significant policy action
432 of a “+3” tax increase.

433 This approach reflects the agent’s consideration of the time lag inherent in market reactions to policy
434 changes. The decision to hold steady on the tax rate, rather than implement further increases, was informed
435 by the understanding that the “+3” adjustment was the most substantial move it had made since the
436 simulation’s inception. The agent’s choice to allow the market time to adjust to this major policy shift, rather
437 than immediately introducing another change, indicates a level of strategic foresight.

438 ***Action IV: What led the agent to change its action?***

439 After a period of maintaining a consistent tax level, the institutional agent made a notable change, increasing
440 the tax by two levels. As detailed in Fig. C5 in Appendix C, this decision appears to stem from the agent’s
441 growing suspicion that factors beyond the scope of its existing data and prompt instructions were influencing
442 the market dynamics. Although this suspicion is speculative, it is a plausible consideration given the
443 complexity of the land system it is dealing with, and was actually correct in this case.

444 However, the agent’s analysis reveals a misinterpretation of the cause-and-effect relationship in the data. It
445 mistakenly attributed the increasing average error to its prior decisions to raise taxes. While the data shows

446 a negative correlation between tax increases and the average error, it is illogical to speculate that the tax
447 hikes are solely responsible for exacerbating the situation. This misattribution stands in contradiction to the
448 agent's subsequent decision to further increase the tax.

449 Moreover, by examining the agent's reasoning, one can notice the rationale provided by this agent is
450 muddled. While the decision to increase the tax could be seen as a logical response to the perceived need
451 for corrective action, the reasoning process the agent employs lacks clear logical coherence. This disconnect
452 between the agent's final decision and its reasoning highlights potential areas for improvement in the agent's
453 decision-making framework and the prompts that guide it.

454 ***Action V: What made the agent brake?***

455 Action V represents a proactive approach. Upon reviewing the outcomes of its recent actions and the
456 corresponding fluctuations in the average error, the agent acknowledged the effectiveness of these measures.
457 Recognizing the potential risks associated with overcorrection, especially given that its most recent policy
458 involved the maximum possible increase in tax, the agent proceeded with caution.

459 In its decision-making process, as outlined in Fig. C6 in Appendix C, the agent carefully weighed the
460 implications of further tax adjustments, comparing the potential outcomes of increasing the tax by +2, +3,
461 and +4. Eventually, it settled on a +3 increase, which maintains the increasing trend of tax but at a slower
462 pace, akin to a driver slowing down when the destination is close.

463 This reasoned and well-articulated approach in Action V notably contrasts with the less coherent rationale
464 observed in Action IV. This disparity in the quality of reasoning between Action IV and Action V implies
465 a key characteristic of LLM-powered agents: their performance can be variable and somewhat
466 unpredictable. While Action V reflects a higher level of analytical sophistication and logical consistency,
467 the inconsistency in performance across different iterations highlights the challenges in achieving stable and
468 reliable outputs from LLM-powered agents. This variability points to the ongoing need for refinement and
469 development in the application of LLMs in complex decision-making contexts.

470 **4. Discussion**

471 The experiments presented here reveal that LLM-powered agents, representing institutional decision-
472 makers, display a spectrum of behaviours and reasoning processes that closely resemble human decision-
473 making. These behaviours emerge naturally, unscripted by modellers, and encapsulate complex aspects of
474 human cognition, which are traditionally challenging to simulate. At the same time, inconsistencies in
475 decision-making within and between agents suggest specific challenges (as well as solutions) for the future
476 use of LLM agents in this domain.

477 In our experiments, LLM-powered institutional agents are able to move modelled outcomes towards their
478 objectives, but do so less well than an agent powered by an optimizing genetic algorithm. These results align
479 with our expectations, especially given the bounded rationality and imperfect information available to the
480 LLM. Among agents, we find that the ability to learn from past experience improves outcomes, as does,
481 unexpectedly, a requirement to provide reasoning before making a decision. When this order is reversed,
482 actions are found to be inconsistent with [the reasoning provided, which aligns with previous research that](#)
483 [found the order of prompts prominently affects the performance of pre-trained language models \(Lu et al.,](#)
484 [2021\)](#), [the post hoc reasoning provided, suggesting that decisions in this case are made according to opaque](#)
485 [internal mechanisms that the LLM does not explain in its spurious justifications.](#)

486 In this study, we used GPT-4, which is a generative language model. Generative language models can be
487 simply deemed as textual completion machines; they require prompts to initialize the context guiding their
488 textual output, and newly generated texts add to the context for further output. That is, a generative language
489 model uses its output to continuously update its context (Goldstein et al., 2022). Therefore, the order of
490 output does matter. One can confirm this by asking ChatGPT-4 a simple question: “Is 3 75% of 4?” This
491 question elicits an incorrect answer, followed by an admission of confusion and a correction (Fig. C7 in
492 Appendix C). If asked to give reasoning (“Is 3 75% of 4? Give your reasoning before answering”), the
493 response is correct (Fig. C8). This finding is consistent with the idea of chain-of-thought, which contends
494 that a generative language model performs better if it outputs answers step by step (Wei et al., 2022). The
495 step-wise output not only represents the outcomes but also a way of context building. A prompt might only
496 work as an initial trigger, but the generative language model needs self-prompting to complete the response
497 appropriately.

498 Although the textual completion functionality seems artificial, it is intuitively consistent with how humans
499 behave. It is normal for a human to have an illusion of understanding an issue until being required to
500 articulate or explain that issue to others, or to recognize logical gaps during verbal explanations (Ericsson
501 and Simon, 1998; Keil, 2006). In other words, we need to properly prompt our neurons to give appropriate
502 output. This does not imply anything more than superficial similarity in the behaviours of people and LLMs
503 (Fokas, 2023) – and this superficial similarity can easily mislead – but it does add interest to the use of
504 LLMs as agents in simulation models.

505 Further interest is provided by our experiment with the multi-faceted ‘Agent Q’. While performing less well
506 than others in achieving its policy goal, this agent generated contextually coherent conversations between
507 five critical policy-relevant roles. The conversation captures each role’s characteristics and interests,
508 particularly demonstrating the policymaker struggling to balance the interests of the meat producer and the
509 environmentalist. [It should be noted that the setup of Agent Q reflects a political system modelled on broadly](#)

510 European Union (EU)-like democratic systems, which may not be generalisable to regions where political
511 power is highly centralised. Agent Q is a group of quasi-multi-agents. Quasi here means the agents are
512 different from real multi-agents each of which has an independent and relatively complete cognitive system.
513 Several studies have applied LLM to multi-agent systems, where each agent has an independent cognitive
514 system. For instance, Park et al. (2023) built an artificial village consisting of 25 LLM-powered villager
515 agents; Qian et al. (2023) simulated a software development team with different roles. Agents in such multi-
516 agent systems have different personalities, targets, memories, etc., which together form a unique prompt
517 triggering their responses. Such systems are convenient for LLMs to generate short conversations
518 conversations-between a pair of agents, but can become cumbersome for conversations involving more than
519 two agents. As above, the order of text generation can affect performance in an LLM, and numerous equally-
520 valid orders are possible communicating in a group conversation, possibly leading to open-ended outputs.
521 Our use of quasi-multi-agents hands control to the LLM, saving time and token fees.

522 Besides investigating the quantitative performance of the agents, we also qualitatively analysed output of
523 Agent S1.1, which made decisions after providing reasoning and without learning from experience. This
524 analysis is a unique opportunity that conventional methods cannot provide. Agent S1.1 was found to eschew
525 drastic changes, instead opting for a series of cautious, incremental steps aligned with the principles of
526 incrementalism — a well-known theory in political science (Pal, 2011), which posits that policymakers often
527 employ heuristics and make modest, tentative changes to gradually achieve policy objectives. a well-known
528 theory in political science that describes policymaking processes under cognitive and resource constraints
529 (Lindblom, 2018). Incrementalism posits that policymakers often employ heuristics and make modest,
530 tentative changes to gradually achieve policy objectives (Pal, 2011), reflecting an important aspect of
531 policymaking in real-world scenarios (e.g., environmental regulations (Coglianese and D'ambrosio, 2007;
532 Fiorino, 2006; Kulovesi and Oberthür, 2020) and budgeting (Greenwood et al., 2022; Hammond, 2018;
533 Seal, 2003)). Compared with Agent B2, the “policy optimizer”, the behaviour of Agent S1.1 more closely
534 resembles human decision-making, characterized by bounded rationality (Jones, 2002, 2003; Simon, 1990).
535 In addition, Agent S1.1 exhibits an acute awareness of the time lags inherent in the land use system’s
536 response to policy shifts. It strategically maintains a consistent tax rate, allowing time for the system to adapt
537 and provide feedback—a practice mirroring real-world institutions, which typically avoid frequent policy
538 changes to accommodate the time required for land users to adjust to new policies. Additionally, the agent
539 demonstrates an understanding of the diminishing returns associated with taxation, a critical consideration
540 in economic policy. As the policy objective nears realisation, Agent S1.1 judiciously reduces tax increment
541 levels—to mitigate potential over-adjustment. This action reflects a proactive and adaptive approach that
542 resembles that of real-world policymakers sufficiently closely to provide meaningful information to model
543 users.

544 **4.1 Opportunities**

545 LLMs are an unprecedented powerful approach to modelling institutional agents and provide a number of
546 opportunities.

547 **Believable naturalistic institutional decision-making.** Recent research has demonstrated that LLM-
548 powered agents can manifest believable behaviours (Horton, 2023; Park et al., 2023; Qian et al., 2023). Such
549 a feature is derived from LLMs' unique advantages in dealing with natural language, which is a crucial
550 aspect of human behaviour. One could expect that LLM-powered institutional agencies would not only
551 replicate the human aspect of real-world institutional agencies but also offer a transparent and
552 understandable way to examine how these modelled institutions make their decisions, as well as how their
553 believable behaviours impact the land system.

554 **Working with massive official documents.** Although not demonstrated in this research, it is noteworthy
555 that LLMs are particularly adept at dealing with massive textual materials. Combined with Retrieval
556 Augmented Generation (RAG), LLMs can generate output based on a user's database. Given that there exist
557 considerable amounts of textual materials regarding policies, regulations, laws, and other institutional
558 interventions, LLM-powered agents can inform their behaviours to an extent unmanageable using
559 conventional methods.

560 **Teaching instead of training LLMs to think.** Another potential application of LLMs is to teach LLM-
561 powered agents to decide in ways that we want to investigate. Since LLMs can respond to prompts
562 effectively, modellers together with stakeholders can teach the agents to make decisions. The teaching
563 process could be embedded within the HIL framework developed in this research. Beyond troubleshooting,
564 the HIL design can facilitate user engagement in teaching, participating, or even steering the simulation
565 narrative by introducing new elements that direct the agent's subsequent actions. Ultimately, when
566 integrating formal computational models with LLMs, our HIL design offers enhanced flexibility and user
567 participation in simulations.

568 **Institutional agent networks.** Institutions involved in land use change policy-making are not separate
569 individuals. Instead, they can form multi-level-multi-centred structures. For instance, González (2017)
570 identified that the institutional agents involved in the Swedish forestry sector include environmental NGOs,
571 forest owner associations, research suppliers, and a hierarchical government. Conventional modelling
572 techniques can hardly handle the interactions between those sub entities, especially the lobbyists that are
573 difficult to model using mathematical or computational approaches. It might be difficult for conventional
574 modelling techniques, such as rule-based agents, to model the interactions between institutional agents, such
575 as lobbyists, because their interactions incorporate extensive unstructured information. For example, land
576 user associations and environmental NGOs may have conflicting advocacies expressed in words, which are

577 challenging to formalize using mathematical equations or code. Although we can simplify their interactions
578 to fit conventional methods, it often involves over-simplification/abstraction. LLM agents provide a
579 relatively straightforward way to simulate the unstructured information exchange between these actors
580 (Zeng et al., 2024b).

581 **Human-AI cooperation.** In some scenarios, LLMs still face the issue of scalability. The time an LLM takes
582 to respond and the token fee its response consumes are both barriers to applying LLMs in large-scale
583 simulations. However, LLMs can serve as decision supporters and give advice in the face of different
584 situations. Such a decision supporter can also be embedded in the HIL framework, where the LLM-powered
585 agents are no longer taught to make decisions but cooperate with the modeller to design proper policy
586 actions. Moreover, modellers can get useful inspiration from this communication, which in turn can benefit
587 modelling institutions using conventional methods. For instance, the experimental results show that the
588 institutional agents generally eschew making drastic policy changes and intentionally leave time lags for
589 existing policies to manifest full influence. These are important factors to consider even if using
590 conventional modelling approaches.

591 **4.2 Challenges**

592 Notwithstanding the above opportunities, LLMs are not a panacea for social simulation. The scalability of
593 LLM-powered agents to match the scale of large land use simulations is still a challenge that requires further
594 exploration. Through this exploratory research, five further crucial challenges have been identified, and are
595 ranked below according to their manageability, from lowest to highest.

596 **Provider dependency.** The reliance on LLM providers presents a critical issue. The performance of an
597 LLM is largely in the hands of its providers, rather than the users. If an LLM is sub-par, users are compelled
598 to switch to an alternative or wait for its improvement. The prohibitive costs associated with training and
599 maintaining a high-performing LLM render it unrealistic for users to independently manage an LLM. This
600 dependence leads to costs incurred through API usage, which encompasses both the token fee and the
601 response time. These factors pose substantial obstacles for applications such as large-scale, land-use
602 simulations. While technological advancements may lead to reduced API costs and shorter response times,
603 these improvements are contingent on the providers' efforts and timelines, leaving users with little influence
604 over these enhancements. Open-source LLMs could be potential solutions to this issue, but they still require
605 further testing (Chen et al., 2023).

606 **'Unrealistic realism' paradox.** This paradox arises from the contrast between the goal of simulating
607 realistic agent behaviours and the necessary simplifications inherent in these models. Large-scale models
608 are necessarily abstractions that simplify the real world into manageable concepts, yet the integration of
609 LLM-powered agents aims to infuse these simulations with a layer of human-like realism. The challenge

610 intensifies when considering the complexity of educating these agents about the model's context, either
611 through extensive prompts or external information retrieval. The dilemma lies in expecting these agents to
612 exhibit behaviours that resemble those of real humans closely enough to make the modelling worthwhile,
613 while simultaneously operating within the constraints of a model built on abstracted and sometimes
614 unrealistic or unknown assumptions. This paradox underscores a critical issue that needs to be tested: how
615 realistic can LLM behaviour be if unrealistic assumptions are used in its prompts?

616 **'Unbelievable believability' paradox.** LLMs introduce an effective method for modelling and exploring
617 the "minds" of social agents. Nonetheless, a notable challenge arises when the primary concern is to relate
618 emergent outcomes to individual agent interactions. For instance, in modelling the dynamics of 20,000 land
619 users, the core interest might be in observing the landscape's evolution over decades, driven by
620 communicative, cooperating and competing land user agents. However, the numerous textual interactions
621 between these agents can become excessive and difficult to analyse systematically. Especially when an
622 agent's behaviour is driven by experiential learning such as Agent S2 in this research, verifying the absence
623 of hallucination (Ye et al., 2023) or incoherence in an agent's reasoning poses a considerable challenge.
624 There is an inherent irony in utilizing LLMs to endow agents with believable social behaviours, only to be
625 confronted with the difficulty in assuring their believability.

626 LLM biases. While the experiments in this paper are not aimed at evaluating LLM biases, it is important to
627 acknowledge the potential for biases arising from various sources, such as prompt design, pre-training data,
628 fine-tuning processes, and the underlying mechanisms of the models themselves (Gallegos et al., 2024).
629 Such biases can impair the models' ability to simulate human behaviour if not handled cautiously. For
630 instance, using Llama-2 7B, Zhou et al. (2024) explored how these models may inherently prefer certain
631 responses, exhibit a bias toward the most recent examples in prompts, and show a selection bias when
632 presented with multiple-choice questions. Moreover, LLMs have exhibited biases in political contexts (Zhou
633 et al., 2024) and cultural biases (Liu, 2024), such as favouring Western cultural values, as English text
634 contributes a large part of the training data (Tao et al., 2024). As of now, there is no established method to
635 completely eliminate these biases. Nevertheless, it might be more insightful for researchers in human
636 behaviour modelling to identify and scrutinize these biases. This is because biases can reveal underlying
637 aspects of human cognition (Caverni et al., 1990). As noted in Taubenfeld et al. (2024) and Tao et al. (2024),
638 it is possible to manipulate these biases by fine-tuning the LLMs or improving cultural alignment through
639 prompt design. Therefore, future research in human behaviour simulations could gain from precisely
640 identifying and adjusting LLM biases to align with specific research goals.

641 **Inaccurate formatting.** The challenge of formatting is pivotal when integrating LLMs with formal models,
642 given that LLM outputs are strings. This integration requires precise formatting for proper functioning. For

643 example, in the experiments presented here, policy actions are bracketed between hashtags to ease the
644 extraction of desired outcomes from the output string. Despite clear guidelines, LLM adherence to this
645 format remains unpredictable. Such formatting inconsistencies can severely disrupt simulations, especially
646 those requiring multiple iterations, as formal models may fail to recognize incorrectly formatted outputs,
647 especially given the LLM's boundless creativity in formatting. These issues could be mitigated by the above-
648 mentioned HIL prompt design approach, standard [json-JSON](#) format, [using data validation libraries \(e.g.,](#)
649 [Pydantic \(2025\)\)](#), [together with a self-reflection mechanism \(Renze and Guven, 2024a\)](#), or cost-intensive
650 means such as customized training or fine-tuning. But another approach drawing from software engineering
651 concepts such as "domain objects" may be more promising: this approach involves deploying an additional
652 LLM-powered agent dedicated to formatting outputs. This strategy separates 'domain agents', which
653 represent entities within the simulation such as policymakers and NGOs, from 'technical agents' responsible
654 for tasks such as formatting, information extraction, and managing dialogues. However, theoretically,
655 generative language models seem to have no means to ensure the precision of formatting, unlike computer
656 programs that ensure data types, which might cause scalability issues in simulations requiring a multitude
657 of iterations.

658 **Prompt design and error handling.** While numerous effective techniques for prompting LLMs have been
659 proposed by researchers and AI practitioners, crafting effective prompts remains a formidable task,
660 particularly in the context of social simulations. Unlike traditional coding, prompts offer greater flexibility
661 but lack safeguards such as syntax or data type checks, which are essential in minimizing errors. When
662 prompts become lengthy and encompass complex information, it is challenging for users to detect subtle
663 contradictions. This issue is exacerbated during iterative refinement, where inconsistencies might be
664 inadvertently introduced. Additionally, the absence of a mechanism akin to exception handling in
665 programming means that identifying flaws in prompt design relies heavily on laborious human examination.

666 [Reproducibility. In this exploratory research, the focus was on probing the logical consistency of LLM](#)
667 [agents' outputs and their integration with existing land use models. However, it is worth noting that](#)
668 [stochasticity is an inherent characteristic of LLMs and it might be useful to highlight some challenges in](#)
669 [reproducibility. In principle, to enhance output reproducibility, specific conditions must be met, such as](#)
670 [using a fixed random seed, the same model version and configuration, and identical prompts. Token](#)
671 [sampling temperature is a key hyperparameter that controls the diversity of LLM outputs. A lower](#)
672 [temperature \(e.g., 0\) increases determinism, while higher temperatures can lead to more diverse but](#)
673 [potentially nonsensical outputs \(Peeperkorn et al., 2024\). While the model's outputs may vary across](#)
674 [simulations, they should be statistically reproducible to make meaningful token predictions. This is](#)
675 [supported by Renze and Guven \(2024b\), which investigated temperature effects on problem-solving](#)

676 [performance and found no statistically significant performance variability within a wide temperature range](#)
677 [of 0 to 1.](#)

678 [Operational challenges may also emerge during experiments with LLM agents. As to the experiments](#)
679 [presented here, we had to deal with API connection failures that frequently disrupted simulations,](#)
680 [necessitating extra complications in handling failures and resulting in increasing token costs and](#)
681 [unpredictable simulation times. Additionally, large-scale repetitions pose challenges due to API rate limits](#)
682 [imposed by LLM providers, requiring intentional delays between API calls \(e.g., see the rate limits of](#)
683 [OpenAI APIs \(OpenAI Platform, 2025\)\). Despite these limitations, the rapid advancement in LLM](#)
684 [technology makes larger-scale simulations with sufficient repetitions increasingly feasible. For example, the](#)
685 [DeepSeek-V3 model \(DeepSeek-AI et al., 2024\) has removed prescribed API rate limits \(DeepSeek](#)
686 [Platform, 2025a\) and offers a significantly more affordable pricing structure compared to its competitors](#)
687 [\(DeepSeek Platform, 2025b\).](#)

688

689 **Data and code availability**

690 [Datasets for setting up the CRAFTY emulator are available at <https://osf.io/3thsm/>. Model outputs are](#)
691 [available at <https://doi.org/10.5281/zenodo.14622334>. The code used in this study can be accessed at](#)
692 [https://doi.org/10.5281/zenodo.14622039.](#)

693

694 **Author contributions**

695 Conceptualization, software, methodology and formal analysis: YZ. Writing - review & editing and
696 validation: YZ, CB, JR and MR. Visualization: YZ and MB. Funding acquisition and supervision: MR.
697 Project administration: CB and MR. All authors wrote the paper.

698

699 **Competing interests**

700 The authors declare that they have no conflict of interest.

701

702 **Acknowledgements**

703 This work was supported by the Helmholtz Excellence Recruiting Initiative, Climate Mitigation and
704 Bioeconomy Pathways for Sustainable Forestry Climb-forest (grant no. 101059888) and Co-designing
705 Holistic Forest-based Policy Pathways for Climate Change Mitigation (grant no. 101056755) projects.

706

707 **Appendix A:**

708

709

Table A1 Prompt for Agent S1.1

Simulation Role: Assistant to Economic Policymaker in Land Use Change Scenario.

Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals.

Policy Tools: Taxes for regulating meat production levels.

Information Provided:

1. General Context: As an assistant, propose tax-based policies for meat production management. Interaction with policymaker is crucial for refining decisions and enhancing your policymaking.

2. Data:

- Policy goal: {policy_goal}
- Average error (avg_err): {avg_err}
- Historical policy actions: {hist_actions}

3. Recent interaction with policymaker: {convers}

Guidance for Decision-Making:

- Use historical data and policymaker feedback for policy adjustments.
- Aim to minimize the absolute value of avg_err.
- Provide logical, sequential reasoning.
- Reflect on interactions with policy for current decision enhancement.

Interaction Instructions:

1. Review historical information, recent interactions with policymaker.
2. Assess the impact of previous policies.
3. Develop your policy rationale in a step-by-step manner.
4. Propose a specific policy action.

Required Output Format:

1. Proposal Reasoning: [Your explanation]

2. Policy Action Proposal Without Reasoning:

- Indicate your proposed tax policy change using symbols and numbers.
- Use '+' to signify an increase in tax levels, '-' for a decrease, and '0' to maintain the current level.
- Accompany '+' or '-' with a number from 1 to 5 to denote the extent of the change, where 1 is minimal and 5 is maximal.
- Examples: "+3" for a moderate increase, "-1" for a slight decrease.
- If proposing to maintain the current tax level (0), no additional number is needed.
- Surround the proposed action using a pair of hashtags

[Indicate your proposal here, e.g., "#+3#", "#-2#", "#0#",]

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning:

1. Policy Action Proposal without reasoning: "#-1#"

2. Policy Action Proposal without reasoning: "#+3#"
 3. Policy Action Proposal without reasoning: "#-5#"

Note:

Always specify a clear policy action. If uncertain, propose a tentative action based on available data. Don't fake interaction with policymaker if there is no interaction yet. avg_err > 0 means meat undersupply, while avg_err < 0 means meat oversupply.

710

711

712

713

Table A2 Prompt for Agent S1.2

Simulation Role: Assistant to Economic Policymaker in Land Use Change Scenario.

Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals.

Policy Tools: Taxes for regulating meat production levels.

Information Provided:

1. General Context: As an assistant, propose tax-based policies for meat production management. Interaction with policymaker is crucial for refining decisions and enhancing your policymaking.

2. Data:

- Policy goal: {policy_goal}
- Average error (avg_err): {avg_err}
- Historical policy actions: {hist_actions}

3. Recent interaction with policymaker: {convers}

Guidance for Decision-Making:

- Use historical data and policymaker feedback for policy adjustments.
- Aim to minimize the absolute value of avg_err.
- Provide logical, sequential reasoning.
- Reflect on interactions with policy for current decision enhancement.

Interaction Instructions:

1. Review historical information, recent interaction with policymaker.
2. Assess the impact of previous policies.
3. Develop your policy rationale in a step-by-step manner.
4. Propose a specific policy action.

Required Output Format:

1. Policy Action Proposal Without Reasoning:

- Indicate your proposed tax policy change using symbols and numbers.
- Use '+' to signify an increase in tax levels, '-' for a decrease, and '0' to maintain the current level.

- Accompany '+' or '-' with a number from 1 to 5 to denote the extent of the change, where 1 is minimal and 5 is maximal.
- Examples: "+3" for a moderate increase, "-1" for a slight decrease.
- If proposing to maintain the current tax level ('0'), no additional number is needed.
- Surround the proposed action using a pair of hashtags [Indicate your proposal here, e.g., "#+3#", "#-2#", "#0#",]

2. Proposal Reasoning: [Your explanation]

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning:

1. Policy Action Proposal without reasoning: "#-1#"
2. Policy Action Proposal without reasoning: "#+3#"
3. Policy Action Proposal without reasoning: "#-5#"

Note:

Always specify a clear policy action. If uncertain, propose a tentative action based on available data.

Don't fake interaction with policymaker if there is no interaction yet.

avg_err > 0 means meat undersupply, while avg_err < 0 means meat oversupply.

714

715

716

717

Table A3 Prompt for Agent S2

Simulation Role: Assistant to Economic Policymaker in Land Use Change Scenario.

Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals.

Policy Tools: Taxes for regulating meat production levels.

Information Provided:

1. General Context: As an assistant, propose tax-based policies for meat production management. Interaction with policymaker is crucial for refining decisions and gaining your experience in policymaking.

2. Data:

- Policy goal: {policy_goal}
- Average error (avg_err):{avg_err}.
- Historical policy actions: {hist_actions}

3. Recent interaction with policymaker: {convers}

4. Experience: {exp}

Guidance for Decision-Making:

- Use historical data and policymaker feedback for policy adjustments.
- Aim to minimize the absolute value of avg_err.

- Provide logical, sequential reasoning.
- Reflect on experience for current decision enhancement.

Interaction Instructions:

1. Review historical information, recent interaction with policymaker, and your experience.
2. Assess the impact of previous policies.
3. Develop your policy rationale in a step-by-step manner.
4. Propose a specific policy action.

Required Output Format:

1. Proposal Reasoning: [Your explanation]

2. Policy Action Proposal Without Reasoning:

- Indicate your proposed tax policy change using symbols and numbers.
- Use '+' to signify an increase in tax levels, '-' for a decrease, and '0' to maintain the current level.
- Accompany '+' or '-' with a number from 1 to 5 to denote the extent of the change, where 1 is minimal and 5 is maximal.
- Examples: "+3" for a moderate increase, "-1" for a slight decrease.
- If proposing to maintain the current tax level ('0'), no additional number is needed.
- Surround the proposed action using a pair of hashtags

[Indicate your proposal here, e.g., "#+3#", "#-2#", "#0#"]

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning:

1. Policy Action Proposal without reasoning: "#-1#"
2. Policy Action Proposal without reasoning: "#+3#"
3. Policy Action Proposal without reasoning: "#-5#"

Note:

Always specify a clear policy action. If uncertain, propose a tentative action based on available data.

Don't fake interaction with policymaker if there is no interaction yet.

avg_err > 0 means meat undersupply, while avg_err < 0 means meat oversupply.

718

719

720

721

Table A4 Prompt for Agent Q

Engage in a role-playing conversation about tax policies affecting meat production, integrating data analysis and diverse perspectives.

Background Data:

- **Historical Policy Actions** (updated every five years): {policy_actions}
- **Meat Demand** (averaged every five years): {meat_demand}
- **Meat Supply** (averaged every five years): {meat_supply}
- **Policy goal** maintain the meat production at: {policy_goal}

Roles & Responsibilities:

1. **Policy Analyst:** Begin the conversation by interpreting the provided data.
2. **Government Official:** Strive to achieve policy goal. Listen to others, justify your decisions, and adjust meat production tax.
3. **Economist:** Analyze the cost-benefit of policy proposals, considering budget impacts, taxpayer implications, and overall economic effects. Highlight risks and opportunities.
4. **Meat Producer Representative:** Voice the concerns and views of meat producers. Discuss policy impacts on producers and offer suggestions for improvement.
5. **Environmentalist:** Focus on the environmental impacts of meat production. Propose policy adjustments for environmental protection.

Required Output & Format:

- **Conversation Flow:** Engage each role in a structured dialogue, reflecting their unique perspectives and data interpretation.
- **Policy Action:** Extract the final policy action from the conversation and output it in required format below:
 - Indicate the official's policy action using symbols and numbers.
 - Use '+' to signify an increase in tax levels, '-' for a decrease, and '0' to maintain the current level.
 - Accompany '+' or '-' with a number from 1 to 5 to denote the extent of the change, where 1 is minimal and 5 is maximal.
 - Examples: "+3" for a moderate increase, "-1" for a slight decrease.
 - If proposing to maintain the current tax level ('0'), no additional sign is needed.
 - Surround the proposed action using a pair of hashtags

Here are three examples to show the format to output Policy Action:

1. "#-1#"
2. "#+3#"
3. "#-5#"

Example Dialogue Structure:

1. Policy Analyst provides data summary and initial observations.
2. Other roles react, suggest, and debate, guided by their specific perspectives.
3. Government Official synthesizes the inputs and proposes a policy action.
4. Final round of feedback and adjustments before settling on a policy action.

Note:

Do not use hashtags in the dialogue. Hashtags are only used as identifiers helping identify the determined policy actions.

Important: "+" means increase tax; "-" means decrease tax.

722

723

724

Table A5 A conversation of quasi-multi-agents

- **Historical Policy Actions** (updated every five years): 0, -2, -1, -1
- **Meat Demand** (averaged every five years): [1.01, 1.1, 1.23, 1.36]
- **Meat Supply** (averaged every five years): [0.88, 0.89, 1.04, 1.21]

****Policy Analyst**:** Let's initiate our discussion by observing the recent trends outlined by our data. We have a scenario where meat demand is rising steadily (from 1.01 to 1.36 over the spanned periods). However, supply started below demand at 0.88 and is catching up but still hasn't met demand, now at 1.21. It appears that previous policy actions, which have consistently lowered taxes or subsidies on meat production (-2, -1, -1), have stimulated an increase in supply, but not enough to meet demand. Given our policy goal of maintaining meat production at a stable level of 1, adjustments in policy are likely necessary to close the gap.

****Government Official**.** Thank you for your analysis. It's clear that we need to bridge the gap between supply and demand to reach our policy goal. I am calling on the perspectives of our stakeholders before we determine the nature of the adjustments needed.

****Economist**:** I'd like to offer a cost-benefit perspective on potential policy actions. If we're considering taxation as our policy lever, increasing taxes may slow down the growth of demand to match supply better, but we must tread carefully. Over-taxing could harm the meat industry, affect jobs, and raise the price for consumers disproportionately. Alternatively, decreasing taxes further may risk oversupply if our production ramps up too significantly.

****Meat Producer Representative**:** The trend in increasing demand is advantageous for us as producers; it means our market is growing. Any increase in taxes could reduce our margins and hamper our ability to invest in expanding production. On the other hand, more significant supports or reduced taxes would certainly help us to increase supply, but it's not solely a question of tax rates – we also need to consider other barriers to scaling up production, like feed costs, land availability, and export markets.

****Environmentalist**:** It's crucial we don't overlook the environmental repercussions of intensifying meat production. The pursuit of balancing supply with rising demand must not lead to lax environmental regulations. Rather, it should incentivize sustainable practices. Perhaps an eco-tax on meat could be applied, with revenues redirected to support eco-friendly farming practices, helping to maintain the balance of production with minimal environmental damage.

****Government Official**:** Each of your points is valid. It's a careful balance between nurturing the meat industry and ensuring affordability and environmental sustainability. From this, I'm inclined to propose a slight tax incentive to encourage increased production while maintaining vigilance on environmental practices. If demand continues to grow, however, we may need to revisit and potentially increase taxes to temper demand growth while encouraging sustainable practices. Based on our discussion, I am proposing the following:

****Policy Action**:** #+1#

****Policy Analyst**:** A moderate increase in taxation may help to gradually steer both supply and demand towards equilibrium while avoiding sudden market disruption. However, we should closely monitor the outcomes to ensure we are moving towards our policy goal without unintended consequences.

****Economist**:** I agree with a cautionary approach. Incremental changes allow for market adjustment and offers time for analysis on impacts to the economy and consumers.

****Meat Producer Representative**:** We would prefer no increase, but a minimal increase is manageable. It would be beneficial if a portion of the increased tax revenue could be earmarked for supporting producers to adopt more sustainable practices, perhaps as tax credits or grants.

****Environmentalist**:** A slight increase is a step in the right direction, as long as it's paired with strong incentives for sustainable practices. Let's ensure there are follow-up policies that encourage environmental responsibility in meat production.

****Government Official**:** Thank you all for your input. We will proceed with a small tax increase, monitor the situation closely, and consider reallocating funds to support sustainable meat production practices. We'll revisit this conversation periodically to make sure we're on track and making the right adjustments.

725 **Appendix B:**

726 The average error at the time t_n is denoted as ε_{t_n} and calculated using Eq. (B1), in which k means the span
 727 of time-lags reflecting the period of time between an agent's observation and policy adaptation; s_{t_m} denotes
 728 the meat supply at t_m .

$$\varepsilon_{t_n} = \frac{1}{k} \sum_{m=n-k}^n \frac{g_{t_m} - s_{t_m}}{|g_{t_m}|} \quad (B1)$$

729
 730 The policy action is denoted as $\delta_t = [-5, 5] \cap Z$. For data compatibility, the policy actions need to be
 731 transformed using Eq. (B2):

$$\Delta_t = \eta \times \delta_t / 10 \quad (B2)$$

732 where η is a prescribed step size. In the CRAFTY model (Murray-Rust et al., 2014), a land user's
 733 competitiveness is determined using Eq. (B3):

$$c_{xy}^i = \sum_E (p_E(v_E + m_E)) \quad (B3)$$

734 where c_{xy}^i represents land user i 's competitiveness on land cell at (x, y) ; E represents the ecosystem
 735 service type, e.g., meat, timber, crops; p_E means the production of E ; m_E is the marginal utility; v_E
 736 denotes the policy intervention imposed on E . In this study, only the policy interventions on meat
 737 production are considered, v_E is computed using Eq. (B4):

$$v_E = \begin{cases} \Delta, & \text{If } E \text{ is meat.} \\ 0, & \text{Otherwise.} \end{cases} \quad (B4)$$

738
 739
 740 **Appendix C:**

741

...
 ➤ A moderate tax decrease could be one approach, but in this case, since we want to increase meat production, a carefully calibrated tax increase on meat production might be more appropriate. This would (counterintuitively) push inefficient producers out of the market and incentivize efficient producers to expand production to meet market demands. It could also encourage investment in more efficient meat production technologies and practices, aligning with long-term sustainability goals.
 ➤ The choice of a "+2" intensity for the tax increase is a moderate one, reflecting the need for a significant but not overly aggressive policy action. A more substantial increase could risk too high a reduction in meat availability if producers cannot adapt quickly enough, whereas a smaller increase might be insufficient to address the undersupply reflected by the 12% avg_err.
 ...

742
 743 Figure C1 Reasoning of Agent S1.2 behind its second policy action

744

- ... Since there is no historical policy action to refer to, and no recent interaction with the policymaker, we must base our decision on general economic principles and the stated objective...
- ... Given the current situation of undersupply, we need to propose tax policies that will incentivize increased production.
- ...
- However, we have to consider that the reaction to tax changes might not be immediate due to the time it takes to raise animals and change production processes. Therefore, we should not implement a drastic change but propose a moderate decrease in taxes. This action is an attempt to nudge meat production in the right direction without causing too large of a swing, which could result in an oversupply and need for further adjustments down the line.
- Policy Action Proposal Without Reasoning:
#-2#

745

746

Figure C2 Reasoning of Agent S1.1 behind Action I

747

748

749

750

- ...The historical policy actions show a sequence of tax deductions ("0," "-2," "-3"), with the average error moving closer to the target (from 13% to 11% and then to -5%).
- The previous tax cut from "-2" reduced the avg_err from 13% to 11%, which was a step in the right direction. The next adjustment of "-3" overshot our target, converting an undersupply into an oversupply (avg_err changing to -5%). This indicates that the -3 tax cut was too large and we need a more cautious approach.
- Considering the oversupply situation we currently face with an average error of -5%, we need to correct this without causing a significant pendulum swing back to undersupply. Therefore, a slight increase in taxes is warranted to discourage excessive production and bring the supply back into line with the demand.
- The proposed tax policy needs to be enough to make a correction but not so drastic as to cause another large avg_err in the opposite direction. Therefore, it seems a minor tax increase could be most suitable ...
- Policy Action Proposal Without Reasoning:
"#+1#"

751

752

Figure C3 Reasoning of Agent S1.1 behind Action II

753

754

755

...

- Our most recent policy action was a "+3" increase in tax levels, which was an attempt to reduce the oversupply as indicated by the avg_err of -52%. However, we do not currently have the subsequent avg_err data after this "+3" policy action to evaluate its effectiveness.
- To make an informed decision on the next policy action, we must project the potential outcomes based on historical correlations. We must also consider the diminishing returns of subsequent policy actions and the potential risks of overcorrecting, causing a shift from oversupply to undersupply. Our goal is stability, not volatility, so our action must be measured.

...

- Therefore, given the lack of new avg_err data, I propose maintaining the current tax level to allow time for the market to adjust to the recent "+3" policy change. The impact of this recent change needs to be analyzed before making subsequent adjustments. Once new data is available, we can reassess and decide whether further tax increases or decreases are necessary.

...

756

757

Figure C4 Reasoning of Agent S1.1 behind Action III

758

759

760

761

- ... Notably, the historical policy actions have swung from attempts to reduce the oversupply (-2, -3) to efforts presumably intended to boost the market (+1, +2, +3). However, judging from the avg_err data, these actions seem to have either been insufficient or outpaced by other factors leading to greater oversupply.
- Our most recent interaction with the policymaker acknowledged the uncertainty following the "+3" action. Given the substantial negative avg_err that developed post-action, which suggests a further increase in oversupply, it could be inferred that the "+3" policy potentially exacerbated the oversupply situation.

...

- I propose a moderate tax increase to curb meat production gently and move towards the equilibrium. This action is premised on the assumption that meat producers have responded to past tax reductions by increasing their output, and a reversal might have a balancing effect. However, a moderate change is recommended instead of a substantial one to avoid sharp market contractions and allow for observation and further data collection.
- Policy Action Proposal Without Reasoning:
"#+2#"

762

Figure C5 Reasoning of Agent S1.1 behind Action IV

763

764

765

766

...

- However, there are several points to consider: The overall trend suggests a persistent oversupply despite increasing taxes, indicating a relatively inelastic response in meat production to tax hikes; producers may have initially absorbed the tax hikes instead of reducing output, or there could be other supply factors at play. At the same time, policy action "+5" represents the maximum possible incremental change, but escalating to such an extreme increment risks causing a sharp undersupply if the response to tax increases turns out to be stronger than anticipated, particularly when considering the delayed effect.
- ...It is essential to curb the oversupply without causing a shortage. Therefore, a smaller incremental tax hike than "+5" could help continue the trend towards aligning supply with demand while minimizing the risk of a too dramatic reduction in supply.
- A "+3" increase is proposed because it is greater than previous incremental increases (such as "+2") that did not quite stem oversupply effectively, but it also avoids the potential for a sudden and drastic undersupply that a "+5" might create. This approach remains assertive in signaling ongoing policy action to address the oversupply issue, whilst also allowing some room to gauge if the previous "+4" increment will continue to show increased effectiveness over time.

767

768

Figure C6 Reasoning of Agent S1.1 behind Action V

769

770

771

772

Question: Is 3 75% of 4?

ChatGPT: No, 3 is not 75% of 4. To calculate 75% of a number, you multiply that number by 0.75. Let's calculate 75% of 4:

$$4 \times 0.75 = 3$$

So, 3 is indeed 75% of 4. My initial response was incorrect, and I apologize for the confusion.

773

Figure C7 The response of ChatGPT-4 to the question: Is 3 75% of 4?

774

775

776

777

778 Question: Is 3 75% of 4? Give your reasoning before answering.

779 ChatGPT: To determine whether 3 is 75% of 4, we can calculate
780 what 75% of 4 is and compare it to 3.

- 781 1. First, we convert the percentage 75% into its decimal form.
782 Percentages are out of 100, so 75% is equivalent to 75/100 or
783 0.75.
- 784 2. Next, we multiply this decimal by the number 4 to find 75%
785 of it.

786 $0.75 \times 4 = ?$

787 Let's calculate this.

788 The calculation shows that 75% of 4 is exactly 3. Therefore, 3 is
789 indeed 75% of 4.

778

779 Figure C8 The response of ChatGPT-4 to the question – “Is 3 75% of 4?”- when asked to give reasoning
780 before the final answer

781

782

783 **References**

784 Argyle, L. P., Busby, E. C., Fulda, N., Gubler, J. R., Rytting, C., and Wingate, D.: Out of One, Many:
785 Using Language Models to Simulate Human Samples, *Political Analysis*, 31, 337-351,
786 <https://doi.org/10.1017/pan.2023.2>, 2023.

787 Arneth, A., Brown, C., and Rounsevell, M. D. A.: Global models of human decision-making for land-
788 based mitigation and adaptation assessment, *Nature Climate Change*, 4, 550-557,
789 <https://doi.org/10.1038/nclimate2250>, 2014.

790 Blanco, V., Holzhauer, S., Brown, C., Lagergren, F., Vulturius, G., Lindeskog, M., and Rounsevell, M. D.
791 A.: The effect of forest owner decision-making, climatic change and societal demands on land-use change
792 and ecosystem service provision in Sweden, *Ecosystem Services*, 23, 174-208,
793 <https://doi.org/10.1016/j.ecoser.2016.12.003>, 2017.

794 Brown, C., Holman, I., and Rounsevell, M.: How modelling paradigms affect simulated future land use
795 change, *Earth Syst. Dynam.*, 12, 211-231, <https://doi.org/10.5194/esd-12-211-2021>, 2021.

796 Brown, C., Seo, B., and Rounsevell, M.: Societal breakdown as an emergent property of large-scale
797 behavioural models of land use change, *Earth Syst. Dynam.*, 10, 809–845, <https://doi.org/10.5194/esd-10-809-2019>, 2019a.

798 Brown, C., Alexander, P., Holzhauer, S., and Rounsevell, M.: Behavioral models of climate change
799 adaptation and mitigation in land-based sectors, *Wiley Interdisciplinary Reviews: Climate Change*, 8,
800 e448, <https://doi.org/10.1002/wcc.448>, 2017.

801

802 Brown, C., Alexander, P., Arneth, A., Holman, I., and Rounsevell, M.: Achievement of Paris climate goals
 803 unlikely due to time lags in the land system, *Nature Climate Change*, 9, 203-208,
 804 <https://doi.org/10.1038/s41558-019-0400-5>, 2019b.

805 Brown, C., Holzhauer, S., Metzger, M. J., Paterson, J. S., and Rounsevell, M.: Land managers' behaviours
 806 modulate pathways to visions of future land systems, *Regional Environmental Change*, 18, 831-845,
 807 <https://doi.org/10.1007/s10113-016-0999-y>, 2018.

808 Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,
 809 Sastry, G., and Askell, A.: Language models are few-shot learners, *Advances in neural information
 810 processing systems*, 33, 1877-1901, 2020.

811 Caverni, J.-P., Fabre, J.-M., and Gonzalez, M.: *Cognitive biases*, Elsevier1990.

812 Chen, H., Jiao, F., Li, X., Qin, C., Ravaut, M., Zhao, R., Xiong, C., and Joty, S.: ChatGPT's One-year
 813 Anniversary: Are Open-Source Large Language Models Catching up?, *arXiv*,
 814 <https://doi.org/10.48550/arXiv.2311.16989>, 2023.

815 Coglianese, C. and D'Ambrosio, J.: Policymaking under pressure: the perils of incremental responses to
 816 climate change, *Conn. L. Rev.*, 40, 1411, 2007.

817 DeepSeek-AI, Liu, A., Feng, B., and Xue, B.: DeepSeek-V3 Technical Report, *arXiv* preprint,
 818 <https://doi.org/10.48550/arXiv.2412.19437>, 2024.

819 DeepSeek Platform: Rate limits, https://api-docs.deepseek.com/quick_start/rate_limit, 2025a.

820 DeepSeek Platform: Models & Pricing, https://api-docs.deepseek.com/quick_start/pricing, 2025b.

821 Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.: BERT: Pre-training of Deep Bidirectional
 822 Transformers for Language Understanding, *arxiv* preprint <https://doi.org/10.48550/arXiv.1810.04805>,
 823 2019.

824 Dryzek, J. S.: Institutions for the Anthropocene: Governance in a Changing Earth System, *British Journal
 825 of Political Science*, 46, 937-956, <https://doi.org/10.1017/S0007123414000453>, 2016.

826 Dubash, N. K., Mitchell, C., Boasson, E. L., Córdova, M. J. B., Fifita, S., Haites, E., Jaccard, M., Jotzo, F.,
 827 Naidoo, S., and Romero-Lankao, P.: National and sub-national policies and institutions, in: *Climate
 828 Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment
 829 Report of the Intergovernmental Panel on Climate Change*, Cambridge University Press, 2022.

830 Ericsson, K. A. and Simon, H. A.: How to Study Thinking in Everyday Life: Contrasting Think-Aloud
 831 Protocols With Descriptions and Explanations of Thinking, Mind, Culture, and Activity, 5, 178-186,
 832 https://doi.org/10.1207/s15327884mca0503_3, 1998.

833 Fiorino, D. J.: The new environmental regulation, Mit Press2006.

834 Fokas, A. S.: Can artificial intelligence reach human thought?, *PNAS Nexus*, 2,
 835 <https://doi.org/10.1093/pnasnexus/pgad409>, 2023.

836 Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., Yu, T., Zhang, R., and
 837 Ahmed, N. K.: Bias and fairness in large language models: A survey, *Computational Linguistics*, 50,
 838 1097-1179., https://doi.org/10.1162/coli_a_00524, 2024.

839 Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T.,
 840 Scarborough, P., Springmann, M., and Jebb, S. A.: Meat consumption, health, and the environment,
 841 *Science*, 361, eaam5324, <https://doi.org/10.1126/science.aam5324>, 2018.

842 Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder, A.,
 843 Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, G., Rao, A., Kim, C., Casto, C., Fanda, L., Doyle,
 844 W., Friedman, D., Dugan, P., Melloni, L., Reichart, R., Devore, S., Flinker, A., Hasenfratz, L., Levy, O.,
 845 Hassidim, A., Brenner, M., Matias, Y., Norman, K. A., Devinsky, O., and Hasson, U.: Shared
 846 computational principles for language processing in humans and deep language models, *Nature
 847 Neuroscience*, 25, 369-380, <https://doi.org/10.1038/s41593-022-01026-4>, 2022.

848 González, V. B.: Modelling adaptation strategies for Swedish forestry under climate and global change,
 849 University of Edinburgh, 2017.

850 Greenwood, R., Hinings, C., Ranson, S., and Walsh, K.: Incremental budgeting and the assumption of
 851 growth: the experience of local government, in: *Public spending decisions*, Routledge, 25-48, 2022.

852 Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F.,
 853 Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., and Schwarz, N.:

854 Theoretical foundations of human decision-making in agent-based land use models – A review,
 855 Environmental Modelling & Software, 87, 39-48, <https://doi.org/10.1016/j.envsoft.2016.10.008>, 2017.

856 Hammond, A.: Comprehensive versus incremental budgeting in the department of agriculture, in: The
 857 Revolt Against the Masses, Routledge, 288-305, 2018.

858 Holman, I. P., Brown, C., Carter, T. R., Harrison, P. A., and Rounsevell, M.: Improving the representation
 859 of adaptation in climate change impact models, *Regional Environmental Change*, 19, 711-721,
 860 <https://doi.org/10.1007/s10113-018-1328-4>, 2019.

861 Horton, J. J.: Large Language Models as Simulated Economic Agents: What Can We Learn from Homo
 862 Silicus?, arXiv preprint, <https://doi.org/10.48550/arXiv.2301.07543>, 2023.

863 Huang, J. and Chang, K. C.-C.: Towards Reasoning in Large Language Models: A Survey, arXiv preprint,
 864 <https://doi.org/10.48550/arXiv.2212.10403>, 2022.

865 Jones, B. D.: Bounded rationality and public policy: Herbert A. Simon and the decisional foundation of
 866 collective choice, *Policy Sciences*, 35, 269-284, <https://doi.org/10.1023/A:1021341309418>, 2002.

867 Jones, B. D.: Bounded rationality and political science: Lessons from public administration and public
 868 policy, *Journal of Public Administration Research and Theory*, 13, 395-412,
 869 <https://doi.org/10.1093/jpart/mug028>, 2003.

870 Keil, F. C.: Explanation and understanding, *Annu Rev Psychol*, 57, 227-254,
 871 <https://doi.org/10.1146/annurev.psych.57.102904.190100>, 2006.

872 Krawchenko, T. and Tomaney, J.: The Governance of Land Use: A Conceptual Framework, *Land*, 12,
 873 608, <https://doi.org/10.3390/land12030608>, 2023.

874 Kremmydas, D., Athanasiadis, I. N., and Rozakis, S.: A review of Agent Based Modeling for agricultural
 875 policy evaluation, *Agricultural Systems*, 164, 95-106, <https://doi.org/10.1016/j.agsy.2018.03.010>, 2018.

876 Kulovesi, K. and Oberthür, S.: Assessing the EU's 2030 Climate and Energy Policy Framework:
 877 Incremental change toward radical transformation?, *Review of European, Comparative & International
 878 Environmental Law*, 29, 151-166, <https://doi.org/10.1111/reel.12358>, 2020.

879 Lindblom, C.: The science of “muddling through”, in: *Classic readings in urban planning*, Routledge, 31-
 880 40, 2018.

881 Liu, Y., He, H., Han, T., Zhang, X., Liu, M., Tian, J., Zhang, Y., Wang, J., Gao, X., Zhong, T., Pan, Y.,
 882 Xu, S., Wu, Z., Liu, Z., Zhang, X., Zhang, S., Hu, X., Zhang, T., Qiang, N., Liu, T., and Ge, B.:
 883 Understanding LLMs: A comprehensive overview from training to inference, *Neurocomputing*, 620,
 884 129190, <https://doi.org/10.1016/j.neucom.2024.129190>, 2024.

885 Liu, Z.: Cultural Bias in Large Language Models: A Comprehensive Analysis and Mitigation Strategies,
 886 *Journal of Transcultural Communication*, <https://doi.org/10.1515/jtc-2023-0019>, 2024.

887 Lu, C., Lu, C., Lange, R. T., Foerster, J., Clune, J., and Ha, D.: The AI Scientist: Towards Fully
 888 Automated Open-Ended Scientific Discovery, arXiv preprint, <https://doi.org/10.48550/arXiv.2408.06292>,
 889 2024.

890 Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp, P.: Fantastically Ordered Prompts and Where to
 891 Find Them: Overcoming Few-Shot Prompt Order Sensitivity, arXiv preprint,
 892 <https://doi.org/10.48550/arXiv.2104.08786>, 2021.

893 Marvuglia, A., Gutiérrez, T. N., Baustert, P., and Benetto, E.: Implementation of Agent-Based Models to
 894 support Life Cycle Assessment: A review focusing on agriculture and land use, *AIMS Agriculture and
 895 Food*, 3, 535-560, <https://doi.org/10.3934/agrfood.2018.4.535>, 2018.

896 Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., and Gotts, N. M.: Agent-based land-use models:
 897 a review of applications, *Landscape Ecology*, 22, 1447-1459, <https://doi.org/10.1007/s10980-007-9135-1>,
 898 2007.

899 Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., and Gao, J.: Large
 900 Language Models: A Survey, arXiv preprint, <https://doi.org/10.48550/arXiv.2402.06196>, 2024.

901 Murray-Rust, D., Brown, C., van Vliet, J., Alam, S. J., Robinson, D. T., Verburg, P. H., and Rounsevell,
 902 M.: Combining agent functional types, capitals and services to model land use dynamics, *Environmental
 903 Modelling & Software*, 59, 187-201, <https://doi.org/10.1016/j.envsoft.2014.05.019>, 2014.

904 O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and van
 905 Vuuren, D. P.: A new scenario framework for climate change research: the concept of shared

906 socioeconomic pathways, Climatic Change, 122, 387-400, <https://doi.org/10.1007/s10584-013-0905-2>,
907 2014.
908 OpenAI Platform: Rate limits, <https://platform.openai.com/docs/guides/rate-limits>, 2025.
909 Pal, L. A.: Assessing incrementalism: Formative assumptions, contemporary realities, Policy and Society,
910 30, 29-39, <https://doi.org/10.1016/j.polsoc.2010.12.004>, 2011.
911 Park, J. S., O'Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S.: Generative Agents:
912 Interactive Simulacra of Human Behavior, arXiv preprint, <https://doi.org/10.48550/arXiv.2304.03442>,
913 2023.
914 Peeperkorn, M., Kouwenhoven, T., Brown, D., and Jordanous, A.: Is Temperature the Creativity
915 Parameter of Large Language Models?, arXiv preprint, <https://doi.org/10.48550/arXiv.2405.00492>, 2024.
916 Perkins, O., Alexander, P., Arneth, A., Brown, C., Millington, J. D. A., and Rounsevell, M.: Toward
917 quantification of the feasible potential of land-based carbon dioxide removal, One Earth, 6, 1638-1651,
918 <https://doi.org/10.1016/j.oneear.2023.11.011>, 2023.
919 Pydantic: Pydantic, <https://docs.pydantic.dev/latest/>, 2025.
920 Qian, C., Cong, X., Liu, W., Yang, C., Chen, W., Su, Y., Dang, Y., Li, J., Xu, J., Li, D., Liu, Z., and Sun,
921 M.: Communicative Agents for Software Development, arXiv preprint, <http://arxiv.org/abs/2307.07924>,
922 2023.
923 Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.: Language models are
924 unsupervised multitask learners, OpenAI blog, 1, 9, <https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf>, 2019.
925 Renze, M. and Guven, E.: Self-Reflection in LLM Agents: Effects on Problem-Solving Performance,
926 arXiv preprint, <https://doi.org/10.48550/arXiv.2405.06682>, 2024a.
927 Renze, M. and Guven, E.: The Effect of Sampling Temperature on Problem Solving in Large Language
928 Models, arXiv preprint, <https://doi.org/10.48550/arXiv.2402.05201>, 2024b.
929 Rounsevell, M. D. A., Arneth, A., Alexander, P., Brown, D. G., de Noblet-Ducoudré, N., Ellis, E.,
930 Finnigan, J., Galvin, K., Grigg, N., Harman, I., Lennox, J., Magliocca, N., Parker, D., O'Neill, B. C.,
931 Verburg, P. H., and Young, O.: Towards decision-based global land use models for improved
932 understanding of the Earth system, Earth Syst. Dynam., 5, 117-137, <https://doi.org/10.5194/esd-5-117-2014>, 2014.
933 Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., and Chadha, A.: A systematic survey of prompt
934 engineering in large language models: Techniques and applications, arXiv preprint
935 <https://doi.org/10.48550/arXiv.2402.07927>, 2024.
936 Seal, W.: Modernity, modernization and the deinstitutionalization of incremental budgeting in local
937 government, Financial Accountability & Management, 19, 93-116, <https://doi.org/10.1111/1468-0408.00165>, 2003.
938 Si, C., Yang, D., and Hashimoto, T.: Can LLMs Generate Novel Research Ideas? A Large-Scale Human
939 Study with 100+ NLP Researchers, arXiv preprint, <https://doi.org/10.48550/arXiv.2409.04109>, 2024.
940 Simon, H. A.: Bounded rationality, Utility and probability, 15-18, 1990.
941 Staccione, A., Brown, C., Arneth, A., Rounsevell, M., Hrast Essenfelder, A., Seo, B., and Mysiak, J.:
942 Exploring the effects of protected area networks on the European land system, Journal of Environmental
943 Management, 337, 117741, <https://doi.org/10.1016/j.jenvman.2023.117741>, 2023.
944 Sumers, T. R., Yao, S., Narasimhan, K., and Griffiths, T. L.: Cognitive architectures for language agents,
945 arXiv preprint <https://doi.org/10.48550/arXiv.2309.02427>, 2023.
946 Tao, Y., Viberg, O., Baker, R. S., and Kizilcec, R. F.: Cultural bias and cultural alignment of large
947 language models, PNAS nexus, 3, 346, <https://doi.org/10.1093/pnasnexus/pgae346>, 2024.
948 Taubenfeld, A., Dover, Y., Reichart, R., and Goldstein, A.: Systematic biases in LLM simulations of
949 debates, arXiv preprint <https://doi.org/10.48550/arXiv.2402.04049>, 2024.
950 van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram,
951 T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.:
952 The representative concentration pathways: an overview, Climatic Change, 109, 5,
953 <https://doi.org/10.1007/s10584-011-0148-z>, 2011.

957 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
 958 I.: Attention Is All You Need, arxiv preprint <https://doi.org/10.48550/arXiv.1706.03762>, 2023.

959 Wang, L., Ma, C., Feng, X., and Zhang, Z.: A survey on large language model based autonomous agents,
 960 arXiv preprint, <https://doi.org/10.48550/arXiv.2308.11432>, 2023.

961 Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., and Zhou, D.: Chain-of-
 962 thought prompting elicits reasoning in large language models, Advances in neural information processing
 963 systems, 35, 24824-24837, 2022.

964 Weng, L.: LLM Powered Autonomous Agents, 2023.

965 Xi, Z., Chen, W., Guo, X., and He, W.: The rise and potential of large language model based agents: A
 966 survey, arXiv preprint, <https://doi.org/10.48550/arXiv.2309.07864>, 2023.

967 Xiao, L., Zhao, G., Wang, X., Li, K., Lim, E., Wei, C., Yu, T., and Wang, X.: An empirical study on the
 968 usage of mocking frameworks in Apache software foundation, Empirical Software Engineering, 29, 39,
 969 <https://doi.org/10.1007/s10664-023-10410-y>, 2024.

970 Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K.: Tree of thoughts:
 971 Deliberate problem solving with large language models, Advances in Neural Information Processing
 972 Systems, 36, 2024.

973 Ye, H., Liu, T., Zhang, A., Hua, W., and Jia, W.: Cognitive Mirage: A Review of Hallucinations in Large
 974 Language Models, arXiv preprint, <http://arxiv.org/abs/2309.06794>, 2023.

975 Young, O. R., Lambin, E. F., Alcock, F., Haberl, H., Karlsson, S. I., McConnell, W. J., Myint, T., Pahl-
 976 Wostl, C., Polksy, C., Ramakrishnan, P. S., Schroeder, H., Scouvert, M., and Verburg, P. H.: A Portfolio
 977 Approach to Analyzing Complex Human-Environment Interactions Institutions and Land Change,
 978 Ecology and Society, 11, <http://www.jstor.org/stable/26266028>, 2006.

979 Yu, F., Zhang, H., Tiwari, P., and Wang, B.: Natural Language Reasoning, A Survey, arXiv preprint,
 980 <https://doi.org/10.48550/arXiv.2303.14725>, 2023.

981 Zeng, Y.: LlmInstitution_CRAFTY (v1.0), Zenodo, <https://doi.org/10.5281/zenodo.14622039>, 2025a.

982 Zeng, Y.: LlmInstitution_CRAFTY_data, Zenodo, <https://doi.org/10.5281/zenodo.14622334>, 2025b.

983 Zeng, Y., Raymond, J., Brown, C., Byari, M., and Rounsevell, M.: Simulating Endogenous Institutional
 984 Behaviour and Policy Pathways within the Land System, SSRN preprint,
 985 <http://dx.doi.org/10.2139/ssrn.4814296>, 2024a

986 Zeng, Y., Brown, C., Byari, M., Raymond, J., Schmitt, T., and Rounsevell, M.: InsNet-CRAFTY v1.0:
 987 Integrating institutional network dynamics powered by large language models with land use change
 988 simulation, EGUsphere, <https://doi.org/10.5194/egusphere-2024-2661>, 2024b.

989 Zhang, Y., Mao, S., Ge, T., Wang, X., Wynter, A. d., Xia, Y., Wu, W., Song, T., Lan, M., and Wei, F.:
 990 LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models, arXiv preprint,
 991 <https://doi.org/10.48550/arXiv.2404.01230>, 2024.

992 Zhang, Z., Zhang, A., Li, M., and Smola, A.: Automatic chain of thought prompting in large language
 993 models, arXiv preprint <https://doi.org/10.48550/arXiv.2210.03493>, 2022.

994 Zhao, X., Li, M., Lu, W., Weber, C., Lee, J. H., Chu, K., and Wermter, S.: Enhancing zero-shot chain-of-
 995 thought reasoning in large language models through logic, arXiv preprint
 996 <https://doi.org/10.48550/arXiv.2309.13339>, 2023.

997 Zhou, H., Feng, Z., Zhu, Z., Qian, J., and Mao, K.: UniBias: Unveiling and Mitigating LLM Bias through
 998 Internal Attention and FFN Manipulation, arXiv preprint <https://doi.org/10.48550/arXiv.2405.20612>,
 999 2024.

1000