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Responses to referee #1 

• One of the innovations of this study is the use of a machine learning model to 

predict the Kendall’s τ instead of the original regression model. What are the 

advantages of choosing XGBoost for prediction instead of a regression model? Is there 

any comparison of results to provide evidence? Or is there any relevant material to 

illustrate this? 

XGBoost differs from linear models like simple regressions because it allows for nonlinearity 

through using decision trees as the base learner. This is particularly suitable for predictions 

involving hydrological processes which are highly non-linear. It is also an ensemble learner 

(combining many weak learners), which usually outperforms a single more complicated 

model. For example, for region 9 the Kendall’s τ cross-validated RMSE is 0.079 for our 

XGBoost model and 0.171 for a linear regression model. To further justify our choice of 

model, a recent study shows that among state-of-the-art machine learning models, tree-

based models still outperform more complex deep learning models on tabular data [1].  

 

• Line 207-208: “Since we work with stations spanning a large spatial scale, some 

pairs of stations present a negative Kendall’s τ (15 % of the pairs for region British 

Columbia). Those values are replaced by zero before Kendall’s τ inversion, since it 

requires the τ coefficients to be positive.” The value of Kendall’s τ is supposed to be 

negative, however, the authors have artificially converted it to zero. Does this practice 

have an effect on the results of the later calculations? More details should be 

furnished please. 

The inference of the Fisher copula parameters relies on the 1-to-1 relationship to link 

empirical Kendall’s τ between pairs of observations and the corresponding entry of the 

correlation matrix Σ. However, this relationship is only monotonous on the range of Kendall’s 

τ going from 0 to 1, as illustrated in figure 1 from Favre et al. (2018) [2]. Therefore, negative 

observed Kendall’s τ are replaced by zero before Kendall’s τ inversion. For these pairs of 

stations, this is equivalent to assuming that there is in reality no discharge correlation and 

the (small) observed negative correlation is spurious. In region 9, 15 % of the pairs present 

negative Kendall’s τ but only 5 % have Kendall’s τ lower than -0.2. For other regions, this 

percentage is even smaller.  

This modification does result in a correlation matrix Σ which is not positive definite, which 

requires an adjustment to make it positive definite, following the idea of Higham (2002). We 

assessed the deformation of  Σ by comparing each of its entries before and after the 

adjustment. This is shown in figure 1 for region 9. We see that the overall effects of 

transforming negative Kendall’s τ to zero on Σ are: 

- a slight dampening of the correlations above 0.4  

- a larger distortion of the zero entries, adjusted to values in the range [-0.2, 0.2] 



Overall, the mean absolute difference is 0.062 between the adjusted entries and the original 

entries, which is deemed acceptable for our modeling purposes. As demonstrated in the 

manuscript, the simulated events are able to reproduce patterns in the observed events, in 

term of spatial patterns and upper tail dependence. 

 

 
Figure 1: Entries of the Fisher copula correlation matrix Σ  

before (x-axis) and after (y-axis) adjustment, for region 9 

 

In conclusion, the practice of replacing negative observed Kendall’s τ by zero does slightly 

modify the corresponding Fisher copula correlation matrix, but this is unlikely to have a 

negative impact on the quality and ability of the simulated events to reproduce 

characteristics of observed events.  

 

•  P.8 -The Fisher copula is adopted for model the spatial dependence of riverine flood. 

What are the advantages of adopting this method over others in this case, such as 

regular copula, vine copula? Please add detailed elaboration.  

The Fisher copula is suitable for modeling spatial dependence in the right tail of random 

variables because:  

- It is non-symmetrical, allowing for asymmetry in the dependence pattern for the 

lower and upper tail (unlike the Gaussian or Student-t copula) 

- It allows to model positive upper tail dependence (unlike the gaussian copula) 

- The specification of pairwise dependence strength through a correlation matrix 

allows spatial interpolation to model ungauged catchments  

- It has a fairly low number of parameters, which make the model setup and inference 

much simpler than a vine copula for example. This is particularly important for operational 

reasons, as we are applying the model to thousands of catchments simultaneously.  



Table 2 from [3] compares and summarizes the different characteristics of various copula 

models, including the Fisher copula.  

•  P.11- The Generalized Extreme Value (GEV) distribution is utilized as the marginal 

distribution as annual maximum discharge in all catchments. Why is the GEV 

distribution function chosen directly? Was it selected preferably after comparison 

with other distribution functions?  

Historically, several different distributions have regularly been utilized to model annual 

maxima in climate and hydrological studies, including the Gumbel, GEV, Gamma, Log-

Pearson type III [4]. However, the GEV distribution is more and more asserted as a common 

choice for modeling block extremes, with studies showing its better performance and 

goodness-of-fit compared to the Gumbel, Log-Pearson III or Log-normal distributions. For 

river discharge, examples of such comparative studies are [5-7]. Also, the GEV distribution 

arises as the asymptotic limit distribution for block maxima, ground in extreme value theory 

[8]. This allows better confidence in the ability of the GEV distribution to extrapolate values 

in the upper tail, where observations are typically rare or absent. Due to its flexible 

parameterization, the GEV distribution is able to capture a wide variety of right-tail 

behaviours (bounded, exponential decay or heavy-detailed) and we believe that its 

theoretical support and wide use in the hydrological community make it a suitable choice in 

our study. 

 

•  P.5- This study omit analysis on regions number 1, 2, 3, 4, 13 and 14. The methodology 

and results are presented for region 9–British Columbia. And the results of regions 7 

(St Lawrence), 8 (Prairie), 10 (East Coast) and 11 (Midwest) can be found in the 

supplementary information. What is the reason for selecting regions 7, 8, 9, 10 and 11 

from these 14 regions for analyzing? Is there anything unique about these regions? 

Why are the other regions omitted? And what about regions 5, 6, and 12? They are not 

mentioned in the paper.  

The North American continent was divided into 14 regions following the level 2 HydroBASINS 

product delimitation. Among those, results for regions 7 to 11 were presented in our work 

(region 9 in the manuscript and regions 7, 8, 10 and 11 in the supplementary information). 

The study’s main objectives were to present and validate the methodology developed, 

contributing to enhance modeling of flood spatial dependence in North America. Therefore, 

the results were presented for a subset of regions as a way to validate the methodology on 

a variety of different hydrological and climatological conditions and were not meant to be 

exhaustive. Regions 7 to 11 were prioritized owing to their higher population densities and 

gauge density, which resulted in more accurate results. Besides, from an operational 

perspective for Geosapiens, these regions are more important because they cover the 



totality of the major urban centers in Canada, where our derived product will first be 

deployed. Results are however also available for regions 1 to 6, although their quality is 

lessened, and some minor methodology changes are required to account for the absence of 

high-quality discharge data in these northern territories. We omitted analysis on regions 12 

to 14 because:  

- From an operational perspective, they are the regions with no overlap with the 

Canadian territory.  

- They have considerable overlap with the Mexican territory, where quality data 

gathering is not currently undertaken. 

 

•  Line 215: “In this way, the correlation matrix Σ is extended to include all catchments, 

and the new parameters are used to simulate discharge at all catchments.” The tense 

of this sentence needs to be modified. Please consider changing to the past tense.  

This is modified in the manuscript.  

 

•  Line 447-448: “Finally, compared to more parameterized models like neural 

networks, boosting models like XGBoost are much faster to train and yield satisfying 

results.” Is this conclusion derived from the comparison of the results calculated in 

this study? Or is it a regular characterization of XGBoost derived from other studies? 

Please provide some explanation to support this conclusion.  

Neural network models were not tested in our study. Following the principle of parsimony, 

we first started testing results with less parameterized models, namely Bayesian ridge 

regression (not presented) and boosting models. Since the predictive power of XGBoost was 

deemed satisfying, we did not see the need to pursue testing other more parameterized 

models. Besides, it is commonly known that tree-based models are faster to train than 

heavily parameterized neural network models. This can be seen for example in table 10.1 

from [9] which compares some characteristics of different machine learning methods. This 

table shows that decision trees are computationally more scalable than neural nets. A recent 

study [1] also finds that boosting models outperform neural nets on medium sized tabular 

datasets, notably because they are more robust to uninformative features, less sensitive to 

the orientation of the data, while maintaining a superior computational speed. 

 

•  Please adjust the font size in the images to make it larger and clearer, such as Figure 

5, Figure 6, Figure 11 and so on. 

This is adjusted for figures 1, 5, 6, 11 and 12 in the manuscript. 
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Responses to referee #2 

 

1. Are all the gauging stations are located in natural river basin? What if the gauged 

flood data is affected by reservoir operation? How to consider the influence of 

human intervention in floods. 

In our study, we did not make an explicit distinction between stations in natural river 

basin and affected by reservoir operation. Nonetheless, during our preprocessing step 

to select high-quality stations, we tested the riverflow stationarity with a Mann-Kendall 

test and discarded stations where the trend is considered significant. This has a side 

effect of eliminating stations where human intervention can cause a disruptive change 

in the discharge time series. Furthermore, among the 130 static covariates used to 

predict fluvial flooding in our model, two are linked to human intervention and may 

capture the specific effect linked to stations with significant human intervention. They 

are percentage of urbanized land (LULC7) and the total upstream area protected by 

dams based on the GOODD dataset  (log_dam_area). The GOODD dataset contains 

more than 38,000 dams as well as their associated catchments, allowing the analysis of 

their impacts in hydrological studies [1]. 

2. The research mainly focus on the analyzing peak magnitude and total quantity of 

floods. Actually, the entire processes of flood hydrograph are worth more 

attention. Is it possible to show the simulation results over some specific flood 

events considering the entire time horizon of a flood. 

Our study of fluvial flood spatial dependence focuses on the extreme floods and as 

such, the peak magnitude for the whole duration of each flood event is the main 

quantity of interest. As such, each flood event is summarized by its peak flow for every 

impacted location, so our simulated floods do not describe the whole time horizon of 

the flood. Other simulating components can be integrated to simulate the flood 

duration, hydrograph curvature, time of peak flow, etc… but we consider these 

developments to be outside the scope of the current study, which focuses on the 

spatial dependence of extreme fluvial floods (as summarised by the flood peak 

magnitude).  

3. How to verify the model results of the simulated flood footprint, as shown in 

Figure 11 d. Can the model compare the simulated footprint result with some 

actual floods? 

The simulated flood footprint was validated using various aggregated metrics to be 

able to compare them to the observed floods. For example, the size of each event 

footprint (defined as the number of gauges impacted by a significant flow during a 



flood) is validated against the observed event set (figure 7 and 8, manuscript). As such, 

it is not straightforward how to compare a simulated event directly with another 

historical flood event. However, for each historical flood event, we found that a 

simulated event with a similar footprint is present in the simulated event set (this 

matching is done using the F1 score to calculate similarity between event footprints). 

We present a non-exhaustive example of 4 historical floods with distinctive patterns, 

and their best matching simulated flood events.  

Historical and simulated event matching 

  

  

 

4. Is there any specific techniques in generating multi-site footprint to reduce 

computation effort? Would the computation of river-basin wide dependent flood 

cause trouble? 

The conditional simulation technique described in section 4.2 of the manuscript is 

precisely developed with the aim of generating multi-site footprint events in a 

computationally efficient way, without having to calculate and invert a complete 

correlation matrix for all unit catchments, which would be a substantial computational 

burden. Using this approach, for a given simulated flood event, realized flood values 

for all gauged stations are used to sequentially simulate values at each ungauged 

catchment. This computation step is very fast and when run on 20 CPUs in parallel on a 

personal computer, takes less than 10 minutes to be completed.  



5. 390-395, what is number of catchments with flow > half the return period of 

event magnitude. The two paragraphs read confusing. Can you explain more over 

Figures 12 and 13. 

 

Figure 13 represents the proportion of catchments in a given event with flow return period 
higher than the flow corresponding to half the maximum flow return period (RP). This is more 
difficult to articulate in words than to understand. Suppose a flood event has a maximum 
flow (in RP scale) corresponding to RP100. Then we would count the number of catchments 
exceeding their respective RP50 flows (50 = 100/2), and divide by the number of catchments 
affected by the flood event (defined as having greater than RP5 flow). If another event had a 
maximum peak flow corresponding to RP20, we would count the number of catchments 
exceeding their respective RP10 flows (10 = 20/2), etc. The idea is to quantify for each flood 
event, the extent of the most impactful region. If this proportion is low, this means that the 
most extreme floods are localized at a few catchments, even if the flood event footprint can 
be large.  
Figure 13 then plots the histogram of that proportion for all events (1), for events with 
maximum flow in the range RP5-RP20 (2), for events with maximum flow in the range RP20-
RP100 (3), and for events with maximum flow greater than RP100 (4). 
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