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Abstract. We present here a strategy to obtain a reliable hydrological simulation over France with the ORCHIDEE land surface

model. The model is forced by the Safran atmospheric reanalysis at 8-km resolution and hourly time steps from 1959 to 2020,

and by a high-resolution DEM (around 1.3 km in France). Each Safran grid cell is decomposed into a graph of hydrological

transfer units (HTUs) based on the higher resolution DEM to better describe lateral water movements. In particular, it is possi-

ble to accurately locate 3507 stations among the 4081 stations collected from the national hydrometric network HydroPortail5

(filtered to drain an upstream area larger than 64 km2). A simple trial-and-error calibration is conducted by modifying selected

parameters of ORCHIDEE to reduce the biases of the simulated water budget compared to the evapotranspiration products (the

GLEAM and FLUXCOM datasets) and the HydroPortail observations of river discharge. The simulation that is eventually pre-

ferred is extensively assessed with classic goodness-of-fit indicators complemented by trend analysis at 1785 stations (filtered

to have records for at least 8 entire years) across France. For example, the median bias of evapotranspiration is -0.5% against10

GLEAM (-4.3% against FLUXCOM), the median bias of river discharge is 6.3%, and the median KGE of square-rooted river

discharge is 0.59. These indicators, however, exhibit a large spatial variability, with poor performance in the Alps and the Seine

sedimentary basin. The spatial contrasts and temporal trends of river discharge across France are well represented with an

accuracy of 76.4% for the trend sign and an accuracy of 62.7% for the trend significance. Although it does not yet integrate

human impacts on river basins, the selected parameterization of ORCHIDEE offers a reliable historical overview of water15

resources and a robust configuration for climate change impact analysis at the nationwide scale of France.

1 Introduction

1.1 Land surface models for high-resolution hydrological simulations

Land surface models (LSMs) are the land surface components of Earth system models (ESMs) and simulate water, energy and

carbon fluxes across continents. The offline use of LSMs as independent physically-based distributed hydrological models has20
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emerged in the recent decades for evaluating water resources and investigating climate change impacts at both regional and

global scales (e.g., Cai et al., 2014; Pokhrel et al., 2021; Telteu et al., 2021).

Since LSMs provide the lower boundary to atmosphere circulation in ESMs, the spatial discretization of LSMs is usually

consistent with the atmospheric component or atmospheric forcing (in offline mode) so that spatial discontinuity can be averted

during land-atmosphere coupling. However, the spatial resolution of the atmosphere component, typically 0.5° (IPCC, 2023),25

or the atmospheric forcing, typically tens of kilometres (e.g., EuroCORDEX at 11 km in Jacob et al. 2014 and ERA-5 at 31

km in Hersbach et al. 2020), are too coarse to represent topographic details. In addition, river flows are much more constrained

by topographic conditions than by the atmosphere. Thus, accurate hydrological simulations for flood risk assessment, drought

monitoring and human impact assessment (e.g., dam regulation and irrigation) are difficult to achieve, especially for local-scale

implementations. Hence, incorporating high-resolution river routing systems in LSMs is necessary to improve hydrological30

simulations by better characterizing the morphological conditions of river basins with high-resolution digital elevation models

(DEMs) (Bierkens et al., 2015).

The conventional approach to computing river basin discharges relies on independent runoff routing models (RRMs) that

interpolate the lateral water flows simulated by the LSM to the grid cells of the RRMs and cascade river discharges along the

drainage network. The RRMs represent the horizontal movements of water fluxes while their vertical movements are kept in35

LSMs. There are many different RRMs in the literature, such as the TRIP at 0.5° resolution (Oki and Sud, 1998; Oki et al.,

1999; Vergnes and Decharme, 2012), the RiTHM at 0.25° resolution (Ducharne et al., 2003), and the HYDRA at 5’ resolution

(Coe, 2000). To bridge the gap between high-resolution hydrological simulations and coarse LSM grid cells, the concept of

constructing hydrological transfer units (HTUs) in LSM grid cells with high-resolution DEMs was proposed to better represent

natural river systems (Nguyen-Quang et al., 2018; Polcher et al., 2023). These hydrologically consistent units within each40

atmospheric grid cell are connected to horizontally transfer the simulated lateral flows so that the generated river flows in

one atmospheric grid cell can flow into neighbouring grid cells (HTU to HTU and then grid cell to grid cell) (Polcher et al.,

2023). The vertical and horizontal movements of water fluxes can be maintained within the LSM instead of separating these

two movements by two models (i.e., LSMs and RRMs) at different resolutions, which facilitates the representation of human

impacts on hydrological processes (Zhou et al., 2021; Baratgin et al., 2024).45

1.2 How to calibrate land surface models?

When using LSMs to simulate realistic water fluxes, including river discharge, a calibration step is often necessary: even if

LSMs are designed to be as physical as possible, they inevitably contain parameters that are hard to measure directly, such as

vegetation water stress (Ruiz-Vásquez et al., 2023), or soil properties at different depths (Yang et al., 2016). Traditional hydro-

logic calibration is primarily conducted against river discharge observations (e.g., Troy et al., 2008; Gou et al., 2020; Cho and50

Kim, 2022; Rummler et al., 2022), which is considered to be a well-suited benchmark (Prentice et al., 2015). However, calibrat-

ing physically-based LSMs to discharge alone does not guarantee the realistic representation of hydrological processes and the

accurate simulation of other LSM outputs, such as soil moisture (Sutanudjaja et al., 2014) and evapotranspiration (Rajib et al.,

2018a, b). Over the recent decades, the advancement of reanalysis and remote-sensing data quality at fine scales, such as snow
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cover (Hall et al., 2002), evapotranspiration (Martens et al., 2017) and soil moisture (Dorigo et al., 2017) products, provides55

new opportunities to investigate and improve the effectiveness of LSMs in representing water fluxes. Multi-objective calibra-

tion works that combine discharge observations with these data products have shown an overall improvement on hydrological

simulation performance (e.g., López López et al., 2017; Jiang et al., 2020; Yang et al., 2021).

The complexity of LSMs makes their calibration extremely difficult in practice because their large number of parameters

induces high degrees of freedom (Fisher and Koven, 2020). Two kinds of methods are mostly used to adjust the parameter set60

of LSMs: automatic (i.e., optimization techniques) and manual (i.e., trial-and-error procedure). Numerous efforts have been put

into optimization algorithms (e.g., Müller et al., 2015; Yang et al., 2021; Cheng et al., 2023), with the major challenge being the

computational burden, especially for high-resolution applications (Bierkens et al., 2015; Sun et al., 2020). Another limitation

of the automatic calibration method, especially if applied to large parameter sets, stems from the equifinality issue that many

different parameter sets lead to equally good results (Beven, 2006; Fisher and Koven, 2020). In manual calibration practice,65

modelers select a few parameter sets, apply them to run the LSM, and choose the best parameter set based on evaluations.

Albeit highly dependant on expert judgement, this method can be efficient in saving model run time compared to the hundreds

of model runs required by automatic methods (Schaperow et al., 2021). Either way, a perfect calibration is always impossible

to achieve due to inherent uncertainties in forcing data (e.g., Gelati et al., 2018; Kabir et al., 2022), benchmark observations

(e.g., Zeng and Cai, 2018) and model structure (e.g., van Kempen et al., 2021).70

1.3 How to evaluate the performance of land surface models?

Hydrological model performance is typically evaluated with goodness-of-fit indicators, such as Kling-Gupta (Kling et al.,

2012) or Nash-Sutcliffe (Nash and Sutcliffe, 1970) efficiencies. In doing so, discharge is often transformed for performance

evaluation, such as with logarithm to emphasize on low flows (Santos et al., 2018) or with square-root to balance low/high

flows (Song et al., 2019). Hydrological signatures that characterize statistical or dynamic features of discharge (e.g., annual75

discharge and low flow duration) can also be used to evaluate simulation performance (see the review by McMillan (2021)).

These traditional indicators implicitly assume stationary conditions and are no longer sufficient since "stationarity is dead"

(Milly et al., 2008). As shown by Todorović et al. (2022), the traditional indicators do not guarantee the reproduction of

streamflow trends with hydrological models. Thus, trend analyses are important to evaluate the robustness of hydrological

models over the long term, which is essential to subsequent applications for climate change assessment (Fowler et al., 2020).80

1.4 Aim and novelty of the study

At the nationwide scale of France, the first distributed LSM for hydrological applications has been proposed by Habets et al.

(2008). It couples the Safran atmospheric reanalysis system (Vidal et al., 2010a) and the ISBA LSM (Decharme and Douville,

2006), both at a spatial resolution of 8 km x 8 km, and the MODCOU model (Ledoux et al., 1989) for groundwater and river

flow, with a variable resolution down to 1 km along rivers. This model, called SIM for Safran-ISBA-MODCOU, was validated85

by comparison to hundreds of hydrometric stations with a focus on the Seine, Loire, Garonne, and Rhône River basins, the

four major river basins in France from 1995 to 2005. Observations of piezometric head and snow depth at several sites are
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also used to evaluate the SIM model. Since then, it was used to assess drought risks in the atmosphere, soils and rivers, and

to investigate the impact of climate change for future adaptation at the national scale (e.g., Quintana Seguí et al., 2009; Vidal

et al., 2010b; Boé et al., 2009), and recently improved to better describe the water and energy budgets in France from 1958 to90

2018, providing an extensive historical analysis (Le Moigne et al., 2020).

The main goal of the present study is to obtain a reliable and robust hydrological simulation over France with another

LSM, the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) LSM, using a high-resolution HTU-based

routing scheme (Nguyen-Quang et al., 2018; Polcher et al., 2023). This approach allowed us to simulate river discharge at thou-

sands of hydrometric stations across French rivers, supporting a thorough performance evaluation. In doing so, we combined95

traditional indicators implicitly assuming stationary conditions, and indicators about trend accuracy because "stationarity is

dead" (Milly et al., 2008). Another novelty stems from a multi-objective calibration focused on the water budget, benefiting

from river discharge observations at 1785 hydrometric stations, and evapotranspiration products. The parameterization selected

in this study has been used to project the impact of climate change on French water resources, which contributes to the national

Explore2 project (https://professionnels.ofb.fr/fr/node/1244) for future adaptation design. Here, we only present the simulation100

results from 1959 to 2020 to assess the performance of the ORCHIDEE LSM. In section 2, the ORCHIDEE LSM is presented,

followed by a summary of the input data, the benchmark datasets, and the calibration strategy. In section 3, we detail the cal-

ibration procedure that was conducted step by step to improve the overall simulated water budget and evaluate the simulation

which was eventually chosen with classic goodness-of-fit measures and trend analysis; finally, a discussion and conclusions

are presented.105

2 Materials

2.1 The ORCHIDEE LSM

The ORCHIDEE model is a physically-based LSM developed at the Institut Pierre Simon Laplace (IPSL) as the land compo-

nent of the IPSL climate model, which is used for all the past and future climate simulation exercises carried out for the IPCC

reports as part of the Coupled Model Intercomparison Project (CMIP) (IPCC, 2023). Here, we use ORCHIDEE version 2.2110

(with revision 7738), which is very close to the version used as the land component of the IPSL-CM6 climate model (Boucher

et al., 2020; Cheruy et al., 2020). In this study, the ORCHIDEE model is not coupled to the IPSL climate model (off-line simu-

lation) but is instead fed by an atmospheric forcing (section 2.2.1). The ORCHIDEE model couples the SECHIBA (water and

energy budgets in Ducoudré et al., 1993) and STOMATE (carbon budget and phenology in Krinner et al., 2005) modules. This

coupling describes the hydrological processes (e.g., soil moisture diffusion, evapotranspiration, and river discharge) and their115

interactions with vegetation and the carbon cycle so that the simulated variables depend on the atmospheric CO2 concentration.

The water, energy and carbon fluxes are calculated on a 30-minute time step within each atmospheric grid cell, and the river

discharges are then deduced by aggregating the lateral flows of each grid cell along the river routing network. It must be noted

that this version of ORCHIDEE does not include any human impact, with the exception of the presence of crops among the

possible vegetation types.120

4

https://professionnels.ofb.fr/fr/node/1244


The vegetation in a grid cell is not uniform but rather comprises a mosaic of several plant function types (PFTs, section

2.2.2). Table S1 summarizes the 15 PFTs used in the ORCHIDEE LSM. Each PFT is characterized by different morphological,

physiological, phenological and radiative properties, mainly based on specialized literature. The root density profile of each

PFT in the ORCHIDEE model is assumed to decrease exponentially with depth and is modulated by a decay factor c, as shown

in Figure S9. The root density of each PFT can be increased (decreased) by decreasing (increasing) c. Crop and grass PFTs125

have higher c values than forest PFTs; the roots of crop and grass PFTs are concentrated in surface soil layers while the roots

of forest PFTs can pass through deep soil layers.

The soil is 2 m deep, and each grid cell is characterized by the dominant soil texture (section 2.2.2). The soil water retention

properties (including porosity θs, field capacity θc and wilting point θw) depend on the texture as detailed in Table S2. The soil

hydraulic conductivity at saturation Ks is not vertically constant, as shown in Figure S5: ORCHIDEE assumes an exponential130

decrease with depth due to soil compaction, ruled by a decay factor f , combined with an increase towards the soil surface due to

the presence of roots, which enhances infiltration capacity (de Rosnay et al., 2002; d’Orgeval et al., 2008). This effect depends

on the root density profile. At each time step, soil moisture is redistributed vertically according to the Richards equation (flow

in an unsaturated medium) taking into account surface boundary conditions by infiltration and soil evaporation, withdrawals by

roots through the entire soil depth to supply transpiration, and gravitational drainage at the bottom of the soil (Campoy et al.,135

2013; Tafasca et al., 2020). For accurate computation, soil moisture and vertical water fluxes are discretized across 22 layers

over 2 m, with 7 soil layers of increasing depth in the top 20 cm to capture the strong soil moisture gradients, then soil layers

of constant thickness (12.5 cm) down to the soil bottom (Campoy et al., 2013). In this framework, transpiration depends on

soil moisture and a factor p, which represents the soil moisture content above which transpiration is maximal, i.e., not limited

by water stress. Figure S7 shows how the parameter p constrains transpiration.140

Evapotranspiration (ET) is calculated as the sum of plant transpiration, evaporation of intercepted water, soil evaporation

and snow sublimation. This calculation does not depend on potential evapotranspiration, but it is coupled to the surface energy

balance, which requires a sub-hourly time step (here, 30 minutes) to describe the diurnal radiation cycle. The four ET fluxes

in ORCHIDEE are described by a bulk aerodynamic formulation, in which the roughness length for momentum z0m and for

heat z0h control the aerodynamic resistance. z0m and z0h in ORCHIDEE can be calculated by prescribed parameters: z0m is145

calculated by a first-order approximation of vegetation height, i.e., multiplied by a factor fz (e.g., 1/10 in Brutsaert, 2005);

z0m/z0h is parameterized as 1 in CMIP5 to compensate for forcing errors (Dufresne et al., 2013). Note that z0m/z0h should

be larger than 1; for example, z0m/z0h = 10 was proposed by Brutsaert (2005). z0m and z0h in the ORCHIDEE can also be

calculated as a function of leaf area index (LAI) by the dynamic (dyn) method proposed by Su et al. (2001), as implemented

in CMIP6 (Boucher et al., 2020). The formulation of the method as well as its application is detailed in Su et al. (2001) and Su150

(2002). This dynamic method generally decreases ET simulation for the CMIP6 configuration of ORCHIDEE compared with

the CMIP5 configuration.

Snowpack and its dynamics are described by a 3-layer model, which makes it possible to account for variations in albedo,

density and thus the insulating properties of the snowpack as a function of the age of the snow and the nature of the underlying

vegetation (Wang et al., 2013). Rainfall not intercepted by vegetation cover and meltwater can infiltrate or runoff when the155
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rainfall exceeds the surface hydraulic conductivity. The two runoff terms, surface runoff and gravitational drainage at the

bottom of the soil, are summed as the total runoff.

Eventually, river flows are calculated by a high-resolution routing model (Nguyen-Quang et al., 2018; Polcher et al., 2023),

which aggregates the total runoff of HTUs within each atmospheric grid cell along the river routing network (section 2.2.3).

The routing model contains 3 linear reservoirs in each HTU: the river reservoir allows horizontal flow to transfer from HTU160

to HTU along the high-resolution river network; the groundwater and surface water reservoirs are used to compute the mean

transit time of groundwater drainage and surface runoff, respectively, and their contribution to the outflow from the river

reservoir (Schrapffer et al., 2020). The groundwater reservoir is simplified as a free aquifer, and thus the outflow is the base

flow. The resident time of each reservoir depends on the length and slope of the HTU, modulated by a time constant specific

for each reservoir (Polcher et al., 2023), which leads to a duration of resident time from long to short according to the order of165

groundwater, surface water, and river reservoirs. In this context, the flow velocity at each HTU in the river reservoir does not

vary with discharge and does not depend on flooding, which is not explicitly described.

2.2 Input data over France

2.2.1 Atmospheric forcing

The near-surface meteorological Safran reanalysis with a spatial resolution of 8 km and a temporal resolution of hourly time170

steps (Vidal et al., 2010a) is used in this study to drive the ORCHIDEE simulations over France. The Safran grid cell is thus the

horizontal resolution of the ORCHIDEE simulations. To cover the complete drainage area of French rivers, especially in the

Eastern alpine parts of France, the Safran reanalysis was extended to some parts of neighbouring countries, especially Switzer-

land (Figure 1). The Safran reanalysis is available from 08/1958 onwards and contains atmospheric data for ORCHIDEE:

air temperature, air pressure, air specific humidity, wind speed, liquid and solid precipitation, and downwards longwave and175

shortwave radiation. In addition, annual CO2 concentration observations in the atmosphere are sourced from Lurton et al.

(2020).

2.2.2 Boundary conditions: soil, vegetation and land use

The annual vegetation and land use maps for France used in this study are sourced from Lurton et al. (2020) and derived

from two products (see https://orchidas.lsce.ipsl.fr/dev/lccci/ for further data aggregation information): the global ESA CCI180

vegetation distribution (Harper et al., 2023) at 300 m spatial resolution is used to generate 15 generic PFTs gridded at 0.25°

spatial resolution for the ORCHIDEE model (bare soil, 2 crop PFTs, 4 grass PFTs, and 8 forest PFTs as detailed in Table

S1) to represent land cover distribution; the generic 15 PFT distribution is then combined with the Land-Use Harmonization

2 (LUH2) dataset (Hurtt et al., 2020) at 0.25° spatial resolution to produce the temporal evolution of 15 PFTs for CMIP6

simulations over the historical and future periods (850-2100). This information is ultimately reaggregated into Safran grid cells185

to account for the spatial distribution of the PFTs across France (Figure S1). The harvested wood biomass is also sourced from

the LUH2 dataset.
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Figure 1. The topography and hydrography of Metropolitan France (including Corsica), delineated in black contours, extended to neighbour-

ing countries based on the upscaled MERIT hydro DEM. The river networks in blue are represented by the pixels with a flow accumulation

larger than 200 pixels. Four major river basins, the Seine, the Loire, the Rhône and the Garonne, and three major mountain ranges, the Alps,

the Massif central and the Pyrenees, in France are marked on the map. The gray points represent the central points of the Safran reanalysis

grid cells.
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The sensitivity of the ORCHIDEE model to global and regional soil texture maps was tested in the literature (e.g., Tafasca

et al., 2020; Kilic et al., 2023). The global soil texture map of Reynolds et al. (2000) shows a better hydrological performance

for the Seine River basin (Kilic et al., 2023). Therefore, the soil texture data for France used in this study are based on the global190

soil texture map of Reynolds et al. (2000) at a 1/12° spatial resolution, which classifies soil textures into 12 USDA types. The

soil texture information over France is then rescaled into Safran grid cells by keeping the dominant soil texture type for each

grid cell (Figure S2). The dominant soil textures in France are loam and clay loam according to the Reynolds soil texture map.

2.2.3 River routing network

The construction of the river routing network across France for the ORCHIDEE model is based on the DEM at 1/60° resolu-195

tion (approximately 1.3 km over France) built by upscaling the MERIT Hydro global hydrography map at 3-arc sec resolution

(Yamazaki et al., 2019) with the Iterative Hydrography Upscaling (IHU) method (Eilander et al., 2021). The DEM incorporates

the following topographic and hydrologic information from the MERIT Hydro dataset: elevation, flow direction, flow accu-

mulation and distance to the ocean for each pixel, as shown in Figure 1; this information is used to construct the river routing

network connected by the HTUs of Safran grid cells as detailed in Polcher et al. (2023). In this study, we selected 15 trunca-200

tions to construct HTUs (nbmax = 15, i.e., the maximum number of HTUs within each atmospheric grid cell) given the spatial

resolutions of the DEM and Safran. Within this framework, the hydrometric stations collected from the Explore2 project are

positioned on the constructed high-resolution river routing network to comply with the following criteria: the distance between

the real station and the modelled station must be less than 5 km and the error of the upstream surface at the modelled station

must be less than 20%. Of the 4081 hydrometric stations collected, 3507 stations are within the above tolerance (86% of the205

total stations). Finally, ORCHIDEE can monitor the flow out of the HTU associated with the station during the simulation.

2.3 Evaluation strategy

2.3.1 Evaluation datasets

Three evaluation datasets are used in this study to assess the performance of the ORCHIDEE simulation.

The GLEAM dataset (Martens et al., 2017) provides daily ET data at a 0.25° resolution at the global scale from 1980 to 2020;210

these data were derived from the Priestley and Taylor (1972) evaporation model with satellite-based products (net radiation,

precipitation, surface soil moisture, skin and air temperatures, vegetation optical depth, and snow water equivalent) as inputs.

The FLUXCOM dataset (Jung et al., 2019) provides daily ET at a 0.5° resolution from 2001 to 2015 based on machine

learning algorithms that merge global FLUXNET measurements with remote sensing and meteorological observations. Both

ET benchmarks are aggregated to Safran grid cells at monthly time steps. GLEAM and FLUXCOM provide independent ET215

estimates, both of them with large uncertainties (Liu et al., 2023). They are used in combination to approach the plausible range

of observed ET.

The Explore2 project provides records of daily river discharge (Q) across France extracted from the French national hydro-

metric HydroPortail (Leleu et al., 2014; Delaigue et al., 2020). Of the 3507 hydrometric stations placed across the constructed
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river routing network, 1785 stations have Q records for at least 8 entire years over the simulation period of 1959-2020; these220

records were used to calibrate and evaluate the ORCHIDEE simulation. Stations with Q records for at least 8 entire years were

chosen because (1) the simulation performance was shown to be rather insensitive to the length of evaluation period above 8

years (Section S10 in supplementary material), and (2) these stations offer a large coverage of French rivers.

Although the version of ORCHIDEE used in this study does not include any human impact, the 1785 selected hydrometric

stations were all used in the evaluation process, whether human influenced or not. This enables a more comprehensive assess-225

ment of ORCHIDEE, as natural or weakly influenced stations are few in number (only 536, see Section S9 in supplementary

material) and exclude the stations along the main streams of the four major French rivers (Seine, Loire, Garonne, and Rhône).

2.3.2 Performance criteria

The criteria bias, Pearson correlation, Kling-Gupta efficiency (KGE, Kling et al., 2012) and time lag are used to quantitatively

evaluate the goodness-of-fit of the simulated ET (at grid cell level over France) and Q against the above datasets. The square-230

root transformation of Q is applied when calculating the KGE criterion to capture both high and low flows (Song et al., 2019).

The time lag calculation is based on auto-correlation with various lags, and determined by the lag t giving the maximum

correlation (a positive t means that the simulated Q time series lags the observed time series by t days; a negative t means that

the simulated Q time series leads the observed time series by -t days). The ideal time lag value is 0.

In addition, to verify the ability of the ORCHIDEE LSM to reproduce the observed trends of ET (at station level as the235

spatial averages of grid cells in the basins upstream the stations) and Q, the trends of the 1785 selected stations were calculated

using the Sen’s slope estimator (Sen, 1968). The nonparametric Mann-Kendall test (Mann, 1945; Kendall, 1948) was used to

determine the significance of the calculated trends. The significance level in this study is set to 5%. Split sample tests were also

performed and showed stable performances if the Q time series are split in two halves (Section S11 in supplementary material).

We used a confusion matrix and associated metrics to summarize the trend results: the "Accuracy" indicates the proportion240

of correct simulations among all observations; the "PPV" (positive predictive value) and "NPV" (negative predictive value)

indicate how many positive/negative simulations are actually correct; and the "TPR" (true positive rate) and "TNR" (true

negative rate) indicate how many positive/negative observations are correctly represented by the model. How these classic

metrics are calculated are detailed in Ting (2010). Besides, to focus on the accuracy of the simulated trend significance, two

metrics "PTSA" (positive trend significance accuracy) and "NTSA" (negative trend significance accuracy) are used to indicate245

the proportions of accurate trend significance (either significant or not) among all the accurate positive or negative trends.

Stations with accurate trend sign but incorrect significance are considered inaccurate in this framework.

2.4 Calibration design

LSMs are complex models, integrating many coupled processes related to hydrology, soils, vegetation, but also to the radiative

transfer or the boundary layer. They are also distributed models designed to be applied over wide and contrasted domains250

(Clark et al., 2015), in which every grid-point could be regarded as one 1D model. Therefore, their calibration is challenging

and a full optimization of LSM’s parameters is practically intractable, due to the computational burden (Bierkens et al., 2015),
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the equifinality (Fisher and Koven, 2020), and the uncertainty of input and benchmark datasets (Best et al., 2015). The most

common solutions are to rely on transfer functions to derive the spatial variations of model parameters from maps of physical

parameters (e.g. Samaniego et al., 2010), and to accept sub-optimal but satisfactory performance (Best et al., 2015).255

In this line, we chose here to calibrate selected parameters of the ORCHIDEE LSM based on an iterative trial-and-error

procedure to gradually improve simulations by manually adjusting some parameters. The simulation period is from 1959 to

2020, with a warm-up from 1959 to 1968 to provide reasonable initial conditions, and the output variables (e.g., ET and Q)

are aggregated to daily time steps. The starting experiment of this calibration procedure is called STD and uses the "standard"

parameter set sourced from CMIP6 (Boucher et al., 2020), according to which the roughness heights z0m and z0h are cal-260

culated by the dynamic method of Su et al. (2001). STD forced with Safran reanalysis significantly underestimates ET and

overestimates Q compared with the evaluation datasets detailed in Section 2.3. The calibration is therefore aimed at increasing

ET and decreasing Q. According to expert knowledge on the parameter sensitivity of ORCHIDEE and previous calibration

exercises (Kilic et al., 2023; Raoult et al., 2021; MacBean et al., 2020; Dantec-Nédélec et al., 2017; Campoy et al., 2013), we

focused on parameters that control surface roughness, soil hydraulics and vegetation morphology (detailed in Section 2.1) to265

improve the simulations of ET and Q.

A hundred parameter sets were tested in this iterative evaluation process, summarized in Table 1 by a selection of 6 cali-

bration experiments that show a gradual decrease of ET and Q biases on average over France. Each parameter set in Table 1

is applied uniformly over the entire simulation area. EXP1a and EXP1b calculate ET using the prescribed z0m/z0h and fz ,

respectively, with values suggested by Brutsaert (2005). EXP2 increases the decay factor f , and the soil hydraulic conductivity270

decreases more rapidly with depth so that the soil drainage decreases (Q decreases) and ET increases. EXP3 decreases the

soil water threshold for transpiration from 0.8 to 0.5, and transpiration (thus, ET) increases. EXP4 changes the root profiles of

the PFTs present in France by increasing the c parameter of tree and boreal grass PFTs to decrease their root density, while

decreasing the c parameter of crop PFTs to increase crop root density. As such, the transpiration of trees and boreal grasses

decreases, while the transpiration of crops increases.275

3 Results

3.1 Evaluation of simulated basin area

Figure 2 shows the good performance of the high-resolution river routing model in simulating the basin areas across France,

with R2 = 0.999 across the 3507 stations compared to the information from HydroPortail. Classically, the performance increases

with increasing river basin area, with R2 ranging from 0.992 for basins less than 103 km2 to 0.998 for basins larger than 104 km2.280

However, the routing model tends to overestimate basin areas for basins less than 104 km2 but tends to slightly underestimate

basin areas for basins larger than 104 km2. There is no significant positive or negative bias in the simulated basin area for the

4 major river basins (the Seine, the Loire, the Rhône, and the Garonne), and the biases of most of the simulated basins are

less than 5%. For basins larger than 103 km2, most of the biases are larger than 5% are located in the mountainous regions,

especially in the Alps, given the complicated topography.285
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Figure 2. The comparison between the simulated upstream basin area and the reference area in HydroPortail for the 3507 stations located in

the high-resolution river networks: (a) scatter plot of simulated area to reference area, (b) boxplot of simulated area bias and (c) spatial map

of simulated area bias for basins less than 103 km2, between 103 km2 and 104 km2, and larger than 104 km2.
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Table 1. Parameter sets applied to the calibration experiments of the ORCHIDEE LSM. The means of daily evapotranspiration (ET), surface

runoff (Rs), drainage (Rd) and total runoff (R) are calculated over the extended Safran coverage and the 1959-2020 simulation period. The

medians of ET bias are calculated for all Safran grid cells of the extended Safran coverage with GLEAM dataset over the 1980-2020 period

and with FLUXCOM dataset over the 2001-2015 period. The median of river discharge (Q) bias is calculated with the 1785 selected French

hydrometric stations over the 1959-2020 period.

Roughness Hydraulics Vegetation
ET Rs Rd R Bias ET to G. Bias ET to F. Bias Q

z0m
z0h

fz f p c [mm/d] [mm/d] [mm/d] [mm/d] [%] [%] [%]

C
al

ib
ra

tio
ns

STD dyn 1/15 2 0.8 ref 1.350 0.330 0.933 1.263 -11.6 -14.9 28.4

EXP1a 10 - - - - 1.453 0.314 0.847 1.161 -5.6 -9.2 16.7

EXP1b 10 1/10 - - - 1.471 0.318 0.824 1.143 -4.4 -8.0 13.6

EXP2 10 1/10 4 - - 1.490 0.916 0.208 1.124 -3.3 -6.8 11.7

EXP3 10 1/10 4 0.5 - 1.498 0.910 0.206 1.116 -2.7 -6.2 10.7

EXP4 10 1/10 4 0.5 new 1.526 0.893 0.195 1.089 -0.5 -4.3 6.3

- same as STD; dyn as dynamic; G. as GLEAM; F. as FLUXCOM;

ref = [5.0, 0.8, 0.8, 1.0, 0.8, 0.8, 1.0, 1.0, 0.8, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0] in Table S1;

new = [5.0, 0.8, 0.8, 1.0, 0.8, 1.5, 2.0, 2.0, 1.5, 4.0, 4.0, 2.0, 2.0, 4.0, 6.0] in Table S1.

3.2 Performance of the different experiments

Figure 3 illustrates how the performance criteria of the simulated ET and Q improve during the calibration experiments.

The first three calibration experiments show the impact of two different methods in calculating ET. STD applies a dynamic

physically-based model that calculates z0m and z0h with the variables simulated by ORCHIDEE (e.g., canopy height, LAI,

and fractional coverage for 15 PFTs). EXP1a and EXP1b prescribe z0m
z0h

and fz values to approximate z0m and z0h only with290

the simulated variable of canopy height. Compared with STD, EXP1a decreases the negative ET bias against FLUXCOM by

5.7% by greatly increasing z0h from 1.10× 10-4 to 1.43× 10-2 m over the extended simulation domain and simulation period

(z0m decreases from 0.385 to 0.255 m). Compared with EXP1a, EXP1b decreases the negative ET bias by 1.2% by increasing

fz from 1/15 to 1/10: z0m increases from 0.255 to 0.482 m, and z0h increases from 1.43× 10-2 to 2.28× 10-2 m. Figures S3

and S4 show the spatial and temporal changes of the z0h, z0m and ET values for the first three calibration experiments. Q295

is thus decreased due to the water budget of ORCHIDEE when ET is increased, and the positive Q bias against HydroPortail

decreases by 11.7% and 3.1%, respectively. For the first three calibration experiments, the biases of simulated ET and Q against

observation datasets are gradually decreased and EXP1a decreases the biases of the simulated ET and Q the most. In addition,

the KGE values of square-rooted Q against observations are slightly increased. However, the correlation values of the simulated

Q against observations are slightly decreased, and the simulated Q tends to gradually lag behind the observations for the first300

three calibrations.
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Figure 3. Performance criteria of calibration experiments: (a) bias of the simulated ET to GLEAM dataset; (b) bias of the simulated ET

to FLUXCOM dataset; (c) bias of the simulated Q; (d) Pearson correlation coefficient of the simulated Q; (e) KGE of the square-rooted

simulated Q; (f) time lag of the simulated Q. The calculation of biases for the simulated ET is applied to all Safran grid cells of the extended

domain over the 1980-2020 period against GLEAM dataset and over the 2001-2015 period against FLUXCOM dataset, respectively. The

calculation of criteria for the simulated Q is applied to the 1785 hydrometric stations in the HydroPortail dataset with records for at least 8

entire years. For each boxplot, the lower and upper hinges are the first and third quartiles; the minimum and maximum values extend from

the first/thrid hinge to 1.5 times of the inter-quartile range.
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To improve the goodness-of-fit of the simulated Q, EXP2 increases the decay factor f from 2 to 4 compared to EXP1b,

which decreases the hydraulic conductivity for soil layers below 0.3 m, while the hydraulic conductivity for soil layers above

0.3 m remains unchanged (Figure S6a-b). A decrease of hydraulic conductivity in deep soil layers leads to a decrease of

drainage at the soil bottom. Since less water drains from deep soil layers while the surface soil layers maintain the same305

infiltration capacity, the latter can saturate more easily, and more surface runoff is produced (Table 1). Eventually, the total

runoff is decreased from EXP1b to EXP2 as the surface runoff increase is smaller than the decrease of gravitational drainage

at the soil bottom. EXP2 thus decreases the positive Q bias against HydroPortail (by 1.9%), as well as the negative ET bias

against FLUXCOM (by 1.2%). In addition, the ratio of surface runoff to total runoff is greatly increased from 27.9% in EXP1b

to 81.5% in EXP2, which results in more "fast" surface flow and less "slow" groundwater, leading to more responsive Q to310

precipitation events. The correlation and KGE criteria of the simulated Q are improved from 0.59 to 0.69 and from 0.54 to

0.59, respectively (Figure 3). The time lag criterion of the simulated Q is also greatly improved from a range of -11 to 27 days

to a range of -3 to 5 days. Similar improvements in streamflow dynamics could be obtained by changing the time constant of

the fast and slow routing reservoirs without improving the Q and ET biases.

Two additional simulations, EXP3 and EXP4, were conducted to further improve the bias criteria by changing the vegetation315

parameters in ORCHIDEE to potentially increase transpiration (thus ET): EXP3 reduced the soil moisture stress for transpi-

ration, while EXP4 changed the vegetation root profile. Transpiration is conveyed by the factor Us in ORCHIDEE, which is

negatively related to the water stress factor F and positively related to root density.

The factor F depends on soil moisture and on a threshold parameter p, as illustrated in Figure S7: there is no soil moisture

stress if F = 1, which occurs when the soil moisture exceeds θw + p× (θc − θw). By decreasing p from 0.8 in EXP2 to 0.5 in320

EXP3, a wider range of soil moisture leads to F = 1 and thus unstressed transpiration. As shown in Figure S8, transpiration

(Us) is increased for all PFTs and the effect is more pronounced for crop PFTs (PFTs 12 and 13) than for forest PFTs (PFTs 7

and 8). However, this general decrease of soil water stress to favour transpiration is weak, as it decreases the negative ET bias

against FLUXCOM by only 0.6% (1.0% for the positive Q bias against HydroPortail).

The change in the root density profile from EXP3 to EXP4 further modifies transpiration but also changes the hydraulic325

conductivity of the shallow soil layers. In EXP4, we increased the root density of the crop PFTs (PFTs 12 and 13) by decreasing

c, and decreased the root density of the forest and boreal grass PFTs (PFTs 6, 7, 8, 9, and 15) by increasing c (Table S1; Figure

S9). Given the major spatial distribution of the crop PFTs in France (Figure S1), the general effect of EXP4 compared to EXP3

increases transpiration (thus ET), which also reduces drainage at the soil bottom. In addition, the hydraulic conductivity of the

shallow soil layers in France is slightly increased but with some spatial differences, as shown in Figure S6c-d, which generally330

reduces surface runoff. The negative ET bias against FLUXCOM is decreased by 1.9% (4.4% for the positive Q bias against

HydroPortail). Both EXP3 and EXP4 barely improve the correlation and KGE criteria of simulated Q against observations,

while EXP4 slightly degrades the time lag due to the change in infiltration capacity in surface soils.

In summary, by successively adjusting the surface roughness, hydraulic, and vegetation parameters, the goodness-of-fit

measures of the simulated ET and Q are gradually improved. A considerable improvement in the bias criteria for the simulated335

ET and Q comes from the method of calculating ET by prescribing the surface roughness parameters (EXP1a and EXP1b). The
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correlation, KGE and time lag criteria performance for the simulated Q are considerably increased by calibrating the hydraulic

parameter (EXP2) due to a better adjustment of the surface runoff and drainage ratios to total runoff. Calibrations of vegetation

parameters (EXP3 and EXP4) also improve the simulation performance but with minor sensitivity compared to the previous

calibrations. Generally, EXP4 shows the most satisfactory simulation performance among the calibration experiments.340

3.3 Preferred experiment: Spatial evaluation of the simulated water fluxes

The simulation is evaluated using the EXP4 calibration experiment, which yields the overall best performance criterion values

in terms of the simulated ET and Q.

3.3.1 ET simulation performance

Both the GLEAM and FLUXCOM datasets are used to evaluate the ET simulation by ORCHIDEE in this study. Both datasets345

show more ET in the southern part (except for the high Alps) and less ET in the northern part of the simulation domain (Figure

4a-b). However, compared with that in the GLEAM dataset, the ET of the FLUXCOM dataset is much greater in the north-

western part of the domain (i.e., the Seine and Loire River basins) and lower in the mountainous regions (i.e., the Alps, the

Massif central and the Pyrenees).

Figure 4c shows that the spatial distributions of the simulated ET biases are distinctly contrasted from those of the GLEAM350

dataset over the entire simulated domain: the simulated ET is generally underestimated in the mountainous regions (except

for the high Alps, where a considerable overestimation occurs) and the Gascogne region (alluvial plain of the Pyrenees) but

is significantly overestimated in the north-western part (notably the Seine River basin). On the other hand, compared to the

FLUXCOM dataset, Figure 4d shows that the simulated ET bias is generally underestimated but overestimated in the south-

eastern part of the entire simulation domain (notably the Mediterranean mountainous regions). Although the median bias of the355

simulated ET against GLEAM (-0.5%) is better than that against FLUXCOM (-4.3%), as illustrated in Figure 3, the simulated

ET is more spatially consistent with FLUXCOM.

3.3.2 Q simulation performance

Figure 5 shows the spatial distribution of the simulated Q criteria evaluated by the 1785 selected hydrometric stations in the Hy-

droPortail dataset. The Q simulated by ORCHIDEE is mainly underestimated in Mediterranean river basins and overestimated360

elsewhere, which is consistent with the overestimation of the simulated ET in the Mediterranean region and the underestima-

tion elsewhere against the FLUXCOM dataset. The biases of the simulated Q for most basins larger than 103 km2 are less

than 10%. In general, the river discharges in the Saône (a major tributary contributing to the Rhône River basin), Garonne, and

Loire River basins along the main river networks are satisfactorily represented by ORCHIDEE, with the Pearson correlation

and KGE criteria mostly larger than 0.8 and 0.75, respectively. Subbasins with areas less than 103 km2 in these river basins365

are also fairly well simulated with Pearson correlation and KGE criteria broadly larger than 0.6 and 0.5, respectively. In terms

of the time lag criterion, most simulated Q with large time lag errors correspond to catchments smaller than 104 km2, with
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Figure 4. The spatial distributions of the ET datasets and the simulated ET biases against them for all the Safran grid cells over the entire

simulation domain: (a) the mean ET of the GLEAM dataset and (c) the bias of the simulated ET against it from 1980 to 2020; (b) the mean

ET of the FLUXCOM dataset and (d) the bias of the simulated ET against it from 2001 to 2015. The mean ET of the GLEAM dataset from

2001 to 2015 is not shown here but is very similar to that of the 1980-2020 period.
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Figure 5. The spatial distribution of the Q simulation performance evaluated by the (a) bias, (b) Pearson correlation coefficient, (c) KGE of

the square-rooted Q, and (d) time lag for the 1785 selected French hydrometric stations in the HydroPortail dataset over the entire simulation

domain.
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Figure 6. The simulation performance of the Loire River at the hydrometric station Montjean-sur-Loire (M5300010): (a) the simulated river

basin area with the legend of the proportion of Safran grids contributing to the basin area; (b) the annual regime of simulated Q compared

to the observation in the HydroPortail dataset at daily time steps from 1959 to 2020; (c) the annual regime of simulated ET compared to the

GLEAM dataset at monthly time steps from 1980 to 2020; (d) the annual regime of simulated ET compared to the FLUXCOM dataset at

monthly time steps from 2001 to 2015; and (e) the simulated Q compared to the observation at monthly time steps from 1959 to 2020. The

regime plots of ET and Q are presented with the colour bands as the range between the 25% and 75% quantiles and the solid lines as the

medians.

18



0

1

2

3

4

J F M A M J J A S O N D

ET
 (2

00
1−

20
15

) [
m

m
/d

]

FLUXCOM
Sim0

1

2

3

4

J F M A M J J A S O N D

ET
 (1

98
0−

20
20

) [
m

m
/d

]

GLEAM
Sim

42°N

44°N

46°N

48°N

50°N

 4°W  2°W  0°  2°E  4°E  6°E  8°E 10°E

0

0.2

0.4

0.6

0.8

1
Area [−]

H8110020: Seine at Vernon

￼Bias(S) = − 0.4 %

￼Bias(ET ) = 17.3 % ￼PCC(ET ) = 0.957 ￼Bias(ET ) = 1.9 % ￼PCC(ET ) = 0.955

(a)

(c) (d)

500

1000

1500

J F M A M J J A S O N D

Q
 [m

3 /s
]

Obs
Sim

(b) ￼Bias(Q) = 0.1 % ￼PCC(Q) = 0.869
￼KGE( Q) = 0.498 ￼Timelag(Q) = 0 d

0

1000

2000

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Q
 [m

3 /s
]

Obs
Sim

(e)

Figure 7. The same as in Figure 6 but for the Seine River at the hydrometric station Vernon (H8110020).
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simulated Q leading the observations by 2 to 6 days in the Seine River basin, but lagging the observations by 2 to 4 days in

the Loire River basin. The simulated Q in the Garonne and Rhône River basins generally reveal no obvious leading or lagging

results.370

Human impacts on water that are not explicitly taken into account in this study lead to the degradation of goodness-of-

fit indicators. An example of the simulation results for the Loire River basin is illustrated in Figure 6. The variability and

seasonality of the Q and ET fluxes are well represented by ORCHIDEE while the simulated Q of the Loire River during the

summer period is overestimated. This difference may be attributed to the irrigation extraction of maize crops by upstream

reservoirs (Janin, 1996). The Seine River basin is influenced by upstream reservoirs that store high winter flows and release375

them during summer to meet environmental and navigational needs and by groundwater pumping mostly for drinking water in

Paris (Flipo et al., 2020). These human interventions are not described in the ORCHIDEE LSM, which probably explains in a

large part why river discharge downstream of Paris is strongly underestimated, especially in summer (Figure 7). In addition,

the mountainous basins in the Alps (e.g. the Isère and Durance River basins, contributing to the Rhône River) and the Pyrenees

(e.g. the Neste River basin, contributing to the Garonne River) show unsatisfactory simulation performance (Figures S10-11)380

because these river basins are significantly perturbed by dams and reservoirs for winter hydropower production, spring refill

and summer irrigation (e.g. the Serre-Ponçon reservoir in the Durance River basin, one of the largest dams in Europe) (François

et al., 2014; Andrew and Sauquet, 2017; Huang et al., 2022; Baratgin et al., 2024). Figure S14 shows that ORCHIDEE performs

better on natural or weakly influenced river basins than on influenced river basins, especially for correlation and KGE criteria.

Other model imperfections degrade the quality of simulated river discharge. In the mountains, these poor results could also385

be related to poor snow simulation. Groundwater is also known to strongly influence streamflow, especially in river basins

embedded in sedimentary basins (e.g., the Seine River basin). Groundwater is simply represented in ORCHIDEE by the slow

reservoir of the routing scheme as a free aquifer. However, ORCHIDEE does not account for the difference between large

aquifers, which significantly buffer river discharge variability (Gascoin et al., 2009), and smaller aquifers with shallow and

very reactive water tables. This degrades the ORCHIDEE’s performance (e.g., bias and time lag) in the sedimentary basins.390

This problem could be approached by assigning larger residence times to the slow reservoirs of grid cells in sedimentary basins.

However, it is difficult in practice because parameters are applied uniformly over France in ORCHIDEE.

3.4 Preferred experiment: Evaluation of river discharge trends

Figure 8 shows that the calibrated ORCHIDEE LSM satisfactorily represents the observed Q trend of the 1785 selected French

hydrometric stations. In general, both the observed and simulated Q trends exhibit similar spatial patterns, with a decreasing395

trend (significant) in the south-eastern part of France and an increasing trend (not significant) in the north-western part of

France, which is consistent with the findings of previous studies (e.g., Gudmundsson et al., 2017; Vicente-Serrano et al., 2019).

Most basins with significant observed and simulated decreasing trends are located in the Garonne River, upstream of the Loire

River, and upstream of the Rhône River. However, compared with the observed Q trends over France, the simulated Q trends

tend to alleviate the decreasing trend and to enhance the increasing trend. For example, there is a general decreasing trend,400

usually not significant, for the basins located on the Mediterranean coast (including Corsica) from the observed Q, while the
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Qobs: -0.378%/year

Qsim: -0.196%/year

Trend (1980-2020): 

Qobs: -1.045%/year (*)

Qsim: -0.763%/year

Trend (2001-2015): 

Qobs: -0.792%/year 

Qsim: -0.759%/year

Trend (1980-2020): 

GLEAM: 0.144%/year (*)

ETsim: 0.215%/year (*)

Trend (2001-2015): 

FLUXCOM: 0.008%/year

GLEAM: 0.050%/year

ETsim: -0.044%/year

Figure 9. The temporal trends of the observed and simulated annual Q (a) and ET (b) of the Loire River at the hydrometric station Montjean-

sur-Loire (M5300010) for the 1959-2020, 1980-2020, and 2001-2015 periods. The trend magnitudes are marked in the plots in units of

%/year and the symbol (*) indicates the significance of the trend (p value <0.05).
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Figure 10. The same as in Figure 9 but for the Seine River at the hydrometric station Vernon (H8110010).
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Todorović, A., Grabs, T., and Teutschbein, C.: Advancing traditional strategies for testing hydrological model fitness in a changing climate,

Hydrological Sciences Journal, 67, 1790–1811, https://doi.org/10.1080/02626667.2022.2104646, 2022.

Troy, T. J., Wood, E. F., and Sheffield, J.: An efficient calibration method for continental-scale land surface modeling, Water Resources

Research, 44, https://doi.org/10.1029/2007WR006513, 2008.765

van Kempen, G., van der Wiel, K., and Melsen, L. A.: The impact of hydrological model structure on the simulation of extreme runoff events,

Natural Hazards and Earth System Sciences, 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021, 2021.

Vergnes, J.-P. and Decharme, B.: A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against

GRACE terrestrial water storage estimates and observed river discharges, Hydrology and Earth System Sciences, 16, 3889–3908,

https://doi.org/10.5194/hess-16-3889-2012, 2012.770

Vicente-Serrano, S. M., Peña-Gallardo, M., Hannaford, J., Murphy, C., Lorenzo-Lacruz, J., Dominguez-Castro, F., López-Moreno, J. I.,

Beguería, S., Noguera, I., Harrigan, S., and Vidal, J.-P.: Climate, Irrigation, and Land Cover Change Explain Streamflow Trends in

Countries Bordering the Northeast Atlantic, Geophysical Research Letters, 46, 10 821–10 833, https://doi.org/10.1029/2019GL084084,

2019.

Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50-year high-resolution atmospheric reanalysis over France775

with the Safran system, International Journal of Climatology, 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010a.

Vidal, J.-P., Martin, E., Franchistéguy, L., Habets, F., Soubeyroux, J.-M., Blanchard, M., and Baillon, M.: Multilevel and multiscale drought

reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite, Hydrology and Earth System Sciences, 14, 459–478,

https://doi.org/10.5194/hess-14-459-2010, 2010b.

Wang, T., Ottlé, C., Boone, A., Ciais, P., Brun, E., Morin, S., Krinner, G., Piao, S., and Peng, S.: Evaluation of an improved intermedi-780

ate complexity snow scheme in the ORCHIDEE land surface model, Journal of Geophysical Research: Atmospheres, 118, 6064–6079,

https://doi.org/10.1002/jgrd.50395, 2013.

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography

Map Based on Latest Topography Dataset, Water Resources Research, 55, 5053–5073, https://doi.org/10.1029/2019WR024873, 2019.

Yang, K., Zhu, L., Chen, Y., Zhao, L., Qin, J., Lu, H., Tang, W., Han, M., Ding, B., and Fang, N.: Land surface model cal-785

ibration through microwave data assimilation for improving soil moisture simulations, Journal of Hydrology, 533, 266–276,

https://doi.org/10.1016/j.jhydrol.2015.12.018, 2016.

Yang, Y., Guan, K., Peng, B., Pan, M., Jiang, C., and Franz, T. E.: High-resolution spatially explicit land surface model calibration using field-

scale satellite-based daily evapotranspiration product, Journal of Hydrology, 596, 125 730, https://doi.org/10.1016/j.jhydrol.2020.125730,

2021.790

Zeng, R. and Cai, X.: Hydrologic Observation, Model, and Theory Congruence on Evapotranspiration Variance: Diagnosis of Multiple

Observations and Land Surface Models, Water Resources Research, 54, 9074–9095, https://doi.org/10.1029/2018WR022723, 2018.

35

https://doi.org/10.5194/gmd-14-3843-2021
https://doi.org/10.1007/978-0-387-30164-8_157
https://doi.org/10.1080/02626667.2022.2104646
https://doi.org/10.1029/2007WR006513
https://doi.org/10.5194/nhess-21-961-2021
https://doi.org/10.5194/hess-16-3889-2012
https://doi.org/10.1029/2019GL084084
https://doi.org/10.1002/joc.2003
https://doi.org/10.5194/hess-14-459-2010
https://doi.org/10.1002/jgrd.50395
https://doi.org/10.1029/2019WR024873
https://doi.org/10.1016/j.jhydrol.2015.12.018
https://doi.org/10.1016/j.jhydrol.2020.125730
https://doi.org/10.1029/2018WR022723


Zhou, X., Polcher, J., and Dumas, P.: Representing Human Water Management in a Land Surface Model Using a Supply/Demand Approach,

Water Resources Research, 57, e2020WR028 133, https://doi.org/10.1029/2020WR028133, 2021.

36

https://doi.org/10.1029/2020WR028133

