
Bayesian analysis of early warning signals using a time-dependent
model
Eirik Myrvoll-Nilsen1, Luc Hallali1, and Martin Wibe Rypdal1

1Department of Mathematics and Statistics, UiT The Arctic University of Norway, N-9037 Tromsø, Norway

Correspondence: Eirik Myrvoll-Nilsen (eirik.myrvoll-nilsen@uit.no)

Abstract.

A tipping point is defined by the IPCC as a critical threshold beyond which a system reorganizes, often abruptly and/or

irreversibly. Tipping points can be crossed solely by internal variation in the system or by approaching a bifurcation point

where the current state loses stability and forces the system to move to another stable state. It is currently debated whether or

not Dansgaard-Oeschger (DO) events, abrupt warmings occurring during the last glacial period, are noise-induced or caused by5

the system reaching a bifurcation point. It can be shown that before a bifurcation point is reached there are observable changes

in the statistical properties of the state variable. These are known as early warning signals and include increased fluctuation

and correlation time. To express this behaviour we propose a new model based on the well-known first order autoregressive

process (AR), with modifications to the correlation parameter such that it depends linearly on time. In order to estimate the time

evolution of the correlation parameter we adopt a hierarchical Bayesian modeling framework, from which Bayesian analysis10

can be performed using the methodology of integrated nested Laplace approximations. We then apply the model to segments of

the oxygen isotope ratios from the Northern Greenland Ice Core Project record corresponding to 17 DO events. Early warning

signals were detected and found statistically significant for a number of DO events, suggesting that such events could indeed

be caused by approaching a bifurcation point. The methodology developed to perform the given early warning analyses can be

applied more generally, and is publicly available as the R-package INLA.ews.15

1 Introduction

An equilibrium state is said to be stable if the system returns to the same state following a small perturbation in any direction.

If the state of a component of the climate system, by crossing some threshold in the form of an unstable barrier separating two

basins of attraction, changes from one stable equilibrium to another it is said to have reached a tipping point. Components of

the Earth system has experienced tipping points numerous times in the past, leading to abrupt transitions in the climate system.20

These transitions are well documented in paleoclimatic proxy records. Notably, in Greenland ice core records of oxygen isotope

ratios (δ18O) and dust concentrations there is evidence that large and abrupt climatic transitions from Greenland stadial (GS) to

Greenland interstadial (GI) conditions took place in the last glacial interval (110,000–12,000 years before 2000 AD, hereafter

denoted yr b2k). These are known as Dansgaard-Oeschger (DO) events (Dansgaard et al., 1984, 1993) and are characterized by

cycles where the temperature increased substantially, up to 16.5◦C for single events, over the course of a few decades followed25
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by a more gradual cooling, over centuries to millenia, back to the GS state. A total of 17 DO events (Svensson et al., 2008)

have been found for the past 60 kyr before present (BP) and they represent some of the most pronounced examples of abrupt

transitions in past climate observed in paleoclimatic records.

It is widely accepted that such transitions are associated with a change in the meriodional overturning circulation (MOC)

(Bond et al., 1999; Li et al., 2010) causing a loss of sea ice in the North Atlantic. However, the physical mechanisms that caused30

these changes in the MOC and how they triggered DO events are less understood. Some studies have found that DO events

exhibit a periodicity of 1470 years (Schulz, 2002), which have made some scientists suggest that the events have been triggered

by changes in the earth system caused by changing solar forcing (Braun et al., 2005). Others suggest that the transitions have

been triggered by random fluctuations in the Earth system, without any significant changes to the underlying system caused by

external forcing (Ditlevsen et al., 2007). Treating the GS and GI states as stable equilibria in a dynamical system representing35

the Greenland climate, and studying the statistical behaviour related to the stability of the system in the period preceeding

DO events, can help determine whether or not they are forced or random and thus possibly constrain the number of plausible

physical causes that trigger the events.

The behaviour around a tipping point can be analyzed by expressing the changes of the state-variable using a potential,

wherein valleys represent the basins of attraction that are separated by an unstable fixed point. If the tipping point is reached40

solely from perturbations caused by internal variation of the system, then it is said to be noise-induced. However, if the

dynamics of the system depend on some slowly varying control parameter the equilibrium points may shift, vanish or spawn as

a function of the control parameter. This means that the stability of a fixed point can change over time and eventually be lost,

making the system move to another equilibrium. Points in the control parameter space for which the qualitative behaviour of a

system changes, e.g. change in stability or the number of fixed points, are called bifurcation points, and tipping points caused45

by the control parameter crossing a bifurcation point are said to be bifurcation-induced.

By assuming that a time-dependent state-variable x(t), representing for example the δ18O ratio, vary over some potential

V (x) with stochastic forcing corresponding to a white noise process dB(t), expressed as the derivative of a Brownian motion,

then the stability of the system can be modeled using the stochastic differential equation

dx(t) = F (x(t))dt + σdB(t). (1)50

One could interpret this equation as describing the motion of some particle in the presence of a potential V (x), with drift

expressed by F (x) =−V ′(x) and a diffusion term σdB(t) describing the noise that acts on the particle.

Take for example the cusp catastrophe model where the potential is given by

V (x,µ,ξ) =
x4

4
− ξ

x2

2
−µx, (2)

where µ(t) is a slowly changing control parameter and ξ is a shape parameter that we in this example set equal to ξ = 1. The55

change in position dx(t) at some time t is then given by

dx(t) =−x3 + ξx + µ + σdB(t). (3)
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Figure 1. The potential over the set of state variables before, at and after the control parameter has reached the bifurcation point µ2. Panel

(a) shows the potential and fixed points for some µ < µ2, and panels (b)–(c) shows the same for µ = µ2 and µ > µ2, respectively. When

the control parameter approaches the bifurcation point µ2, the stability of the stable fixed point x1 decreases and eventually collapses at

x1 = x2 =−
√

ξ/3, leaving x3 as the only (stable) fixed point.

It can be shown that the bifurcation points are

µ1 =−2
3

√
ξ3/3 and µ2 =

2
3

√
ξ3/3. (4)

Crossing the bifurcation points changes the number of fixed points. For µ1 < µ < µ2 there are two stable fixed points and one60

unstable, and for µ < µ1 or µ > µ2 there is only one (stable) fixed point. The change of stability can be depicted by plotting the

potential before and after the bifurcation points, see Fig. 1 for an illustration where the control variable varies around µ2. The

change in values and stability of the fixed points as we increase the control parameter is illustrated in the bifurcation diagram

Fig. 2, which include the stable fixed points x1 (lower solid curve) and x3 (upper solid curve) and the unstable fixed points

x2 (middle dashed curve), representing the separating barrier. The diagram also includes a simulated process generated by the65

same potential which demonstrates how abruptly the state variable changes when the system crosses the tipping threshold x2,

which happens before the control parameter reaches the bifurcation point µ2 due to the diffusion term σdB(t).

The nature of an equilibrium can be investigated by examining the linear approximation in its nearby domain. Linearizing

(1) around some stable fixed point xs yields

dx(t) =−λ(x(t)−xs)dt + σdB(t), (5)70

where λ =−F ′(xs). This is known as the Langevin stochastic differential equation and has the solution

x(t) = x0 +

t∫

−∞

g(t− s)dB(s), (6)

3

https://doi.org/10.5194/egusphere-2024-436
Preprint. Discussion started: 19 February 2024
c© Author(s) 2024. CC BY 4.0 License.



−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0

Control parameter µ

S
ta

te
 v

a
ri

a
b
le

 x

Figure 2. The bifurcation diagram of the cusp catastrophe model. The black curve represent the fixed points of the state variable x given the

changing control parameter µ ∈ (−1,1). The solid curves represent stable fixed points x1 and x3, and the dashed curve represent unstable

fixed points x2. The red line represent a simulation of Eq. (3) with σ = 0.2. As the control parameter µ approaches the bifurcation point µ2

the stability of x1 decreases which is expressed by increased variance and correlation in the simulated process, causing the system to cross

the tipping point x2 prematurely.

with Green’s function

g(t) =





exp(−λt), x≥ 0

0, x < 0
. (7)

This solution forms an Ornstein-Uhlenbeck (OU) process, which under discretization is a first order autoregressive (AR)75

process with variance Var(xt) = σ2/(2λ) and lag-one autocorrelation parameter ϕ(t) = exp(−λ).

xt = ϕxt−1 + εt, ε∼N
(

0,
1−ϕ2

2λ
σ2

)
(8)

When the control parameter approaches a bifurcation point we expect increased variance and correlation, as could be observed

in Fig. 2. These changes in statistical behaviour are called early-warning signals (EWS) of the bifurcation point, or critical

slowing down (Lenton et al., 2012; Dakos et al., 2008), and can be used as precursors to help determine whether or not a80

tipping point is imminent. In fact, recent studies have discovered that more components in the earth system exhibit EWS and

are at risk of approaching or have already reached a tipping point. This include the western Greenland ice sheets (Boers and

Rypdal, 2021), the Atlantic meridional overturning circulation (Boers, 2021) and the Amazon rainforest (Boulton et al., 2022).

Analysis of EWS for DO events in the high-dimensional Greenland ice core record has been conducted by others, e.g.

Ditlevsen and Johnsen (2010) whom applied a Monte Carlo approach to detect increased variance and autocorrelation in a85
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system driven by white noise. Under these assumptions they were unable to detect a statistical significant increase in EWS

suggesting that DO events are noise-induced. However, using different model assumptions, Rypdal (2016) was able to de-

tect statistically significant EWS in an ensemble of DO events. This was achieved by analyzing individual frequency bands

separately, using a fractional Gaussian noise (fGn) (Mandelbrot and Van Ness, 1968) model to describe the noise. Fractional

Gaussian noise is a long-range dependent model for which the Green’s function in (6) is scale-invariant90

g(t) =





tH−3/2, x≥ 0

0, x < 0
. (9)

H ∈ (0.5,1) is the memory coefficient known as the Hurst exponent. Fractional Gaussian noise have been shown to be more

realistic for describing components in the Earth system where the power spectrum does not follow an exponential decay, such

as monthly to centennial global and local mean surface temperature data (Lovejoy and Schertzer, 2013; Huybers and Curry,

2006; Rybski et al., 2006; Rypdal and Rypdal, 2016; Franzke et al., 2015; Fredriksen and Rypdal, 2016; Løvsletten and Rypdal,95

2016; Myrvoll-Nilsen et al., 2019). Rypdal (2016) was able to detect an increase of variance of the high-frequency fluctuations

for the ensemble average of the 17 DO events at a 5% significance level, and individually for five separate events. These

results were corroborated by Boers (2018) whom applied a similar strategy to the higher resolution of the NGRIP δ18O data set

(Andersen et al., 2004; Gkinis et al., 2014) on which he applied interpolation to obtain time series with regular 5-year sampling

steps.100

Most approaches for detecting EWS in the current literature require estimation of statistical properties in a sliding window,

e.g. by producing Fourier surrogates and estimating the Kendall’s τ statistic for each iteration. Consequently, this presents

a choice on the length of the window. Using a small window will allow for the momentary state to be better depicted, but

there will be fewer points used in the estimation hence accuracy will suffer. On the other hand, if a larger window is used

the estimated statistics will be more accurate, but less representative of the momentary state as it represents an average over105

a larger time scale. The optimal choice of window length should ideally represent a good trade-off between accuracy and

ability to represent momentary evolution, but this can be hard to determine in practice. In this paper we circumvent this issue

and present a model-based approach where such a compromise is not required. By assuming that the correlation parameter

is time-dependent, following a specific linear structure, it is possible to formulate this into a hierarchical Bayesian model for

which well-known computational frameworks can be applied. A Bayesian approach has the additional benefit of providing110

uncertainty estimates in the form of posterior distributions.

The paper is structured as follows. A description of the data used in this paper is included in section 2. Section 3 details our

methodology, including how we treat time-dependence, how to formulate our model as a hierarchical Bayesian model and how

to perform statistical inference efficiently. Results are presented in section 4 where our framework is applied first to simulated

data, then to Dansgaard-Oeschger events observed in the δ18O data from the NGRIP record. Our results are compared with115

those obtained by Ditlevsen and Johnsen (2010), Rypdal (2016) and Boers (2018). Further discussion and conclusions are

provided in section 5.
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2 NGRIP ice core data

The δ18O ratios are frequently used in paleoscience as proxies for temperature of precipitation (Johnsen et al., 1992, 2001;

Dansgaard et al., 1993; Andersen et al., 2004), where higher ratios signals colder climates and, conversely, warmer climates120

tend to result in lower ratios. We employ the δ18O proxy record from the Northern Greenland Ice core Project (NGRIP) (North

Greenland Ice Core Project members, 2004; Gkinis et al., 2014; Ruth et al., 2003). There are currently two different versions

of the NGRIP/GICC05 data, at different resolutions. We will apply our methodology to the higher resolution record, which is

sampled every 5cm in depth. The NGRIP δ18O proxy record is defined on a temporal axis given by the Greenland Ice Core

Chronology 2005 (GICC05) (Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al., 2006; Svensson et al., 2008) which125

thus pairs the δ18O measurements with a corresponding age, stretching back to 60 kyrs b2k. We use segments of the δ18O

record corresponding to Greenland stadial phases preceding DO onsets, as given by Table 2 of Rasmussen et al. (2014). The

data used in this paper can be downloaded from https://www.iceandclimate.nbi.ku.dk/data/ (last accessed: day month year)

3 Methodology

During critical slowing down stationarity can no longer be assumed as we expect both the correlation and variance to increase.130

For an AR(1) process x = (x1, ...,xn)⊤ sampled at times t1, ..., tn, we assume that the increase in correlation can be expressed

by representing the lag-one autocorrelation parameter as a linear function of time

ϕ(t) = a + bt, 0≤ t≤ 1, (10)

where a and b are two unknown parameters. The joint vector of variables x = (x1, ...,xn)⊤ forms a multivariate Gaussian

process135

x∼N (0,Σ), (11)

where the covariance matrix is given by

Σij = Cov(xi,xj). (12)

The time-dependent AR(1) process is expressed by the difference equation

xt = ϕ(t)xt−1 + εt, ε∼N (0,σ2
ε), t = t1, ..., tn, (13)140

for which the covariance between two variables xi and xj is given by Cov(xi,xj).

Since the covariance matrix is almost always dense it is computationally beneficial to instead work with the inverse-

covariance matrix, also known as the precision matrix Q = Σ−1. It can be shown that for a time-dependent AR(1) process

6
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the precision matrix is sparse and equal to

Q =
1
σ2




1 +ϕ(t2)2 −ϕ(t2)

−ϕ(t2) 1 +ϕ(t3)2 −ϕ(t3)
. . . . . . . . .

−ϕ(tn−1) 1 + ϕ(tn)2 −ϕ(tn)

−ϕ(tn) 1




. (14)145

Gaussian processes with sparse precision matrices are known as Gaussian Markov random fields, and there is a wealth of

efficient algorithms for fast Bayesian inference, see e.g. Rue and Held (2005) for a comprehensive discussion on this topic.

These computationally efficient properties are not shared by the fractional Gaussian noise for which both the covariance matrix

and the precision matrix are dense. This means that essential matrix operations such as computing the Cholesky decomposition

will have a computational cost of O(n3) floating point operations (flops), as opposed to O(n) flops for the AR(1) process.150

Inference might still be possible to achieve in a reasonable amount of time if the size of the data set remains sufficiently small.

For larger data sets, however, both time and memory consumption may become an issue.

In fitting the model it is beneficial that the model parameters are defined on an unconstrained parameter space. We therefore

introduce a suitable parameterization for a and b using variations of the logistic transformation. Our reasoning is as follows.

Assuming the lag-one autocorrelation parameter is defined on the interval (0,1), and since t ∈ [0,1], then the slope must be155

constrained by

|b|< 1, (15)

An unconstrained parameterization for b thus reads

θb = log
(

1 + b

1− b

)
⇐⇒ b =−1 +

2
1 + exp(−θb)

, θb ∈ (−∞,∞). (16)

The parameter space for a depend on the current state of b160

0 < a + bt < 1 ⇐⇒ −bt < a < 1− bt. (17)

Let

alower =−min(b,0) and aupper = 1−max(b,0), (18)

then an unconstrained parameterization for a is given by

θa = log
(

a− alower

aupper− a

)
⇐⇒ a = alower +

aupper− alower

1 + exp(−θa)
, θa ∈ (−∞,∞). (19)165

3.1 Latent Gaussian model formulation

In this paper we adopt a Bayesian framework to estimate the model parameters. This means that parameters are treated as

stochastic variables for which prior knowledge, expressed using prior distributions, is incorporated and updated by the likeli-

hood of the observations using Bayes’ theorem. Bayesian inference can be obtained by expressing our model as a hierarchical
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Bayesian model, wherein the observed state variables are modeled in terms of a random predictor170

η = β0 +
nβ∑

i=1

βizi + ε(θ) = µ(β) + ε(θ). (20)

Here, β0 represent an intercept, βi are fixed effects corresponding to covariates zi and ε are random effects representing

some time-dependent noise that depend on some parameters θ. Notably, in the Bayesian framework fixed effects are treated

as stochastic variables and must be assigned prior distributions. If the data is already detrended then µ = 0. The covariance

structure of the different components in the model are expressed by a latent field of random variables containing the predictor175

and all stochastic terms therein , i.e. x = (η,β,ε). Assigning a Gaussian prior on x the model becomes a latent Gaussian model,

a subset of Bayesian hierarchical models for which there exists additional computational frameworks. The latent Gaussian

model is specified in three stages as follows.

The first stage is to specify the likelihood of the model. We assume the likelihood to be conditionally independent given the

latent field x, and expressed by a Gaussian distribution with some small negligible fixed variance σ2
y ≈ 0 and mean equal to180

the predictor

y | x∼
n∏

i=1

N (ηi,σ
2
y). (21)

The second stage in specifying a latent Gaussian model is to specify a Gaussian prior distribution for the latent field x,

with mean vector µ = E(θ) and precision matrix Q. This may depend on some unknown hyperparameters θ and expresses the

covariance structure of the latent variables. β are assigned vague Gaussian priors and the noise term Specifically, for the linear185

predictor we assume

x | θ ∼N (µ,Q(θ)−1), (22)

such that the latent variables corresponding to a potential β component represent vague Gaussian priors and those correspond-

ing to ε represent the chosen model. The precision matrix is given by Eq. (14).

The final stage concerns the prior distributions of the model parameters, which we assign independently190

θ ∼ π(κ)π(θa)π(θb). (23)

For the analysis performed in this study we have assigned a penalised complexity prior (Simpson et al., 2017) for the scaling

parameter κ = 1/σ2 and Gaussian priors for the parameterized memory parameters θa and θb.

3.2 Inference

In the Bayesian paradigm inference is expressed by the posterior distribution which provides a complete description of the195

probabilistic nature of the model parameters and latent variables. The joint posterior distribution can be found relatively easily

by

π(x,θ | y)∝ π(θ)π(x | θ)
n∏

i=1

π(yi | x). (24)

8

https://doi.org/10.5194/egusphere-2024-436
Preprint. Discussion started: 19 February 2024
c© Author(s) 2024. CC BY 4.0 License.



We want to estimate the marginal posterior distribution for all hyperparameters and latent variables. These are computed by

evaluating the integrals200

π(xi | y) =
∫

π(xi | θ,y)π(θ | y)dθ (25)

π(θj | y) =
∫

π(θ | y)dθ−j . (26)

These integrals are often impossible to evaluate analytically and are typically computed numerically using Markov chain Monte

Carlo approaches (Robert et al., 1999). However, these can sometimes be very time consuming for hierarchical models. For

latent Gaussian models with a sparse precision matrix there exists a computationally superior alternative in using integrated205

nested Laplace approximations (INLA) (Rue et al., 2009, 2017). Instead of using simulations, INLA use various numerical

optimization techniques to compute an accurate approximation of the posterior marginal distributions. Most importantly is the

Laplace approximation (Tierney and Kadane, 1986), which is used to approximate the joint posterior distribution

π(θ | y)≈ π(x,θ,y)
πG(x | θ,y)

∣∣∣∣
x=x∗(θ)

, (27)

where x∗(θ) is the mode of the latent field x(θ) and πG(x | θ,y) is the Gaussian approximation of210

π(x | θ,y)∝ π(x | θ)π(y | x,θ). (28)

The methodology is available as the open source R package R-INLA, which can be downloaded at www.r-inla.org (last access:

day month year).

As there are currently no model components already implemented for R-INLA that meet our specifications we are required

to implement the model components ourselves using the custom modeling framework of R-INLA called rgeneric. This adds215

more work and complexity in implementing our model, and adds an additional barrier to further adoptation of our methodology.

To increase accessibility we have implemented the code and made it available as a user-friendly R-package titled INLA.ews,

available at www.github.com/eirikmn/INLA.ews (last access: day month year). Inference can then be produced by executing

inla.ews(y, formula=formula), where y is a numeric vector containing the data and formula describes the trends

included in the model. A demonstration of the INLA.ews package applied to simulated data can be found in Appendix B, and220

a detailed description of its features can be found in its accompanying documentation.

3.3 Non-constant time steps

To allow for non-constant time steps ∆tk = tk − tk−1 we assume

ϕ(tk) = e−λ(tk)∆tk/c, (29)

where225

λ(tk) =− log(a + btk), (30)

9
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c =
∑n

k=2 ∆tk/(n− 1) and tk has been normalized such that tk ∈ (0,1). This modification guarantees that ϕ(t)−→ 1 as

∆tk −→ 0 and ϕ(t)−→ 0 as ∆tk −→∞. It also ensures that ϕ(t1) = a and ϕ(tn) = a+ b which makes the interpretability of

the parameters easier.

If we denote σ(tk)2 = σ2/(2λ(tk)), and assume230

x1 ∼N
(
0,σ(t1)2

)
, (31)

then the precision matrix for non-constant time steps yields

Q =




(
1

σ(t1)2
+ ϕ(t2)

2

σ(t2)2

)
− ϕ(t2)

σ(t2)2

− ϕ(t2)
σ(t2)2

(
1

σ(t2)2
+ ϕ(t3)

2

σ2
3

)
− ϕ(t3)

σ(t3)2

. . . . . . . . .

− ϕ(tn−1)
σ(tn−1)2

(
1

σ(tn−1)2
+ ϕ(tn)2

σ(tn)2

)
− ϕ(tn)

σ(tn)2

− ϕ(tn)
σ(tn)2

1
σ(tn)2




.

Non-constant time steps can be specified in the inla.ews function by using the timesteps input argument.

3.4 Incorporating forcing235

Climate components may also be affected by forcing. How the observed component responds to such forcing will be influenced

by time-dependence. In this subsection we adopt a similar strategy to myrvoll-nilsen2020 with changes to allow for time-

dependence and non-constant time steps.

Let F (t) denote the known forcing component such that

dx(t) =−λ(x(t) +F (t))dt + dB(t). (32)240

The model can then be expressed as the sum of two components

x(t) = µ(t) + ε(t), (33)

where ε(t) is a time-dependent OU process and the forcing response is given by

µ(t) = σf (t)

t∫

0

e−λ(t)(t−s) (F (s) +F0)ds. (34)

σ2
f (t) = σ2

f/(2λ(t)) is an unknown scaling parameter and F0 is an unknown shift parameter.245

Forcing can be incorporated into the model by specifying the forcing argument in the inla.ews function.
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4 Results

4.1 Accuracy test on simulated data

To test the accuracy and robustness of the time-dependent AR(1) model we fit the model to a number of simulations. Specifi-

cally, we perform accuracy tests using a grid of b ∈ [−0.8,0.8] with increments of 0.1, and choose the parameter a correspond-250

ing to θa = 0. For each b we draw nr = 1000 time series of length n = 500 and n = 1000 from the time-dependent AR(1)

model. The model is fitted using R-INLA with the same specifications as used in the INLA.ews package. To quantify the

accuracy of the model we compare the posterior marginal mean of the slope b̂ = E(π(b | y)) to the true values b. We also

compute the posterior probability of the slope being positive P (b > 0). Ideally, we want b̂ to be as close to b as possible, and

P (b > 0) > 0.5 if b > 0 and, conversely, P (b > 0) < 0.5 if b < 0.255

-0.5

0.0

0.5

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True b

P
o

s
te

ri
o

r 
m

a
rg

in
a

l 
m

e
a

n
 b

n = 500

(a) Posterior marginal mean

-0.5

0.0

0.5

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True b

P
o

s
te

ri
o

r 
m

a
rg

in
a

l 
m

e
a

n
 b

n = 1000

(b) Posterior marginal mean

0.00

0.25

0.50

0.75

1.00

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True b

P
(b

>
0

)

n = 500

(c) Probability of positive trend

0.00

0.25

0.50

0.75

1.00

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

True b

P
(b

>
0

)

n = 1000

(d) Probability of positive trend

Figure 3. Box plots representing the results of the accuracy test for nr = 1000 simulated time series of length n = 500 for each

b ∈ [−0.8,0.8]. Panels (a) and (b) show box plots of the posterior marginal mean estimated by INLA for simulations of lengths n = 500 and

n = 1000, respectively. The blue line shows the true b used in the simulation. Panel (c) and (d) show box plots of the estimated posterior

probability of the slope being positive given the true value for simulations of length n = 500 and n = 1000, respectively.
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The results of the analysis is presented in 1 and displayed graphically as box plots in Fig. 3. Since the posterior distribution

of b is skewed, especially when its absolute value approaches 1, ordinary box plots would classify a larger number of points as

outliers. We use instead an adjusted box plot proposed by (Hubert and Vandervieren, 2008) which is better suited for skewed

distributions. We obtain decent accuracy of the posterior marginal means b̂, with a small underestimation when b−→−1 and

a small overestimation when b−→ 1. The posterior probabilities suggests that when |b| ≥ 0.2 there is both a low chance of260

false negatives (high sensitivity) and false positives (high specificity). For smaller absolute values however, especially those

generated under b = 0, more variation in posterior probabilities were observed. This behaviour improves when n increases

from 500 to 1000. For n = 500 we find that out of nr = 1000 simulations there were zero false positives for b≤−0.1, and a

single false negative at b≥ 0.1. For n = 1000, no false positives or negatives were found.

n = 500 n = 1000 n = 500 n = 1000

True b b̂ b̂ P (b > 0) P (b > 0)

-0.8 -0.766 -0.78 0 0

-0.7 -0.67 -0.687 0 0

-0.6 -0.578 -0.591 0 0

-0.5 -0.483 -0.493 0 0

-0.4 -0.385 -0.393 0 0

-0.3 -0.291 -0.295 0.001 0

-0.2 -0.192 -0.197 0.015 0.001

-0.1 -0.095 -0.1 0.151 0.065

0 -0.004 0.002 0.478 0.508

0.1 0.097 0.1 0.854 0.937

0.2 0.199 0.197 0.985 0.999

0.3 0.292 0.294 0.999 1

0.4 0.392 0.394 1 1

0.5 0.485 0.494 1 1

0.6 0.583 0.592 1 1

0.7 0.675 0.688 1 1

0.8 0.768 0.781 1 1
Table 1. Results from accuracy tests on nr = 1000 simulated time-dependent AR(1) series of length n for each b ranging from -0.8 to 0.8.

The table includes the ensemble average of the posterior marginal means b̂ and posterior probabilities of positive slope P (b > 0) for each

value of b, and for time series’ lengths of n = 500 and n = 1000.
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4.2 DO-events265
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Figure 4. NGRIP δ18O proxy record. The time-series used in our study are the parts of the curves drawn in blue which are the cold stadial

periods preceeding the onsets of interstadial periods drawn in red. The red and blue vertical bars represent respectively the start and the end

of inter-stadial (warm) periods

We apply our time-dependent AR(1) model on the high resolution NGRIP δ18O record, which is partitioned into stadial and

interstadial periods as shown in Fig. 4. This version of the NGRIP record is sampled regularly every 5cm steps in depth, but is

non-constant in time. Having modified our model to allow for irregular time points we are able to use the raw NGRIP record

without having to perform interpolation or other types of pre-processing, such as that of Boers (2018). This grants us a larger

dataset for each event which could significantly improve parameter estimation. Having implemented the model using INLA270

we are able to take advantage of this extra resolution while keeping computational time low.

Some of these datasets appear non-stationary and thus require trend estimation. Since there is no obvious choice of forcing

we consider different alternatives for trend components which are compared. The R-INLA framework allows us to very easily

incorporate these trends into our model and estimates all model components simultaneously. First, we fit our model to the data

without any additional trend, then we assume a linear trend, followed by a 2nd order polynomial trend. Finally, we model the275

trend using a continuous 2nd order random walk (RW2) spline. More details on the comparison between the different trends

are included in appendix A, which also includes a plot of how well each trend fit the data.

Having looked at the fits for each event we observe that most events can be fitted easily with linear or even constant trend, but

a few events require non-linearity. We choose the 2nd order polynomial trend as this gives a nice trade-off between flexibility

and simplicity and appears to provide a decent fit for all events. The ϕ(t) = a + bt evolutions for all events using 2nd order280

polynomial detrending is included in Fig. 5.

The models are fitted to the stadial period preceding each of the 17 DO events and the posterior probability of ϕ(t) =

a + bt being increasing, P (b > 0), is compared for all events and trend assumptions. These are included in table 2. Using the

conventional threshold of P (b > 0)≥ 0.95 we are able to detect early warning signals in 4 events using no detrending, and 5
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events using linear or 2nd order polynomial trends and 6 events using the continuous RW2 model as a trend. Averaging over285

all events we are not able to conclude that early warning signals has been found over the ensemble of events for any detrending

model.

Having found EWS in multiple stadial periods preceding DO events therefore indicates that DO events are not solely noise-

induced unlike the hypothesis formulated in Ditlevsen and Johnsen (2010). These differences in results can be explained by

both the use of a higher-resolution dataset and a methodology not involving time windows. However, the absence of EWS in290

the ensemble of events does not support the hypothesis that all DO events are bifurcation-induced and hence cannot exclude

the possibility for some events to be noise-induced. Our results do, however, suggest that some specific transitions may be

bifurcation induced, which is in line with the results of Rypdal (2016) and Boers (2018), in which significant EWS have also

been found only for some specific events. These studies use different versions of the NGRIP record from our study and their

methodologies differ from ours as they use a scale-invariant fGn model to describe the noise, as opposed to an AR(1) process.295
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Figure 5. The evolution of the lag-one autocorrelation parameter a + bt for each of the 17 transitions analyzed in this paper. The blue lines

represents the posterior marginal means of each Greenland stadial phase, and the red shaded areas represent the 95% credible intervals. The

δ18O proxy measurements have been detrended using a second order polynomial. The probability of an increasing slope, P (b > 0), given

the posterior distribution, is also included.
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Event No trend Linear Square RW2 Rypdal Boers

1 0.8824 0.8558 0.9022 0.9512 p = 0.02 −
2 0.9660 0.9886 0.973 0.9655 p = 0.008 p < 0.05

3 0.4949 0.4983 0.5005 0.6137 − −
4 0.0714 0.0878 0.0821 0.0928 − p < 0.05

5 0.9958 0.9956 0.9952 0.9918 p = 0.13 −
6 0.2924 0.3052 0.2159 0.2249 − p<0.05

7 0.7569 0.7182 0.6695 0.9819 − −
8 0.9117 0.9141 0.8747 0.8394 − −
9 0.9862 0.9669 0.9563 0.9557 p = 0.16 −
10 0.0415 0.1549 0.0942 0.1311 − −
11 0.9325 0.9516 0.9614 0.9488 − p < 0.05

12 0.1393 0.1441 0.1268 0.0287 − −
13 0.8898 0.8864 0.8923 0.9059 p = 0.39 p < 0.05

14 0.7261 0.866 0.684 0.7511 − p < 0.05

15 0.0304 0.0599 0.0695 0.0754 − p < 0.05

16 0.9903 0.9918 0.9935 0.9953 − −
17 0.5889 0.5581 0.5766 0.5285 − −

Ensemble 0.6292 0.6437 0.6216 0.646 − −
Table 2. Table comparing the probability of positive slope P (b > 0) for each event given posterior distributions obtained using the time-

dependent AR(1) model. We ran the model using different trends including no trend (except for the intercept), a linear effect, a second order

polynomial and a 2nd order random walk spline. Our results are also compared with the p values obtained from Rypdal (2016) and Boers

(2018).

5 Conclusions

This paper presents a Bayesian framework to analyze early warning signals, using an AR(1) process where the lag-one cor-

relation parameter is assumed to increase linearly over time. Bayesian inference is obtained using a latent Gaussian model

formulation and implemented using the R-INLA framework. In addition to computing the posterior marginal distribution for

all variables and parameters in the model, implementation in the R-INLA framework grants a number of benefits. First, it300

provides a great reduction in computational cost, both in terms of speed and memory. Second, the framework is very versatile

and other model components such as trends can be easily added to the predictor. Third, R-INLA uses posterior prediction to

impute missing data automatically. The model has been applied to simulated data and shows decent accuracy.
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To detect early warning signals of DO events we have applied our model to the raw 5cm NGRIP water isotope record.

This record is sampled evenly in depth, but not in time requiring us to make some necessary modifications to allow for non-305

equidistant time steps.

Using the time-dependent AR(1) model we were unable to detect statistically significant EWS for the ensemble of 17 DO

events, and only detected EWS individually for 5 events using a second-order polynomial detrending. Unlike Ditlevsen and

Johnsen (2010), we find evidence of EWS in some events, corroborating Rypdal (2016) and Boers (2018). We were, however,

unable to conclude that DO events are generally bifurcation-induced. To better compare with Rypdal (2016) and Boers (2018),310

we would have liked to employ a long-range dependent process such as the fGn. However, this task is more difficult than for the

AR(1) process, as necessary modifications have to be made to the model. Moreover, this would also require working with non-

sparse precision matrices which are far more computationally demanding. We did attempt to implement the time-dependent

fGn model presented by Ryvkina (2015), but we were unable to ensure sufficient stability. This is, however, a very interesting

topic for future work.315

Currently, our model can only fit an AR(1) process where the lag-one correlation parameter is expressed as a linear function,

which is not realistic. Although this is sufficient for detecting whether or not there has been a statistically significant increase

in EWS, our model is unable to perform predictions or give an indication of when the tipping point could be reached. More

advanced functions for the evolution of the lag-one correlation parameter should be possible, but would have to be implemented.

One possible extension would be to formulate a model where the memory parameter follows a polynomial ϕ(t) = a+btc, where320

the exponent term c > 0 is an additional hyperparameter. This would perhaps help give an indication of the rate of which the

correlation has increased. However, when adding more parameters one needs to be careful to avoid overfitting.

To make the methodology more accessible we have released the code associated with this model as an R package titled

INLA.ews. This package performs all analysis and includes functions to plot and print key results from the analysis very

easily. Although this paper focuses on the detection of EWS in DO events observed in Greenland ice core records, our method-325

ology is general and the INLA.ews package should be applicable to tipping points observed in other proxy records as well.

We have also implemented the option of including forcing, for which the package will estimate the necessary parameters and

compute the resulting forcing response. The package is demonstrated on simulated data in the appendix.

Code and data availability. The code and data sets used for this paper is available through the R-package, INLA.ews, which can be down-

loaded from: github.com/eirikmn/INLA.ews (last access day month year.330

Appendix A: Comparison of different detrending approaches

Since there is no clear choice of forcing for DO events, and not all data windows appear stationary, we assume that there is

some unknown trend component reflected in the data. This trend needs to be managed or the estimates of other components

will suffer. Often, this is done by first detrending the data, before the parameters of interest are estimated. This risk that
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variation caused by the time-dependent noise component may be attributed to the trend, and it is therefore better to estimate335

both the trend and noise components simultaneously. This can be achieved using INLA, which supports many common model

components. We perform the same analysis on the data windows preceding all 17 DO events using four different trend models.

– No trend: The data is explained using the time-dependent AR(1) noise component εt and an intercept β0 only,

yt ∼ β0 + εt. (A1)

We only expect this to provide accurate results for stationary data windows. The results in this paper can be recreated340

using the INLA.ews package. Let y denote the δ18O ratios and time denote the GICC05 chronology, then the model

can be fitted by

results = inla.ews(data=y, timesteps=time, formula = y ~ 1)

To omit the intercept term set the formula argument to formula = y ∼ -1 instead. The rgeneric model compo-

nent corresponding to the time-dependent AR(1) noise is added automatically.345

– Linear trend: We incorporate an additional linear effect β1 in the model,

yt ∼ β0 + β1t + εt. (A2)

This can capture linear increases, but will not be able to model any non-linearity in the model. This model can be fitted

using

results = inla.ews(data=data.frame(y=y, trend1=time_norm),350

timesteps=time, formula = y ~ 1 + trend1)

where trend1 = time_norm is the covariate corresponding to the normalized time steps,

time_norm = (time-time[1])/(time[n]-time[1])

– 2nd order polynomial: We add another effect β2 which allows for non-linearity to be described using a second order

polynomial trend,355

yt ∼ β0 + β1t + β2t
2 + εt. (A3)

This model can be fitted using

results = inla.ews(data=data.frame(y=y,trend1=time_norm,trend2=time_norm^2),

timesteps=time, formula = y ~ 1 + trend1 + trend2)
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where trend2 specifies a linear response to the covariates defined as the square of the normalized GICC05 chronology360

trend2=time_norm**2.

– 2nd order random walk (RW2): We use a random effect f(t) described by a continuous 2nd order random walk to

describe the trend,

yt ∼ f(t) + εt. (A4)

This is a continuous extension (Lindgren and Rue, 2008) of a stochastic spline model which assumes that the second-365

order increments are independent Gaussian processes

xi− 2xi+1 + xi+2 ∼N (0,σ2
RW2). (A5)

This model is able to capture more general non-linearities compared to the 2nd degree polynomial trend, but makes the

model less interpretable. Similar as in R-INLA, the RW2 model is specified using the following call

results = inla.ews(data=data.frame(y=y, idx=time,370

timesteps=time, formula = y ~ 1 + f(idx, model="crw2"))

where idx specifies the time steps of the continuous RW2 trend.

In Table 2 we present the estimated posterior probability of a positive trend, P (b > 0 | y), compared to the corresponding

p-values by Rypdal (2016) and Boers (2018). We show the fitted trends for each data interval in Fig A1. We observe that the

models tend to agree, with some exceptions where the assumed trend is unable to capture the variation of the data. Although the375

RW2 trend is the more flexible model it appear to exhibit irregular fluctuation for several events. The second order polynomial

trend appear to be sufficiently flexible for all events, and provides a much smoother and more interpretable fit.

Appendix B: Demonstration of the INLA.ews package

We demonstrate the INLA.ews package on simulated forced data with non-equidistant time steps. The time steps tk are

obtained by adding Gaussian noise such that t̃k = k + ξk and normalized tk = (t̃k− t̃0)/(t̃n− t̃0) such that t0 = 0 and tn = 1.380

We assume a time dependent AR(1) process of length n = 1000 for the observations, sampled at times t1, ..., tn. The AR(1)

process has standard deviation σ = 5 and time-dependent lag-one correlation ϕ(t) = a+ btk given by a = 0.3 and b = 0.2. We

also include a forcing F (t), obtained by simulation from another AR(1) process with unit variance and lag-one correlation

ϕ̃ = 0.95. The forcing response is approximated by

µ(tk) =
σf√
2λ(tk)

tk∑

s=t0

e−λ(tk)(tk−ts)
(
F0 + F (s)

)
, (B1)385

with parameters set to σf = 0.1 and F0 = 0, and added to the simulated observations. The AR(1) model and forcing z sampled

at time points time can be fitted to the data y with INLA using the inla.ews wrapper function:
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Figure A1. δ18O proxy data from the NGRIP record (gray), with Greenland stadial phases highlighted. The posterior marginal mean (blue)

and 95% credible intervals (red) of the fitted trends are included for each event.
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Figure B1. Simulated time-dependent noise (black) where a response to known forcing (green) has been added.

results <- inla.ews(data=y, forcing=z, formula=y ~ -1, timesteps=time)

The inla.ews function computes all posterior marginal distributions, computes summary statistics, formats the results

and returns all information as an inla.ews list object. Summary statistics and other important results can be extracted using390

the summary function:

> summary(results)

Call:

inla.ews(data = y, forcing = z, timesteps = time, formula = y ~ -1)395

Time used:

Running INLA Post processing Total

616.7390 142.4620 759.6259

400

Posterior marginal distributions for all parameters have been computed.

Summary statistics for using ar1 model (with forcing):

mean sd 0.025quant 0.5quant 0.975quant

a 0.2938 0.0353 0.2279 0.2927 0.3672405

b 0.2127 0.0449 0.1350 0.2087 0.3091

sigma 7.1593 0.3223 6.5160 7.1651 7.7789
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Parameter True value Posterior marginal mean 95% credible Interval

a 0.3 0.294 (0.228, 0.367)

b 0.2 0.213 (0.135, 0.309)

σ 5 7.159 (6.516, 7.779)

σf 0.1 0.102 (0.091, 0.113)

F0 0 -0.004 (-0.045, 0.034)
Table B1. Underlying values used for simulating the data, along with estimated posterior marginal means and 95% credible intervals for all

hyperparameters.

sigma_f 0.1019 0.0055 0.0910 0.1019 0.1127

F0 -0.0036 0.0202 -0.0453 -0.0028 0.0338

410

Memory evolution is sampled on an irregular grid.

Summary for first and last point in smoothed trajectory (a+b*time):

mean sd 0.025quant 0.5quant 0.975quant

phi0[1] 0.2938 0.0353 0.2279 0.2927 0.3672

phi0[n] 0.5060 0.0366 0.4370 0.5050 0.5798415

Mean and 95% credible intervals for forced response have also been computed.

Probability of positive slope is 0.9999925

Marginal log-Likelihood: -3090.02420

The results may be displayed graphically using the plot function:

> plot(results)

For this example the estimated memory evolution and forcing response is included in Fig. B2. The estimated parameters are

summarized in Table B1.

Combining forcing with irregular time steps requires more computationally intensive calculations within rgeneric, which425

increases the total computational time to around ten minutes, compared to 10 seconds using any other model configuration. To

reduce this we have implemented the model in cgeneric which grants a substantial boost in speed. However, this requires

pre-compiled C code using more simplistic priors for the parameters, which cannot be changed without recompiling the source

code. Thus there could potentially be a small loss in accuracy of the fitted model at the cost of the improved speed. To use the

cgeneric version of the model, set do.cgeneric=TRUE in the inla.ews function call.430
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Figure B2. Panel (a) shows the posterior marginal mean of the lag-one correlation parameter of the simulated data (gray). The fluctuations

are caused by being sampled at non-constant time steps. The posterior marginal mean of the smoother evolution of a+ bt is included (blue),

along with 95% credible intervals (red) and the true values (white). Panel (b) shows the simulated observations (gray) along with the posterior

marginal mean (blue) and 95% credible intervals (red) of the forcing response.
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