
Response to the comments of anonymous referee #2

We would like to thank anonymous referee#2 for the comments that help to improve
the manuscript. Below are our responses to the concerns raised. The comments of
anonymous referee #2 are shown in black. Authors’ responses are shown in blue.

Summary
The article presents the calibration and the evaluation of the ORCHIEE land-surface
model over France. The article has several major limitations. Several important
choices of the methodology applied by the authors are not well explained or justified.
The model version with modified parameters sets provides less biased results than
the standard version, but it is difficult to evaluate whether the results should be
considered as satisfactory over the test domain due to the lack of external
benchmark. Besides some explanations on model failure remain unverified
hypotheses.

Response: We are thankful for the thorough comments and constructive suggestions
provided in this review. We kindly appreciate the efforts made by referee#2.

Major comments
1. Title: As detailed in comments below, I think the article does not explain how the
“multi-objective calibration” of the model was done (or at least I did not understand
that). This is a strong limitation of the article.

Response: This study aims to use the ORCHIDEE land surface model to obtain a
reliable hydrological simulation over France at high resolution. To achieve this, we
applied a multi-objective calibration, which means that we reduced both simulated
ET and Q biases as different objectives with the help of two ET products and Q
observations to constrain parameters. Then, we need to find a compromise between
these different objectives to define an acceptable parameter set.

The term “multi-objective” is mostly found in automatic calibration studies of
hydrological modeling that apply optimization techniques to minimize/maximize a
multi-objective function. And we think referee#2 might confuse our study with these
studies because there are many comments below focusing on how we optimize in
the calibration procedure.

In this work, we did not use optimization techniques to calibrate ORCHIDEE.
Instead, we progressively changed our parameter set to improve the overall
performance of our models, as assessed via performance indicators, estimated in
many spatial elements (N grid cells and Y discharge stations). In doing so, we rely
on our own expert judgment to make the tradeoffs between sometimes contrasting
criteria (e.g. opposite biases of ET with GLEAM and FLUXCOM). This may seem



subjective, but multi-objective optimization methods are often ineffective in such
situations anyway (Vrugt et al., 2003; Chiandussi et al., 2012).

To avoid the confusion of future readers, we will explain this in Section 2.4
“Calibration design” (see the response of the comment N°11).

2. L10. Getting an almost perfect match on actual evapotranspiration given the
uncertainty on the observational product used may be considered as overcalibration.

Response: To be clear, we did not stop at EXP4 because it has a good bias value
compared with GLEAM (-0.5%). Instead, ET is underestimated compared with
FLUXCOM (-4.3%) and Q is overestimated compared with observations (6.3%),
which means that there is probably a physical consistency between these two
datasets. We simulated the natural behavior of the French water system without
considering human perturbations, such as pumping and irrigation, which could result
in an underestimation of ET and an overestimation of Q if we consider FLUXCOM
and Q observations at the same time. Anyway, we did not seek to obtain perfect bais
values against these datasets but we try to make some compromises to make our
manual calibration more reasonable and reliable.

This almost perfect bias value actually hides a large spatial variability over the study
domain.

Response: Following this comment, the sentences in L10-13 will be changed to “For
example, the median bias of evapotranspiration is -0.5% against GLEAM (-4.3%
against FLUXCOM), the median bias of river discharge is 6.3%, and the median
KGE of square-rooted river discharge is 0.59. These indicators, however, exhibit a
large spatial variability, with poor performance in the Alps and the Seine sedimentary
basin. The spatial contrasts and temporal trends of river discharge across France
are well represented with an accuracy of 76.4% for the trend sign and an accuracy of
62.7% for the trend significance.”

3. L10-15. I found these sentences too optimistic on model results. It seems that
there are many modelling problems remaining to well capture the actual hydrological
dynamics. I did not see convincing demonstration that these results would provide a
“thorough historical overview of water resources” nor a “robust configuration for
climate change impact analysis”. The study does not analyse how model
performance evolves over the study period and the model robustness is not
evaluated by dedicated tests (model robustness to extrapolate in space or time).

Response: We didn’t conduct split sample tests in our study because we think split
sample tests are used to verify the robustness of parameters in the optimization
procedure, which is not suitable in the context of manual calibration (our study).



However, we have conducted trend analyses over France, which we consider more
suitable in our case to verify the robustness of the model.

How model robustness evolves over the study period will be discussed in comment
N°12. We still provided the results of split sample tests in comment N°12 for your
information.

In terms of “thorough historical overview of water resources”, we agree with referee
#2 that the description might be too optimistic and the sentence of L13-15 will be
changed to “Although it does not yet integrate human impacts on river basins, the
selected parameterization of ORCHIDEE offers a reliable historical overview of water
resources and a robust configuration for climate change impact analysis at the
nationwide scale of France.”

4. L65-67: Though erroneous data may prevent obtaining good calibration results,
the model itself is generally the main problem in getting good results.

Response: Yes. Based on this suggestion, we will change the sentence to “Either
way, a perfect calibration is always impossible to achieve due to inherent
uncertainties in forcing data (e.g., Gelati et al., 2018; Kabir et al., 2022), benchmark
observations (e.g., Zeng and Cai, 2018) and model structure (e.g., van Kempen et
al., 2021).”

5. L120: Why soil is 2-m deep everywhere? Is not that a strong approximation given
that it is not the case?

Response: If we compare it to the reality, it is a strong approximation and
simplification because soil depth is different everywhere. In land surface modeling,
we use this approximation due to the lack of soil depth maps with good quality.

6. L126: Why 22 layers? Are they all of the same depth? Is this level of complexity
justified by model performance (and consistent with the approximation mentioned in
the previous comment)?

Response: The 2-m soil in ORCHIDEE is discretized into 22 layers (increasing soil
thickness above 0.2 m and constant soil thickness below 0.2 m) to describe the
vertical soil water fluxes calculated with Richards equations. The depth at which
constant layer thickness starts (0.2 m here) is a parameter for soil discretization in
ORCHIDEE.



The thickness of the 22 layers used in this study are shown in the table below.

Layer 1 2 3 4 5 6 7 8

Thickness
(m)

0.0010 0.0029 0.0059 0.0117 0.0235 0.0469 0.0938 0.1251

Layer 9 10 11 12 13 14 15 16

Thickness
(m)

0.1251 0.1251 0.1251 0.1251 0.1251 0.1251 0.1251 0.1251

Layer 17 18 19 20 21 22

Thickness
(m)

0.1251 0.1251 0.1251 0.1251 0.1251 0.0626

Campoy et al. (2013) showed that a refined soil layers increased the performance of
ORCHIDEE in simulating vertical water fluxes.

Following this comment, we will change the sentence in L125-128 to “At each time
step, soil moisture is redistributed vertically according to the Richards equation (flow
in an unsaturated medium) taking into account surface boundary conditions by
infiltration and soil evaporation, withdrawals by roots through the entire soil depth to
supply transpiration, and gravitational drainage at the bottom of the soil (Campoy et
al., 2013; Tafasca et al., 2020). For accurate computation, soil moisture and vertical
water fluxes are discretized across 22 layers over 2 m, with 7 soil layers of
increasing depth in the top 20 cm to capture the strong soil moisture gradients, then
soil layers of constant thickness (12.5 cm) down to the soil bottom (Campoy et al.,
2013).”

7. L147-156: Though linear stores are very commonly used in hydrological
modelling, they have limited efficiency in simulating some flow ranges, typically low
flows. Why only linear stores are used in the model?

Response: It is true that the linear reservoir method is a strong simplification of river
flow physics, but it is still widely used for routing lateral water flows in land surface
models, such as ORCHIDEE (used in this study) and CLM (Lawrence et al., 2011).

The linear reservoir method reduces computational cost, especially for
high-resolution application (Sheng et al., 2017; Nguyen-Quang et al., 2018; Polcher
et al., 2023).



8. Section 2.3: It was not fully clear for me at which time steps the evaluation criteria
were calculated. At the monthly time step for ET and daily time step for Q? The
authors could also explain which expected model qualities are assessed by the
criteria selected. Especially, one could expect that there could be some criteria
focusing on high and low flows. Bias and correlation coefficient are two of the three
components of the KGE criterion. Would the third component (ratio of variances or
ratio of variation coefficient) be useful to consider also?

Response: In this study, ET was evaluated at monthly time step and Q was
evaluated at daily time step (as stated in L202-204 and L207-208).

We will add a sentence in L208 “The square-root transformation on Q is applied to
calculating KGE criterion to capture both high and low flows (Song et al., 2019).”

To keep the conciseness of the article, the third component of KGE criterion
(variability ratio) is not explicitly demonstrated but included in the evaluation of the
KGE criterion on square-rooted Q.

9. Section 2.3: It is unclear whether the observed time series were visually checked
before use.

Response: The observed Q time series were not fully visually checked before use
given the thousands of stations collected in the project.

In large datasets, there are often many remaining observational errors, which may
strongly influence model evaluation.

Response: Thank you for point out this and we will add this aspect in L427 of
Section 4: “Besides, Q records of the selected 1785 stations are not fully checked
because identifying Q anomalies is extremely time-consuming and subjective. The
remaining observational Q errors might influence model evaluation.”

10. L205: One part of the evaluation is on trends. However 8 years (for the shortest
series) are too short to evaluate trends. This evaluation should be restricted to
stations where there are long time series (at least 30 years).

Response: The table below shows the trend accuracy (EXP4) is not sensitive to the
length of evaluation period.



Period length 8 15 20 25 30

Number of stations 1785 1477 1306 1106 969

Proportion to 1785 stations 100% 83% 73% 62% 54%

Trend signal accuracy 76.4% 76.0% 76.0% 76.7% 78.3%

Trend significance accuracy 62.7% 61.9% 61.0% 60.6% 60.9%

Besides, the figure below shows that the performance criteria on Q are not sensitive
to the length of evaluation period either.

Therefore, since the trend results and the performance criteria are not sensitive to
the Q data length, we chose the Q records with at least 8 entire years to maximize
the coverage of French rivers.

We will add a sentence in L206: “Q records with at least 8 entire years were chosen
because (1) the simulation performance was shown to be rather insensitive to the
length of evaluation period above 8 years (see Section S10 in supplementary
material), and (2) these stations offer a large coverage of French rivers.”

We will also add this information in supplementary material.

11. Section 2.4: This section is not detailed enough to fully understand what was
done by the authors.

Response: Based on the general comment here and specific comments below, we
will enrich Section 2.4 by changing L216-222 to:



“LSMs are complex models, integrating many coupled processes related to
hydrology, soils, vegetation, but also to the radiative transfer or the boundary layer.
They are also distributed models designed to be applied over wide and contrasted
domains (Clark et al., 2015), in which every grid-point could be regarded as one 1D
model. Therefore, their calibration is challenging and a full optimization of LSM's
parameters is practically intractable, due to the computational burden (Bierkens et
al., 2015), the equifinality (Fisher and Koven, 2020), and the uncertainty of input and
benchmark datasets (Best et al., 2015). The most common solutions are to rely on
transfer functions to derive the spatial variations of model parameters from maps of
physical parameters (e.g., Samaniego et al., 2010), and to accept sub-optimal but
satisfactory performance (Best et al., 2015).

In this line, we chose here to calibrate selected parameters of the ORCHIDEE LSM
based on an iterative trial-and-error procedure to gradually improve simulations by
manually adjusting some parameters. The simulation period is from 1959 to 2020,
with a warm-up from 1959 to 1968 to provide reasonable initial conditions, and the
output variables (e.g., ET and Q) are aggregated to daily time steps. The starting
experiment of this calibration procedure is called STD and uses the "standard"
parameter set sourced from CMIP6 (Boucher et al., 2020), according to which the
roughness heights z0m and z0h are calculated by the dynamic method of Su et al.
(2001). STD forced with Safran reanalysis significantly underestimates ET and
overestimates Q compared with the evaluation datasets detailed in Section 2.3. The
calibration is therefore aimed at increasing ET and decreasing Q. According to
expert knowledge on the parameter sensitivity of ORCHIDEE and previous
calibration exercises (Kiliç et al., 2023; Raoult et al., 2021; MacBean et al., 2020;
Dantec-Nedelec et al., 2017; Campoy et al., 2013), we focused on parameters that
control surface roughness, soil hydraulics and vegetation morphology (detailed in
Section 2.1) to improve the simulations of ET and Q.

A hundred parameter sets were tested in this iterative evaluation process,
summarized in Table 1 by a selection of 6 calibration experiments that show a
gradual decrease of ET and Q biases on average over France. Each parameter set
in Table 1 is applied uniformly over the entire simulation area.”

The point-to-point response to all the specific comments concerning the calibration in
our study are provided as follows.

Table 1 seems to suggest that 5 parameters were selected and that only six
combinations of these parameters were tested. Is that what was done? If yes, I do
not think this can be considered an actual calibration.

Response: We tested around 100 different parameter sets, some of them not
selected here. We present only the most sensitive parameter changes, according to



their own physical basis, previous calibration work of ORCHIDEE (e.g., Kiliç et al.,
2023; Raoult et al., 2021; MacBean et al., 2020; Dantec-Nédélec et al., 2017), and
our own subjective analysis.

The calibration in our study is not based on optimization, but in the sense that we
change our parameters (parameter tuning) to improve the simulation compared to
the selected evaluation datasets.

Calibration is generally understood as a search of an optimum in the
multi-dimensional parameter space. Here one cannot say that testing six parameter
sets is an actual search. If the authors came to these values after a search in the
parameter space, the way this search was done should be explained.

Response: As we explained in the introduction (L56-67), the calibration of land
surface models is challenging given their hundreds of parameters (more than 500
parameters in ORCHIDEE). The major limitation of optimization-based calibration is
computational burden, especially for high-resolution applications (662 hours required
to run one parameter set over the 1959-2020 period in our study and more than 10
hours with a high performance computer of 64 cores), and equifinality issue. Even
calibrating the selected parameters in Table 1 (local optimum search) faces the same
problems.

The most common solutions are to rely on transfer functions to derive the spatial
variations of model parameters from maps of physical parameters (e.g., Samaniego
et al., 2010), and to accept sub-optimal but satisfactory performance (Best et al.,
2015).

In this study, we manually calibrated ORCHIDEE with trial-and-error procedures (no
optimization) based on expertise (L217-218). Manual calibration is often used in land
surface modelling. Starting from the parameter set that is already used for CMIP6
(Boucher et al., 2020), we found that the simulated ET is underestimated compared
to GLEAM and FLUXCOM, and Q is overestimated compared to HydroPortail over
France because of different inputs, spatial resolutions, and evaluation datasets used
in our study. Thus, we need to calibrate ORCHIDEE to reduce the biases by
increasing simulated ET and decreasing simulated Q. This is the general philosophy
of our calibration method.

Besides, it is unclear why these specific parameters were selected for testing (the
model probably has many other parameters) and if the modifications apply uniformly
over the entire testing zone.

Response: As we can not test the sensitivity of all parameters (more than 500
parameters to test) in ORCHIDEE to ET and Q, based on previous literature (e.g.,



Kiliç et al., 2023; Raoult et al., 2021; MacBean et al., 2020; Dantec-Nédélec et al.,
2017; Campoy et al., 2013) and expert experience, we chose the sensitive
parameters that regulate surface roughness, soil hydraulics, and vegetation
morphology (detailed in Section 2.1) to improve the ET and Q simulation results
(detailed in Section 3.2).

And yes, the modifications are applied uniformly over the entire simulation area.

It is also unclear how the criteria calculated at each station were aggregated to get
an overall performance at the level of the catchment set (e.g. the KGE criterion may
generate highly negative values which may bias the calculation of the mean
performance), which weight was given to ET and Q respectively during calibration
(i.e. how the authors cope with the multi-objective aspect of calibration), and how the
criteria were actually used in the calibration process.

Response: We do not calculate the mean values of the performance criteria but the
medians and quartiles via boxplots to summarize their full distribution.

Since manual calibration is used in our study (no optimization), we don’t need a
function to combine all the performance criteria as one objective function. Instead,
we consider all the information from performance criteria and we eventually choose
the parameter set with experience and judgment even though there are some
compromises to make.

12. Section 2.4: Another problem in the experimental design is that the authors only
report performance criteria in calibration. The authors do not test how the model
would behave if only half of the available period had been taken for calibration and
the other half for validation (as classically done in a split sample test scheme) or if
the catchment set had been split in two parts, one for calibration and the other for
spatial validation (proxy-basin test). This is essential to evaluate the robustness of
the proposed modelling options.

Response: Thank you for raising the issue of modelling robustness.

To assess the robustness of our calibrated model, the paper included trend analyses
(Section 3.3.3), which show that the model captures long-term changes satisfactorily
over a large proportion of stations.

Following the reviewer’s suggestion, we also conducted split sample tests on Q
simulations over France for the 6 calibration experiments with 3 separate periods
(first half of Q time series, second half of Q time series and total Q time series) as
shown in figure below. These split sample tests show that the performances of Q
simulations are stable over the three periods.



We will add a sentence in Section 2.3: “Split sample tests were also performed and
showed stable performances if the Q time series are split in two halves (Section S11
in supplementary material).”

We will also add the above information in supplementary material.

13. Table 1: I did not understand how the authors selected the PFT classes whose
values were modified. Why only six classes over the 15 PFT were modified?

Response: These six classes are the ones that are present in France. This will be
mentioned in L225.

Why only the bias with FLUXCOM appears in the table? Does it mean that only the
bias against this ET product was considered during calibration?

Response: We considered both GLEAM and FLUXCOM products during calibration
to compare with the ORCHIDEE simulation, under the assumption that these two
products offer a plausible range for ET. To avoid confusion, we will add the bias of
simulated ET against GLEAM in Table 1.

14. Section 3.1: I did not understand where the “true” values of catchment area come
from.

Response: The reference basin area values come from the HydroPortail dataset as
mentioned in Figure 2. Following this comment, we will change the sentence to
“Figure 2 shows the good performance of the high-resolution river routing model in



simulating the basin areas across France, with R2= 0.999 across the 3507 stations
compared to the information from HydroPortail.”

15. L264-265: Time lags of -3 to 5 days remain very large for the French catchments.
How such errors can be obtained?

Response: Many stations with a time lag greater than a few days in absolute value
correspond to catchments smaller than 10000 km² (Fig. 5). These time lags might be
large for flood events. However, our study focuses on the general ability of
ORCHIDEE to represent reliable water budgets temporally and spatially at daily time
step over France, and the trends for historical analysis and climate change impact
assessments. This could be improved but it is not in the scope of this study. In
addition, most catchments larger than 10000 km² (Fig. 5) do not have large time lag
errors, and we have managed to decrease the time lag error from -11~27 days to
-3~6 days (error divided by a factor 4 approximately) from STD to EXP4.

Such errors can be sourced from uncertainties of model structure (e.g., simple
routing and groundwater module in ORCHIDEE), parameterisation (same parameter
values for all the grid cells across France and uniform velocity parameters in routing
scheme across France), and Safran inputs.

To clarify our results, (1) we will change L318-320 to “In terms of the time lag
criterion, most simulated Q with larger time lag errors correspond to catchments
smaller than 104 km² (Figure 5), with simulated Q leading the observations by 2 to 6
days in the Seine River basin, but lagging the observations by 2 to 4 days in the
Loire River basin.” (2) we will change the sentence in L341-342: “This degrades the
ORCHIDEE’s performance (e.g., bias and time lag) in the sedimentary basins. This
problem could be approached by assigning larger residence times to the slow
reservoirs of grid cells in sedimentary basins. However, it is difficult in practice
because parameters are applied uniformly over France.”

Is there a problem of calculation of this criterion for catchments with slow response?

Response: Yes, we have such errors in groundwater dominated catchments (the
northern part of France such as the Seine river basin and the Somme river basin)
with simulated river discharge leading the observations.

How such errors can be obtained and how we can improve the simulations are
explained above.

16. Section 3.3: Though results shown here seem to bring some improvement over
the standard model version, one strong limit of the model evaluation shown here is
that it is very difficult to say if the results are satisfactory or not. Some errors seem



still very large after improvement (e.g. time lag in some cases). The use of an
external benchmark (e.g. a simpler model) would be very useful to discuss this point.

Response: A model is an approximation of reality and never perfect. We discussed
the uncertainties of our simulations and pointed out the room for improvement for
future studies in Section 4.

In the Explore2 project, we have simulations from 8 other hydrological models
including semi-distributed rainfall-runoff models, fully distributed rainfall-runoff
models, and land surface models. The report (in French) has not been published yet.
It shows that simpler rainfall-runoff models can yield better Q simulations in terms of
bias and KGE, but trend accuracy was not tested, nor the reliability of ET simulation.

17. Section 3.3: Maybe the title of this section should be changed to “Spatial
evaluation…” since it presents this part of the evaluation. Section 3.2 and 3.3 are
basically based on the same results obtained in calibration. The titles should not
suggest that one part is calibration and the other is an independent evaluation, to
avoid confusion.

Response: Thank you for pointing out the confusion of the section titles. We hope
the following ones will be clearer:

“3.2 Calibration results” to “3.2 Performance of the different experiments”;

“3.3 Evaluation of simulated water fluxes” to “3.3 Preferred experiment: Spatial
evaluation of the simulated water fluxes”;

“3.3.3 Q trend performance” to “3.4 Preferred experiment: Evaluation of river
discharge trends”

18. Section 3.3.1: Figures 4 a and b suggest that actual evapotranspiration is very
difficult to know. The maps show huge differences in some regions (and I think the
sentence in L297-298 is wrong).

Response: Figures 4 a-b show the mean ET estimates from GLEAM and FLUXCOM
products. It is true that there are large differences of ET estimates by these two
products because they are based on different methods (see L198-202).

To avoid confusion, we will change the sentence in L297-298 to “Both the GLEAM
and FLUXCOM datasets are used to evaluate the ET simulation by ORCHIDEE in
this study. Both datasets show more ET in the southern part (except for the high
Alps) and less ET in the northern part of the simulation domain (Figure 4a-b).”



In these conditions, I do not understand how these products can be used
simultaneously to constrain the calibration, or at least how the choice can be made
between the two maps to select the best model parameters.

Response: We can consider, however, that ORCHIDEE, GLEAM and FLUXCOM
provide independent estimates of ET, all with their own uncertainties (Liu et al.,
2023). In this framework, our guideline was to compare the ORCHIDEE simulation
with these products, which offers plausible range.

Eventually, in our study, we need to compromise between these products to define
an acceptable parameter set in our manual calibration procedure given the inherent
uncertainties.

Following this comment, we will add a sentence in L203: “GLEAM and FLUXCOM
provide independent ET estimates, both of them with large uncertainties (Liu et al.,
2023). They are used in combination to approach the plausible range of observed
ET.”

19. Section 3.3.1: Maybe I am wrong, but some regions where there is a large bias
seem to correspond to zones where there is a lower density of stations (Fig. 2). It
this something observed by the authors? If yes, this may suggest that there are
problems in transposing the parameter sets in space.

Response: The two ET products are gridded products, and they are independent
from the stations.

20. L307-309: Does the larger average bias with FLUXCOM comes from the fact that
it was not directly considered in the calibration? I don’t know whether the more
consistent spatial bias with FLUXCOM is good news. Please comment on this.

Response: We manually calibrated ORCHIDEE step by step to reduce ET biases
considering both GLEAM and FLUXCOM to define a plausible range.

Both GLEAM and FLUXCOM products are widely used in literature to calibrate
models. It is good news that the simulated ET is spatially consistent with FLUXCOM,
but we cannot say why it is more consistent with FLUXCOM than with GLEAM since
ET from ORCHIDEE, FLUXCOM and GLEAM are based on different methods. And it
is also good news that the bias of the simulated ET to GLEAM over the entire study
domain is better than that to FLUXCOM.

Anyway, we do not give preference to any specific product because they are both
helpful to calibrate ORCHIDEE in the light of ET uncertainty.



21. Section 3.3.2: I was surprised that the human influences appear to be one of the
main reasons mentioned for model failure. Though they probably contribute to the
limited performance sometimes, I doubt that the level of influences on these basins
can explain the gaps between observed and simulated time series. This is not
realistic.

Response: We showed that human influences degrade the goodness-of-fit indicators
especially for correlation and KGE of Q (Appendix I). Besides, many publications
have demonstrated that human influences deeply changed the river flow dynamics in
France (e.g., François et al., 2014; Flipo et al., 2020).

Besides there are many stations in the catchment sample that are influenced. Why
were they kept as calibration target if the objective is to simulate natural behaviour?
The calibration process and catchment selection should be better explained and
potentially revised.

Response: Following this suggestion, we will (1) add a sentence in L112 “It must be
noted that this version of ORCHIDEE does not include any human impact, with the
exception of the presence of crops among the possible vegetation types.” (2) add
more information in L206 of Section 2.3: “Although the version of ORCHIDEE used
in this study does not include any human impact, the 1785 selected hydrometric
stations were all used in the evaluation process, whether human influenced or not.
This enables a more comprehensive assessment of ORCHIDEE, as natural or
weakly influenced stations are few in number (only 536, see Section S9 in
supplementary material) and exclude the stations along the main streams of the four
major French rivers (Seine, Loire, Garonne, and Rhône).”

Besides, we have also pointed out the inclusion of human activities (e.g., dams and
irrigation) in the ORCHIDEE LSM for future work in L434-438 of Section 4.

22. L319-320: 2 to 4 or 6 days timelag is huge for these basins. In practice, how can
the model be used with such time lags?

Response: See the comment N°15.

23. L361-369: This probably would be better placed in the method section.

Response: Yes, we will move to Section 2.3 in the revised version.

24. L372-383: I do not understand why human influences are no more a problem
here to evaluate trends though they were one of the major reasons for model failure
a few paragraphs above. For me this is not really consistent.

Response: We have the analysis of human impact on trends in L349-360.



25. Section 4: As explained in previous comments above, I think that the discussion
should better acknowledge the limitations of the modelling framework proposed here.
Though it was improved, the model is still limited in some cases (as any model).

Response: Thank you for this suggestion. We analyzed the limitations of our work in
this section and pointed out the room for improvement for future work. Maybe the
original version (L406-438) is not clear and to make it more readable, L406-438 of
Section 4 will be changed to:

“The limitations of the modelling framework proposed in this study and the prospects
to improve ORCHIDEE simulations are analyzed from these three major aspects:
parameter calibration, input and evaluation datasets, and ORCHIDEE model
structure.

First, uncertainties remain in the selected parameterization. In this study, we applied
the trial-and-error calibration method (no parameter optimization procedure) to
reduce the computational burden. The general principle of calibration is to decrease
the biases of water fluxes across France by increasing ET and decreasing Q
simulations starting from the CMIP6 configuration; the calibration experiments follow
this principle by changing the parameters employed for all the grid cells across
France. This procedure indeed simplifies the calibration of such sophisticated
physically based LSMs to obtain generally accepted performance criteria over the
entire simulation domain. However, improvements in simulation performance in
some areas remain limited. For example, calibrating the hydraulic conductivity
influenced by both soil and vegetation (EXP2 and EXP4) to adjust infiltration and
surface runoff have improved the overall performance criteria except for those of the
Seine River basin. In reality, the characteristics of the Seine River basin, such as its
relief and lithology, allow more predominant infiltration than surface runoff, especially
in the upstream region of the Seine basin (e.g., Schneider et al., 2017; Mardhel et
al., 2021). The calibration of soil hydraulic conductivity at the basin scale (i.e.,
different parameter values for the grid cells over the simulation domain) could
improve the simulation results (e.g., Quintana Seguí et al., 2009). Another challenge
is the parameterization of the 15 PFTs in terms of their transpiration capacity when
facing water stress and root profiles (EXP3 and EXP4) due to the lack of
observations, notwithstanding their importance to terrestrial carbon and water cycles.

Second, uncertainties concerning the input and evaluation datasets should also be
considered. For instance, heterogeneity regarding the radiation data of the Safran
reanalysis (i.e., the break of homogeneity in time series with an abrupt increase in
the profile of incident solar radiation after the late 1980s) has been reported, which
could be attributed to the improvement of the assimilation system over time, the
variation of the in-situ observations and the darkening-lightening effect (e.g., Le
Moigne et al., 2020). This directly impacts the ET simulation results. There are also



large uncertainties in the Safran reanalysis on precipitation in high elevation areas in
France (e.g., Birman et al., 2017; Baratgin et al., 2024). The uncertainties of other
input datasets, such as the Reynolds soil texture map and the LUH2 land use and
land cover maps applied to the ORCHIDEE LSM has been discussed in other
studies (e.g., Kilic et al., 2023; Lurton et al., 2020; Tafasca et al., 2020). Besides, Q
records of the selected 1785 stations are not fully checked because identifying Q
anomalies is extremely time-consuming and subjective. The remaining observational
Q errors might influence model evaluation.

Third, some perspectives concerning better representations of land surface
processes can be proposed to improve the simulation performance of the
ORCHIDEE LSM. Given the inadequate performance of basins where drainage
plays an important role in river discharge (e.g., the Seine River basins), the
introduction of a groundwater module in the ORCHIDEE LSM is necessary to
describe the interactions between aquifers and rivers in these basins. Moreover,
mountainous basins are not adequately simulated; indeed, the Safran reanalysis is
deficient in these regions, and there is still room for improvement in the 3-layer snow
model, especially for the snow thermal conductivity, which is crucial for snow
dynamics (Wang et al., 2013). Human impacts on terrestrial water cycles could also
be included to obtain more reliable simulations by comparison to the observations in
highly anthropized basins. In particular, a new irrigation module based on the
flooding irrigation method (Arboleda-Obando et al., 2024) and a new demand-based
hydropower module (Baratgin et al., 2024) have recently been developed and
validated by the ORCHIDEE project team at IPSL, and should now be mobilized to
achieve more realistic simulations.”

Besides if the authors intend to do an actual model calibration, they should do
corresponding validation test to evaluate model robustness in space and time. Else
the results probably show an over-optimistic picture of model predictive power.

Response: We did not use an optimization based calibration method. Besides, we
conducted split sample tests for your information (see comment N°12).

26. L384: I do not know what “high-resolution” means here. There are models
implemented at the km² scale.

Response: We will change “high-resolution” to “high-resolution of approximately 1.3
km”.

27. Appendices: There are a lot of appendices. I am unsure they should be kept as
appendices. They may be better placed in supplementary material.

Response: We agree and we will move these appendices to supplementary material.



28. Appendix I: Appendix I is not an actual demonstration that the modelling
problems come from the artificial influences. Some other characteristics which may
differ between the two sub-samples may also explain the performance differences.

Response: We were not trying to attribute all modelling problems to human
influences. Appendix I is an example to show that ORCHIDEE performs better for
natural or weakly influenced catchments. We have also discussed other reasons like
model structure, parameterization and input data in Section 4.

Minor comments
29. Introduction: a few subtitles may be useful to highlight the main aspects of the
introduction

Response: Thanks for the suggestion. We will add subtitles “Land surface models for
high-resolution hydrological simulations” for paragraph 1-3, “How to calibrate land
surface models?” for paragraph 4-5, “How to evaluate the performance of land
surface models?” for paragraph 6, and “Aim and novelty of the study” for paragraph
7-8.

30. L102: Please clarify what is “revision 7738”.

Response: Thanks for the suggestion. This will be deleted from the title, but for clear
documentation of the code (refer to EGU guidelines), we will change L103-105 to
“The ORCHIDEE model is a physically-based LSM developed at the Institut Pierre
Simon Laplace (IPSL) as the land component of the IPSL climate model, which is
used for all the past and future climate simulation exercises carried out for the IPCC
reports as part of the Coupled Model Intercomparison Project (CMIP) (IPCC,2023).
Here, we use ORCHIDEE version 2.2 (with revision 7738), which is very close to the
version used as the land component of the IPSL-CM6 climate model (Boucher et al.,
2020; Cheruy et al., 2020).”

31. Fig. 1: I wonder whether this figure is actually useful (at least in the main text)

Response: We think Fig 1 is useful in the main text to have a general idea of French
geography and hydrography for non-French people.

32. Fig. 3: The caption should indicate which distribution percentiles are shown on
the box-plots.

Response: We will add the sentence “For each boxplot, the lower and upper hinges
are the first and third quartiles; the minimum and maximum values extend from the
first/thrid hinge to 1.5 times of the inter-quartile range. ”



Final note: We will also correct the style of some sentences so that they are
more readable, and orthographic and grammar errors.
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