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Abstract. A tipping point is defined by the IPCC as a critical
threshold beyond which a system reorganizes, often abruptly
and/or irreversibly. Tipping points can be crossed solely by
internal variation in the system or by approaching a bifurca-
tion point where the current state loses stability, which forces
the system to move to another stable state. It can be shown
that before a bifurcation point is reached there are observ-
able changes in the statistical properties of the state variable.
These are known as early warning signals and include in-
creased fluctuation and autocorrelation time. It is currently
debated whether or not Dansgaard–Oeschger (DO) events,
which are abrupt warmings of the North Atlantic region
which occurred during the last glacial period, are preceded
by early warning signals. To express the changes in statisti-
cal behavior we propose a model based on the well-known
first-order autoregressive (AR) process, with modifications
to the autocorrelation parameter such that it depends linearly
on time. In order to estimate the time evolution of the auto-
correlation parameter we adopt a hierarchical Bayesian mod-
eling framework, from which Bayesian analysis can be per-
formed using the methodology of integrated nested Laplace
approximations. We then apply the model to segments of the
oxygen isotope ratios from the Northern Greenland Ice Core
Project record corresponding to 17 DO events. Statistically
significant early warning signals are detected for a number
of DO events, which suggests that such events could indeed
exhibit signs of ongoing destabilization and may have been
caused by approaching a bifurcation point. The methodology
developed to perform the given early warning analyses can
be applied more generally and is publicly available as the R
package INLA.ews.

1 Introduction

If the state of a component of the climate system changes
from one stable equilibrium to another, either by crossing
some threshold in the form of a boundary of unstable fixed
points separating two basins of attraction or by having the
initial equilibrium destabilize, it is said to have crossed a
tipping point. Components of the Earth system have expe-
rienced tipping points numerous times in the past, leading
to abrupt transitions in the climate system. These transitions
are well documented in paleoclimatic proxy records. No-
tably, in Greenland ice core records of oxygen isotope ra-
tios (δ18O) and dust concentrations there is evidence that
large and abrupt climatic transitions from Greenland sta-
dial (GS) to Greenland interstadial (GI) conditions took
place in the last glacial interval (110 000–12 000 years be-
fore 2000 CE, hereafter denoted yr b2k). These transitions
are known as Dansgaard–Oeschger (DO) events (Dansgaard
et al., 1984, 1993) and initialize climatic cycles where the
temperature increases substantially, up to 16.5 ◦C for single
events, over the course of a few decades. This is followed by
a more gradual cooling, over centuries to millennia, returning
to the GS state. A total of 17 DO events (Rasmussen et al.,
2014) have been found for the past 60 kyr and they represent
some of the most pronounced examples of abrupt transitions
in past climate observed in paleoclimatic records.

It is widely accepted that such transitions are related to
a change in the meridional overturning circulation (MOC)
(Lynch-Stieglitz, 2017; Henry et al., 2016; Menviel et al.,
2014, 2020; Bond et al., 1999), possibly caused by loss of
sea ice in the North Atlantic. However, the physical mecha-
nisms that caused these changes in the MOC and how they
triggered DO events are less understood. Some studies have
found that DO events exhibit a periodicity of 1470 years
(Schulz, 2002), which has made some scientists suggest that
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the events have been triggered by changes in the Earth system
caused by quasi-periodic changes in the solar forcing (Braun
et al., 2005). Others suggest that the transitions have been
triggered by random fluctuations in the Earth system, with-
out any significant changes to the underlying system caused
by external forcing (Ditlevsen et al., 2007). Treating the GS
and GI states as stable equilibria in a dynamical system rep-
resenting the Greenland climate, and studying the statistical
behavior related to the stability of the system in the period
preceding DO events, can help determine whether or not they
are forced or random and thus possibly constrain the number
of plausible physical causes that trigger the events.

Let a time-dependent state variable x(t), representing for
example the δ18O ratio, vary over some potential V (x) with
stochastic forcing corresponding to a white noise process
dB(t), expressed as the derivative of a Brownian motion;
then the stability of the system can be modeled using the
stochastic differential equation:

dx(t)= F(x(t))dt + σdB(t). (1)

One could interpret this equation as describing the motion of
some particle in the presence of a potential V (x), with drift
expressed by F(x)=−V ′(x) and a diffusion term σdB(t)
describing the noise that acts on the particle. Points where
dx(t)/dt = 0 are fixed points. These are stable if a small per-
turbation of the state variable near the fixed point decays in
time and unstable otherwise. Figure 1a illustrates an example
of a potential with two valleys corresponding to stable fixed
points x1 and x3 that are separated by an unstable fixed point
x2. If a state variable near x1 crosses x2 into the basin of at-
traction of x3 solely from perturbations caused by internal
variation of the system, then the associated tipping point is
said to be noise-induced. However, if the dynamics of the
system depend on some slowly varying control parameter
µ(t), then the equilibrium points may shift, vanish, or spawn
as a function of µ(t). This means that an equilibrium state of
a system can change over time and eventually be lost, mak-
ing the system move to another equilibrium, as illustrated in
Fig. 1a–c. Points in the control parameter space for which
the qualitative behavior of a system changes, e.g., changes in
stability or the number of fixed points, are called bifurcation
points. Figure 1d illustrates these changes using a bifurcation
diagram, where the stable fixed points x1 (lower solid curve)
and x3 (upper solid curve) are separated by the unstable fixed
points x2 (middle dashed curve). Critical transitions caused
by the control parameter crossing a bifurcation point are said
to be bifurcation-induced tipping points.

The nature of an equilibrium can be investigated by ex-
amining the linear approximation in its nearby domain. Lin-
earizing Eq. (1) around some stable fixed point xs yields

dx(t)=−λ(x(t)− xs)dt + σdB(t), (2)

where λ=−F ′(xs). This is known as the Langevin stochas-
tic differential equation and has the solution

x(t)= x0+

t∫
−∞

g(t − s)dB(s), (3)

with Green’s function,

g(t)=

{
exp(−λt), x ≥ 0
0, x < 0

. (4)

This solution forms an Ornstein–Uhlenbeck (OU) process
with variance Var(xt )= σ 2/(2λ). Under discretization this
is a first-order autoregressive (AR) process,

xt = φxt−1+ εt , εt ∼N
(

0,
1−φ2

2λ
σ 2
)
, (5)

with the lag-one autocorrelation parameter φ = exp(−λ1t).
When the control parameter approaches a bifurcation point

the restoring rate λ goes to zero and consequently the vari-
ance and autocorrelation of the state variable will increase,
as can be observed in Fig. 1d. This phenomenon was first
demonstrated by inspecting the power spectra of a simple
physical model by Wiesenfeld (1985). The idea was later
extended to a complex Earth system model by Held and
Kleinen (2004) and first applied to real data by Dakos et al.
(2008). These changes in statistical behavior are called early
warning signals (EWSs) of the bifurcation point, or critical
slowing down (Lenton et al., 2012; Dakos et al., 2008), and
can be used as precursors to help determine whether or not a
tipping point is imminent. EWSs are derived from the lin-
earization of the system around its fixed points; however,
even in cases where the system dynamic is far from its equi-
librium the same changes in statistical behavior can be found
with a delay (Ritchie and Sieber, 2016).

Recent studies have discovered that several components in
the Earth system exhibit EWSs and are at risk of approach-
ing or have already reached a tipping point. This includes the
western Greenland ice sheets (Boers and Rypdal, 2021), the
Atlantic meridional overturning circulation (Boers, 2021),
and the Amazon rainforest (Boulton et al., 2022).

Analysis of EWSs for DO events in the Greenland ice
core record has been conducted by others, e.g., Ditlevsen
and Johnsen (2010), who estimated the variance and auto-
correlation over a sliding window where the system was as-
sumed to be driven by white noise. Under these assumptions
they were unable to detect a statistical significant increase in
EWSs, suggesting that DO events are noise-induced. How-
ever, using different model assumptions, Rypdal (2016) was
able to detect statistically significant EWSs in an ensemble of
DO events. This was achieved by analyzing individual fre-
quency bands separately, using a fractional Gaussian noise
(fGn) (Mandelbrot and Van Ness, 1968) model to describe
the noise. These results were corroborated by Boers (2018),
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Figure 1. Panels (a)–(c) show the potential over the state variables before, at, and after the control parameter has reached the bifurcation
point µ∗. Panel (a) shows the potential and fixed points x1,x2, and x3 for some µ < µ∗, and panels (b)–(c) show the same for µ= µ∗ and
µ > µ∗, respectively. When the control parameter approaches the bifurcation point µ∗, the stability of the stable fixed point x1 decreases
and eventually collapses with x2. In panel (b) they coincide as a single unstable saddle point, leaving x3 as the only (stable) fixed point.
(d) Bifurcation diagram describing a bifurcation-induced tipping point. The black curve represents the fixed points of the state variable x
given the linearly changing control parameter µ ∈ (−1,1). The solid curves represent stable fixed points x1 and x3, and the dashed curve
represents unstable fixed points x2. The red line represents a simulated process. As the control parameter µ approaches the bifurcation point
µ∗ the stability of x1 decreases, which is expressed by increased variance and autocorrelation in the simulated process, causing the system
to cross the tipping point x2 prematurely.

who applied a similar strategy to a higher resolved version
of the Northern Greenland Ice Core Project (NGRIP) δ18O
dataset (Andersen et al., 2004; Gkinis et al., 2014).

Most approaches for detecting EWSs in the current litera-
ture require estimation of statistical properties such as vari-
ance and autocorrelation in a sliding window. Consequently,
this requires a choice on the length of the window. Using a
small window will allow the momentary state to be better
depicted, but there will be fewer points used in the estima-
tion and hence accuracy will suffer. On the other hand, if a
larger window is used the estimated statistics will be more
accurate but less representative of the momentary state as
it represents an average over a larger timescale. The opti-
mal choice of window length should ideally represent a good
trade-off between accuracy and ability to represent momen-
tary evolution, but this can be hard to determine in prac-
tice. In this paper we circumvent this issue and present a

model-based approach where such a compromise is not re-
quired. By assuming that the autocorrelation parameter is
time-dependent, following a specific linear structure, it is
possible to formulate this into a hierarchical Bayesian model
for which well-known computational frameworks can be ap-
plied. A Bayesian approach has the additional benefit of pro-
viding uncertainty estimates in the form of posterior distri-
butions.

The paper is structured as follows. A description of the
data used in this paper is included in Sect. 2. Section 3 de-
tails our methodology, including how we treat time depen-
dence, how to formulate our model as a hierarchical Bayesian
model, and how to perform statistical inference efficiently.
Results are presented in Sect. 4 where our framework is ap-
plied first to simulated data, then to Dansgaard–Oeschger
events observed in the δ18O data from the NGRIP record.
Our results are compared with those obtained by Ditlevsen
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and Johnsen (2010), Rypdal (2016), and Boers (2018). Fur-
ther discussion and conclusions are provided in Sect. 5.

2 NGRIP ice core data

The δ18O ratios are frequently used in paleoscience as prox-
ies for temperature at the time of precipitation (Johnsen et al.,
1992, 2001; Dansgaard et al., 1993; Andersen et al., 2004),
where higher ratios signal colder climates and, conversely,
warmer climates tend to result in lower ratios. We employ
the δ18O proxy record from the Northern Greenland Ice Core
Project (NGRIP) (North Greenland Ice Core Project mem-
bers, 2004; Gkinis et al., 2014; Ruth et al., 2003). There
are currently two different versions of the NGRIP/GICC05
data at different resolutions. We will apply our methodol-
ogy to the higher-resolution record, which is sampled every
5 cm in depth. The NGRIP δ18O proxy record is defined on
a temporal axis given by the Greenland Ice Core Chronol-
ogy 2005 (GICC05) (Vinther et al., 2006; Rasmussen et al.,
2006; Andersen et al., 2006; Svensson et al., 2008) which
thus pairs the δ18O measurements with a corresponding age,
stretching back to 60 kyr b2k. We use segments of the δ18O
record corresponding to Greenland stadial phases preced-
ing DO onsets, as given by Table 2 of Rasmussen et al.
(2014). The data used in this paper can be downloaded
from https://www.iceandclimate.nbi.ku.dk/data/ (last access:
11 April 2025).

3 Methodology

During critical slowing down stationarity can no longer be
assumed as we expect both the autocorrelation and variance
to increase. For an AR(1) process x = (x1, . . .,xn)

> sampled
at times t1, . . ., tn, we assume that the increase in autocorre-
lation can be expressed by representing the lag-one autocor-
relation parameter as a linear function of time:

φ(t)= a+ bt, 0≤ t ≤ 1, (6)

where a and b are two unknown parameters. The time-
dependent AR(1) process is expressed by the difference
equation given in Eq. (5) and the joint vector of variables
x = (x1, . . .,xn)

> forms a multivariate Gaussian process,

x ∼N (0,6), (7)

where the covariance matrix is given by

6ij = Cov(xi,xj ), (8)

and we assume that

Var(x1)=
1−φ2

2λ
σ 2. (9)

Since the covariance matrix is always dense for φ ∈ (0,1) it
is computationally beneficial to instead work with the inverse

covariance matrix, also known as the precision matrix Q=
6−1. For consistency we hereafter use precision,

κ =
2λ

(1−φ2)σ 2 , (10)

instead of the variance as the unknown parameter of interest
and denote κ(tk)= 2κλ(tk) for tk = t2, . . ., tn.

It can be shown that for a time-dependent AR(1) process
the precision matrix is sparse and equal to

Q=



(
κ + κ(t2)φ(t2)

2)
−κ(t2)φ(t2)

−κ(t2)φ(t2)
(
κ(t2)+ κ(t3)φ(t3)

2)
−κ(t3)φ(t3)

.
.
.

.
.
.

.
.
.

−κ(tn−1)φ(tn−1)
(
κ(tn−1)+ κ(tn)φ(tn)

2)
−κ(tn)φ(tn)

−κ(tn)φ(tn) κ(tn)

 .

(11)

To allow for non-constant time steps 1tk = tk − tk−1 we de-
fine

φ(tk)= e
−λ(tk)1tk/c, (12)

where

λ(tk)=− log(a+ btk), (13)

c =
∑n
k=21tk/(n− 1), and tk has been rescaled such that

tk ∈ (0,1). This modification guarantees that φ(t)−→ 1 as
1tk −→ 0 and φ(t)−→ 0 as1tk −→∞. It also ensures that
φ(t1)= a and φ(tn)= a+b, which makes the interpretability
of the parameters easier.

Gaussian processes with sparse precision matrices are
known as Gaussian Markov random fields, and there is a
wealth of efficient algorithms for fast Bayesian inference;
see, e.g., Rue and Held (2005) for a comprehensive dis-
cussion on this topic. These computationally efficient prop-
erties are not shared by the fractional Gaussian noise for
which both the covariance matrix and the precision matrix
are dense. This means that essential matrix operations such
as computing the Cholesky decomposition will have a com-
putational cost of O(n3) floating point operations (flops), as
opposed to O(n) flops for the AR(1) process. Inference might
still be possible to achieve in a reasonable amount of time if
the size of the dataset remains sufficiently small. For larger
datasets, however, both time and memory consumption may
become an issue.

In fitting the model to data it is beneficial that the model
parameters are defined on an unconstrained parameter space.
We therefore introduce a suitable parameterization for the
model parameters. For the precision κ we take the logarithm,
θκ = logκ , and for a and b we use variations of the logistic
transformation. Our reasoning is as follows. Assuming the
lag-one autocorrelation parameter is defined on the interval
(0,1), and since t ∈ [0,1], then the slope must be constrained
by

|b|< 1. (14)
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An unconstrained parameterization for b thus reads

θb = log
(

1+ b
1− b

)
⇐⇒ b =−1+

2
1+ exp(−θb)

,

θb ∈ (−∞,∞). (15)

The parameter space for a depends on the current state of b,

0< a+ bt < 1⇐⇒−bt < a < 1− bt. (16)

Let

alower =−min(b,0) and aupper = 1−max(b,0), (17)

and then an unconstrained parameterization for a is given by

θa = log
(
a− alower

aupper− a

)
⇐⇒ a = alower+

aupper− alower

1+ exp(−θa)
,

θa ∈ (−∞,∞). (18)

3.1 Bayesian inference

Bayesian analysis presents a powerful framework for esti-
mating model parameters that provides uncertainty quantifi-
cation and allows us to incorporate prior knowledge about the
parameters. These benefits are both very valuable in making
informed decisions regarding climate action. In the Bayesian
paradigm the model parameters θ = (κ,b,a) are treated as
stochastic variables for which prior knowledge is expressed
using a predefined distribution π(θ). These are updated by
new information expressed by the likelihood function of the
observations x = (x1, . . .,xn), which is a Gaussian distribu-
tion here,

π(x | θ)=N
(

0,Q(θ)−1
)
, (19)

with precision matrix Q(θ) as given by Eq. (11). The updated
belief is expressed by the posterior distribution π(θ | x),
which is obtained using Bayes’ rule,

π(θ | x)=
π(x | θ)π(θ)

π(x)
, (20)

where the model evidence π(x) is a normalizing constant
with respect to θ .

Prior selection is an essential part of any Bayesian analy-
sis and presents a great strength of the Bayesian framework
by allowing prior knowledge to be incorporated into models.
Since we do not incorporate prior knowledge in this paper,
and we wish to maintain objectivity, we will adopt vague
prior distributions. These are distributions with large vari-
ances that express minimal information about the parameters
and allow inference to be primarily driven by the data, as
opposed to more informative priors which can guide the pos-
terior to reflect prior knowledge or assumptions. Since the
parameter a depends on the value of another parameter b we

assign a conditional prior, π(a | b), such that the joint prior
is expressed by

π(κ,b,a)= π(κ)π(b)π(a | b). (21)

Specifically, all analyses performed in this paper assume the
same set of priors, unless otherwise specified. κ is assigned a
gamma distribution with shape 1 and rate 0.1. b is assigned a
uniform prior on (−1,1) and a | b is assigned a uniform prior
on (alower,aupper).

The main goal of this paper is to detect whether or not
an early warning signal can be observed in the data. We are
therefore primarily interested in the marginal posterior dis-
tribution of the slope parameter b,

π(b | x)=

∫
π(θ | x)dκda. (22)

Typically, marginal posterior distributions can be evaluated
using Markov chain Monte Carlo approaches (Robert and
Casella, 2004), but these are very often time-consuming and
could potentially be sensitive to convergence issues. How-
ever, since our model is Gaussian with a sparse precision
matrix we instead use the computationally superior alter-
native of integrated nested Laplace approximation (INLA)
(Rue et al., 2009), which is available as an R package at
http://www.r-inla.org (last access: 11 April 2025).

To make the methodology more accessible we have re-
leased the code associated with this model as an R package
titled INLA.ews, which can be downloaded at http://www.
github.com/eirikmn/INLA.ews (last access: 11 April 2025).
A demonstration of this package can be found in Ap-
pendix A, and a detailed description of its features can be
found in its accompanying documentation.

3.2 Incorporating forcing

Climate components may also be affected by forcing, which
can be measured alongside the climate variable of interest.
How the observed component responds to such forcing will
be influenced by time dependence. In this subsection we
adopt a similar strategy to Myrvoll-Nilsen et al. (2020) with
changes to the Green’s function to allow for time dependence
and non-constant time steps.

Let F(t) denote the known forcing component such that

dx(t)=−λx(t)+F(t)dt + dB(t). (23)

As shown in Gardiner (2009), the model can then be ex-
pressed as the sum of two components,

x(t)= ν(t)+ ξ(t), (24)

where ξ(t) is a time-dependent OU process and the forcing
response is given by

ν(t)=
1√

2λ(t)κf

t∫
0

e−λ(t)(t−s) (F (s)+F0)ds. (25)
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Here, λ(t)=− log(φ(t)) is the restoring rate, κf is an un-
known scaling parameter, and F0 is an unknown shift pa-
rameter. These parameters can be estimated using the same
Bayesian framework as before, which can be computed with
INLA.ews by specifying the forcing argument in the
inla.ews function.

4 Results

4.1 Accuracy test on simulated data

To test the accuracy and robustness of the time-dependent
AR(1) model we fit the model to a number of simula-
tions. Specifically, we perform accuracy tests using a grid
of b ∈ [−0.8,0.8] with increments of 0.1 and choose the
parameter a corresponding to θa = 0. For each b we draw
nr = 1000 time series of length n= 500 and n= 1000 from
the time-dependent AR(1) model. The model is fitted using
R-INLA using priors specified in Sect. 3.1. To quantify the
accuracy of the model we compare the posterior marginal
mean of the slope b̂ = E(π(b | y))TS1 to the true values b.
We also compute the posterior probability of the slope be-
ing positive

:
,
:::::::
denoted

:
P(b > 0). Ideally, we want b̂ to be as

close to b as possible, and P(b > 0) > 0.5 if b > 0 and, con-
versely, P(b > 0) < 0.5 if b < 0. We also count the number
of simulations where an EWS is detected using the thresh-
old P(b > 0)≥ 0.95. Since σ only scales the amplitude of
the data without affecting the correlation structure we expect
similar estimations for a and b regardless of the value of σ .
This was confirmed by testing the model on simulations us-
ing both σ = 1 and σ = 10.

The results of the analysis are presented in Table 1 and dis-
played graphically as box plots in Fig. 2. Since the posterior
distribution of b is skewed, especially when its absolute value
approaches 1, ordinary box plots would classify a larger
number of points as outliers. We instead use an adjusted box
plot proposed by Hubert and Vandervieren (2008), which is
better suited for skewed distributions. We obtain decent ac-
curacy of the posterior marginal means b̂, with a small, but
consistent, underestimation which decreases as n increases.
In panels (c) and (d) of Fig. 2 we observe some variation in
P(b > 0) for small values of |b| and less so for |b| ≥ 0.2.
This behavior also improves when n increases from 500 to
1000. By counting the number of simulations with detected
EWSs for b ≤ 0 using threshold P(b > 0)≥ 0.95 we find
54 false positives for n= 500 and 56 for n= 1000. Out of
8000 simulations for b ≥ 0.1 we find 669 false negatives for
n= 500 and 321 for n= 1000, as reported in Table 1.

In order to assess how sensitive the model is to the choice
of prior distribution we repeat the same simulation procedure
with n= 500 using different Gaussian priors on the parame-
ters in their internal scaling,

(log(κ),θa,θb)∼N (0,σθ I) , (26)

where σθ ∈ {0.1,1,10} and I is the identity matrix. The pos-
terior marginal means and posterior probabilities P(b > 0)
for the different priors are compared to the default prior in
Fig. 3. The results show that using the most informative prior,
corresponding to σθ = 0.1, will pull b too much towards the
central value of b = 0, resulting in worse estimates for b. This
pull is also reflected in the posterior probability estimates,
P(b > 0), where this prior performs less well compared to
the others, although the effect is less strong here. Counting
the number of misclassifications, we find, for σθ equal to 0.1,
1 and 10, 4, 48, and 67 false positives our of 9000 simulations
and 1255, 657, and 631 false negatives out of 8000 simula-
tions, respectively. This is overall quite comparable to using
the default priors, which found 54 false positives and 669
false negatives. Overall, we find the model to be quite robust
to the choice of prior distributions as most of the priors per-
form very similarly in terms of the posterior marginal mean
and posterior probabilities. However, we also find that using
priors that are too informative could cause the model to be
overly cautious, making it less able to detect EWSs.

4.2 DO events

We apply our time-dependent AR(1) model to the high-
resolution NGRIP δ18O record, which is partitioned into sta-
dial and interstadial periods as shown in Fig. 4. This version
of the NGRIP record is sampled regularly every 5 cm step in
depth but is non-constant in time. Having modified our model
to allow for irregular time points we are able to use the raw
NGRIP record without having to perform interpolation or
other types of pre-processing, such as that of Boers (2018).
This grants us a larger dataset for each event, which could
significantly improve parameter estimation. Having imple-
mented the model using INLA we are able to take advantage
of this extra resolution while keeping computational time
low.

Some of these datasets appear nonstationary and thus re-
quire trend estimation. Since there is no obvious choice of
forcing we consider different alternatives for trend compo-
nents which are then compared. The R-INLA framework al-
lows us to very easily incorporate these trends into our model
and estimates all model components simultaneously. First,
we fit our model to the data without any additional trend, and
then we assume a linear trend, followed by a second-order
polynomial trend. Finally, we model the trend using a contin-
uous second-order random walk (RW2) spline. More details
on the comparison between the different trends are included
in Appendix C, which also includes a plot of how well each
trend fits the data.

Looking at the fits for each event we observe that most
events can be fitted easily with a linear trend or even no trend,
but a few events require nonlinearity. We choose the second-
order polynomial trend as this gives a nice trade-off between
flexibility and simplicity and appears to provide a decent fit
for all events. The φ(t)= a+ bt evolutions for all events
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Figure 2. Box plots representing the results of the accuracy test for nr = 1000 simulated time series for b ∈ [−0.8,0.8]. The boxes cover the
interquartile range (IQR) between the 25% and 75% quantiles, and the whiskers represent an adjustment to the more common boundaries of
1.5 times the IQR to better describe skewed distributions. Points that fall outside the whiskers are classified as outliers and are also included
in the plot. Panels (a) and (b) show box plots of the posterior marginal mean estimated by INLA for simulations of lengths n= 500 and
n= 1000, respectively. The blue line shows the true b used in the simulation. Panels (c) and (d) show box plots of the estimated posterior
probability of the slope being positive against different true values used for simulations of length n= 500 and n= 1000, respectively.

Figure 3. Prior sensitivity analysis on simulated data using the default priors (black) and Gaussian priors N (0,0.12) (red), N (0,1) (orange),
and N (0,102) (yellow). Panel (a) shows the ensemble average of the posterior marginal mean estimates for b compared to the true value
(blue), and panel (b) shows the ensemble average for the posterior probabilities P(b > 0). The shaded gray area in both panels represents the
ensemble spread of the estimates from the default prior using the 2.5 % and 97.5 % quantiles.
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8 E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model

Table 1. Results from accuracy tests on nr = 1000 simulated time-dependent AR(1) series of length n for each b ranging from −0.8 to
0.8. The table includes the ensemble averages of the posterior marginal means b̂ and posterior probabilities of positive slope P(b > 0) for
each value of b and for time series’ lengths of n= 500 and n= 1000. We also show the number of detected early warning signals using the
threshold P(b > 0)≥ 0.95.

n= 500 n= 1000 n= 500 n= 1000 n= 500 n= 1000

True b 〈b̂〉 〈b̂〉 〈P(b > 0)〉 〈P(b > 0)〉 # P(b > 0) > 0.95 # P(b > 0) > 0.95

−0.8 −0.781 −0.792 0 0 0 0
−0.7 −0.687 −0.694 0 0 0 0
−0.6 −0.586 −0.595 0 0 0 0
−0.5 −0.487 −0.496 0 0 0 0
−0.4 −0.393 −0.398 0 0 0 0
−0.3 −0.293 −0.299 0.001 0 0 0
−0.2 −0.194 −0.195 0.015 0.001 0 0
−0.1 −0.091 −0.096 0.16 0.074 1 1
0 0 −0.001 0.5 0.498 53 55
0.1 0.1 0.096 0.856 0.926 425 685
0.2 0.196 0.2 0.984 0.998 907 994
0.3 0.298 0.299 0.999 1 999 1000
0.4 0.393 0.396 1 1 1000 1000
0.5 0.492 0.494 1 1 1000 1000
0.6 0.588 0.594 1 1 1000 1000
0.7 0.688 0.695 1 1 1000 1000
0.8 0.783 0.793 1 1 1000 1000

Figure 4. NGRIP δ18O proxy record. The time series used in our study are the parts of the curves drawn in turquoise, which are the cold
stadial periods preceding the onsets of interstadial periods drawn in red. The red and turquoise vertical bars represent the start and end points
of the interstadial periods, respectively.

using second-order polynomial detrending are included in
Fig. 5, and the posterior marginal distribution of the trend,
π(b | x), is included in Fig. 6.

The models are fitted to the stadial periods preceding
each of the 17 DO events, and the posterior probability of
φ(t)= a+bt being increasing, P(b > 0), is compared for all
events and trend assumptions. The results are included in Ta-
ble 2. Using the conventional threshold of P(b > 0)≥ 0.95
we are able to detect early warning signals in five events both
without detrending and while using linear or second-order
polynomial trends and six events using the continuous RW2

model as a trend. Averaging over the estimated P(b > 0) for
all events we are not able to conclude that early warning sig-
nals have been found over the ensemble of events for any
detrending model.

Having found EWSs in multiple stadial periods preced-
ing DO events therefore indicates that DO events can exhibit
evidence of ongoing destabilization, unlike the conclusion
formulated in Ditlevsen and Johnsen (2010). These differ-
ences in results can be explained by the use of both a higher-
resolution dataset and a methodology not involving time win-
dows.
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E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model 9

Figure 5. The evolution of the lag-one autocorrelation parameter a+ bt for each of the 17 transitions analyzed in this paper. The blue
lines represent the posterior marginal means of each Greenland stadial phase, and the red shaded areas represent the 95 % credible intervals
(corresponding to the region between the 2.5 % and 97.5 % quantiles of the posterior distribution). The δ18O proxy measurements have been
detrended using a second-order polynomial.

However, given the absence of EWSs in the ensemble of
events does not support the hypothesis that all DO events ex-
hibit signs of ongoing destabilization, and hence one cannot
exclude the possibility of some events being purely noise-
induced and not approaching a bifurcation point. Our results
do, however, suggest that some specific transitions have un-
dergone destabilization, which is in line with the results of
Rypdal (2016) and Boers (2018), wherein significant EWSs
have also been found only for some specific events. Specif-
ically, Table 2 shows that using a square detrending our re-
sults corroborate the EWS found for events 5 and 9 by Ryp-
dal (2016) and the one found for event 11 by Boers (2018);
our results also show an EWS for event 2, similarly to these
two studies.

These studies use different versions of the NGRIP record
from our study and their methodologies differ from ours.

5 Conclusions

In this paper we introduce a Bayesian framework to analyze
early warning signals in time series data. Specifically, we de-
fine a time-dependent AR(1) process where the lag-one au-

tocorrelation parameter is assumed to increase linearly over
time. The slope of this parameter indicates whether or not
memory is increasing and thus if early warning signals are
detected. Using a Bayesian approach we automatically ob-
tain uncertainty quantification expressed by posterior distri-
butions and allow prior knowledge to be utilized.

To detect early warning signals of DO events we have
applied our model to interstadial periods of the raw 5 cm
NGRIP water isotope record. This record is sampled evenly
in depth, but not in time, requiring us to make some neces-
sary modifications to allow for non-constant time steps. Us-
ing the time-dependent AR(1) model we were unable to de-
tect statistically significant EWSs for the ensemble of 17 DO
events and only detected EWSs individually for six events us-
ing a second-order polynomial detrending. Unlike Ditlevsen
and Johnsen (2010), we find evidence of EWSs in some
events, corroborating Rypdal (2016) and Boers (2018). We
were, however, unable to conclude that DO events are indi-
vidually or generally bifurcation-induced. To better compare
with other studies, we would have liked to employ a long-
range-dependent process such as the fGn. However, this task
is more difficult than for the AR(1) process, as necessary
modifications have to be made to the model. Moreover, this
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10 E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model

Figure 6. The marginal posterior distribution of the trend parameter b. The red dotted line represents b = 0 and the red shaded area illustrates
the density P(b > 0). If the shaded area is larger than 0.95 we conclude that an EWS is detected.

would also require working with non-sparse precision ma-
trices, which are far more computationally demanding. We
did attempt to implement the time-dependent fGn model pre-
sented by Ryvkina (2015), but we were unable to ensure suf-
ficient stability. This is, however, a very interesting topic for
future work.

Currently, our model can only fit an AR(1) process where
the lag-one autocorrelation parameter is expressed as a lin-
ear function of time, which is not realistic. Although this is

sufficient for detecting whether or not there are EWSs ex-
pressed by a linear trend, our model is unable to perform
predictions or give an indication of when the tipping point
could be reached. More advanced functions for the evolution
of the lag-one autocorrelation parameter should be possible
but would have to be implemented. One possible extension
would be to include a break point such that the memory is
constant for all steps before this point and starts increasing or
decreasing afterwards. A simple implementation and discus-

Track changes document – Do not use for proofreading https://doi.org/10.5194/



E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model 11

Table 2. Table comparing the probability of positive slope P(b > 0) for each event given posterior distributions obtained using the time-
dependent AR(1) model on preceding subintervals of lengths n. We ran the model using different trends including no trend (except for the
intercept), a linear effect, a second-order polynomial, and a second-order random walk spline. For some events

:::::
Events

:::::
where

:
the posterior

probability of a positive slope is
::::::
exceeds

::::
0.95

::
are

:
highlighted in bold. Our results are also compared with the p values obtained from Rypdal

(2016) and Boers (2018).

Event n No trend Linear Square RW2 Rypdal Boers

1 667 0.8765 0.854 0.9146 0.9552
:::::
0.9552 p = 0.02 –

2 3713 0.9658 0.9902 0.9728 0.9672 p = 0.008 p < 0.05
3 1370 0.5252 0.5174 0.4893 0.647 – –
4 270 0.0684 0.078 0.084 0.1007 – p < 0.05
5 962 0.9958 0.9959 0.9959 0.9893 p = 0.13 –
6 253 0.28 0.3174 0.2123 0.2068 – p < 0.05
7 315 0.7703 0.7517 0.7132 0.79 – –
8 345 0.8976 0.9189 0.8878 0.8524 – –
9 492 0.9857 0.9628 0.953 0.9818 p = 0.16 –
10 202 0.019 0.1413 0.0732 0.1001 – –
11 219 0.967 0.967 0.9643 0.9635 – p < 0.05
12 251 0.1483 0.1319 0.1662 0 – –
13 373 0.8872 0.8953 0.8912 0.9043 p = 0.39 p < 0.05
14 91 0.7781 0.914 0.6629 0.7808 – p < 0.05
15 163 0.0227 0.0546 0.0637 0.0446 – p < 0.05
16 162 0.9885 0.9915 0.9935 0.9939 – –
17 70 0.6748 0.6366 0.6043 0.5855 – –

Ensemble − 0.6383 0.654 0.626 0.639 – –

sion of this are included in Appendix D. Another extension
would be to formulate a model where the memory parame-
ter follows a polynomial φ(t)= a+btc, where the exponent
term c > 0 is an additional hyperparameter. This would per-
haps help give an indication of the rate at which the autocor-
relation has increased. However, when adding more parame-
ters one needs to be careful to avoid overfitting.

The ability to update prior beliefs in light of new evi-
dence presents a great benefit of a Bayesian approach, and
it presents an intuitive framework for iteratively updating the
posterior distribution as new data become available by us-
ing the posterior distribution from previous analyses as the
prior distribution in the analysis. This is of great relevance
for monitoring climatic systems suspected of approaching a
tipping point.

To make the methodology more accessible we have re-
leased the code associated with this model as an R pack-
age titled INLA.ews. This package performs all analysis
and includes functions to plot and print key results from the
analysis very easily. Although this paper focuses on the de-
tection of EWSs in DO events observed in Greenland ice
core records, our methodology is general and the INLA.ews
package should be applicable to tipping points observed in
other proxy records as well. We have also implemented the
option of including forcing, for which the package will es-
timate the necessary parameters and compute the resulting
forcing response. The package is demonstrated on simulated
data in Appendix A.

Appendix A: Demonstration of the INLA.ews package

We demonstrate the INLA.ews package on simulated
forced data with non-equidistant time steps. The time steps tk
are obtained by adding Gaussian noise such that t̃k = k+ ξk
and normalized tk = (t̃k − t̃0)/(t̃n− t̃0) such that t0 = 0 and
tn = 1. We assume a time-dependent AR(1) process of length
n= 1000 for the observations sampled at times t̃1, . . ., t̃n.
The AR(1) process has a scale parameter κ = 0.04 and time-
dependent lag-one autocorrelation φ(t)= a+ btk given by
a = 0.3 and b = 0.2. We also include a forcing F(t), ob-
tained by simulation from another AR(1) process with unit
variance and the lag-one autocorrelation parameter φ̃ = 0.95.
The forcing response is approximated by

ν(tk)=
σf

√
2λ(tk)

tk∑
s=t0

e−λ(tk)(tk−ts)
(
F0+F(s)

)
, (A1)

with parameters set to σf = 0.1 and F0 = 0, and added to the
simulated observations. We assign gamma(1,0.01) priors for
the precision parameters κ and κf , uniform priors on b and a,
and a Gaussian prior N (0,102) on F0. For INLA.ews, these
priors must be transformed for the unconstrained parame-
terization θ = (logκ,θb,θa, logκf ,F0) using the change-of-
variable formula. The logarithm of the prior distributions is
specified by creating a function as follows.

my.log.prior <- function(theta) {
lprior = dgamma(exp(theta[1]), shape=1, rate=0.1) + theta[1] + #kappa

-theta[2] -2*log(1+exp(-theta[2])) + #b
-theta[3] -2*log(1+exp(-theta[3])) + #a
dgamma(exp(theta[4]), shape=1, rate=0.1) + theta[4] + #kappa_f
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12 E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model

dnorm(theta[5], sd=10, log=TRUE) #F0
return(lprior)

}

It is then passed into inla.ews using the log.prior
argument. The AR(1) model and forcing z sampled at time
points time can be fitted to the data y with INLA using the
inla.ews wrapper function.

results <- inla.ews(data=y, forcing=z,
log.prior=my.log.prior, timesteps=time)

The inla.ews function computes all posterior marginal
distributions, computes summary statistics, formats the re-
sults, and returns all information as an inla.ews list ob-
ject. Summary statistics and other important results can be
extracted using the summary function.
> summary(results)

Call:
inla.ews(data = y, forcing = forcing, log.prior=my.log.prior, timesteps=time)

Time used:
Running INLA Post processing Total

503.1737 151.8262 655.5909

Posterior marginal distributions for all parameters have been computed.

Summary statistics for using ar1 model (with forcing):
mean sd 0.025quant 0.5quant 0.975quant

a 0.3065 0.0546 0.1974 0.3072 0.4148
b 0.1929 0.0615 0.0524 0.2018 0.2878
sigma 7.0249 0.4522 6.3420 6.9522 8.0780
sigma_f 0.1000 0.0096 0.0862 0.0982 0.1229
F0 -0.0047 0.0223 -0.0514 -0.0034 0.0355

Memory evolution is sampled on an irregular grid.
Summary for first and last point in smoothed trajectory (a+b*time):

mean sd 0.025quant 0.5quant 0.975quant
phi0[1] 0.3065 0.0546 0.1974 0.3072 0.4148
phi0[n] 0.4980 0.0587 0.3667 0.5039 0.5945
Mean and 95% credible intervals for forced response have also been computed.

Probability of positive slope 'b' is 0.9954214

Marginal log-Likelihood: -3088.35

The results may be displayed graphically using the plot
function.

> plot(results)

For this example the estimated memory evolution and forcing
response are presented in Fig. A1. The estimated parameters
are summarized in Table A1.

Combining forcing with irregular time steps requires more
computationally intensive calculations within rgeneric,
which increases the total computational time to around
10 min, compared to 10 s using any other model configu-
ration. To reduce this we have implemented the model in
cgeneric, which grants a substantial boost in speed. How-
ever, this requires pre-compiled C code using more simplistic
priors for the parameters, which cannot be changed without
recompiling the source code. Thus there could potentially be
a small loss in accuracy of the fitted model at the cost of the
improved speed. To use the cgeneric version of the model,
set do.cgeneric=TRUE in the inla.ews function call.

Appendix B: Latent Gaussian model formulation

Section 3.1 defines our model within a Bayesian framework.
However, in order for the model to be compatible with INLA
we require some modifications such that it is expressed in
terms of a latent Gaussian model. Latent Gaussian models

represent a subset of hierarchical Bayesian models which are
defined in three stages. First, the likelihood function is spec-
ified. The likelihood is then expressed using a latent field
of unobserved Gaussian variables w = (w1, . . .,wn) whose
specification forms the second stage. These depend on a
number of unknown hyperparameters. The final stage is to
assign prior distributions to the hyperparameters.

Since our model is originally a two-stage model, a Gaus-
sian likelihood that depends on some parameters without an
intermediate latent field w, we reshape this into three stages
by defining the former likelihood as the latent field w and
the observations x to be the latent field with some additional
negligible noise:

π(x | w,θ)=

n∏
i=1

N
(
wi(θ),σ

2
x

)
, (B1)

where σ 2
x ≈ 0, essentially stating that x ≈ w. This trick does

not change our model but creates a reformulation of the
model into a latent Gaussian model where the latent field w
is the prior of the mean of the likelihood.

The latent variablesw follows a multivariate Gaussian pro-
cess:

w | θ ∼N
(
µ,Q(θ)−1

)
, (B2)

where the precision matrix Q is given by Eq. (11) and µ de-
scribes any potential trends as specified in the model. We will
not discuss such trends here. When using INLA it is essential
that the precision matrix is sparse in order to retain computa-
tional efficiency.

Since the Gaussian process now describes the latent vari-
ables instead of the likelihood, the parameters θ which gov-
ern w will now be called hyperparameters, since they are the
parameters of a prior distribution. The final step of defining
the latent Gaussian model is to assign prior distributions to
the hyperparameters, but since INLA prefers to work with
unconstrained variables these are specified through the pa-
rameterizations derived in Sect. 3:

θ ∼ π(logκ)π(θb)π(θa | θb). (B3)

Transforming priors chosen for (κ,b,a) to the corresponding
priors chosen for (logκ,θb,θa) can be done using the change-
of-variable formula.

We want to estimate the marginal posterior distribution for
all hyperparameters and latent variables. These are computed
by evaluating the integrals

π(wi | x)=

∫
π(wi | θ ,x)π(θ | x)dθ , (B4)

π(θj | x)=

∫
π(θ | x)dθ−j . (B5)

Of these we are primarily concerned with the latter, since
the latent field will very be similar to the observed values x

Track changes document – Do not use for proofreading https://doi.org/10.5194/



E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model 13

Table A1. Underlying values used for simulating the data, along with estimated posterior marginal means and 95 % credible intervals for all
hyperparameters.

Parameter True value Posterior marginal mean 95 % credible interval

a 0.3 0.306 (0.197, 0.415)
b 0.2 0.193 (0.052, 0.288)
σ 5 7.025 (6.342, 8.078)
σf 0.1 0.1 (0.086, 0.123)
F0 0 −0.005 (−0.051, 0.036)

Figure A1. Panel (a) shows the simulated data (gray) where a simulated forcing response (black) has been added. Panel (b) shows the
posterior marginal mean (blue) and 95% credible intervals (red) of the forcing response. Panel (c) shows the posterior marginal mean of the
lag-one autocorrelation parameter of the simulated data (gray). The fluctuations are caused by being sampled at non-constant time steps. The
posterior marginal mean of the smoother evolution of a+ bt is included (blue), along with 95 % credible intervals (red) and the true values
(white).

since σx ≈ 0. To compute these integrals INLA uses various
numerical optimization techniques to obtain an appropriate
approximation. Most important is the Laplace approximation
(Tierney and Kadane, 1986), which is used to approximate
the joint posterior distribution,

π(θ | x)≈
π(w,θ ,x)

πG(w | θ ,x)

∣∣∣∣
w=w∗(θ)

, (B6)

where w∗(θ) is the mode of the latent field w(θ) and πG(w |
θ ,x) is the Gaussian approximation of

π(w | θ ,y)∝ π(w | θ)π(x | w,θ). (B7)

The methodology is available as the open-source R package
R-INLA, which can be downloaded at http://www.r-inla.org
(last access: 11 April 2025).

Since there are no model components already imple-
mented for R-INLA that meet our specifications we are re-
quired to implement the model components ourselves us-
ing the custom modeling framework of R-INLA called
rgeneric. This adds more work and complexity in im-
plementing our model and adds an additional barrier to fur-
ther adoption of our methodology, which motivated us to
create a more user-friendly R package titled INLA.ews,
available at http://www.github.com/eirikmn/INLA.ews (last
access: 11 April 2025).
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Appendix C: Comparison of different detrending
approaches

Since there is no clear choice of forcing for DO events, and
not all data windows appear stationary, we assume that there
is some unknown trend component reflected in the data. This
trend needs to be managed or the estimates of other compo-
nents will suffer. Often, this is done by first detrending the
data, before the parameters of interest are estimated. This
bears the risk that variation caused by the time-dependent
noise component may be attributed to the trend, and it is
therefore better to estimate both the trend and noise com-
ponents simultaneously. This can be achieved using INLA,
which supports many common model components. We per-
form the same analysis on the data windows preceding all 17
DO events using four different trend models.

– No trend: the data are explained using the time-
dependent AR(1) noise component εt and an intercept
β0 only,

yt ∼ β0+ εt . (C1)

We only expect this to provide accurate results for sta-
tionary data windows. The results in this paper can be
recreated using the INLA.ews package. Let y denote
the δ18O ratios and time denote the GICC05 chronol-
ogy, and then the model can be fitted by prompting the
following.

results = inla.ews(data=y, timesteps=time, formula = y ~ 1)

To omit the intercept term set the formula argument
to formula = y ∼ -1 instead. The rgeneric
model component corresponding to the time-dependent
AR(1) noise is added automatically. To improve nu-
merical convergence, we perform the analysis in itera-
tions, restarting from the previously found optima with
reduced step lengths. This can be specified using the
stepsize argument in the inla.ews function. The
length of this argument corresponds to the number of
iterations. Here we used stepsizes = c(0.01,
0.005, 0.001).

– Linear trend: we incorporate an additional linear effect
β1 in the model,

yt ∼ β0+β1t + εt . (C2)

This can capture linear increases but will not be able to
model any nonlinearity in the data. This model can be
fitted using the following.

results = inla.ews(data=data.frame(y=y, trend1=time_norm),
timesteps=time, formula = y ~ 1 + trend1)

Here trend1 = time_norm is the covariate corre-
sponding to the normalized time steps.

time_norm = (time-time[1])/(time[n]-time[1])

– Second-order polynomial: we add another effect β2
which allows nonlinearity to be described using a
second-order polynomial trend,

yt ∼ β0+β1t +β2t
2
+ εt . (C3)

This model can be fitted using the following.

results = inla.ews(data=data.frame(y=y,trend1=time_norm,trend2=time_norm^2),
timesteps=time, formula = y ~ 1 + trend1 + trend2)

Here trend2 specifies a linear response to the covari-
ates defined as the square of the normalized GICC05
chronology trend2=time_norm**2.

– Continuous second-order random walk (CRW2): we use
a random effect f (t) described by a continuous second-
order random walk to describe the trend,

yt ∼ f (t)+ εt . (C4)

This is a continuous extension (Lindgren and Rue,
2008) of a stochastic spline model, which assumes that
the second-order increments are independent Gaussian
processes,

xi − 2xi+1+ xi+2 ∼N (0,σ 2
CRW2). (C5)

This model is able to capture more general nonlinear-
ities compared to the second-degree polynomial trend
but makes the model less interpretable. Similarly as in
R-INLA, the CRW2 model is specified using the fol-
lowing call.

results = inla.ews(data=data.frame(y=y, idx=time,
timesteps=time, formula = y ~ 1 + f(idx, model="crw2"))

Here idx specifies the time steps of the continuous
RW2 trend.

In Table 2 we present the estimated posterior probability of
a positive trend, P(b > 0 | y), compared to the correspond-
ing p values by Rypdal (2016) and Boers (2018). We show
the fitted trends for each data interval in Fig. C1. We ob-
serve that the models tend to agree, with some exceptions
where the assumed trend is unable to capture the variation of
the data. Although the RW2 trend is the most flexible model
it appears to exhibit irregular fluctuation for several events.
The second-order polynomial trend appears to be sufficiently
flexible for all events and provides a much smoother and
more interpretable fit.
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Figure C1. δ18O proxy data from the NGRIP record (gray), with Greenland stadial phases highlighted. The posterior marginal mean (blue)
and 95 % credible intervals (red) of the fitted trends are included for each event.

Appendix D: Break point in memory evolution

Early warning signals are most easily detectable shortly be-
fore a bifurcation point. If the dataset covers a much larger
period, for which most of it is stationary, it could be more
difficult for the time-dependent AR(1) model to detect early
warning signals if they are observable only for a much
smaller subset of the data. To accommodate this one could
add a break point, a point in time where the lag-one autocor-
relation transitions from constant to linearly increasing.

Let tbp denote a break point; the lag-one autocorrelation
parameter is then defined by

φ(t)=

{
a, t ≤ tbp

a+ b
1−tbp

(t − tbp) t > tbp
. (D1)

For stability, we constrain the break point parameter using
the parameterization θbp = 1/(1+ exp(−tbp)) such that tbp ∈

(0,1). This model is demonstrated by fitting it to simulated
data where tbp = 0.5. The results are presented visually in
Fig. D1.
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16 E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model

Figure D1. Panel (a) shows simulated data (black) with a break point located at t = 0.5. The shaded gray area describes the standard
deviation derived from using the true values. Panel (b) shows the posterior marginal means (blue) and 95 % credible intervals (red), with the
true memory evolution (black).

Code and data availability. NGRIP δ18O data (North Greenland
Ice Core Project members, 2004; Gkinis et al., 2014) and the
GICC05 chronology (Vinther et al., 2006; Rasmussen et al., 2006;
Andersen et al., 2006; Svensson et al., 2008) used in this paper
are available at https://www.iceandclimate.nbi.ku.dk/data/NGRIP_
d18O_and_dust_5cm.xls TS2 (Niels Bohr Institute, 2025). The code
to reproduce our results is available in the inst/include/tests folder at
https://doi.org/10.5281/zenodo.15241983 (Myrvoll-Nilsen, 2025)
or in the INLA.ews R package available at http://github.com/
eirikmn/INLA.ews (last access: 11 April 2025).

Author contributions. All authors conceived and designed the
study. EMN adopted the model for a Bayesian framework and wrote
the code. LH and EMN carried out the examples and analysis. All
authors discussed the results and drew conclusions. EMN and LH
wrote the paper with input from MR.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation program
(TiPES, grant no. 820970). EMN has also received funding from
the Norwegian Research Council (IKTPLUSS-IKT og digital inno-

vasjon, project no. 332901). We would like to thank Niklas Boers
for helping us reproduce the results of Boers (2018), including pro-
viding code to obtain the interpolated 5-year sampled NGRIP/G-
ICC05 dataset.

Financial support. This research has been supported by the Eu-
ropean Horizon 2020 program (grant no. 820970) and the Norges
Forskningsråd (grant no. 332901).

Review statement. This paper was edited by Jonathan Donges and
reviewed by Chris Boulton and two anonymous referees.

References

Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P.,
Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fis-
cher, H., Flückiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K.,
Grønvold, K., Gundestrup, N. S., Hansson, M., Huber, C., Hvid-
berg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, S.,
Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V.,
Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O.,
Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander,
J., Shoji, H., Siggard-Andersen, M. L., Steffensen, J. P., Stocker,
T., Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M., Tison,
J. L., Thorsteinsson, T., Watanabe, O., Wilhelms, F., and White,
J. W. C.: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004.

Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O.,
Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen,
M.-L., Steffensen, J. P., Dahl-Jensen, D., Vinther, B. M., and
Clausen, H. B.: The Greenland ice core chronology 2005, 15–

Track changes document – Do not use for proofreading https://doi.org/10.5194/

https://www.iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_dust_5cm.xls
https://www.iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_dust_5cm.xls
https://doi.org/10.5281/zenodo.15241983
http://github.com/eirikmn/INLA.ews
http://github.com/eirikmn/INLA.ews
https://doi.org/10.1038/nature02805


E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model 17

42 ka. Part 1: constructing the time scale, Quaternary Sci. Rev.,
25, 3246–3257, 2006.

Boers, N.: Early-warning signals for Dansgaard-Oeschger events in
a high-resolution ice core record, Nat. Commun., 9, 1–8, 2018.

Boers, N.: Observation-based early-warning signals for a collapse
of the Atlantic Meridional Overturning Circulation, Nat. Clim.
Change, 11, 680–688, 2021.

Boers, N. and Rypdal, M.: Critical slowing down suggests
that the western Greenland Ice Sheet is close to a tip-
ping point, P. Natl. Acad. Sci. USA, 118, e2024192118,
https://doi.org/10.1073/pnas.2024192118, 2021.

Bond, G. C., Showers, W., Elliot, M., Evans, M., Lotti, R., Haj-
das, I., Bonani, G., and Johnson, S.: The North Atlantic’s 1-2 kyr
climate rhythm: relation to Heinrich events, Dansgaard/Oeschger
cycles and the Little Ice Age, Geophysical Monograph-American
Geophysical Union, 112, 35–58, 1999.

Boulton, C. A., Lenton, T. M., and Boers, N.: Pronounced loss of
Amazon rainforest resilience since the early 2000s, Nat. Clim.
Change, 12, 271–278, 2022.

Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A.,
Kubatzki, C., Roth, K., and Kromer, B.: Possible solar origin of
the 1,470-year glacial climate cycle demonstrated in a coupled
model, Nature, 438, 208–211, 2005.

Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov,
V., and Held, H.: Slowing down as an early warning signal for
abrupt climate change, P. Natl. Acad. Sci. USA, 105, 14308–
14312, 2008.

Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gunde-
strup, N., Hammer, C., and Oeschger, H.: North Atlantic Climatic
Oscillations Revealed by Deep Greenland Ice Cores, 288–298,
American Geophysical Union (AGU), ISBN 9781118666036,
https://doi.org/10.1029/GM029p0288, 1984.

Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D.,
Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen,
J. P., Sveinbjörnsdottir, A., Jouzel, J., and Bond, G.: Evidence for
general instability of past climate from a 250-kyr ice-core record,
Nature, 364, 218–220, https://doi.org/10.1038/364218a0, 1993.

Ditlevsen, P. D. and Johnsen, S. J.: Tipping points: Early warn-
ing and wishful thinking, Geophys. Res. Lett., 37, L19703,
https://doi.org/10.1029/2010GL044486, 2010.

Ditlevsen, P. D., Andersen, K. K., and Svensson, A.: The DO-
climate events are probably noise induced: statistical investiga-
tion of the claimed 1470 years cycle, Clim. Past, 3, 129–134,
https://doi.org/10.5194/cp-3-129-2007, 2007.

Gardiner, C. W.: Handbook of Stochastic Methods, Springer Verlag,
Berlin, 4th edn., ISBN 978-3-540-70712-7, 2009.

Gkinis, V., Simonsen, S. B., Buchardt, S. L., White, J., and
Vinther, B. M.: Water isotope diffusion rates from the North-
GRIP ice core for the last 16,000 years–Glaciological and pa-
leoclimatic implications, Earth Planet. Sc. Lett., 405, 132–141,
https://doi.org/10.1016/j.epsl.2014.08.022, 2014.

Held, H. and Kleinen, T.: Detection of climate system bifurcations
by degenerate fingerprinting, Geophys. Res. Lett., 31, L23207,
https://doi.org/10.1029/2004GL020972, 2004.

Henry, L., McManus, J., Curry, W., Roberts, N., Piotrowski, A., and
Keigwin, L.: North Atlantic ocean circulation and abrupt climate
change during the last glaciation, Science, 353, 470–474, 2016.

Hubert, M. and Vandervieren, E.: An adjusted boxplot for
skewed distributions, Comput. Stat. Data An., 52, 5186–5201,
https://doi.org/10.1016/j.csda.2007.11.008, 2008.

Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gun-
destrup, N., Hammer, C. U., Iversen, P., Jouzel, J., Stauf-
fer, B., and steffensen, J. P.: Irregular glacial interstadials
recorded in a new Greenland ice core, Nature, 359, 311–313,
https://doi.org/10.1038/359311a0, 1992.

Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P.,
Clausen, H. B., Miller, H., Masson-Delmotte, V., Sveinbjörns-
dottir, A. E., and White, J.: Oxygen isotope and palaeotemper-
ature records from six Greenland ice-core stations: Camp Cen-
tury, Dye-3, GRIP, GISP2, Renland and NorthGRIP, J. Quater-
nary Sci., 16, 299–307, https://doi.org/10.1002/jqs.622, 2001.

Lenton, T., Livina, V., Dakos, V., Van Nes, E., and Scheffer, M.:
Early warning of climate tipping points from critical slowing
down: comparing methods to improve robustness, Philos. T. Roy.
Soc. A, 370, 1185–1204, 2012.

Lindgren, F. and Rue, H.: On the Second-Order Random Walk
Model for Irregular Locations, Scand. J. Stat., 35, 691–700,
https://doi.org/10.1111/j.1467-9469.2008.00610.x, 2008.

Lynch-Stieglitz, J.: The Atlantic meridional overturning circulation
and abrupt climate change, Annu. Rev. Marine Sci., 9, 83–104,
2017.

Mandelbrot, B. B. and Van Ness, J. W.: Fractional Brownian mo-
tions, fractional noises and applications, SIAM Review, 10, 422–
437, 1968.

Menviel, L., Timmermann, A., Friedrich, T., and England, M.
H.: Hindcasting the continuum of Dansgaard–Oeschger variabil-
ity: mechanisms, patterns and timing, Clim. Past, 10, 63–77,
https://doi.org/10.5194/cp-10-63-2014, 2014.

Menviel, L. C., Skinner, L. C., Tarasov, L., and Tzedakis, P. C.:
An ice–climate oscillatory framework for Dansgaard–Oeschger
cycles, Nat. Rev. Earth Environ., 1, 677–693, 2020.

Myrvoll-Nilsen, E.: INLA.ews. In Earth System Dynamics, Zenodo
[code], https://doi.org/10.5281/zenodo.15241983, 2025.

Myrvoll-Nilsen, E., Sørbye, S. H., Fredriksen, H.-B., Rue, H., and
Rypdal, M.: Statistical estimation of global surface temperature
response to forcing under the assumption of temporal scaling,
Earth Syst. Dynam., 11, 329–345, https://doi.org/10.5194/esd-
11-329-2020, 2020.

Niels Bohr Institute:
::::::
NGRIP

:::
and

:::::::
GICC05TS3 ,

:
Data, icesamples

and software, Niels Bohr Institute [data set], https://www.
iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_dust_5cm.xls,
last access: 11 April 2025.

North Greenland Ice Core Project members: High-resolution
record of Northern Hemisphere climate extending into
the last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004.

Rasmussen, S. O., Andersen, K. K., Svensson, A., Steffensen,
J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.-
L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M.,
Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.
E., and Ruth, U.: A new Greenland ice core chronology for the
last glacial termination, J. Geophys. Res.-Atmos., 111, D06102,
https://doi.org/10.1029/2005JD006079, 2006.

Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt,
S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen,
S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe,

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

https://doi.org/10.5194/ Track changes document – Do not use for proofreading

https://doi.org/10.1073/pnas.2024192118
https://doi.org/10.1029/GM029p0288
https://doi.org/10.1038/364218a0
https://doi.org/10.1029/2010GL044486
https://doi.org/10.5194/cp-3-129-2007
https://doi.org/10.1016/j.epsl.2014.08.022
https://doi.org/10.1029/2004GL020972
https://doi.org/10.1016/j.csda.2007.11.008
https://doi.org/10.1038/359311a0
https://doi.org/10.1002/jqs.622
https://doi.org/10.1111/j.1467-9469.2008.00610.x
https://doi.org/10.5194/cp-10-63-2014
https://doi.org/10.5281/zenodo.15241983
https://doi.org/10.5194/esd-11-329-2020
https://doi.org/10.5194/esd-11-329-2020
https://www.iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_dust_5cm.xls
https://www.iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_dust_5cm.xls
https://doi.org/10.1038/nature02805
https://doi.org/10.1029/2005JD006079


18 E. Myrvoll-Nilsen et al.: Bayesian analysis of early warning signals using a time-dependent model

J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P.,
Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C.,
Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for
abrupt climatic changes during the Last Glacial period based on
three synchronized Greenland ice-core records: refining and ex-
tending the INTIMATE event stratigraphy, Quaternary Sci. Rev.,
106, 14–28, 2014.

Ritchie, P. and Sieber, J.: Early-warning indicators for rate-induced
tipping, Chaos, 26, 093116, https://doi.org/10.1063/1.4963012,
2016.

Robert, C. P. and Casella, G.: Monte Carlo Statistical Methods, 2nd
edn., Springer, New York, https://doi.org/10.1007/978-1-4757-
4145-2, 2004.

Rue, H. and Held, L.: Gaussian Markov Random Fields: The-
ory And Applications (Monographs on Statistics and Applied
Probability, Chapman and Hall-CRC Press, London, ISBN
1584884320, 2005.

Rue, H., Martino, S., and Chopin, N.: Approximate Bayesian infer-
ence for latent Gaussian models using integrated nested Laplace
approximations (with discussion), J. R. Stat. Soc. Ser. B, 71,
319–392, 2009.

Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Con-
tinuous record of microparticle concentration and size dis-
tribution in the central Greenland NGRIP ice core during
the last glacial period, J. Geophys. Res.-Atmos., 108, 4098,
https://doi.org/10.1029/2002JD002376, 2003.

Rypdal, M.: Early-warning signals for the onsets of Green-
land interstadials and the younger Dryas–Preboreal transition,
J. Climate, 29, 4047–4056, https://doi.org/10.1175/JCLI-D-15-
0828.1, 2016.

Ryvkina, J.: Fractional Brownian Motion with Variable Hurst Pa-
rameter: Definition and Properties, J. Theor. Probab., 28, 866–
891, https://doi.org/10.1007/s10959-013-0502-3, 2015.

Schulz, M.: On the 1470-year pacing of Dansgaard-Oeschger warm
events, Paleoceanography, 17, 4–1, 2002.

Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-
Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Par-
renin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I.,
Steffensen, J. P., and Vinther, B. M.: A 60 000 year Green-
land stratigraphic ice core chronology, Clim. Past, 4, 47–57,
https://doi.org/10.5194/cp-4-47-2008, 2008.

Tierney, L. and Kadane, J. B.: Accurate approximations for poste-
rior moments and marginal densities, J. Am. Stat. A., 81, 82–86,
1986.

Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O.,
Andersen, K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad,
I. K., Siggaard-Andersen, M.-L., Steffensen, J. P., Svensson, A.,
Olsen, J., and Heinemeier, J.: A synchronized dating of three
Greenland ice cores throughout the Holocene, J. Geophys. Res.-
Atmos., 111, D13102, https://doi.org/10.1029/2005JD006921,
2006.

Wiesenfeld, K.: Noisy precursors of nonlinear instabilities, J. Stat.
Phys., 38, 1071–1097, 1985.

Track changes document – Do not use for proofreading https://doi.org/10.5194/

https://doi.org/10.1063/1.4963012
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1029/2002JD002376
https://doi.org/10.1175/JCLI-D-15-0828.1
https://doi.org/10.1175/JCLI-D-15-0828.1
https://doi.org/10.1007/s10959-013-0502-3
https://doi.org/10.5194/cp-4-47-2008
https://doi.org/10.1029/2005JD006921


Remarks from the typesetter

TS1 Please note that corrections that might change the scientific content require editor approval. Please provide a short
explanation regarding this correction (y to x) that can be forwarded by us to the editor.

TS2 Please confirm.
TS3 Please confirm (URL has also been updated).

19


