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 13 

Abstract Public policy institutions play crucial roles in the land system, but modelling their policy-making 14 

processes is challenging. Large Language Models (LLMs) offer a novel approach to simulating many 15 

different types of human decision-making, including policy choices. This paper aims to investigate the 16 

opportunities and challenges that LLMs bring to land system modelling by integrating LLM-powered 17 

institutional agents within an agent-based, land use model. Four types of LLM agents are examined, all of 18 

which, in the examples presented here, use taxes to steer meat production toward a target level. The LLM 19 

agents provide simulated reasoning and policy action output. The agents’ performance is benchmarked 20 

against two baseline scenarios: one without policy interventions and another implementing optimal policy 21 

actions determined through a genetic algorithm. The findings show that while LLM agents perform better 22 

than the non-intervention scenario, they fall short of the performance achieved by optimal policy actions. 23 

However, LLM agents demonstrate behaviour and decision-making, marked by policy consistency and 24 

transparent reasoning. This includes generating strategies such as incrementalism, delayed policy action, 25 

proactive policy adjustments, and balancing multiple stakeholder interests. Agents equipped with 26 

experiential learning capabilities excel in achieving policy objectives through progressive policy actions. 27 

The order in which reasoning and proposed policy actions are output has a notable effect on the agents’ 28 

performance, suggesting that enforced reasoning guides as well as explains LLM decisions. The approach 29 

presented here points to promising opportunities and significant challenges. The opportunities include, 30 

exploring naturalistic institutional decision-making, handling massive institutional documents, and human-31 

AI cooperation. Challenges mainly lie in the scalability, interpretability, and reliability of LLMs. 32 

 33 
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1. Introduction 34 

Land system models are increasingly incorporating elements of agency in land use and management 35 

decision-making. This process has several motivations, from theory-testing and exploration, to more 36 

predictive outputs based on process-based knowledge (Groeneveld et al., 2017). Such models can be 37 

particularly useful for understanding behavioural constraints on political strategies such as land-based 38 

climate mitigation (Perkins et al., 2023) or nature conservation through protected areas (Staccione et al., 39 

2023). Agent-based land use models have now been applied from village to continental scales, revealing 40 

numerous ways in which land manager behaviour affects the rate, spread, and impacts of land use change 41 

(Brown et al., 2018; Kremmydas et al., 2018; Marvuglia et al., 2018; Matthews et al., 2007; Rounsevell et 42 

al., 2014; Zeng et al., 2024a). 43 

Despite the growth in land use models based on agency, and despite their frequent application to policy 44 

questions, the nature and effects of agency among political and institutional actors have been relatively 45 

neglected. Institutions in general (spanning a wide range from informal social groupings to highly formal 46 

governance bodies) have almost exclusively been modelled as exogenous forces that alter model input 47 

settings in pre-defined ways, rather than as active participants in simulated land use change decision-making 48 

(Brown et al., 2017; Holman et al., 2019; Krawchenko and Tomaney, 2023). Meanwhile, evidence that 49 

institutions play key roles in land use change processes, and that these roles are strongly mediated by the 50 

agency of those institutions, has continued to grow (Dryzek, 2016; Dubash et al., 2022; Young et al., 2006). 51 

These institutions display a variety of key behaviours including inertia in decision-making, interaction 52 

among themselves, the use of partial or otherwise imperfect information, susceptibility to lobbying and 53 

social norms, and occasional abrupt changes in objectives. These types of processes pose a substantial 54 

challenge to representation in land system models. 55 

The rise of Large Language Models (LLMs) provides a novel and potentially powerful approach to 56 

modelling the decisions of institutional agents. LLMs are a class of Artificial Intelligence (AI) models 57 

designed to understand and generate human-like language (Brown et al., 2020; Devlin et al., 2019; Vaswani 58 

et al., 2023). LLMs typically have billions of parameters and are trained and fine-tuned on extensive corpora 59 

to predict the next token (a sub-word, character, or word) in a sequence, based on both the input context and 60 

previously generated tokens (Minaee et al., 2024). During training, LLMs are optimized to learn and capture 61 

complex linguistic, semantic, and contextual patterns in the data (Liu et al., 2025). Models, such as GPT, 62 

LLaMA, and Claude use this capability to generate coherent and contextually appropriate natural language 63 

responses across a range of tasks (Minaee et al., 2024). They have recently been applied to computational 64 

agent design bringing benefits for both fields (Sumers et al., 2023; Wang et al., 2023; Weng, 2023; Xi et al., 65 

2023; Yao et al., 2023). LLM-powered agents are by the nature of their design and training implicit models 66 
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of human decision-making and simulations using language agents that can mimic produce believable human 67 

behaviour in various contexts (Horton, 2023; Park et al., 2023). They form generated simulated opinions, 68 

interact with one another and with the user in natural language, learn from experience and make plans for 69 

the future in ways that are similar to humans (Wang et al., 2023). This makes LLMs a powerful tool for 70 

modelling the decision-making and behaviour of institutional agents which interact dynamically with their 71 

environment. 72 

Effective LLM-powered agents are pre-trained using massive amounts of textual data containing diverse 73 

linguistic patterns. As demonstrated in Argyle et al. (2023), LLMs can serve as proxies for a variety of 74 

human sub-groups by emulating nuanced demographically-correlated response patterns, indicating that 75 

LLMs are powerful tools for researching multifaceted human attitudes and complex social-cultural 76 

dynamics. In principle, therefore, LLM agents can consider a wider range of factors, transcend the paradigm 77 

of economic rationality and generate more nuanced, context-aware and adaptive responses to specific 78 

problems. In contrast to traditional agents, they can generate novel or unexpected behaviour supported by 79 

explicit reasoning, which provides an opportunity to search for novel insights into human behaviour in the 80 

real world.  Moreover, LLM agents can generate novel or underexplored behaviour supported by explicit 81 

reasoning, which is considered an emergent ability of large language models (Huang and Chang, 2022) that 82 

draws increasing interest and attention from researchers in many domains (see Zhang et al. (2024) for a 83 

comprehensive review of strategic reasoning with LLMs and Yu et al. (2023) for Natural Language 84 

Reasoning (NLR)). By combining philosophical perspectives and Natural Language Processing (NLP), Yu 85 

et al. (2023) define NLR as “a process to integrate multiple knowledge to drive new conclusions about the 86 

(realistic or hypothetical) world”, which is different from memorizing or providing first-hand information. 87 

From a task-based view, natural language reasoning is seen as a crucial method for LLM agents to arrive at 88 

reachable solutions based on available information (Yu et al., 2023). Recently, some researchers have argued 89 

that specially-designed LLM agents are capable of generating research ideas that exceed human experts in 90 

novelty (Si et al., 2024) and manifest the ability to automate open-ended scientific discovery (Lu et al., 91 

2024).  92 

Although a fundamental mechanism underlying LLMs is predicting the “next word”, which lacks active 93 

reasoning or genuine creativity, the emergent capability of LLM agents in finding solutions based on 94 

available information through NLR presents the potential to mimic human behaviour in complex policy-95 

making scenarios. Conversely, if LLMs are used without sufficient understanding or interpretation, they can 96 

act as amplifiers of biased or erroneous data, uninformative ‘black box’ models or distractions from more 97 

useful approaches.   98 
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In this paper, we explore a novel application of LLMs to represent the behaviours of public policy 99 

institutional agents in a large-scale, agent-based model of the land system. We seek to represent the decision 100 

processes of policy agents through LLM simulations that are constructed through the support of a human 101 

operator. We design a set of LLM-powered institutional agents and couple them with the CRAFTY land use 102 

model (Murray-Rust et al., 2014). CRAFTY serves as an uncertain, dynamic environment where 103 

institutional agents use limited information to achieve a well-defined policy goal by employing strategic 104 

policy actions that influence land users’ decision-making. The institutional agents’ performance and 105 

behavioural patterns are evaluated and analysed and the reasoning behind a sequence of selected policy 106 

actions is investigated in detail. The overall purpose is to explore the opportunities and challenges of LLM 107 

in modelling policy institutions beyond existing (albeit limited) approaches.  108 

2. Methodology  109 

2.1 Human-operator-centred prompt development 110 

In contrast to conventional approaches that hard-code agents’ behaviours, an LLM-powered agent operates 111 

based on prompts given in natural language. The efficacy of an LLM in a simulation hinges critically on the 112 

quality of the LLM and the prompts employed. The quality of an LLM itself is largely dependent on the 113 

LLM’s providers. LLM end-users mainly leverage prompts to communicate with and instruct the LLM to 114 

achieve specific goals. Although a prompt is simply a user input that an LLM is expected to respond to, 115 

creating an effective prompt template is an intricate process, particularly when integrating LLM-powered 116 

agents into specialized simulation environments. A wide array of prompting techniques has been developed 117 

aimed at utilising the full potential of LLMs. These include zero-shot prompting (providing no examples in 118 

the prompt to guide the model's output) (Radford et al., 2019), few-shot prompting (using a few examples 119 

to help the model understand the task) (Brown et al., 2020), and Chain-of-Thought (CoT) prompting (Wei 120 

et al., 2022). CoT is a crucial technique that enhances LLM reasoning by instructing LLMs to produce step-121 

by-step reasoning, leading to numerous variants, such as Automatic Chain-of-Thought (Zhang et al., 2022), 122 

Logical Chain-of-Thought (Zhao et al., 2023), and Tree-of-Thoughts (Yao et al., 2024) (for a comprehensive 123 

overview of prompting techniques, see the survey Sahoo et al. (2024)). 124 

While these techniques are effective in guiding LLM outputs, there remains a significant gap in the literature 125 

regarding prompt design tailored for integration with existing simulation systems. In such systems, LLMs 126 

often process dynamically updated inputs that evolve over time. This dynamic nature can cause variations 127 

in model performance, making it more challenging for developers to refine prompts efficiently. 128 

The framework proposed in this paper addresses this challenge by offering a systematic approach to 129 

designing prompts specifically for LLM agents integrated with existing programmed systems. This 130 
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framework can incorporate existing prompting techniques and enable modellers to streamline prompt 131 

refinement in response to dynamic inputs. 132 

As shown in Fig. 1, ourOur methodology for prompt development encompasses a four-stage process: 133 

Discovery, Drafting, Fake-Loop Testing, and Real-Loop Testing, in which the LLM is supported by 134 

continuous engagement and refinement by a human operator. 135 

a. Discovery: Prompt engineering is a rapidly developing area and a wide range of useful prompt templates 136 

have now been developed and published for various purposes. The initial phase is dedicated to 137 

comprehensive research, including reviewing relevant literature and online searches for existing 138 

templates that might align with the simulation needs. Owing to the unique aspects of the simulation 139 

model presented here, finding a fully formed template was not possible. However, valuable insights and 140 

components can often be gleaned during this phase. For instance, few-shot learning (Brown et al., 2020) 141 

and chain-of-thought (Wei et al., 2022) are both useful and generalizable prompt techniques that can 142 

serve a variety of purposes.  143 

b. Drafting: If a suitable pre-existing template cannot be found, the next step is to construct an initial draft. 144 

This draft must clearly describe the tasks to be performed by the LLM. Utilising tools powered by 145 

LLMs, such as ChatGPT, to improve promptsUtilizing ChatGPT as a drafting tool has the advantage of 146 

its extensive pre-training data that may encompass a broad range of prompting techniques and high-147 

quality prompt templates. Nonetheless, the outputs generated by ChatGPT LLMs must undergo rigorous 148 

examination and iterative refinement by the human operator to ensure alignment with the simulation 149 

objectives. 150 

c. Fake-Loop Testing: Upon reaching a satisfactory draft, we proceed to the fake-loop test. This stage is 151 

particularly beneficial when running actual simulation models is resource-intensive. Fake-loop test is 152 

similar to the “mocking” technique in Object-Oriented Programming (OOP) (Xiao et al., 2024). Instead 153 

of running real simulations, it mimics the behaviour of an actual simulation. Here, simulated data—154 

crafted by experts familiar with the simulation model—serve as a stand-in for simulation outcomes, 155 

allowing for assessment of a prompt without the need for running an actual simulation. This enables 156 

swift identification and rectification of issues within the prompt. 157 

d. Real-Loop Testing: Successful fake-loop testing paves the way for the real-loop test, which entails the 158 

integration of the LLM with the actual simulation model. However, challenges may arise, such as 159 

outputs that disrupt the simulation due to formatting errors, necessitating a restart. To mitigate such 160 

setbacks, a Human-in-Loop (HIL) approach is used during the real-loop testing phase to enhance the 161 

prompt template’s robustness and reliability. 162 
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 163 

Figure 1     The operational flowchart of human-operator-centred prompt development 164 

Through this structured approach, we refined the integration of LLM-powered agents within the simulation 165 

framework, ensuring that the prompt design was not only effective but also adaptable to the dynamic nature 166 

of real-world simulations. 167 

2.2 Applying Human-in-Loop (HIL) design to a real simulation 168 

Incorporating a HIL approach in the real-loop testing phase offers substantial benefits, enhancing 169 

interactivity and adaptability, which can lead to significant time and cost savings throughout the 170 

development process. As depicted in Fig. 2, the process commences with an initial prompt template as input 171 

to the LLM model. This template includes foundational information for the LLM and placeholders for 172 

dynamic updates. Upon processing this input, the LLM formulates a policy proposal. 173 

At this juncture, a human operator is required to assess the LLM’s output for its rationality and formatting. 174 

Should the output fall short of expectations (e.g., misunderstanding the tasks, illogical output or inaccurate 175 

formatting), the operator marks a Boolean variable as false, signifying the proposal’s rejection. 176 

Accompanying this action, the operator provides feedback intended to refine subsequent responses from the 177 

LLM. For instance, the LLM agent may misunderstand its objective and propose actions that are not 178 

considered in the land use model. The operator can leave a comment to emphasize its objective and the 179 

boundary of action space it should focus on. This commentary, alongside the original LLM proposal, is 180 

woven into a dialogue that iteratively informs the prompt’s evolution. 181 

The dialogue between the LLM and the operator is preserved in the agent’s “memory”, ensuring that the 182 

LLM’s learning is cumulative and contextually aware. The actionable part of the LLM’s final, operator-183 

confirmed proposal is then extracted and incorporated into the simulation model. This model represents the 184 
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institutional environment within which the agent operates, and it generates outcomes based on the agent’s 185 

actions. These outcomes, in turn, become part of the feedback loop, informing the agent’s proposals in the 186 

subsequent iteration. This model represents the environment (such as the CRAFTY land use model) within 187 

which the agent operates. The model reacts to the agent’s actions and produces data that in turn become part 188 

of the feedback loop, informing the agent’s proposals in the subsequent iteration. 189 

This HIL process is crucial for maintaining a dynamic and responsive testing environment, where human 190 

expertise plays a pivotal role in guiding the LLM to generate proposals that fit with the constraints of the 191 

task and the simulation to be coupled with. The HIL design can serve multiple objectives. Primarily, it 192 

leverages human examination to promptly identify and correct any issues with the LLM’s responses. For 193 

instance, if the LLM misunderstands its instructions, a human operator can clarify the error via comments 194 

without halting the entire simulation. This capability is useful, especially in the initial stages of simulation 195 

when the prompt template may not be fully refined. It allows operators to observe a broader range of 196 

responses from the LLM, accumulating insights that are instrumental in subsequent prompt refinement. 197 

 198 
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 199 

Figure 2    Human-in-loop (HIL) design applied to a running simulation model. In the Human-LLM Agent 200 
Loop, the LLM agent interacts with the human operator, while in the LLM Agent-Environment Loop, the 201 
LLM agent exchanges information with the programmed model such as the CRAFTY land use model. 202 

 203 

A simple illustrative case is when the LLM generates a satisfactory proposal that fails to meet specific 204 

formatting requirements. An operator can guide the LLM by commenting, “Your proposal is plausible, but 205 

it needs to be formatted as follows...”. Should the LLM continue to underperform after several interactions, 206 

the operator has the option to instruct the LLM to output a predefined result, bypassing a complete 207 

simulation restart. This approach not only salvages the current simulation run but also garners additional 208 

data, enriching the prompt engineering process post-simulation. A comparison of the initial prompt draft 209 

and the final version can be found in Supplementary Information. 210 

2.3 Integration with the CRAFTY land use model 211 

CRAFTY is an agent-based modelling framework designed for simulating large-scale, land use change 212 

(Blanco et al., 2017; Brown et al., 2018; Murray-Rust et al., 2014). The framework mimics land use 213 

dynamics arising from the competition between, and strategic decisions of, different land users. The land 214 

users, represented by agents in CRAFTY, either individually or collectively, contribute to generating a 215 
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diverse range of ecosystem services, utilizing various forms of natural capital, which represent the 216 

productive potential of the land and socio-economic capitals that represent the context within which agents 217 

make decisions. The land user agents within the model are categorized into discrete Agent Functional Types 218 

(AFTs) (Arneth et al., 2014). This categorization is based on several criteria, including the intensity of land 219 

management and the characteristics of the agents’ decision-making processes. Key factors in this 220 

categorization encompass the degree to which profit generation is prioritised and their tendency to conserve 221 

land. The basic model framework is described in Brown et al. (2018). This study uses a newly-developed 222 

emulator of the CRAFTY_EU application (Brown et al., 2019; Brown et al., 2021) that allows for rapid and 223 

easily-adaptable simulations to be performed (see Supplementary Information for the emulator design and 224 

its output comparison with the main CRAFTY model). .  225 

Here, the CRAFTY model is coupled with the LLM-powered-institutional agents that employ policy 226 

instruments to influence the land users’ decisions on ecosystem service production. Figure 3 illustrates the 227 

model processes encompassing the eight six steps that were implemented here: 228 

1)   CRAFTY was initialized by establishing the distribution of AFTs, capital maps, and demand parameters 229 

according to a specified Representative Concentration Pathway (RCP) (Van Vuuren et al., 2011) and 230 

Shared Socioeconomic Pathway (SSP) (O’neill et al., 2014) of climate change and socio-economic 231 

change scenarios, respectively (see Supplementary Information for more information).. 232 

2) The institutional agents were initialized by defining policy types and policy goals. For LLM agents, 233 

these were prescribed in their prompts.  234 

3) Data were collected from CRAFTY to capture the internal dynamics of the land use system. 235 

4) Policies were adapted based on system observations, institutional evaluation and deciding on policy 236 

adjustments. If adaptation was necessary, the LLM agent suggested new policy actions. In the absence 237 

of adaptation, existing policies were maintained. 238 

5) Policies were applied in the land use system (by changing the CRAFTY input for a specific iteration). 239 

6) The objectives were evaluated by assessing whether the desired outcomes were achieved. If objectives 240 

were met, the process was concluded; if not, the cycle returned to Step 3 for further observation and 241 

adjustment. 242 

3) Data, such as ecosystem service supply, demand, and the gaps between them, were collected from 243 

CRAFTY to capture the internal dynamics of the land use system. 244 

4) Determining whether it was time for policy adaptation. This procedure was necessary to account for 245 

time lags in policy-making (Brown et al., 2019b). If it was time for policy adaptation, the process 246 

proceeded to step five; otherwise, existing policies were maintained. 247 

5) Policies were adapted based on system observations, institutional evaluation and deciding on policy 248 

adjustments as guided by the prompts. The LLM agent suggested new policy actions.  249 
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6) Policies were applied to change the utility of AFTs. 250 

7) CRAFTY processed with the AFTs under policy influence. 251 

8) Check whether the stopping condition (e.g., maximum iterations) was met; if not, the cycle returned to 252 

Step 3 for further observation and adjustment. 253 

 254 

 255 
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 256 

Figure 3 Coupling CRAFTY with LLM-powered institutional agents 257 

2.4 Experimental settings 258 

While CRAFTY considers a wide range of ecosystem products and services, the exploratory experiments 259 

presented here focused on a single ecosystem service, meat production, under the influence of institutional 260 

agents. Meat production has significant environmental impacts: it is a major contributor to deforestation, 261 

biodiversity loss and is the single most important global source of methane. Yet meat consumption continues 262 

to increase globally each year (Godfray et al., 2018), hence the plausibility ofdesire for policy interventions. 263 

A powerful economic incentive for changing consumption patterns is the implementation of meat taxes. 264 

Here, we assign the LLM-powered institutional agent the task of regulating meat supply through taxation, 265 

with the objective of aligning supply with a predetermined level. Although this task appears simple it 266 

presents significant challenges in terms of offsetting the impact of increasing demand for meat, dynamics 267 

with other connected ecosystem services, and the land use system not being fully known to the agent.  268 

We designed six types of agents, including two non-LLM agent types, to conduct numerical experiments. 269 

The specifics of these agent types are given in Table 1. The prompts for the LLM-powered agent types are 270 

given in Appendix A. The LLM used here was gpt-4-1106-preview. All LLM agents were provided with 271 

two series of historical data for their decision-making: the gap between meat supply and the policy goal 272 

(‘average errors’), and policy actions that were implemented. To mitigate linguistic confusion, the policy 273 
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actions are simplified into a finite space of eleven tax change levels, represented by integers ranging from -274 

5 to 5 to indicate different magnitudes of tax changes. The relevant equations and computations are given 275 

in Appendix B. The source code and relevant data are available at (Zeng, 2025a, b). 276 

Table 1   Agent types included within the experiments and their corresponding features  277 

Agent 

types 
Key features Description 

 

B1 
• Baseline agent; 

• Not powered by LLM; 

• Does nothing. 

The role of Agent B1 in the simulation is equivalent to the 

absence of an institutional agent, mirroring the baseline 

scenario without any policy intervention. 

 

B2 
• Baseline agent; 

• Not powered by LLM; 

• Policy optimizer. 

Compared with B1, B2 is another extreme. B2 conducts a 

sequence of policy actions derived from a genetic algorithm 

that seeks optimal actions (see Supplementary Information 

for implementation and setup details).   

 

S1.1 
• Single agent;  

• Powered by LLM; 

• Outputting reasoning prior to 

final policy actions;  

• No experiential learning.  

S1.1 makes decisions based on the historical data provided 

but with no experiential learning, to ensure that reasoning is 

clear and non-iterative, and therefore easy to interpret.  

 

S1.2 
• Single agent; 
• Powered by LLM; 

• Outputting final policy actions 

prior to reasoning; 
• No experiential learning. 

S1.2 operates as S1.1 with the exception of the order in which 

its actions and reasoning occur. This variation is investigated 

because the output sequencing is found to significantly 

impact the institutional agent’s performance.  

 

S2 
• Single agent; 

• Powered by LLM; 

• Output reasoning prior to final 

policy actions; 

• Using experiential learning to 

enhance decisions. 

S2 should mimic human decisions more accurately than S1.1 

and S1.2 as its prompt incorporates a summary of its 

previous outputs for experiential learningas it uses 

experiential learning. This means that the agent produces 

substantially more textual output to explain its decision-

making.  

 

Q 
• Quasi-multi-agents with five roles 

involved in decision-making; 
• Powered by LLM; 

• The five roles include policy 

analyst, government official, 

economist, meat producer 

representative, and 

environmentalist; 
• Output a conversation among five 

roles prior to policy actions; 
• No experiential learning. 

Unlike traditional multi-agent systems where each role is 

modelled as a separate entity, quasi-multi-agents employ 

LLMs to simulate a cohesive dialogue among these roles. 

This methodology avoids the difficulty in explicitly 

arranging the order in which agents act and setting criteria to 

end a conversation, saving time and token cost. This 

methodology avoids the difficulty in sequencing the roles, 

and conversation endpoint setting, but saves time and token 

cost. 

 278 

To better illustrate the performance and behavioural patterns of the LLM-powered institutional agents, we 279 

used Agent B1 and B2 to set up two baseline scenarios. The first baseline scenario reflects the simulation 280 

without policy interventions; while the second used a genetic algorithm to seek optimal policy interventions 281 

in which meat supply follows the prescribed target supply level. The genetic algorithm searches for a 282 

sequence of policy actions that minimize the sum of squared average errors (gaps between meat supply and 283 

Formatted Table
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the target level) across all the iterations in a simulation. These two baseline scenarios therefore give idealized 284 

limits within which subsequent simulations can be situated.  285 

3. Result analysis  286 

3.1 Baseline scenarios  287 

Figure 4 depicts meat demand (red arrowed line) and supply (blue solid curve) without policy intervention. 288 

Initially, the meat supply mirrors the rising demand, exhibiting only minor fluctuations. The data spans 71 289 

years, from year 0 to year 70, with additional simulation years extending beyond this period using the same 290 

input data as in the 70th year. This extension allows us to observe the agent’s performance in a relatively 291 

stable environment without being influenced by the evolving meat demand. The policy goal, depicted as a 292 

dashed horizontal line, is to maintain meat supply at its initial level, challenging the agent to use taxation as 293 

a tool to minimize the discrepancy between actual output and this target. In reality, both policy objectives 294 

and market demands are crucial for balanced policy-making. However, for this experiment, the policy goal 295 

was intentionally set at an unrealistic level to exert additional pressure on the agent. In contrast to the 296 

scenario without policy intervention, the orange solid curve green solid curve represents the resultant meat 297 

supply under the optimal policy interventions.  298 

 299 
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 300 

Figure 4   Changes in meat demand and supply without policy intervention. The policy goal (dashed 301 
horizontal line) is to maintain constant meat production. Fluctuations in supply are due to a lack of 302 

simulated behaviour affecting individual land manager agents’ responses. The unit of the vertical axis is 303 
omitted by normalization across different ecosystem services (Brown et al., 2019a). 304 

 305 

To visualize the agents’ behaviours and corresponding outcomes, we use plots with dual vertical axes that 306 

simultaneously reflect the variation in the policy actions and in the average errors in the two baseline 307 

scenarios:   308 

Baseline Scenario 1: Agent B1 With No Policy Intervention. This scenario is depicted in Fig. 5a. It shows 309 

the average error in meat output relative to the policy goals (left axis) and the absence of policy actions 310 

taken by the institutional agent (right axis). It is worth noting that the average error in Fig. 5a is essentially 311 

a re-presentation of that in Fig. 4. The average error is calculated as “policy goal minus meat supply”. The 312 

average error trend reveals an increasing divergence from the policy goals, peaking at around the 70th year. 313 

After this period, the error rate stabilizes, reflecting a system in its steady state without further input updates.  314 

Baseline Scenario 2: Agent B2 With Optimal Policy Actions. Contrasting the first, the second scenario, 315 

shown in Fig. 5b, adopts an approach based on optimization. Here, the policy actions vary significantly over 316 

time, representing dramatic annual changes that are unlikely to represent real-world policy-making. 317 

However, the curve representing the average errors exhibits an evident tendency to closely follow the 318 

horizontal axis, indicating the efficacy of these policy actions.  319 

3.2 Performance of the LLM agent types 320 

3.2.1 Performance of Agent S1.1 321 

Figure 5c shows the performance of institutional Agent S1.1. Compared with Agent B1 without policy 322 

intervention, S1.1 has a notable impact on meat supply. The average error peaks between -120% and -100% 323 

in the 70th year, in contrast with approximately -140% for the baseline scenario without policy intervention. 324 
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A noticeable significant difference occurs after the 70th year. The average error approaches zero steadily, 325 

indicating that institutional Agent S1.1 has at that point in time found effective policy actions to achieve the 326 

policy goal. The policy actions taken by S1.1 are generally understandable. Initially, the meat supply is 327 

slightly below the policy goal, resulting in a positive average error. S1.1 chose to incrementally decrease 328 

the tax. When meat supply increases (driven by increasing demand, which the institutional agents are 329 

unaware of), S1.1 started to maintain or increase the tax (in contrast to the optimizing Agent B2, which 330 

chose policy actions that fluctuated irregularly). Starting from the fourth policy action, all the following 331 

policy actions are non-negative, suggesting the agent might be making plausible moves because a higher tax 332 

is needed to counterbalance the oversupply of meat. The sudden drop in tax change at the eighth policy 333 

action seems unintuitive. The reason behind this is discussed in Sect. 3.3.  334 

 335 
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Figure 5 The average error in meat output relative to policy goals and the policy actions taken by the 336 
institutional agents (defined in Table 1). The average error is calculated as policy goal minus meat supply. 337 

Negative average errors indicate oversupply. 338 

3.2.2 Performance of Agent S1.2 339 

Figure 5d shows the performance of Agent S1.2. As described in Table 1, S1.2 uses the same prompt 340 

template as S1.1 but with a small difference in the order of the required output. S1.2 is required to output 341 

the final policy action before giving the rationale behind its decision. As can be seen, the policy actions 342 

taken by S1.2 are much less consistent. S1.2 also performs poorly after the 70th year and is unable to 343 

navigate meat supply towards the objective. We can see the reasoning behind its policy actions, using the 344 

second policy action as an example, which is to increase the tax by two levels when the average error is 345 

positive. As shown in Fig. C1 in Appendix C, it stated in the first sentence of its output that “A moderate 346 

tax decrease could be one approach”, which is a reasonable action to mitigate the current under-supply issue. 347 

However, in the next paragraph, it contradicts this by proposing “+2” for the policy action, indicating an 348 

increase in tax.  This decision was supported by complex reasoning:  increasing tax can filter out inefficient 349 

meat producers and spur meat production technologies, which are better for the long-term sustainability 350 

goal.  In comparison with the output of S1.1, S1.2 seems to provide reasoning in hindsight to justify a 351 

decision made in the absence of such reasoning. Another crucial issue captured in the output text of S1.2 is 352 

that some policy actions are given without a follow-up reasoning. Additionally, the required output format 353 

is often not strictly followed.  354 

3.2.3 Performance of Agent S2 355 

When contrasted with S1.1, S2 exhibits a notably incremental approach to policy actions, as shown in Fig. 356 

5e. The tax level adjustments are mainly minimal, consistent with the smallest possible change. This pattern 357 

of incremental change is initiated from the second policy action and progressively escalates, reaching a 358 

higher intensity towards the simulation’s end. Intriguingly, the policy action sharply reverts to zero in the 359 

final phase, suggesting that S2 reaches a decision to maintain the current tax level, deeming it optimal. This 360 

gradual and deliberate strategy in policy action results in a smoother meat supply curve, effectively meeting 361 

the set policy goal. Such measured and incremental actions align more closely with human decision-making 362 

processes, reflecting the nuanced impact of experiential learning in the scenario.  363 

3.2.4 Performance of Agent Q 364 

Agent Q epitomizes a quasi-multi-agent ensemble, embodying five distinct roles engaged in deliberation 365 

and negotiation (as shown in Table 1). Despite a concerted effort, the average error curve (see Fig. 5f) 366 

indicates that the group’s performance was suboptimal. While the error magnitude was less severe than that 367 

of S1.2, it exceeded that of S1.1 and S2. 368 
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Upon examining the internal dialogues of Agent Q (Table A5 in Appendix A), the sophistication of the LLM 369 

becomes apparent. Each role upholds unique priorities and responsibilities, contributing to a multifaceted 370 

discussion. The discourse typically begins with the policy analyst, who accurately interprets the data and 371 

highlights the supply shortfall relative to demand, reiterating the objective to sustain meat production at 372 

baseline levels. The government official then synthesizes insights from the collective, while the economist 373 

briefly evaluates the fiscal implications of tax adjustments. The meat producer representative and 374 

environmentalist voice their sector-specific concerns and policy preferences. Ultimately, the government 375 

official is tasked with formulating a policy response. 376 

Although Agent Q’s roles do not collectively achieve the policy goal, they offer an array of believable 377 

stakeholder perspectives—an indispensable aspect that poses a considerable challenge for conventional 378 

modelling approaches. The resulting policy actions reflect the inherent difficulty in harmonizing diverse 379 

interests. Notably, the government official’s actions are characterized by prudence, as evidenced by the 380 

narrow range of policy adjustments, oscillating between -2 and +2, to avoid excessive opposition. This 381 

conservative approach underscores the complexity of policy-making in a multi-stakeholder context where a 382 

balancing act is as critical as the policy decisions themselves. 383 

3.3 Dive into the “brain”Brain 384 

While LLM models are often perceived as opaque, LLM-powered agents can offer the compelling ability to 385 

articulate human-comprehensible reasoning for their actions, providing a window into the decision-making 386 

processes that drive their behaviour. Such transparency is not only instrumental in validating the agents’ 387 

credibility but also serves as a source of inspiration for enhancing institutional models and informing real-388 

world policy decisions. One of the challenges, however, lies in the voluminous textual output generated 389 

when these agents are integrated with simulation models—making it impractical to display and analyse 390 

systematically. 391 
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 392 

Figure 6    Selected key policy actions executed by Agent S1.1.  393 

To navigate this, we concentrate on a subset of the data that offers significant insights. Specifically, we have 394 

distilled the textual output down to five key policy actions executed by Agent S1.1, focusing on the rationale 395 

that underpins these decisions. Agent S1.1 is selected here because, in general, it demonstrated believable 396 

actions yet its reasoning is less history-dependent, which makes it easier to interpret through an in-depth 397 

investigation of the large volume of textual output. This investigation provides a valuable glimpse into the 398 

“thought processes” of the institutional agent. Figure 6 marks these pivotal moments, numbered using 399 

Roman numerals from I through V, allowing us to dissect and understand the logic applied at each juncture. 400 

Action I: How did the agent reason with insufficient information? 401 

The initial policy decision by an institutional agent is often the most challenging due to the lack of historical 402 

data. Detailed in Fig. C2 in Appendix C, the agent begins its reasoning by acknowledging this. The agent 403 

then turns to foundational economic principles to guide its decision-making process, aligning with the policy 404 

goal. The agent outlines the economic theory underlying the use of taxation to influence meat production 405 

levels before delving into the specifics of the policy action required. It considers the industry’s response 406 

time to policy changes and the potential for overreaction. After weighing these factors, the agent chose a 407 

conservative approach, adjusting the tax by a moderate “-2”. This decision reflects a strategic balancing act: 408 

it is cautious to mitigate the risk of radical industry reactions, yet still steers towards the policy goal.  409 

Action II: How did the agent deal with the first overshoot? 410 

Following a period of increased taxation, the institutional agent observed an overshoot in meat supply 411 

relative to the policy target. The agent conducted an analysis to identify the cause of this discrepancy. It 412 

concluded that the overshoot was a result of its earlier decision to reduce the tax by three levels. From the 413 
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modeller’s perspective, it is apparent that the primary driver of the overshoot was the rapidly increasing 414 

demand, rather than the tax adjustment, but the agent is not aware of this fact. Given the limited data 415 

available to the agent, its attribution, while inaccurate, is understandable. 416 

As shown in Fig. C3 in Appendix C, in response to this perceived causation, the agent selected a conservative 417 

corrective measure, implementing a modest tax increase of “+1” to rectify the minor discrepancy. 418 

Interestingly, the agent seemingly confuses the policy goal of maintaining supply levels with an 419 

erroneousthe objective of matching supply to demand. This confusion likely stems from the stochasticity 420 

inherent in its generative response and the data with which it was provided. During the development of the 421 

prompts, we observed the agent’s recurring misunderstanding of the objectives. To prevent further confusion 422 

and to streamline the agent’s decision-making, we intentionally omitted demand information from the 423 

prompts. This decision highlights the challenge in prompt engineering, where the inclusion or exclusion of 424 

specific data points can significantly influence the agent’s understanding and subsequent actions. 425 

Action III: How did the agent explain this counter-intuitive action? 426 

The third highlighted decision point presents a somewhat counterintuitive choice by the institutional agent, 427 

especially in the context of the rapidly expanding average error. Logic would suggest that the agent should 428 

further increase the tax to mitigate the excess in meat supply overshooting the policy target. However, as 429 

detailed in Fig. C4 in Appendix C, the agent opted to maintain the current tax level. This decision was based 430 

on its assessment that the market required more time to fully respond to its previous significant policy action 431 

of a “+3” tax increase. 432 

This approach reflects the agent’s consideration of the time lag inherent in market reactions to policy 433 

changes. The decision to hold steady on the tax rate, rather than implement further increases, was informed 434 

by the understanding that the “+3” adjustment was the most substantial move it had made since the 435 

simulation’s inception. The agent’s choice to allow the market time to adjust to this major policy shift, rather 436 

than immediately introducing another change, indicates a level of strategic foresight.  437 

Action IV: What led the agent to change its action? 438 

After a period of maintaining a consistent tax level, the institutional agent made a notable change, increasing 439 

the tax by two levels. As detailed in Fig. C5 in Appendix C, this decision appears to stem from the agent’s 440 

growing suspicion that factors beyond the scope of its existing data and prompt instructions were influencing 441 

the market dynamics. Although this suspicion is speculative, it is a plausible consideration given the 442 

complexity of the land system it is dealing with, and was actually correct in this case.  443 

However, the agent’s analysis reveals a misinterpretation of the cause-and-effect relationship in the data. It 444 

mistakenly attributed the increasing average error to its prior decisions to raise taxes. While the data shows 445 
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a negative correlation between tax increases and the average error, it is illogical to speculate that the tax 446 

hikes are solely responsible for exacerbating the situation. This misattribution stands in contradiction to the 447 

agent’s subsequent decision to further increase the tax.  448 

Moreover, by examining the agent’s reasoning, one can notice the rationale provided by this agent is 449 

muddled. While the decision to increase the tax could be seen as a logical response to the perceived need 450 

for corrective action, the reasoning process the agent employs lacks clear logical coherence. This disconnect 451 

between the agent’s final decision and its reasoning highlights potential areas for improvement in the agent’s 452 

decision-making framework and the prompts that guide it.  453 

Action V: What made the agent brake? 454 

Action V represents a proactive approach. Upon reviewing the outcomes of its recent actions and the 455 

corresponding fluctuations in the average error, the agent acknowledged the effectiveness of these measures. 456 

Recognizing the potential risks associated with overcorrection, especially given that its most recent policy 457 

involved the maximum possible increase in tax, the agent proceeded with caution. 458 

In its decision-making process, as outlined in Fig. C6 in Appendix C, the agent carefully weighed the 459 

implications of further tax adjustments, comparing the potential outcomes of increasing the tax by +2, +3, 460 

and +4. Eventually, it settled on a +3 increase, which maintains the increasing trend of tax but at a slower 461 

pace, akin to a driver slowing down when the destination is close.  462 

This reasoned and well-articulated approach in Action V notably contrasts with the less coherent rationale 463 

observed in Action IV. This disparity in the quality of reasoning between Action IV and Action V implies 464 

a key characteristic of LLM-powered agents: their performance can be variable and somewhat 465 

unpredictable. While Action V reflects a higher level of analytical sophistication and logical consistency, 466 

the inconsistency in performance across different iterations highlights the challenges in achieving stable and 467 

reliable outputs from LLM-powered agents. This variability points to the ongoing need for refinement and 468 

development in the application of LLMs in complex decision-making contexts. 469 

4. Discussion 470 

The experiments presented here reveal that LLM-powered agents, representing institutional decision-471 

makers, display a spectrum of behaviours and reasoning processes that closely resemble human decision-472 

making. These behaviours emerge naturally, unscripted by modellers, and encapsulate complex aspects of 473 

human cognition, which are traditionally challenging to simulate. At the same time, inconsistencies in 474 

decision-making within and between agents suggest specific challenges (as well as solutions) for the future 475 

use of LLM agents in this domain.   476 
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In our experiments, LLM-powered institutional agents are able to move modelled outcomes towards their 477 

objectives, but do so less well than an agent powered by an optimizing genetic algorithm. These results align 478 

with our expectations, especially given the bounded rationality and imperfect information available to the 479 

LLM. Among agents, we find that the ability to learn from past experience improves outcomes, as does, 480 

unexpectedly, a requirement to provide reasoning before making a decision. When this order is reversed, 481 

actions are found to be inconsistent with the reasoning provided, which aligns with previous research that 482 

found the order of prompts prominently affects the performance of pre-trained language models (Lu et al., 483 

2021). the post-hoc reasoning provided, suggesting that decisions in this case are made according to opaque 484 

internal mechanisms that the LLM does not explain in its spurious justifications. 485 

In this study, we used GPT-4, which is a generative language model. Generative language models can be 486 

simply deemed as textual completion machines; they require prompts to initialize the context guiding their 487 

textual output, and newly generated texts add to the context for further output. That is, a generative language 488 

model uses its output to continuously update its context (Goldstein et al., 2022). Therefore, the order of 489 

output does matter. One can confirm this by asking ChatGPT-4 a simple question: “Is 3 75% of 4?” This 490 

question elicits an incorrect answer, followed by an admission of confusion and a correction (Fig. C7 in 491 

Appendix C). If asked to give reasoning (“Is 3 75% of 4? Give your reasoning before answering”), the 492 

response is correct (Fig. C8). This finding is consistent with the idea of chain-of-thought, which contends 493 

that a generative language model performs better if it outputs answers step by step (Wei et al., 2022). The 494 

step-wise output not only represents the outcomes but also a way of context building. A prompt might only 495 

work as an initial trigger, but the generative language model needs self-prompting to complete the response 496 

appropriately.  497 

Although the textual completion functionality seems artificial, it is intuitively consistent with how humans 498 

behave. It is normal for a human to have an illusion of understanding an issue until being required to 499 

articulate or explain that issue to others, or to recognize logical gaps during verbal explanations (Ericsson 500 

and Simon, 1998; Keil, 2006). In other words, we need to properly prompt our neurons to give appropriate 501 

output. This does not imply anything more than superficial similarity in the behaviours of people and LLMs 502 

(Fokas, 2023) – and this superficial similarity can easily mislead – but it does add interest to the use of 503 

LLMs as agents in simulation models. 504 

Further interest is provided by our experiment with the multi-faceted ‘Agent Q’. While performing less well 505 

than others in achieving its policy goal, this agent generated contextually coherent conversations between 506 

five critical policy-relevant roles. The conversation captures each role’s characteristics and interests, 507 

particularly demonstrating the policymaker struggling to balance the interests of the meat producer and the 508 

environmentalist. It should be noted that the setup of Agent Q reflects a political system modelled on broadly 509 
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European Union (EU)-like democratic systems, which may not be generalisable to regions where political 510 

power is highly centralised. Agent Q is a group of quasi-multi-agents. Quasi here means the agents are 511 

different from real multi-agents each of which has an independent and relatively complete cognitive system. 512 

Several studies have applied LLM to multi-agent systems, where each agent has an independent cognitive 513 

system. For instance, Park et al. (2023) built an artificial village consisting of 25 LLM-powered villager 514 

agents; Qian et al. (2023) simulated a software development team with different roles. Agents in such multi-515 

agent systems have different personalities, targets, memories, etc., which together form a unique prompt 516 

triggering their responses. Such systems are convenient for LLMs to generate short conversations 517 

conversions between a pair of agents, but can become cumbersome for conversations involving more than 518 

two agents. As above, the order of text generation can affect performance in an LLM, and numerous equally-519 

valid orders are possible communicating in a group conversation, possibly leading to open-ended outputs. 520 

Our use of quasi-multi-agents hands control to the LLM, saving time and token fees. 521 

Besides investigating the quantitative performance of the agents, we also qualitatively analysed output of 522 

Agent S1.1, which made decisions after providing reasoning and without learning from experience. This 523 

analysis is a unique opportunity that conventional methods cannot provide. Agent S1.1 was found to eschew 524 

drastic changes, instead opting for a series of cautious, incremental steps aligned with the principles of 525 

incrementalism — a well-known theory in political science (Pal, 2011), which posits that policymakers often 526 

employ heuristics and make modest, tentative changes to gradually achieve policy objectives.  a well-known 527 

theory in political science that describes policymaking processes under cognitive and resource constraints 528 

(Lindblom, 2018). Incrementalism posits that policymakers often employ heuristics and make modest, 529 

tentative changes to gradually achieve policy objectives (Pal, 2011), reflecting an important aspect of 530 

policymaking in real-world scenarios (e.g., environmental regulations (Coglianese and D'ambrosio, 2007; 531 

Fiorino, 2006; Kulovesi and Oberthür, 2020) and budgeting (Greenwood et al., 2022; Hammond, 2018; 532 

Seal, 2003)). Compared with Agent B2, the “policy optimizer”, the behaviour of Agent S1.1 more closely 533 

resembles human decision-making, characterized by bounded rationality (Jones, 2002, 2003; Simon, 1990).  534 

In addition, Agent S1.1 exhibits an acute awareness of the time lags inherent in the land use system’s 535 

response to policy shifts. It strategically maintains a consistent tax rate, allowing time for the system to adapt 536 

and provide feedback—a practice mirroring real-world institutions, which typically avoid frequent policy 537 

changes to accommodate the time required for land users to adjust to new policies. Additionally, the agent 538 

demonstrates an understanding of the diminishing returns associated with taxation, a critical consideration 539 

in economic policy. As the policy objective nears realisation, Agent S1.1 judiciously reduces tax increment 540 

levels to mitigate potential over-adjustment. This action reflects a proactive and adaptive approach that 541 

resembles that of real-world policymakers sufficiently closely to provide meaningful information to model 542 

users. 543 
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4.1 Opportunities 544 

LLMs are an unprecedented powerful approach to modelling institutional agents and provide a number of 545 

opportunities.  546 

Believable naturalistic institutional decision-making. Recent research has demonstrated that LLM-547 

powered agents can manifest believable behaviours (Horton, 2023; Park et al., 2023; Qian et al., 2023). Such 548 

a feature is derived from LLMs’ unique advantages in dealing with natural language, which is a crucial 549 

aspect of human behaviour. One could expect that LLM-powered institutional agencies would not only 550 

replicate the human aspect of real-world institutional agencies but also offer a transparent and 551 

understandable way to examine how these modelled institutions make their decisions, as well as how their 552 

believable behaviours impact the land system.  553 

Working with massive official documents. Although not demonstrated in this research, it is noteworthy 554 

that LLMs are particularly adept at dealing with massive textual materials. Combined with Retrieval 555 

Augmented Generation (RAG), LLMs can generate output based on a user’s database. Given that there exist 556 

considerable amounts of textual materials regarding policies, regulations, laws, and other institutional 557 

interventions, LLM-powered agents can inform their behaviours to an extent unmanageable using 558 

conventional methods.  559 

Teaching instead of training LLMs to think. Another potential application of LLMs is to teach LLM-560 

powered agents to decide in ways that we want to investigate. Since LLMs can respond to prompts 561 

effectively, modellers together with stakeholders can teach the agents to make decisions. The teaching 562 

process could be embedded within the HIL framework developed in this research.  Beyond troubleshooting, 563 

the HIL design can facilitate user engagement in teaching, participating, or even steering the simulation 564 

narrative by introducing new elements that direct the agent’s subsequent actions. Ultimately, when 565 

integrating formal computational models with LLMs, our HIL design offers enhanced flexibility and user 566 

participation in simulations.  567 

Institutional agent networks. Institutions involved in land use change policy-making are not separate 568 

individuals. Instead, they can form multi-level-multi-centred structures. For instance, González (2017) 569 

identified that the institutional agents involved in the Swedish forestry sector include environmental NGOs, 570 

forest owner associations, research suppliers, and a hierarchical government. Conventional modelling 571 

techniques can hardly handle the interactions between those sub-entities, especially the lobbyists that are 572 

difficult to model using mathematical or computational approaches.  It might be difficult for conventional 573 

modelling techniques, such as rule-based agents, to model the interactions between institutional agents, such 574 

as lobbyists, because their interactions incorporate extensive unstructured information. For example, land 575 

user associations and environmental NGOs may have conflicting advocacies expressed in words, which are 576 
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challenging to formalize using mathematical equations or code. Although we can simplify their interactions 577 

to fit conventional methods, it often involves over-simplification/abstraction. LLM agents provide a 578 

relatively straightforward way to simulate the unstructured information exchange between these actors 579 

(Zeng et al.,2024b).  580 

Human-AI cooperation. In some scenarios, LLMs still face the issue of scalability. The time an LLM takes 581 

to respond and the token fee its response consumes are both barriers to applying LLMs in large-scale 582 

simulations. However, LLMs can serve as decision supporters and give advice in the face of different 583 

situations. Such a decision supporter can also be embedded in the HIL framework, where the LLM-powered 584 

agents are no longer taught to make decisions but cooperate with the modeller to design proper policy 585 

actions. Moreover, modellers can get useful inspiration from this communication, which in turn can benefit 586 

modelling institutions using conventional methods. For instance, the experimental results show that the 587 

institutional agents generally eschew making drastic policy changes and intentionally leave time lags for 588 

existing policies to manifest full influence. These are important factors to consider even if using 589 

conventional modelling approaches. 590 

4.2 Challenges  591 

Notwithstanding the above opportunities, LLMs are not a panacea for social simulation. The scalability of 592 

LLM-powered agents to match the scale of large land use simulations is still a challenge that requires further 593 

exploration. Through this exploratory research, five further crucial challenges have been identified, and are 594 

ranked below according to their manageability, from lowest to highest. 595 

Provider dependency. The reliance on LLM providers presents a critical issue. The performance of an 596 

LLM is largely in the hands of its providers, rather than the users. If an LLM is sub-par, users are compelled 597 

to switch to an alternative or wait for its improvement. The prohibitive costs associated with training and 598 

maintaining a high-performing LLM render it unrealistic for users to independently manage an LLM. This 599 

dependence leads to costs incurred through API usage, which encompasses both the token fee and the 600 

response time. These factors pose substantial obstacles for applications such as large-scale, land-use 601 

simulations. While technological advancements may lead to reduced API costs and shorter response times, 602 

these improvements are contingent on the providers’ efforts and timelines, leaving users with little influence 603 

over these enhancements. Open-source LLMs could be potential solutions to this issue, but they still require 604 

further testing (Chen et al., 2023). 605 

‘Unrealistic realism’ paradox. This paradox arises from the contrast between the goal of simulating 606 

realistic agent behaviours and the necessary simplifications inherent in these models. Large-scale models 607 

are necessarily abstractions that simplify the real world into manageable concepts, yet the integration of 608 

LLM-powered agents aims to infuse these simulations with a layer of human-like realism. The challenge 609 
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intensifies when considering the complexity of educating these agents about the model’s context, either 610 

through extensive prompts or external information retrieval. The dilemma lies in expecting these agents to 611 

exhibit behaviours that resemble those of real humans closely enough to make the modelling worthwhile, 612 

while simultaneously operating within the constraints of a model built on abstracted and sometimes 613 

unrealistic or unknown assumptions. This paradox underscores a critical issue that needs to be tested: how 614 

realistic can LLM behaviour be if unrealistic assumptions are used in its prompts? 615 

‘Unbelievable believability’ paradox. LLMs introduce an effective method for modelling and exploring 616 

the “minds” of social agents. Nonetheless, a notable challenge arises when the primary concern is to relate 617 

emergent outcomes to individual agent interactions. For instance, in modelling the dynamics of 20,000 land 618 

users, the core interest might be in observing the landscape’s evolution over decades, driven by 619 

communicative, cooperating and competing land user agents. However, the numerous textual interactions 620 

between these agents can become excessive and difficult to analyse systematically. Especially when an 621 

agent’s behaviour is driven by experiential learning such as Agent S2 in this research, verifying the absence 622 

of hallucination (Ye et al., 2023) or incoherence in an agent’s reasoning poses a considerable challenge. 623 

There is an inherent irony in utilizing LLMs to endow agents with believable social behaviours, only to be 624 

confronted with the difficulty in assuring their believability.  625 

LLM biases. While the experiments in this paper are not aimed at evaluating LLM biases, it is important to 626 

acknowledge the potential for biases arising from various sources, such as prompt design, pre-training data, 627 

fine-tuning processes, and the underlying mechanisms of the models themselves (Gallegos et al., 2024). 628 

Such biases can impair the models' ability to simulate human behaviour if not handled cautiously. For 629 

instance, using Llama-2 7B, Zhou et al. (2024) explored how these models may inherently prefer certain 630 

responses, exhibit a bias toward the most recent examples in prompts, and show a selection bias when 631 

presented with multiple-choice questions. Moreover, LLMs have exhibited biases in political contexts (Zhou 632 

et al., 2024) and cultural biases (Liu, 2024), such as favouring Western cultural values, as English text 633 

contributes a large part of the training data (Tao et al., 2024). As of now, there is no established method to 634 

completely eliminate these biases. Nevertheless, it might be more insightful for researchers in human 635 

behaviour modelling to identify and scrutinize these biases. This is because biases can reveal underlying 636 

aspects of human cognition (Caverni et al., 1990). As noted in Taubenfeld et al. (2024) and Tao et al. (2024), 637 

it is possible to manipulate these biases by fine-tuning the LLMs or improving cultural alignment through 638 

prompt design. Therefore, future research in human behaviour simulations could gain from precisely 639 

identifying and adjusting LLM biases to align with specific research goals. 640 

Inaccurate formatting. The challenge of formatting is pivotal when integrating LLMs with formal models, 641 

given that LLM outputs are strings. This integration requires precise formatting for proper functioning. For 642 
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example, in the experiments presented here, policy actions are bracketed between hashtags to ease the 643 

extraction of desired outcomes from the output string. Despite clear guidelines, LLM adherence to this 644 

format remains unpredictable. Such formatting inconsistencies can severely disrupt simulations, especially 645 

those requiring multiple iterations, as formal models may fail to recognize incorrectly formatted outputs, 646 

especially given the LLM’s boundless creativity in formatting. These issues could be mitigated by the above-647 

mentioned HIL prompt design approach, standard json JSON format, using data validation libraries (e.g., 648 

Pydantic (2025)), together with a self-reflection mechanism (Renze and Guven, 2024a), or cost-intensive 649 

means such as customized training or fine-tuning. But another approach drawing from software engineering 650 

concepts such as “domain objects” may be more promising: this approach involves deploying an additional 651 

LLM-powered agent dedicated to formatting outputs. This strategy separates ‘domain agents’, which 652 

represent entities within the simulation such as policymakers and NGOs, from ‘technical agents’ responsible 653 

for tasks such as formatting, information extraction, and managing dialogues. However, theoretically, 654 

generative language models seem to have no means to ensure the precision of formatting, unlike computer 655 

programs that ensure data types, which might cause scalability issues in simulations requiring a multitude 656 

of iterations. 657 

Prompt design and error handling. While numerous effective techniques for prompting LLMs have been 658 

proposed by researchers and AI practitioners, crafting effective prompts remains a formidable task, 659 

particularly in the context of social simulations. Unlike traditional coding, prompts offer greater flexibility 660 

but lack safeguards such as syntax or data type checks, which are essential in minimizing errors. When 661 

prompts become lengthy and encompass complex information, it is challenging for users to detect subtle 662 

contradictions. This issue is exacerbated during iterative refinement, where inconsistencies might be 663 

inadvertently introduced. Additionally, the absence of a mechanism akin to exception handling in 664 

programming means that identifying flaws in prompt design relies heavily on laborious human examination. 665 

Reproducibility. In this exploratory research, the focus was on probing the logical consistency of LLM 666 

agents’ outputs and their integration with existing land use models. However, it is worth noting that 667 

stochasticity is an inherent characteristic of LLMs and it might be useful to highlight some challenges in 668 

reproducibility. In principle, to enhance output reproducibility, specific conditions must be met, such as 669 

using a fixed random seed, the same model version and configuration, and identical prompts. Token 670 

sampling temperature is a key hyperparameter that controls the diversity of LLM outputs. A lower 671 

temperature (e.g., 0) increases determinism, while higher temperatures can lead to more diverse but 672 

potentially nonsensical outputs (Peeperkorn et al., 2024). While the model’s outputs may vary across 673 

simulations, they should be statistically reproducible to make meaningful token predictions. This is 674 

supported by Renze and Guven (2024b), which investigated temperature effects on problem-solving 675 
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performance and found no statistically significant performance variability within a wide temperature range 676 

of 0 to 1.  677 

Operational challenges may also emerge during experiments with LLM agents. As to the experiments 678 

presented here, we had to deal with API connection failures that frequently disrupted simulations, 679 

necessitating extra complications in handling failures and resulting in increasing token costs and 680 

unpredictable simulation times. Additionally, large-scale repetitions pose challenges due to API rate limits 681 

imposed by LLM providers, requiring intentional delays between API calls (e.g., see the rate limits of 682 

OpenAI APIs (OpenAI Platform, 2025)). Despite these limitations, the rapid advancement in LLM 683 

technology makes larger-scale simulations with sufficient repetitions increasingly feasible. For example, the 684 

DeepSeek-V3 model (DeepSeek-AI et al., 2024) has removed prescribed API rate limits (DeepSeek 685 

Platform, 2025a) and offers a significantly more affordable pricing structure compared to its competitors 686 

(DeepSeek Platform, 2025b). 687 
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Appendix A: 707 

 708 

Table A1   Prompt for Agent S1.1 709 

 

Simulation Role: Assistant to Economic Policymaker in Land Use Change Scenario. 

 

Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals. 

 

Policy Tools: Taxes for regulating meat production levels. 

 

Information Provided: 
 

1. General Context: As an assistant, propose tax-based policies for meat production management.  

Interaction with policymaker is crucial for refining decisions and enhancing your policymaking. 

 

2. Data: 

   - Policy goal: {policy_goal} 

   - Average error (avg_err):{avg_err}. 

   - Historical policy actions: {hist_actions} 

 

3. Recent interaction with policymaker: {convers} 

 

Guidance for Decision-Making: 
 

- Use historical data and policymaker feedback for policy adjustments. 

- Aim to minimize the absolute value of avg_err.  

- Provide logical, sequential reasoning. 

- Reflect on interactions with policy for current decision enhancement. 

 

Interaction Instructions: 
 

1. Review historical information, recent interactions with policymaker. 

2. Assess the impact of previous policies. 

3. Develop your policy rationale in a step-by-step manner. 

4. Propose a specific policy action. 

 

Required Output Format: 
 

1. Proposal Reasoning: [Your explanation] 

2. Policy Action Proposal Without Reasoning:  

   - Indicate your proposed tax policy change using symbols and numbers. 

   - Use '+' to signify an increase in tax levels, '-' for a decrease, and '0' to maintain the current level. 

   - Accompany '+' or '-' with a number from 1 to 5 to denote the extent of the change, where 1 is 

minimal and 5 is maximal. 

   - Examples: "+3" for a moderate increase, "-1" for a slight decrease.  

   - If proposing to maintain the current tax level ('0'), no additional number is needed. 

   - Surround the proposed action using a pair of hashtags 

    [Indicate your proposal here, e.g., "#+3#", "#-2#", "#0#", ] 

 

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning: 

1. Policy Action Proposal without reasoning: "#-1#" 
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2. Policy Action Proposal without reasoning: "#+3#" 

3. Policy Action Proposal without reasoning: "#-5#" 

 

Note:  
 

Always specify a clear policy action. If uncertain, propose a tentative action based on available data. 

Don’t fake interaction with policymaker if there is no interaction yet. 

avg_err > 0 means meat undersupply, while avg_err < 0 means meat oversupply. 

 

 

 710 

 711 

 712 

Table A2  Prompt for Agent S1.2 713 

 

Simulation Role: Assistant to Economic Policymaker in Land Use Change Scenario. 

 

Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals. 

 

Policy Tools: Taxes for regulating meat production levels. 

 

Information Provided: 
 

1. General Context: As an assistant, propose tax-based policies for meat production management.  

Interaction with policymaker is crucial for refining decisions and enhancing your policymaking. 

 

2. Data: 

   - Policy goal: {policy_goal} 

   - Average error (avg_err):{avg_err}. 

   - Historical policy actions: {hist_actions} 

 

3. Recent interaction with policymaker: {convers} 

 

Guidance for Decision-Making: 
 

- Use historical data and policymaker feedback for policy adjustments. 

- Aim to minimize the absolute value of avg_err.  

- Provide logical, sequential reasoning. 

- Reflect on interactions with policy for current decision enhancement. 

 

Interaction Instructions: 
 

1. Review historical information, recent interaction with policymaker. 

2. Assess the impact of previous policies. 

3. Develop your policy rationale in a step-by-step manner. 

4. Propose a specific policy action. 

 

Required Output Format: 
 

1. Policy Action Proposal Without Reasoning:  

   - Indicate your proposed tax policy change using symbols and numbers. 

   - Use '+' to signify an increase in tax levels, '-' for a decrease, and '0' to maintain the current level. 
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   - Accompany '+' or '-' with a number from 1 to 5 to denote the extent of the change, where 1 is 

minimal and 5 is maximal. 

   - Examples: "+3" for a moderate increase, "-1" for a slight decrease.  

   - If proposing to maintain the current tax level ('0'), no additional number is needed. 

   - Surround the proposed action using a pair of hashtags 

    [Indicate your proposal here, e.g., "#+3#", "#-2#", "#0#", ] 

 

2. Proposal Reasoning: [Your explanation] 
 

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning: 

1. Policy Action Proposal without reasoning: "#-1#" 

2. Policy Action Proposal without reasoning: "#+3#" 

3. Policy Action Proposal without reasoning: "#-5#" 

 

Note:  
 

Always specify a clear policy action. If uncertain, propose a tentative action based on available data. 

Don’t fake interaction with policymaker if there is no interaction yet. 

avg_err > 0 means meat undersupply, while avg_err < 0 means meat oversupply. 

 

 

 714 

 715 

 716 

Table A3   Prompt for Agent S2 717 

 

Simulation Role: Assistant to Economic Policymaker in Land Use Change Scenario. 

 

Objective: Develop tax policies to effectively manage meat production, aligning with set policy goals. 

 

Policy Tools: Taxes for regulating meat production levels. 

 

Information Provided: 
 

1. General Context: As an assistant, propose tax-based policies for meat production management.  

Interaction with policymaker is crucial for refining decisions and gaining your experience in 

policymaking. 

 

2. Data: 

   - Policy goal: {policy_goal} 

   - Average error (avg_err):{avg_err}. 

   - Historical policy actions: {hist_actions} 

 

3. Recent interaction with policymaker: {convers} 

 

4. Experience: {exp} 

 

Guidance for Decision-Making: 
 

- Use historical data and policymaker feedback for policy adjustments. 

- Aim to minimize the absolute value of avg_err.  
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- Provide logical, sequential reasoning. 

- Reflect on experience for current decision enhancement. 

 

Interaction Instructions: 
 

1. Review historical information, recent interaction with policymaker, and your experience. 

2. Assess the impact of previous policies. 

3. Develop your policy rationale in a step-by-step manner. 

4. Propose a specific policy action. 

 

Required Output Format: 
 

1. Proposal Reasoning: [Your explanation] 

2. Policy Action Proposal Without Reasoning:  

   - Indicate your proposed tax policy change using symbols and numbers. 

   - Use '+' to signify an increase in tax levels, '-' for a decrease, and '0' to maintain the current level. 

   - Accompany '+' or '-' with a number from 1 to 5 to denote the extent of the change, where 1 is 

minimal and 5 is maximal. 

   - Examples: "+3" for a moderate increase, "-1" for a slight decrease.  

   - If proposing to maintain the current tax level ('0'), no additional number is needed. 

   - Surround the proposed action using a pair of hashtags 

    [Indicate your proposal here, e.g., "#+3#", "#-2#", "#0#"] 

 

Here are three examples to show you the format to output Policy Action Proposal Without Reasoning: 

1. Policy Action Proposal without reasoning: "#-1#" 

2. Policy Action Proposal without reasoning: "#+3#" 

3. Policy Action Proposal without reasoning: "#-5#" 

 

Note:  
 

Always specify a clear policy action. If uncertain, propose a tentative action based on available data. 

Don’t fake interaction with policymaker if there is no interaction yet. 

avg_err > 0 means meat undersupply, while avg_err < 0 means meat oversupply. 

 

 

 718 

 719 

 720 

Table A4   Prompt for Agent Q 721 

 

Engage in a role-playing conversation about tax policies affecting meat production, integrating data 

analysis and diverse perspectives.  

 

**Background Data:**  
 

- **Historical Policy Actions** (updated every five years): {policy_actions}  

- **Meat Demand ** (averaged every five years): {meat_demand}  

- **Meat Supply** (averaged every five years): {meat_supply}  

- **Policy goal** maintain the meat production at: {policy_goal}  

 

 

**Roles & Responsibilities:**  
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1. **Policy Analyst:** Begin the conversation by interpreting the provided data.  

2. **Government Official:** Strive to achieve policy goal. Listen to others, justify your decisions, and 

adjust meat production tax.  

3. **Economist:** Analyze the cost-benefit of policy proposals, considering budget impacts, taxpayer 

implications, and overall economic effects. Highlight risks and opportunities.  

4. **Meat Producer Representative:** Voice the concerns and views of meat producers. Discuss policy 

impacts on producers and offer suggestions for improvement.  

5. **Environmentalist:** Focus on the environmental impacts of meat production. Propose policy 

adjustments for environmental protection.  

 

**Required Output & Format:**  
 

- **Conversation Flow:** Engage each role in a structured dialogue, reflecting their unique 

perspectives and data interpretation.  

- **Policy Action:** Extract the final policy action from the conversation and output it in required 

format below: 
 

- Indicate the official’s policy action using symbols and numbers.  

- Use '+' to signify an increase in tax levels, '-' for a decrease, and '0' to maintain the current level.  

- Accompany '+' or '-' with a number from 1 to 5 to denote the extent of the change, where 1 is minimal 

and 5 is maximal.  

- Examples: "+3" for a moderate increase, "-1" for a slight decrease.  

- If proposing to maintain the current tax level ('0'), no additional sign is needed.  

- Surround the proposed action using a pair of hashtags 

 

Here are three examples to show the format to output Policy Action:  

1. "#-1#"  

2. "#+3#"  

3. "#-5#"  

 

**Example Dialogue Structure:**  
 

1. Policy Analyst provides data summary and initial observations.  

2. Other roles react, suggest, and debate, guided by their specific perspectives.  

3. Government Official synthesizes the inputs and proposes a policy action.  

4. Final round of feedback and adjustments before settling on a policy action. 

 

Note: 
 

Do not use hashtags in the dialogue. Hashtags are only used as identifiers helping identify the 

determined policy actions. 

Important: "+" means increase tax; "-" means decrease tax. 

 

 

 722 

 723 

Table A5   A conversation of quasi-multi-agents 724 

 

- **Historical Policy Actions** (updated every five years): 0, -2, -1, -1  

- **Meat Demand ** (averaged every five years): [1.01, 1.1, 1.23, 1.36]  

- **Meat Supply** (averaged every five years): [0.88, 0.89, 1.04, 1.21]  
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**Policy Analyst**: Let's initiate our discussion by observing the recent trends outlined by our data. We have a 

scenario where meat demand is rising steadily (from 1.01 to 1.36 over the spanned periods). However, supply 

started below demand at 0.88 and is catching up but still hasn't met demand, now at 1.21. It appears that previous 

policy actions, which have consistently lowered taxes or subsidies on meat production (-2, -1, -1), have stimulated 

an increase in supply, but not enough to meet demand. Given our policy goal of maintaining meat production at a 

stable level of 1, adjustments in policy are likely necessary to close the gap. 

 

**Government Official**: Thank you for your analysis. It’s clear that we need to bridge the gap between supply 

and demand to reach our policy goal. I am calling on the perspectives of our stakeholders before we determine 

the nature of the adjustments needed. 

 

**Economist**: I'd like to offer a cost-benefit perspective on potential policy actions. If we're considering 

taxation as our policy lever, increasing taxes may slow down the growth of demand to match supply better, but we 

must tread carefully. Over-taxing could harm the meat industry, affect jobs, and raise the price for consumers 

disproportionately. Alternatively, decreasing taxes further may risk oversupply if our production ramps up too 

significantly. 

 

**Meat Producer Representative**: The trend in increasing demand is advantageous for us as producers; it 

means our market is growing. Any increase in taxes could reduce our margins and hamper our ability to invest in 

expanding production. On the other hand, more significant supports or reduced taxes would certainly help us to 

increase supply, but it's not solely a question of tax rates – we also need to consider other barriers to scaling up 

production, like feed costs, land availability, and export markets. 

 

**Environmentalist**: It's crucial we don't overlook the environmental repercussions of intensifying meat 

production. The pursuit of balancing supply with rising demand must not lead to lax environmental regulations. 

Rather, it should incentivize sustainable practices. Perhaps an eco-tax on meat could be applied, with revenues 

redirected to support eco-friendly farming practices, helping to maintain the balance of production with minimal 

environmental damage. 

 

**Government Official**: Each of your points is valid. It's a careful balance between nurturing the meat industry 

and ensuring affordability and environmental sustainability. From this, I'm inclined to propose a slight tax 

incentive to encourage increased production while maintaining vigilance on environmental practices. If demand 

continues to grow, however, we may need to revisit and potentially increase taxes to temper demand growth while 

encouraging sustainable practices. Based on our discussion, I am proposing the following: 

**Policy Action**: #+1# 

 

**Policy Analyst**: A moderate increase in taxation may help to gradually steer both supply and demand 

towards equilibrium while avoiding sudden market disruption. However, we should closely monitor the outcomes 

to ensure we are moving towards our policy goal without unintended consequences. 

 

**Economist**: I agree with a cautionary approach. Incremental changes allow for market adjustment and offers 

time for analysis on impacts to the economy and consumers. 

 

**Meat Producer Representative**: We would prefer no increase, but a minimal increase is manageable. It 

would be beneficial if a portion of the increased tax revenue could be earmarked for supporting producers to 

adopt more sustainable practices, perhaps as tax credits or grants. 

 

**Environmentalist**: A slight increase is a step in the right direction, as long as it's paired with strong 

incentives for sustainable practices. Let's ensure there are follow-up policies that encourage environmental 

responsibility in meat production. 

 

**Government Official**: Thank you all for your input. We will proceed with a small tax increase, monitor the 

situation closely, and consider reallocating funds to support sustainable meat production practices. We'll revisit 

this conversation periodically to make sure we're on track and making the right adjustments. 
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Appendix B: 725 

The average error at the time 𝑡𝑛 is denoted as ɛ𝑡𝑛
 and calculated using Eq. (B1), in which 𝑘 means the span 726 

of time-lags reflecting the period of time between an agent’s observation and policy adaptation; 𝑠𝑡𝑚
 denotes 727 

the meat supply at 𝑡𝑚. 728 

ɛ𝑡𝑛
=

1

𝑘
∑

𝑔𝑡𝑚
− 𝑠𝑡𝑚

|𝑔𝑡𝑚
|

𝑛

𝑚=𝑛−𝑘

 

            

(B1) 

 729 

The policy action is denoted as 𝛿𝑡 = [−5,5] ∩ 𝑍. For data compatibility, the policy actions need to be 730 

transformed using Eq. (B2): 731 

Δ𝑡 = ƞ × δt/10 (B2) 

where ƞ  is a prescribed step size. In the CRAFTY model (Murray-Rust et al., 2014), a land user’s 732 

competitiveness is determined using Eq. (B3): 733 

𝑐𝑥𝑦
𝑖 =   ∑(𝑝𝐸(𝑣𝐸 + 𝑚𝐸))

𝐸

 
 

(B3) 

where 𝑐𝑥𝑦
𝑖 represents land user 𝑖’s competitiveness on land cell at (x, y); E represents the ecosystem 734 

service type, e.g., meat, timber, crops; 𝑝𝐸  means the production of E; 𝑚𝐸 is the marginal utility; 𝑣𝐸  735 

denotes the policy intervention imposed on E. In this study, only the policy interventions on meat 736 

production are considered, 𝑣𝐸  is computed using Eq. (B4): 737 

𝑣𝐸 = {
Δ, If E is meat.

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

(B4) 

 738 

 739 

Appendix C: 740 

 741 

 742 

Figure C1 Reasoning of Agent S1.2 behind its second policy action 743 



35 
 

 744 

 745 

Figure C2   Reasoning of Agent S1.1 behind Action I 746 

 747 

 748 

 749 

 750 

 751 

Figure C3   Reasoning of Agent S1.1 behind Action II  752 

 753 

 754 

 755 
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 756 

    Figure C4   Reasoning of Agent S1.1 behind Action III 757 

 758 

 759 

 760 

 761 

 762 

Figure C5   Reasoning of Agent S1.1 behind Action IV 763 

 764 

 765 

 766 
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 767 

Figure C6   Reasoning of Agent S1.1 behind Action V  768 

 769 

 770 

 771 

 772 

 773 

  Figure C7   The response of ChatGPT-4 to the question: Is 3 75% of 4?  774 

 775 

 776 

 777 
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 778 

Figure C8   The response of ChatGPT-4 to the question – “Is 3 75% of 4?”- when asked to give reasoning 779 
before the final answer 780 

 781 

 782 

References 783 

Argyle, L. P., Busby, E. C., Fulda, N., Gubler, J. R., Rytting, C., and Wingate, D.: Out of One, Many: 784 
Using Language Models to Simulate Human Samples, Political Analysis, 31, 337-351, 785 
https://doi.org/10.1017/pan.2023.2, 2023. 786 
Arneth, A., Brown, C., and Rounsevell, M. D. A.: Global models of human decision-making for land-787 
based mitigation and adaptation assessment, Nature Climate Change, 4, 550-557, 788 
https://doi.org/10.1038/nclimate2250, 2014. 789 
Blanco, V., Holzhauer, S., Brown, C., Lagergren, F., Vulturius, G., Lindeskog, M., and Rounsevell, M. D. 790 
A.: The effect of forest owner decision-making, climatic change and societal demands on land-use change 791 
and ecosystem service provision in Sweden, Ecosystem Services, 23, 174-208, 792 
https://doi.org/10.1016/j.ecoser.2016.12.003, 2017. 793 
Brown, C., Holman, I., and Rounsevell, M.: How modelling paradigms affect simulated future land use 794 
change, Earth Syst. Dynam., 12, 211-231, https://doi.org/10.5194/esd-12-211-2021, 2021. 795 
Brown, C., Seo, B., and Rounsevell, M.: Societal breakdown as an emergent property of large-scale 796 
behavioural models of land use change, Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-797 
809-2019, 2019a. 798 
Brown, C., Alexander, P., Holzhauer, S., and Rounsevell, M.: Behavioral models of climate change 799 
adaptation and mitigation in land-based sectors, Wiley Interdisciplinary Reviews: Climate Change, 8, 800 
e448, https://doi.org/10.1002/wcc.448, 2017. 801 

https://doi.org/10.1017/pan.2023.2
https://doi.org/10.1038/nclimate2250
https://doi.org/10.1016/j.ecoser.2016.12.003
https://doi.org/10.5194/esd-12-211-2021
https://doi.org/10.5194/esd-10-809-2019
https://doi.org/10.5194/esd-10-809-2019
https://doi.org/10.1002/wcc.448


39 
 

Brown, C., Alexander, P., Arneth, A., Holman, I., and Rounsevell, M.: Achievement of Paris climate goals 802 
unlikely due to time lags in the land system, Nature Climate Change, 9, 203-208, 803 
https://doi.org/10.1038/s41558-019-0400-5,2019b. 804 
Brown, C., Holzhauer, S., Metzger, M. J., Paterson, J. S., and Rounsevell, M.: Land managers’ behaviours 805 
modulate pathways to visions of future land systems, Regional Environmental Change, 18, 831-845, 806 
https://doi.org/10.1007/s10113-016-0999-y, 2018. 807 
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., 808 
Sastry, G., and Askell, A.: Language models are few-shot learners, Advances in neural information 809 
processing systems, 33, 1877-1901, 2020. 810 
Caverni, J.-P., Fabre, J.-M., and Gonzalez, M.: Cognitive biases, Elsevier1990. 811 
Chen, H., Jiao, F., Li, X., Qin, C., Ravaut, M., Zhao, R., Xiong, C., and Joty, S.: ChatGPT's One-year 812 
Anniversary: Are Open-Source Large Language Models Catching up?, arXiv, 813 
https://doi.org/10.48550/arXiv.2311.16989, 2023. 814 
Coglianese, C. and D'Ambrosio, J.: Policymaking under pressure: the perils of incremental responses to 815 
climate change, Conn. L. Rev., 40, 1411, 2007. 816 
DeepSeek-AI, Liu, A., Feng, B., and Xue, B.: DeepSeek-V3 Technical Report, arXiv preprint, 817 
https://doi.org/10.48550/arXiv.2412.19437, 2024. 818 
DeepSeek Platform: Rate limits, https://api-docs.deepseek.com/quick_start/rate_limit,  2025a. 819 
DeepSeek Platform: Models & Pricing, https://api-docs.deepseek.com/quick_start/pricing,  2025b. 820 
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.: BERT: Pre-training of Deep Bidirectional 821 
Transformers for Language Understanding, arxiv preprint https://doi.org/10.48550/arXiv.1810.04805, 822 
2019. 823 
Dryzek, J. S.: Institutions for the Anthropocene: Governance in a Changing Earth System, British Journal 824 
of Political Science, 46, 937-956, https://doi.org/10.1017/S0007123414000453, 2016. 825 
Dubash, N. K., Mitchell, C., Boasson, E. L., Córdova, M. J. B., Fifita, S., Haites, E., Jaccard, M., Jotzo, F., 826 
Naidoo, S., and Romero-Lankao, P.: National and sub-national policies and institutions, in: Climate 827 
Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment 828 
Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2022. 829 
Ericsson, K. A. and Simon, H. A.: How to Study Thinking in Everyday Life: Contrasting Think-Aloud 830 
Protocols With Descriptions and Explanations of Thinking, Mind, Culture, and Activity, 5, 178-186, 831 
https://doi.org/10.1207/s15327884mca0503_3, 1998. 832 
Fiorino, D. J.: The new environmental regulation, Mit Press2006. 833 
Fokas, A. S.: Can artificial intelligence reach human thought?, PNAS Nexus, 2, 834 
https://doi.org/10.1093/pnasnexus/pgad409, 2023. 835 
Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., Yu, T., Zhang, R., and 836 
Ahmed, N. K.: Bias and fairness in large language models: A survey, Computational Linguistics, 50, 837 
1097–1179., https://doi.org/10.1162/coli_a_00524, 2024. 838 
Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., 839 
Scarborough, P., Springmann, M., and Jebb, S. A.: Meat consumption, health, and the environment, 840 
Science, 361, eaam5324, https://doi.org/10.1126/science.aam5324, 2018. 841 
Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., Aubrey, B., Nastase, S. A., Feder, A., 842 
Emanuel, D., Cohen, A., Jansen, A., Gazula, H., Choe, G., Rao, A., Kim, C., Casto, C., Fanda, L., Doyle, 843 
W., Friedman, D., Dugan, P., Melloni, L., Reichart, R., Devore, S., Flinker, A., Hasenfratz, L., Levy, O., 844 
Hassidim, A., Brenner, M., Matias, Y., Norman, K. A., Devinsky, O., and Hasson, U.: Shared 845 
computational principles for language processing in humans and deep language models, Nature 846 
Neuroscience, 25, 369-380, https://doi.org/10.1038/s41593-022-01026-4, 2022. 847 
González, V. B.: Modelling adaptation strategies for Swedish forestry under climate and global change, 848 
University of Edinburgh, 2017. 849 
Greenwood, R., Hinings, C., Ranson, S., and Walsh, K.: Incremental budgeting and the assumption of 850 
growth: the experience of local government, in: Public spending decisions, Routledge, 25-48, 2022. 851 
Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., 852 
Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., and Schwarz, N.: 853 

https://doi.org/10.1038/s41558-019-0400-5
https://doi.org/10.1007/s10113-016-0999-y
https://doi.org/10.48550/arXiv.2311.16989
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1017/S0007123414000453
https://doi.org/10.1207/s15327884mca0503_3
https://doi.org/10.1093/pnasnexus/pgad409
https://doi.org/10.1162/coli_a_00524
https://doi.org/10.1126/science.aam5324
https://doi.org/10.1038/s41593-022-01026-4


40 
 

Theoretical foundations of human decision-making in agent-based land use models – A review, 854 
Environmental Modelling & Software, 87, 39-48, https://doi.org/10.1016/j.envsoft.2016.10.008, 2017. 855 
Hammond, A.: Comprehensive versus incremental budgeting in the department of agriculture, in: The 856 
Revolt Against the Masses, Routledge, 288-305, 2018. 857 
Holman, I. P., Brown, C., Carter, T. R., Harrison, P. A., and Rounsevell, M.: Improving the representation 858 
of adaptation in climate change impact models, Regional Environmental Change, 19, 711-721, 859 
https://doi.org/10.1007/s10113-018-1328-4, 2019. 860 
Horton, J. J.: Large Language Models as Simulated Economic Agents: What Can We Learn from Homo 861 
Silicus? , arXiv preprint, https://doi.org/10.48550/arXiv.2301.07543, 2023. 862 
Huang, J. and Chang, K. C.-C.: Towards Reasoning in Large Language Models: A Survey, arXiv preprint, 863 
https://doi.org/10.48550/arXiv.2212.10403, 2022. 864 
Jones, B. D.: Bounded rationality and public policy: Herbert A. Simon and the decisional foundation of 865 
collective choice, Policy Sciences, 35, 269-284, https://doi.org/10.1023/A:1021341309418, 2002. 866 
Jones, B. D.: Bounded rationality and political science: Lessons from public administration and public 867 
policy, Journal of Public Administration Research and Theory, 13, 395-412, 868 
https://doi.org/10.1093/jpart/mug028, 2003. 869 
Keil, F. C.: Explanation and understanding, Annu Rev Psychol, 57, 227-254, 870 
https://doi.org/10.1146/annurev.psych.57.102904.190100, 2006. 871 
Krawchenko, T. and Tomaney, J.: The Governance of Land Use: A Conceptual Framework, Land, 12, 872 
608, https://doi.org/10.3390/land12030608, 2023. 873 
Kremmydas, D., Athanasiadis, I. N., and Rozakis, S.: A review of Agent Based Modeling for agricultural 874 
policy evaluation, Agricultural Systems, 164, 95-106, https://doi.org/10.1016/j.agsy.2018.03.010, 2018. 875 
Kulovesi, K. and Oberthür, S.: Assessing the EU’s 2030 Climate and Energy Policy Framework: 876 
Incremental change toward radical transformation?, Review of European, Comparative & International 877 
Environmental Law, 29, 151-166, https://doi.org/10.1111/reel.12358, 2020. 878 
Lindblom, C.: The science of “muddling through”, in: Classic readings in urban planning, Routledge, 31-879 
40, 2018. 880 
Liu, Y., He, H., Han, T., Zhang, X., Liu, M., Tian, J., Zhang, Y., Wang, J., Gao, X., Zhong, T., Pan, Y., 881 
Xu, S., Wu, Z., Liu, Z., Zhang, X., Zhang, S., Hu, X., Zhang, T., Qiang, N., Liu, T., and Ge, B.: 882 
Understanding LLMs: A comprehensive overview from training to inference, Neurocomputing, 620, 883 
129190, https://doi.org/10.1016/j.neucom.2024.129190, 2025. 884 
Liu, Z.: Cultural Bias in Large Language Models: A Comprehensive Analysis and Mitigation Strategies, 885 
Journal of Transcultural Communication, https://doi.org/10.1515/jtc-2023-0019, 2024. 886 
Lu, C., Lu, C., Lange, R. T., Foerster, J., Clune, J., and Ha, D.: The AI Scientist: Towards Fully 887 
Automated Open-Ended Scientific Discovery, arXiv preprint, https://doi.org/10.48550/arXiv.2408.06292, 888 
2024. 889 
Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp, P.: Fantastically Ordered Prompts and Where to 890 
Find Them: Overcoming Few-Shot Prompt Order Sensitivity, arXiv preprint, 891 
https://doi.org/10.48550/arXiv.2104.08786, 2021. 892 
Marvuglia, A., Gutiérrez, T. N., Baustert, P., and Benetto, E.: Implementation of Agent-Based Models to 893 
support Life Cycle Assessment: A review focusing on agriculture and land use, AIMS Agriculture and 894 
Food, 3, 535-560, https://doi.org/10.3934/agrfood.2018.4.535, 2018. 895 
Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., and Gotts, N. M.: Agent-based land-use models: 896 
a review of applications, Landscape Ecology, 22, 1447-1459, https://doi.org/10.1007/s10980-007-9135-1, 897 
2007. 898 
Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., and Gao, J.: Large 899 
Language Models: A Survey, arXiv preprint, https://doi.org/10.48550/arXiv.2402.06196, 2024. 900 
Murray-Rust, D., Brown, C., van Vliet, J., Alam, S. J., Robinson, D. T., Verburg, P. H., and Rounsevell, 901 
M.: Combining agent functional types, capitals and services to model land use dynamics, Environmental 902 
Modelling & Software, 59, 187-201, https://doi.org/10.1016/j.envsoft.2014.05.019, 2014. 903 
O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and van 904 
Vuuren, D. P.: A new scenario framework for climate change research: the concept of shared 905 

https://doi.org/10.1016/j.envsoft.2016.10.008
https://doi.org/10.1007/s10113-018-1328-4
https://doi.org/10.48550/arXiv.2301.07543
https://doi.org/10.48550/arXiv.2212.10403
https://doi.org/10.1023/A:1021341309418
https://doi.org/10.1093/jpart/mug028
https://doi.org/10.1146/annurev.psych.57.102904.190100
https://doi.org/10.3390/land12030608
https://doi.org/10.1016/j.agsy.2018.03.010
https://doi.org/10.1111/reel.12358
https://doi.org/10.1016/j.neucom.2024.129190
https://doi.org/10.1515/jtc-2023-0019
https://doi.org/10.48550/arXiv.2408.06292
https://doi.org/10.48550/arXiv.2104.08786
https://doi.org/10.3934/agrfood.2018.4.535
https://doi.org/10.1007/s10980-007-9135-1
https://doi.org/10.48550/arXiv.2402.06196
https://doi.org/10.1016/j.envsoft.2014.05.019


41 
 

socioeconomic pathways, Climatic Change, 122, 387-400, https://doi.org/10.1007/s10584-013-0905-2, 906 
2014. 907 
OpenAI Platform: Rate limits, https://platform.openai.com/docs/guides/rate-limits,  2025. 908 
Pal, L. A.: Assessing incrementalism: Formative assumptions, contemporary realities, Policy and Society, 909 
30, 29-39, https://doi.org/10.1016/j.polsoc.2010.12.004, 2011. 910 
Park, J. S., O'Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S.: Generative Agents: 911 
Interactive Simulacra of Human Behavior, arXiv preprint, https://doi.org/10.48550/arXiv.2304.03442, 912 
2023. 913 
Peeperkorn, M., Kouwenhoven, T., Brown, D., and Jordanous, A.: Is Temperature the Creativity 914 
Parameter of Large Language Models?, arXiv preprint, https://doi.org/10.48550/arXiv.2405.00492, 2024. 915 
Perkins, O., Alexander, P., Arneth, A., Brown, C., Millington, J. D. A., and Rounsevell, M.: Toward 916 
quantification of the feasible potential of land-based carbon dioxide removal, One Earth, 6, 1638-1651, 917 
https://doi.org/10.1016/j.oneear.2023.11.011, 2023. 918 
Pydantic: Pydantic, https://docs.pydantic.dev/latest/,  2025. 919 
Qian, C., Cong, X., Liu, W., Yang, C., Chen, W., Su, Y., Dang, Y., Li, J., Xu, J., Li, D., Liu, Z., and Sun, 920 
M.: Communicative Agents for Software Development, arXiv preprint, http://arxiv.org/abs/2307.07924, 921 
2023. 922 
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.: Language models are 923 
unsupervised multitask learners, OpenAI blog, 1, 9, https://insightcivic.s3.us-east-924 
1.amazonaws.com/language-models.pdf, 2019. 925 
Renze, M. and Guven, E.: Self-Reflection in LLM Agents: Effects on Problem-Solving Performance, 926 
arXiv preprint, https://doi.org/10.48550/arXiv.2405.06682, 2024a. 927 
Renze, M. and Guven, E.: The Effect of Sampling Temperature on Problem Solving in Large Language 928 
Models, arXiv preprint, https://doi.org/10.48550/arXiv.2402.05201, 2024b. 929 
Rounsevell, M. D. A., Arneth, A., Alexander, P., Brown, D. G., de Noblet-Ducoudré, N., Ellis, E., 930 
Finnigan, J., Galvin, K., Grigg, N., Harman, I., Lennox, J., Magliocca, N., Parker, D., O'Neill, B. C., 931 
Verburg, P. H., and Young, O.: Towards decision-based global land use models for improved 932 
understanding of the Earth system, Earth Syst. Dynam., 5, 117-137, https://doi.org/10.5194/esd-5-117-933 
2014, 2014. 934 
Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., and Chadha, A.: A systematic survey of prompt 935 
engineering in large language models: Techniques and applications, arXiv preprint 936 
https://doi.org/10.48550/arXiv.2402.07927, 2024. 937 
Seal, W.: Modernity, modernization and the deinstitutionalization of incremental budgeting in local 938 
government, Financial Accountability & Management, 19, 93-116, https://doi.org/10.1111/1468-939 
0408.00165, 2003. 940 
Si, C., Yang, D., and Hashimoto, T.: Can LLMs Generate Novel Research Ideas? A Large-Scale Human 941 
Study with 100+ NLP Researchers, arXiv preprint, https://doi.org/10.48550/arXiv.2409.04109, 2024. 942 
Simon, H. A.: Bounded rationality, Utility and probability, 15-18, 1990. 943 
Staccione, A., Brown, C., Arneth, A., Rounsevell, M., Hrast Essenfelder, A., Seo, B., and Mysiak, J.: 944 
Exploring the effects of protected area networks on the European land system, Journal of Environmental 945 
Management, 337, 117741, https://doi.org/10.1016/j.jenvman.2023.117741, 2023. 946 
Sumers, T. R., Yao, S., Narasimhan, K., and Griffiths, T. L.: Cognitive architectures for language agents, 947 
arXiv preprint https://doi.org/10.48550/arXiv.2309.02427, 2023. 948 
Tao, Y., Viberg, O., Baker, R. S., and Kizilcec, R. F.: Cultural bias and cultural alignment of large 949 
language models, PNAS nexus, 3, 346, https://doi.org/10.1093/pnasnexus/pgae346, 2024. 950 
Taubenfeld, A., Dover, Y., Reichart, R., and Goldstein, A.: Systematic biases in LLM simulations of 951 
debates, arXiv preprint https://doi.org/10.48550/arXiv.2402.04049, 2024. 952 
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, 953 
T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: 954 
The representative concentration pathways: an overview, Climatic Change, 109, 5, 955 
https://doi.org/10.1007/s10584-011-0148-z, 2011. 956 

https://doi.org/10.1007/s10584-013-0905-2
https://platform.openai.com/docs/guides/rate-limits
https://doi.org/10.1016/j.polsoc.2010.12.004
https://doi.org/10.48550/arXiv.2304.03442
https://doi.org/10.48550/arXiv.2405.00492
https://doi.org/10.1016/j.oneear.2023.11.011
https://docs.pydantic.dev/latest/
http://arxiv.org/abs/2307.07924
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://doi.org/10.48550/arXiv.2405.06682
https://doi.org/10.48550/arXiv.2402.05201
https://doi.org/10.5194/esd-5-117-2014
https://doi.org/10.5194/esd-5-117-2014
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.1111/1468-0408.00165
https://doi.org/10.1111/1468-0408.00165
https://doi.org/10.48550/arXiv.2409.04109
https://doi.org/10.1016/j.jenvman.2023.117741
https://doi.org/10.48550/arXiv.2309.02427
https://doi.org/10.1093/pnasnexus/pgae346
https://doi.org/10.48550/arXiv.2402.04049
https://doi.org/10.1007/s10584-011-0148-z


42 
 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, 957 
I.: Attention Is All You Need, arxiv preprint https://doi.org/10.48550/arXiv.1706.03762, 2023. 958 
Wang, L., Ma, C., Feng, X., and Zhang, Z.: A survey on large language model based autonomous agents, 959 
arXiv preprint, https://doi.org/10.48550/arXiv.2308.11432, 2023. 960 
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., and Zhou, D.: Chain-of-961 
thought prompting elicits reasoning in large language models, Advances in neural information processing 962 
systems, 35, 24824-24837, 2022. 963 
Weng, L.: LLM Powered Autonomous Agents, 2023. 964 
Xi, Z., Chen, W., Guo, X., and He, W.: The rise and potential of large language model based agents: A 965 
survey, arXiv preprint, https://doi.org/10.48550/arXiv.2309.07864, 2023. 966 
Xiao, L., Zhao, G., Wang, X., Li, K., Lim, E., Wei, C., Yu, T., and Wang, X.: An empirical study on the 967 
usage of mocking frameworks in Apache software foundation, Empirical Software Engineering, 29, 39, 968 
https://doi.org/10.1007/s10664-023-10410-y, 2024. 969 
Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., and Narasimhan, K.: Tree of thoughts: 970 
Deliberate problem solving with large language models, Advances in Neural Information Processing 971 
Systems, 36, 2024. 972 
Ye, H., Liu, T., Zhang, A., Hua, W., and Jia, W.: Cognitive Mirage: A Review of Hallucinations in Large 973 
Language Models, arXiv preprint, http://arxiv.org/abs/2309.06794, 2023. 974 
Young, O. R., Lambin, E. F., Alcock, F., Haberl, H., Karlsson, S. I., McConnell, W. J., Myint, T., Pahl-975 
Wostl, C., Polsky, C., Ramakrishnan, P. S., Schroeder, H., Scouvart, M., and Verburg, P. H.: A Portfolio 976 
Approach to Analyzing Complex Human-Environment Interactions Institutions and Land Change, 977 
Ecology and Society, 11, http://www.jstor.org/stable/26266028, 2006. 978 
Yu, F., Zhang, H., Tiwari, P., and Wang, B.: Natural Language Reasoning, A Survey, arXiv preprint, 979 
https://doi.org/10.48550/arXiv.2303.14725, 2023. 980 
Zeng, Y.: LlmInstitution_CRAFTY (v1.0), Zenodo, https://doi.org/10.5281/zenodo.14622039, 2025a. 981 
Zeng, Y.: LlmInstitution_CRAFTY_data, Zenodo, https://doi.org/10.5281/zenodo.14622334, 2025b. 982 
Zeng, Y., Raymond, J.,Brown, C., Byari, M., and Rounsevell, M.: Simulating Endogenous Institutional 983 
Behaviour and Policy Pathways within the Land System, SSRN preprint, 984 
http://dx.doi.org/10.2139/ssrn.4814296,2024a 985 
Zeng, Y., Brown, C., Byari, M., Raymond, J., Schmitt, T., and Rounsevell, M.: InsNet-CRAFTY v1.0: 986 
Integrating institutional network dynamics powered by large language models with land use change 987 
simulation, EGUsphere, https://doi.org/10.5194/egusphere-2024-2661, 2024b. 988 
Zhang, Y., Mao, S., Ge, T., Wang, X., Wynter, A. d., Xia, Y., Wu, W., Song, T., Lan, M., and Wei, F.: 989 
LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models, arXiv preprint, 990 
https://doi.org/10.48550/arXiv.2404.01230, 2024. 991 
Zhang, Z., Zhang, A., Li, M., and Smola, A.: Automatic chain of thought prompting in large language 992 
models, arXiv preprint https://doi.org/10.48550/arXiv.2210.03493, 2022. 993 
Zhao, X., Li, M., Lu, W., Weber, C., Lee, J. H., Chu, K., and Wermter, S.: Enhancing zero-shot chain-of-994 
thought reasoning in large language models through logic, arXiv preprint 995 
https://doi.org/10.48550/arXiv.2309.13339, 2023. 996 
Zhou, H., Feng, Z., Zhu, Z., Qian, J., and Mao, K.: UniBias: Unveiling and Mitigating LLM Bias through 997 
Internal Attention and FFN Manipulation, arXiv preprint https://doi.org/10.48550/arXiv.2405.20612, 998 
2024. 999 
 1000 

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2308.11432
https://doi.org/10.48550/arXiv.2309.07864
https://doi.org/10.1007/s10664-023-10410-y
http://arxiv.org/abs/2309.06794
http://www.jstor.org/stable/26266028
https://doi.org/10.48550/arXiv.2303.14725
https://doi.org/10.5281/zenodo.14622039
https://doi.org/10.5281/zenodo.14622334
https://doi.org/10.48550/arXiv.2404.01230
https://doi.org/10.48550/arXiv.2210.03493
https://doi.org/10.48550/arXiv.2309.13339
https://doi.org/10.48550/arXiv.2405.20612

