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Abstract.

A tipping point is defined by the IPCC as a critical threshold beyond which a system reorganizes, often abruptly and/or

irreversibly. Tipping points can be crossed solely by internal variation in the system or by approaching a bifurcation point

where the current state loses stabilityand
:
,
:::::
which

:
forces the system to move to another stable state. It is currently debated

whether or not Dansgaard-Oeschger (DO) events, abrupt warmings occurring during the last glacial period, are noise-induced5

or caused by the system reaching a bifurcation point. It can be shown that before a bifurcation point is reached there are

observable changes in the statistical properties of the state variable. These are known as early warning signals and include

increased fluctuation and correlation time. To express this
:
It
::
is

::::::::
currently

:::::::
debated

:::::::
whether

::
or

:::
not

::::::::::::::::::
Dansgaard-Oeschger

:::::
(DO)

::::::
events,

:::::
abrupt

:::::::::
warmings

::
of

::::
the

:::::
North

:::::::
Atlantic

::::::
region

:::::
which

::::::::
occurred

::::::
during

:::
the

::::
last

::::::
glacial

::::::
period,

:::
are

::::::::
preceded

:::
by

:::::
early

:::::::
warning

::::::
signals.

:::
To

::::::
express

:::
the

:::::::
changes

::
in
::::::::
statistical

:
behaviour we propose a new model based on the well-known first order10

autoregressive process (AR), with modifications to the correlation parameter such that it depends linearly on time. In order to

estimate the time evolution of the correlation parameter we adopt a hierarchical Bayesian modeling framework, from which

Bayesian analysis can be performed using the methodology of integrated nested Laplace approximations. We then apply the

model to segments of the oxygen isotope ratios from the Northern Greenland Ice Core Project record corresponding to 17 DO

events. Early warning signals were detected and found statistically significant
::::::::::
Statistically

:::::::::
significant

::::
early

:::::::
warning

:::::::
signals15

::
are

::::::::
detected for a number of DO events, suggesting

:::::
which

:::::::
suggests

:
that such events could indeed be

::::::
exhibit

::::
signs

:::
of

:::::::
ongoing

::::::::::::
destabilization

:::
and

::::
may

:::::
have

::::
been

:
caused by approaching a bifurcation point. The methodology developed to perform the

given early warning analyses can be applied more generally , and is publicly available as the R-package INLA.ews.

1 Introduction

An equilibrium state is said to be stable if the system returns to the same state following a small perturbation in any direction.20

If the state of a component of the climate system ,
::::::
changes

:::::
from

:::
one

::::::
stable

::::::::::
equilibrium

::
to

:::::::
another,

:::::
either

:
by crossing some

threshold in the form of an unstable barrier
:
a

::::::::
boundary

::
of

:::::::
unstable

:::::
fixed

:::::
points

:
separating two basins of attraction , changes

from one stable equilibrium to another
::
or

:::
by

::::::
having

:::
the

:::::
initial

::::::::::
equilibrium

::::::::::
destabilize,

:
it is said to have reached

::::::
crossed

:
a

tipping point. Components of the Earth system has
:::
have

:
experienced tipping points numerous times in the past, leading to

abrupt transitions in the climate system. These transitions are well documented in paleoclimatic proxy records. Notably, in25
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Greenland ice core records of oxygen isotope ratios (δ18O) and dust concentrations there is evidence that large and abrupt

climatic transitions from Greenland stadial (GS) to Greenland interstadial (GI) conditions took place in the last glacial interval

(110,000–12,000 years before 2000 AD, hereafter denoted yr b2k). These
:::::::::
transitions are known as Dansgaard-Oeschger (DO)

events (Dansgaard et al., 1984, 1993) and are characterized by
:::::::
initialize

:::::::
climatic

:
cycles where the temperature increased

substantially, up to 16.5◦C for single events, over the course of a few decades
:
.
::::
This

::
is followed by a more gradual cooling, over30

centuries to millenia, back
:::::::
returning to the GS state. A total of 17 DO events (Svensson et al., 2008)

::::::::::::::::::::
(Rasmussen et al., 2014)

have been found for the past 60 kyr before present (BP) and they represent some of the most pronounced examples of abrupt

transitions in past climate observed in paleoclimatic records.

It is widely accepted that such transitions are associated with
::::::
related

::
to

:
a change in the meriodional overturning circulation

(MOC) (Bond et al., 1999; Li et al., 2010) causing a
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lynch-Stieglitz, 2017; Henry et al., 2016; Menviel et al., 2014, 2020; Bond et al., 1999)35

:
,
:::::::
possibly

::::::
caused

::
by

:
loss of sea ice in the North Atlantic. However, the physical mechanisms that caused these changes in the

MOC and how they triggered DO events are less understood. Some studies have found that DO events exhibit a periodicity

of 1470 years (Schulz, 2002), which have
:::
has made some scientists suggest that the events have been triggered by changes in

the earth system caused by changing
::::::::::::
quasi-periodic

:::::::
changes

::
in

:::
the solar forcing (Braun et al., 2005). Others suggest that the

transitions have been triggered by random fluctuations in the Earth system, without any significant changes to the underlying40

system caused by external forcing (Ditlevsen et al., 2007). Treating the GS and GI states as stable equilibria in a dynamical

system representing the Greenland climate, and studying the statistical behaviour related to the stability of the system in the

period preceeding DO events, can help determine whether or not they are forced or random and thus possibly constrain the

number of plausible physical causes that trigger the events.

The behaviour around a tipping point can be analyzed by expressing the changes of the state-variable using a potential,45

wherein valleys represent the basins of attraction that are separated by an unstable fixed point. If the tipping point is reached

solely from perturbations caused by internal variation of the system, then it is said to be noise-induced. However, if the

dynamics of the system depend on some slowly varying control parameter the equilibrium points may shift, vanish or spawn as

a function of the control parameter. This means that the stability of a fixed point can change over time and eventually be lost,

making the system move to another equilibrium. Points in the control parameter space for which the qualitative behaviour of a50

system changes, e.g. change in stability or the number of fixed points, are called bifurcation points, and tipping points caused

by the control parameter crossing a bifurcation point are said to be bifurcation-induced.

By assuming that
:::
Let a time-dependent state-variable x(t), representing for example the δ18O ratio, vary over some potential

V (x) with stochastic forcing corresponding to a white noise process dB(t), expressed as the derivative of a Brownian motion,

then the stability of the system can be modeled using the stochastic differential equation55

dx(t) = F (x(t))dt+σdB(t). (1)

One could interpret this equation as describing the motion of some particle in the presence of a potential V (x), with drift

expressed by F (x) =−V ′(x) and a diffusion term σdB(t) describing the noise that acts on the particle.
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Take for example the cusp catastrophe model where the potential is given by

V (x,µ,ξ) =
x4

4
− ξ

x2

2
−µx,60

where µ(t) is a slowly changing control parameter and ξ is a shape parameter that we in this example set equal to ξ = 1. The

change in position dx(t) at some time t is then given by

dx(t) =−x3 + ξx+µ+σdB(t).

It can be shown that the bifurcation pointsare

µ1 =−2

3

√
ξ3/3 and µ2 =

2

3

√
ξ3/3.65

Crossing the bifurcation points changes the number of fixed points. For µ1 < µ < µ2 there are two
:::::
Points

::::::
where

:::::::::::
dx(t)/dt= 0

::
are

:::::
fixed

::::::
points.

:::::
These

:::
are

::::::
stable

:
if
::
a
:::::
small

::::::::::
perturbation

::
of

:::
the

:::::
state

:::::::
variable

::::
near

:::
the

::::
fixed

:::::
point

::::::
decays

::
in

::::
time

:::
and

::::::::
unstable

::::::::
otherwise.

::::
Fig.

::
1a

:::::::::
illustrates

::
an

:::::::
example

::
of

::
a
:::::::
potential

::::
with

::::
two

::::::
valleys

::::::::::::
corresponding

::
to stable fixed points and one unstable ,

and for µ < µ1 or µ > µ2 there is only one (stable) fixed point . The change of stability can be depicted by plotting the potential

before and after the bifurcation points , see
::
x1::::

and
::
x3::::

that
:::
are

::::::::
separated

::
by

:::
an

:::::::
unstable

:::::
fixed

::::
point

:::
x2.

::
If
::
a

::::
state

:::::::
variable

::::
near70

::
x1::::::

crosses
:::
x2::::

into
:::
the

:::::
basin

::
of

::::::::
attraction

::
of

:::
x3:::::

solely
:::::
from

:::::::::::
perturbations

::::::
caused

::
by

:::::::
internal

::::::::
variation

::
of

:::
the

:::::::
system,

::::
then

:::
the

::::::::
associated

::::::
tipping

:::::
point

::
is

::::
said

::
to

::
be

:::::::::::::
noise-induced.

::::::::
However,

::
if

:::
the

::::::::
dynamics

::
of

:::
the

::::::
system

:::::::
depend

::
on

:::::
some

::::::
slowly

:::::::
varying

::::::
control

::::::::
parameter

:::::
µ(t),

::::
then

::::
the

::::::::::
equilibrium

:::::
points

::::
may

:::::
shift,

::::::
vanish

:::
or

:::::
spawn

:::
as

::
a

:::::::
function

::
of

:::::
µ(t).

::::
This

::::::
means

::::
that

:::
an

:::::::::
equilibrium

:::::
state

::
of

:
a
:::::::

system
:::
can

::::::
change

::::
over

:::::
time

:::
and

:::::::::
eventually

:::
be

::::
lost,

::::::
making

:::
the

::::::
system

:::::
move

:::
to

::::::
another

:::::::::::
equilibrium,

::
as

::::::::
illustrated

::
in
:
Fig. 1for an illustration where the control variable varies around µ2.The change in values and stability of the75

fixed points as we increase the control parameter is illustrated in the bifurcation diagram
:::
a–c.

::::::
Points

::
in

:::
the

::::::
control

:::::::::
parameter

::::
space

:::
for

::::::
which

:::
the

:::::::::
qualitative

:::::::::
behaviour

::
of

::
a
::::::
system

::::::::
changes,

:::
e.g.

::::::::
changes

::
in

:::::::
stability

::
or

::::
the

::::::
number

:::
of

::::
fixed

:::::::
points,

:::
are

:::::
called

:::::::::
bifurcation

::::::
points. Fig. ??, which include

::
1d

:::::::::
illustrates

::::
these

:::::::
changes

:::::
using

:
a
:::::::::
bifurcation

::::::::
diagram,

:::::
where

:
the stable fixed

points x1 (lower solid curve) and x3 (upper solid curve) and
::
are

::::::::
separated

:::
by

:
the unstable fixed points x2 (middle dashed

curve), representing the separating barrier. The diagram also includes a simulated process generated by the same potential80

which demonstrates how abruptly the state variable changes when the system crosses the tipping threshold x2, which happens

before the control parameter reaches the bifurcation point µ2 due to the diffusion term σdB(t).
:
.
::::::
Critical

:::::::::
transitions

::::::
caused

:::
by

::
the

:::::::
control

::::::::
parameter

:::::::
crossing

::
a

:::::::::
bifurcation

:::::
point

::
are

::::
said

::
to

:::
be

::::::::::::::::
bifurcation-induced

::::::
tipping

::::::
points.

The bifurcation diagram of the cusp catastrophe model. The black curve represent the fixed points of the state variable x

given the changing control parameter µ ∈ (−1,1). The solid curves represent stable fixed points x1 and x3, and the dashed85

curve represent unstable fixed points x2. The red line represent a simulation of Eq. (??) with σ = 0.2. As the control parameter

µ approaches the bifurcation point µ2 the stability of x1 decreases which is expressed by increased variance and correlation in

the simulated process, causing the system to cross the tipping point x2 prematurely.
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Figure 1. The
:::::
Panels

:::::
(a)–(c)

:::::
show

::
the

:
potential over the set of state variables before, at and after the control parameter has reached the

bifurcation point µ2::
µ∗. Panel (a) shows the potential and fixed points

:::::
x1,x2:::

and
:::
x3 for some µ < µ2 :::::

µ < µ∗, and panels (b)–(c) shows

::::
show the same for µ= µ2::::::

µ= µ∗ and µ > µ2 :::::
µ > µ∗, respectively. When the control parameter approaches the bifurcation point µ2 ::

µ∗, the

stability of the stable fixed point x1 decreases and eventually collapses at x1 = x2 =−
√

ξ/3
:::
with

:::
x2, leaving x3 as the only (stable) fixed

point.
::::
Panel

:::
(d):

::::::::
Bifurcation

:::::::
diagram

::::::::
describing

:
a
:::::::::
bifurcation

::::::
induced

:::::
tipping

:::::
point.

:::
The

:::::
black

::::
curve

:::::::
represent

:::
the

::::
fixed

:::::
points

::
of

:::
the

::::
state

::::::
variable

:
x
::::
given

:::
the

::::::
linearly

:::::::
changing

:::::
control

::::::::
parameter

:::::::::
µ ∈ (−1,1).

::::
The

:::
solid

::::::
curves

:::::::
represent

::::
stable

::::
fixed

:::::
points

::
x1:::

and
:::
x3,

:::
and

::
the

::::::
dashed

::::
curve

:::::::
represent

:::::::
unstable

::::
fixed

:::::
points

::
x2.

::::
The

::
red

::::
line

:::::::
represent

:
a
::::::::
simulated

::::::
process.

::
As

:::
the

::::::
control

:::::::
parameter

::
µ
:::::::::
approaches

::
the

:::::::::
bifurcation

::::
point

::
µ∗

:::
the

::::::
stability

::
of

::
x1::::::::

decreases
:::::
which

:
is
::::::::
expressed

::
by

:::::::
increased

:::::::
variance

:::
and

::::::::
correlation

::
in

:::
the

:::::::
simulated

:::::::
process,

::::::
causing

::
the

::::::
system

:
to
:::::
cross

::
the

::::::
tipping

::::
point

::
x2::::::::::

prematurely.
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The nature of an equilibrium can be investigated by examining the linear approximation in its nearby domain. Linearizing

(1) around some stable fixed point xs yields90

dx(t) =−λ(x(t)−xs)dt+σdB(t), (2)

where λ=−F ′(xs). This is known as the Langevin stochastic differential equation and has the solution

x(t) = x0 +

t∫
−∞

g(t− s)dB(s), (3)

with Green’s function

g(t) =

exp(−λt), x≥ 0

0, x < 0
. (4)95

This solution forms an Ornstein-Uhlenbeck (OU) process , which under discretization
::::
with

:::::::
variance

::::::::::::::::
Var(xt) = σ2/(2λ).

::::::
Under

:::::::::::
discretization

:::
this

:
is a first order autoregressive (AR) process with variance Var(xt) = σ2/(2λ) and

xt = ϕxt−1 + εt, εt ∼N
(
0,

1−ϕ2

2λ
σ2

)
::::::::::::::::::::::::::::::::::::

(5)

::::
with lag-one autocorrelation parameter ϕ(t) = exp(−λ).

xt = ϕxt−1 + εt, ε∼N
(
0,

1−ϕ2

2λ
σ2

)
100

::::::::::::::
ϕ= exp(−λ∆t).

When the control parameter approaches a bifurcation point we expect increased
::
the

::::::::
restoring

::::
rate

::
λ

::::
goes

:::
to

::::
zero

::::
and

:::::::::::
consequently

:::
the

:
variance and correlation

:
of

::::
the

::::
state

:::::::
variable

::::
will

::::::::
increase, as could be observed in Fig. ??.

::
1d.

:::::
This

::::::::::
phenomenon

::::
was

:::
first

::::::::::::
demonstrated

::
by

:::::::::
inspecting

::
the

::::::
power

::::::
spectra

::
of

:
a
::::::
simple

:::::::
physical

:::::
model

:::
by

:::::::::::::::
Wiesenfeld (1985).

::::
The

::::
idea

:::
was

::::
later

::::::::
extended

::
to

:
a
:::::::
complex

::::
earth

::::::
system

::::::
model

::
by

:::::::::::::::::::::
Held and Kleinen (2004)

:::
and

:::
first

:::::::
applied

::
to

:::
real

::::
data

::
by

::::::::::::::::
Dakos et al. (2008)105

:
. These changes in statistical behaviour are called early-warning signals (EWS) of the bifurcation point, or critical slowing down

(Lenton et al., 2012; Dakos et al., 2008), and can be used as precursors to help determine whether or not a tipping point is

imminent. In fact, recent
:::::
EWS

:::
are

::::::
derived

::::
from

:::
the

:::::::::::
linearization

::
of

:::
the

::::::
system

::::::
around

:::
its

::::
fixed

::::::
points,

::::::::
however

::::
even

::
in

:::::
cases

:::::
where

:::
the

::::::
system

::::::::
dynamic

::
is

:::
far

::::
from

:::
its

::::::::::
equilibrium

:::
the

:::::
same

:::::::
changes

::
in
:::::::::

statistical
::::::::
behaviour

::::
can

::
be

::::::
found

::::
with

::
a

:::::
delay

:::::::::::::::::::::
(Ritchie and Sieber, 2016)

:
.110

::::::
Recent studies have discovered that more

::::::
several components in the earth system exhibit EWS and are at risk of approaching

or have already reached a tipping point. This include the western Greenland ice sheets (Boers and Rypdal, 2021), the Atlantic

meridional overturning circulation (Boers, 2021) and the Amazon rainforest (Boulton et al., 2022).

Analysis of EWS for DO events in the high-dimensional Greenland ice core record has been conducted by others, e.g.

Ditlevsen and Johnsen (2010) whom applied a Monte Carlo approach to detect increased
:::
who

::::::::
estimated

::::
the variance and115
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autocorrelation in a system
:::
over

::
a

::::::
sliding

:::::::
window

:::::
where

:::
the

:::::::
system

:::
was

::::::::
assumed

::
to

:::
be driven by white noise. Under these

assumptions they were unable to detect a statistical significant increase in EWS suggesting that DO events are noise-induced.

However, using different model assumptions, Rypdal (2016) was able to detect statistically significant EWS in an ensemble

of DO events. This was achieved by analyzing individual frequency bands separately, using a fractional Gaussian noise (fGn)

(Mandelbrot and Van Ness, 1968) model to describe the noise. Fractional Gaussian noise is a long-range dependent model for120

which the Green’s function in (3) is scale-invariant

g(t) =

tH−3/2, x≥ 0

0, x < 0
.

H ∈ (0.5,1) is the memory coefficient known as the Hurst exponent. Fractional Gaussian noise have been shown to be more

realistic for describing components in the Earth system where the power spectrum does not follow an exponential decay, such as

monthly to centennial global and local mean surface temperature data (Lovejoy and Schertzer, 2013; Huybers and Curry, 2006; Rybski et al., 2006; Rypdal and Rypdal, 2016; Franzke et al., 2015; Fredriksen and Rypdal, 2016; Løvsletten and Rypdal, 2016; Myrvoll-Nilsen et al., 2019)125

. Rypdal (2016) was able to detect an increase of variance of the high-frequency fluctuations for the ensemble average of the

17 DO events at a 5% significance level, and individually for five separate events. These results were corroborated by Boers

(2018) whom
:::
who

:
applied a similar strategy to the higher resolution a

::::::
higher

::::::::
resolved

::::::
version

:
of the NGRIP δ18O data set

(Andersen et al., 2004; Gkinis et al., 2014)on which he applied interpolation to obtain time series with regular 5-year sampling

steps. .
:

130

Most approaches for detecting EWS in the current literature require estimation of statistical properties
::::
such

::
as

:::::::
variance

::::
and

:::::::::
correlation in a sliding window, e. g. by producing Fourier surrogates and estimating the Kendall’s τ statistic for each iteration.

:
. Consequently, this presents

::::::
requires

:
a choice on the length of the window. Using a small window will allow for the momentary

state to be better depicted, but there will be fewer points used in the estimation hence accuracy will suffer. On the other hand,

if a larger window is used the estimated statistics will be more accurate, but less representative of the momentary state as it135

represents an average over a larger time scale. The optimal choice of window length should ideally represent a good trade-off

between accuracy and ability to represent momentary evolution, but this can be hard to determine in practice. In this paper

we circumvent this issue and present a model-based approach where such a compromise is not required. By assuming that the

correlation parameter is time-dependent, following a specific linear structure, it is possible to formulate this into a hierarchical

Bayesian model for which well-known computational frameworks can be applied. A Bayesian approach has the additional140

benefit of providing uncertainty estimates in the form of posterior distributions.

The paper is structured as follows. A description of the data used in this paper is included in section 2. Section 3 details our

methodology, including how we treat time-dependence, how to formulate our model as a hierarchical Bayesian model and how

to perform statistical inference efficiently. Results are presented in section 4 where our framework is applied first to simulated

data, then to Dansgaard-Oeschger events observed in the δ18O data from the NGRIP record. Our results are compared with145

those obtained by Ditlevsen and Johnsen (2010), Rypdal (2016) and Boers (2018). Further discussion and conclusions are

provided in section 5.
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2 NGRIP ice core data

The δ18O ratios are frequently used in paleoscience as proxies for temperature
:
at

:::
the

::::
time

:
of precipitation (Johnsen et al.,

1992, 2001; Dansgaard et al., 1993; Andersen et al., 2004), where higher ratios signals colder climates and, conversely, warmer150

climates tend to result in lower ratios. We employ the δ18O proxy record from the Northern Greenland Ice core Project (NGRIP)

(North Greenland Ice Core Project members, 2004; Gkinis et al., 2014; Ruth et al., 2003). There are currently two different

versions of the NGRIP/GICC05 data, at different resolutions. We will apply our methodology to the higher resolution record,

which is sampled every 5cm in depth. The NGRIP δ18O proxy record is defined on a temporal axis given by the Greenland Ice

Core Chronology 2005 (GICC05) (Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al., 2006; Svensson et al., 2008)155

which thus pairs the δ18O measurements with a corresponding age, stretching back to 60 kyrs b2k. We use segments of the

δ18O record corresponding to Greenland stadial phases preceding DO onsets, as given by Table 2 of Rasmussen et al. (2014).

The data used in this paper can be downloaded from https://www.iceandclimate.nbi.ku.dk/data/ (last accessed: day month

yearJuly 30, 2024)

3 Methodology160

During critical slowing down stationarity can no longer be assumed as we expect both the correlation and variance to increase.

For an AR(1) process x= (x1, ...,xn)
⊤ sampled at times t1, ..., tn, we assume that the increase in correlation can be expressed

by representing the lag-one autocorrelation parameter as a linear function of time

ϕ(t) = a+ bt, 0≤ t≤ 1, (6)

where a and b are two unknown parameters. The
::::::::::::
time-dependent

::::::
AR(1)

::::::
process

::
is

::::::::
expressed

:::
by

:::
the

::::::::
difference

::::::::
equation

:::::
given165

::
in

::
(5)

::::
and

:::
the joint vector of variables x= (x1, ...,xn)

⊤ forms a multivariate Gaussian process

x∼N (0,Σ), (7)

where the covariance matrix is given by

Σij = Cov(xi,xj)., (8)

The time-dependent AR(1) process is expressed by the difference equation170

xt = ϕ(t)xt−1 + εt, ε∼N (0,σ2
ε), t= t1, ..., tn,

:::
and

:::
we

::::::
assume

::::
that

Var(x1) =
1−ϕ2

2λ
σ2.

:::::::::::::::::

(9)

for which the covariance between two variables xi and xj is given by Cov(xi,xj).

7
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Since the covariance matrix is almost always dense
::::::
always

:::::
dense

:::
for

:::::::::
ϕ ∈ (0,1) it is computationally beneficial to instead175

work with the inverse-covariance matrix, also known as the precision matrix Q=Σ−1.
::
For

::::::::::
consistency

:::
we

::::::::
hereafter

::::
use

:::::::
precision

:

κ=
2λ

(1−ϕ2)σ2
:::::::::::::

(10)

::::::
instead

::
of

:::
the

:::::::
variance

::
as

:::
the

::::::::
unknown

::::::::
parameter

:::
of

:::::::
interest,

:::
and

::::::
denote

::::::::::::::
κ(tk) = 2κλ(tk):::

for
:::::::::::
tk = t2, ..., tn.

:

It can be shown that for a time-dependent AR(1) process the precision matrix is sparse and equal to180

Q=
1

σ2



(
κ+κ(t2)ϕ(t2)

2
)

−κ(t2)ϕ(t2)

−κ(t2)ϕ(t2)
(
κ(t2)+κ(t3)ϕ(t3)

2
)

−κ(t3)ϕ(t3)

. . . . . . . . .

−κ(tn−1)ϕ(tn−1)
(
κ(tn−1)+κ(tn)ϕ(tn)

2
)

−κ(tn)ϕ(tn)

−κ(tn)ϕ(tn) κ(tn)


. (11)

::
To

:::::
allow

:::
for

:::::::::::
non-constant

::::
time

::::
steps

::::::::::::::
∆tk = tk − tk−1:::

we
:::::
define

:

ϕ(tk) = e−λ(tk)∆tk/c,
:::::::::::::::::

(12)

:::::
where

λ(tk) =− log(a+ btk),
:::::::::::::::::::

(13)185

:::::::::::::::::::
c=

∑n
k=2∆tk/(n− 1)

:::
and

::
tk:::

has
:::::
been

::::::
rescaled

:::::
such

:::
that

:::::::::
tk ∈ (0,1).

::::
This

::::::::::
modification

:::::::::
guarantees

::::
that

:::::::::
ϕ(t)−→ 1

::
as

:::::::::
∆tk −→ 0

:::
and

:::::::::
ϕ(t)−→ 0

:::
as

:::::::::::
∆tk −→∞.

::
It

::::
also

:::::::
ensures

::::
that

::::::::
ϕ(t1) = a

::::
and

::::::::::::
ϕ(tn) = a+ b

::::::
which

::::::
makes

:::
the

:::::::::::::
interpretability

::
of

::::
the

:::::::::
parameters

:::::
easier.

:

Gaussian processes with sparse precision matrices are known as Gaussian Markov random fields, and there is a wealth of

efficient algorithms for fast Bayesian inference, see e.g. Rue and Held (2005) for a comprehensive discussion on this topic.190

These computationally efficient properties are not shared by the fractional Gaussian noise for which both the covariance matrix

and the precision matrix are dense. This means that essential matrix operations such as computing the Cholesky decomposition

will have a computational cost of O(n3) floating point operations (flops), as opposed to O(n) flops for the AR(1) process.

Inference might still be possible to achieve in a reasonable amount of time if the size of the data set remains sufficiently small.

For larger data sets, however, both time and memory consumption may become an issue.195

In fitting the model
::
to

::::
data it is beneficial that the model parameters are defined on an unconstrained parameter space. We

therefore introduce a suitable parameterization for
:::
the

:::::
model

::::::::::
parameters.

:::
For

:::
the

::::::::
precision

:
κ
:::
we

::::
take

:::
the

::::::::
logarithm,

::::::::::
θκ = logκ,

:::
and

:::
for

:
a and b using

::
we

:::
use

:
variations of the logistic transformation. Our reasoning is as follows. Assuming the lag-one

autocorrelation parameter is defined on the interval (0,1), and since t ∈ [0,1], then the slope must be constrained by

|b|< 1, (14)200
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An unconstrained parameterization for b thus reads

θb = log

(
1+ b

1− b

)
⇐⇒ b=−1+

2

1+ exp(−θb)
, θb ∈ (−∞,∞). (15)

The parameter space for a depend on the current state of b

0< a+ bt < 1 ⇐⇒ −bt < a < 1− bt. (16)

Let205

alower =−min(b,0) and aupper = 1−max(b,0), (17)

then an unconstrained parameterization for a is given by

θa = log

(
a− alower

aupper − a

)
⇐⇒ a= alower +

aupper − alower

1+ exp(−θa)
, θa ∈ (−∞,∞). (18)

3.1 Latent Gaussian model formulation
::::::::
Bayesian

::::::::
inference

In this paper we adopt a Bayesian framework to estimate the model parameters. This means that parameters210

:::::::
Bayesian

:::::::
analysis

:::::::
presents

::
a
::::::::
powerful

:::::::::
framework

:::
for

:::::::::
estimating

:::::
model

::::::::::
parameters

:::
that

::::::::
provides

:::::::::
uncertainty

::::::::::::
quantification

:::
and

::::::
allows

::
us

::
to

::::::::::
incorporate

::::
prior

:::::::::
knowledge

:::::
about

:::
the

::::::::::
parameters.

:::::
These

:::::::
benefits

:::
are

::::
both

::::
very

:::::::
valuable

::
in
:::::::
making

::::::::
informed

:::::::
decisions

:::::::::
regarding

:::::::
climate

::::::
action.

::
In

:::
the

:::::::::
Bayesian

::::::::
paradigm

:::
the

::::::
model

::::::::::
parameters

::::::::::
θ = (κ,b,a)

:
are treated as stochastic

variables for which prior knowledge , expressed using prior distributions, is incorporated and updated by the likelihood
::
is

::::::::
expressed

:::::
using

:
a
:::::::::
predefined

::::::::::
distribution

:::::
π(θ).

::::::
These

:::
are

:::::::
updated

::
by

::::
new

::::::::::
information

:::::::::
expressed

:::
by

:::
the

::::::::
likelihood

::::::::
function215

of the observations using Bayes’ theorem. Bayesian inference can be obtained by expressing our model as a hierarchical

Bayesian model, wherein the observed state variables are modeled in terms of a random predictor
:::::::::::::
x= (x1, ...,xn),::::::

which
::
is

:::
here

::
a
::::::::
Gaussian

:::::::::
distribution

:

= β0 +

nβ∑
i=1

βii+ε(θ)π(x | θ)
::::::

= µ(β)+ ε(θ)N
(
0,Q(θ)−1

)
::::::::::::

, (19)

Here, β0 represent an intercept, βi are fixed effects corresponding to covariates zi and ε are random effects representing some220

time-dependent noise that depend on some parameters
::::
with

::::::::
precision

::::::
matrix

:::::
Q(θ)

::
as

:::::
given

:::
by

:::::
(11),

:::
The

:::::::
updated

::::::
belief

::
is

::::::::
expressed

::
by

:::
the

::::::::
posterior

::::::::::
distribution

:::::::
π(θ | x),

::::::
which

::
is

:::::::
obtained

:::::
using

::::::
Bayes’

:::
rule

:

π(θ | x) = π(x | θ)π(θ)
π(x)

,

::::::::::::::::::::

(20)

:::::
where

:::
the

:::::
model

::::::::
evidence

:::::
π(x)

:
is
::

a
::::::::::
normalizing

:::::::
constant

::::
with

:::::::
respect

::
to θ. Notably, in the Bayesian framework fixed effects

are treated as stochastic variables and must be assigned prior distributions. If the data is already detrended then µ= 0. The225

covariance structure of the different components in the model are expressed by a latent field of random variables containing

9



the predictor and all stochastic terms therein , i.e. x= (η,β,ε). Assigning a Gaussian prior on x the model becomes a latent

Gaussian model, a subset of Bayesian hierarchical modelsfor which there exists additional computational frameworks. The

latent Gaussian model is specified in three stages as follows.

The first stage is to specify the likelihood of the model. We assume the likelihood to be conditionally independent given the230

latent field x, and expressed by a Gaussian distribution with some small negligible fixed variance σ2
y ≈ 0 and mean equal to

the predictor

y | x∼
n∏

i=1

N (ηi,σ
2
y).

The second stage in specifying a latent Gaussian model is to specify a Gaussian prior distribution for the latent field x,

with mean vector µ= E(θ) and precision matrix Q. This may depend on some unknown hyperparameters θ and expresses the235

covariance structure of the latent variables. β are assigned vague Gaussian priors and the noise term Specifically, for the linear

predictor we assume

x | θ ∼N (µ,Q(θ)−1),

::::
Prior

::::::::
selection

::
is

::
an

::::::::
essential

::::
part

::
of

::::
any

::::::::
Bayesian

:::::::
analysis,

::::
and

:::::::
presents

:
a
:::::

great
:::::::
strength

:::
of

:::
the

::::::::
Bayesian

:::::::::
framework

:::
by

:::::::
allowing

:::::
prior

:::::::::
knowledge

::
to

:::
be

:::::::::::
incorporated

::::
into

:::::::
models.

:::::
Since

:::
we

::
do

::::
not

::::::::::
incorporate

::::
prior

::::::::::
knowledge

::
in

::::
this

:::::
paper,

::::
and240

::
we

:::::
wish

::
to

::::::::
maintain

::::::::::
objectivity,

:::
we

::::
will

:::::
adopt

:::::
vague

:::::
prior

:::::::::::
distributions.

::::::
These

:::
are

:::::::::::
distributions

::::
with

:::::
large

::::::::
variances

::::
that

::::::
express

:::::::
minimal

::::::::::
information

:::::
about

:::
the

:::::::::
parameters

::::
and

:::::
allows

::::::::
inference

::
to

:::
be

::::::::
primarily

:::::
driven

:::
by

::
the

:::::
data,

::
as

:::::::
opposed

::
to

:::::
more

:::::::::
informative

:::::
priors

::::::
which

:::
can

:::::
guide

:::
the

:::::::
posterior

::
to

:::::
reflect

:::::
prior

:::::::::
knowledge

::
or

:::::::::::
assumptions.

:::::
Since

::
the

:::::::::
parameter

:
a
::::::
depend

:::
on

:::
the

::::
value

::
of
:::::::

another
:::::::::
parameter

:
b
:::
we

:::::
assign

::
a
:::::::::
conditional

:::::
prior,

:::::::
π(a | b),

:
such that the latent variables corresponding to a potential

β component represent vague Gaussian priors and those corresponding to ε represent the chosen model. The precision matrix245

is given by Eq. (??).

The final stage concerns the prior distributions of the model parameters, which we assign independently

θ ∼ π(κ)π(θa)π(θb).

::::
joint

::::
prior

::
is

::::::::
expressed

:::
by

π(κ,b,a) = π(κ)π(b)π(a | b).
::::::::::::::::::::::::

(21)250

For the analysis

::::::::::
Specifically,

::
all

::::::::
analyses performed in this study we have assigned a penalised complexity prior (Simpson et al., 2017) for

the scaling parameter κ= 1/σ2 and Gaussian priorsfor the parameterized memory parameters θa and θb.

3.2 Inference

10



In the Bayesian paradigm inference is expressed by the posterior distribution which provides a complete description of the255

probabilistic nature of the model parameters and latent variables. The joint posterior distribution can be found relatively easily

by

π(x,θ | y)∝ π(θ)π(x | θ)
n∏

i=1

π(yi | x).

We want to estimate
:::::
paper,

::::::
assume

:::
the

:::::
same

::
set

:::
of

:::::
priors,

::::::
unless

::::::::
otherwise

::::::::
specified.

::
κ

::
is

:::::::
assigned

::
a

::::::
gamma

::::::::::
distribution

::::
with

:::::
shape

:
1
:::
and

::::
rate

:::
0.1.

::
b
::
is

:::::::
assigned

:
a
:::::::
uniform

:::::
prior

::
on

:::::::
(−1,1)

:::
and

::::
a | b

::
is

:::::::
assigned

:
a
:::::::
uniform

:::::
prior

::
on

::::::::::::
(alower,aupper).:260

:::
The

:::::
main

::::
goal

::
of

:::
this

:::::
paper

::
is

::
to

:::::
detect

:::::::
whether

::
or

:::
not

:::
an

::::
early

:::::::
warning

:::::
signal

::::
can

::
be

::::::::
observed

::
in

:::
the

::::
data.

:::
We

:::
are

::::::::
therefore

:::::::
primarily

:::::::::
interested

::
in the marginal posterior distribution for all hyperparameters and latent variables. These are computed by

evaluating the integrals

π(xi | y) =
∫
π(xi | θ,y)π(θ | y)dθ

π(θj | y) =
∫
π(θ | y)dθ−j .265

::
of

:::
the

::::
slope

:::::::::
parameter

::
b,

π(b | x) =
∫

π(θ | x)dκda.
::::::::::::::::::::::

(22)

These integrals are often impossible to evaluate analytically and are typically computed numerically
::::::::
Typically,

::::::::
marginal

:::::::
posterior

:::::::::::
distributions

:::
can

::
be

::::::::
evaluated

:
using Markov chain Monte Carlo approaches (Robert et al., 1999). However, these can

sometimes be very time consuming for hierarchical models. For latent Gaussian models
:
,
:::
but

::::
these

:::
are

::::
very

::::
often

::::::::::::::
time-consuming270

:::
and

:::::
could

:::::::::
potentially

:::
be

:::::::
sensitive

::
to
:::::::::::

convergence
::::::
issues.

::::::::
However,

:::::
since

:::
our

::::::
model

::
is

::::::::
Gaussian with a sparse precision ma-

trix there exists a
::
we

:::::::
instead

:::
use

:::
the computationally superior alternative in using

::
of integrated nested Laplace approximations

::::::::::::
approximation (INLA) (Rue et al., 2009, 2017). Instead of using simulations, INLA use various numerical optimization techniques

to compute an accurate approximation of the posterior marginal distributions. Most importantly is the Laplace approximation

(Tierney and Kadane, 1986), which is used to approximate the joint posterior distribution275

π(θ | y)≈ π(x,θ,y)

πG(x | θ,y)

∣∣∣∣
x=x∗(θ)

,

where x∗(θ) is the mode of the latent field x(θ) and πG(x | θ,y) is the Gaussian approximation of

π(x | θ,y)∝ π(x | θ)π(y | x,θ).

The methodology is available as the open source R package R-INLA, which can be downloaded
::::::::::::::
(Rue et al., 2009),

::::::
which

::
is

:::::::
available

::
as

:::
an

:
R

::::::
package

:
at www.r-inla.org(last access: day month year).280

As there are currently no model components already implemented for R-INLA that meet our specifications we are required

to implement the model components ourselves using the custom modeling framework of R-INLA called rgeneric. This adds
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more work and complexity in implementing our model, and adds an additional barrier to further adoptation of our methodology

. To increase accessibility we have implemented the code and made it available as a user-friendly R-package
::
To

:::::
make

:::
the

:::::::::::
methodology

::::
more

:::::::::
accessible

::::
we

::::
have

:::::::
released

::::
the

::::
code

:::::::::
associated

:::::
with

:::
this

::::::
model

:::
as

::
an

::
R

:::::::
package

:
titled INLA.ews,285

available
:::::
which

:::
can

::
be

::::::::::
downloaded

:
at www.github.com/eirikmn/INLA.ews (last access: day month year). Inference can then

be produced by executing inla.ews(y, formula=formula), where y is a numeric vector containing the data and

formula describes the trends included in the model. July 30, 2024
:
).
:
A demonstration of the INLA.ews package applied

to simulated data
:::
this

:::::::
package

:
can be found in Appendix A, and a detailed description of its features can be found in its

accompanying documentation.290

3.2 Non-constant time steps

To allow for non-constant time steps ∆tk = tk − tk−1 we assume

ϕ(tk) = e−λ(tk)∆tk/c,

where

λ(tk) =− log(a+ btk),295

c=
∑n

k=2∆tk/(n− 1) and tk has been normalized such that tk ∈ (0,1). This modification guarantees that ϕ(t)−→ 1 as

∆tk −→ 0 and ϕ(t)−→ 0 as ∆tk −→∞. It also ensures that ϕ(t1) = a and ϕ(tn) = a+ b which makes the interpretability of

the parameters easier.

If we denote σ(tk)
2 = σ2/(2λ(tk)), and assume

x1 ∼N
(
0,σ(t1)

2
)
,300

then the precision matrix for non-constant time steps yields

Q=



(
1

σ(t1)2
+ ϕ(t2)

2

σ(t2)2

)
− ϕ(t2)

σ(t2)2

− ϕ(t2)
σ(t2)2

(
1

σ(t2)2
+ ϕ(t3)

2

σ2
3

)
− ϕ(t3)

σ(t3)2

. . . . . . . . .

− ϕ(tn−1)
σ(tn−1)2

(
1

σ(tn−1)2
+ ϕ(tn)

2

σ(tn)2

)
− ϕ(tn)

σ(tn)2

− ϕ(tn)
σ(tn)2

1
σ(tn)2


.

Non-constant time steps can be specified in the inla.ews function by using the timesteps input argument.

3.2 Incorporating forcing

Climate components may also be affected by forcing,
::::::
which

:::
can

::
be

:::::::::
measured

::::::::
alongside

:::
the

::::::
climate

:::::::
variable

::
of

:::::::
interest. How305

the observed component responds to such forcing will be influenced by time-dependence. In this subsection we adopt a similar
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strategy to myrvoll-nilsen2020
:::::::::::::::::::::::
Myrvoll-Nilsen et al. (2020) with changes to

:::
the

::::::
Green’s

:::::::
function

::
to

:
allow for time-dependence

and non-constant time steps.

Let F (t) denote the known forcing component such that

dx(t) =−λx(t)+F (t)dt+ dB(t). (23)310

The
::
As

::::::
shown

::
in

:::::::::::::::::
C.W.Gardiner (1985)

:
,
::
the

:
model can then be expressed as the sum of two components

x(t) = µν
:
(t)+ εξ(t), (24)

where ε(t)
:::
ξ(t)

:
is a time-dependent OU process and the forcing response is given by

µν
:
(t) = σf (t)

1

2λ(t)κf (t)
:::::::::

t∫
0

e−λ(t)(t−s) (F (s)+F0)ds. (25)

σ2
f (t) = σ2

f/(2λ(t)) is
::::
Here,

::::::::::::::::
λ(t) =− log(ϕ(t))

::
is
:::

the
::::::::

restoring
::::
rate,

::::::
κf (t) ::

is an unknown scaling parameter and F0 is an315

unknown shift parameter.

Forcing can be incorporated into the model
:::::
These

:::::::::
parameters

::::
can

::
be

:::::::::
estimated

:::::
using

:::
the

:::::
same

::::::::
Bayesian

:::::::::
framework

:::
as

::::::
before,

:::::
which

:::
can

:::
be

::::::::
computed

::::
with

::::::::::
INLA.ews by specifying the forcing argument in the inla.ews function.

4 Results

4.1 Accuracy test on simulated data320

To test the accuracy and robustness of the time-dependent AR(1) model we fit the model to a number of simulations. Specifi-

cally, we perform accuracy tests using a grid of b ∈ [−0.8,0.8] with increments of 0.1, and choose the parameter a correspond-

ing to θa = 0. For each b we draw nr = 1000 time series of length n= 500 and n= 1000 from the time-dependent AR(1)

model. The model is fitted using R-INLAwith the same specifications as used in the INLA.ews package
::::
using

:::::
priors

::::::::
specified

::
in

::::::
Section

:::
3.1. To quantify the accuracy of the model we compare the posterior marginal mean of the slope b̂= E(π(b | y))325

to the true values b. We also compute the posterior probability of the slope being positive P (b > 0). Ideally, we want b̂ to be

as close to b as possible, and P (b > 0)> 0.5 if b > 0 and, conversely, P (b > 0)< 0.5 if b < 0.
:::
We

::::
also

:::::
count

:::
the

::::::
number

:::
of

:::::::::
simulations

::::::
where

:::::
EWS

:
is
::::::::

detected,
:::::
using

::::::::
threshold

:::::::::::::::
P (b > 0)≥ 0.95.

:::::
Since

::
σ

::::
only

:::::
scales

:::
the

:::::::::
amplitude

::
of

:::
the

::::
data

:::::::
without

:::::::
affecting

:::
the

:::::::::
correlation

::::::::
structure

:::
we

::::::
expect

::::::
similar

:::::::::
estimations

:::
for

::
a
:::
and

::
b
:::::::::
regardless

::
of

:::
the

:::::
value

::
of

::
σ.

::::
This

::::
was

:::::::::
confirmed

::
by

::::::
testing

:::
the

:::::
model

:::
on

::::::::::
simulations

::::
using

::::
both

::::::
σ = 1

:::
and

:::::::
σ = 10.330
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Figure 2. Box plots representing the results of the accuracy test for nr = 1000 simulated time series of length n= 500 for each

b ∈ [−0.8,0.8].
::
The

:::::
boxes

::::
cover

:::
the

:::::::::
interquartile

::::
range

:::::
(IQR)

::::::
between

:::
the

::
25

:::
and

::::
75%

:::::::
quantiles,

:::
and

:::
the

:::::::
whiskers

:::::::
represent

::
an

::::::::
adjustment

::
to

::
the

::::
more

:::::::
common

::::::::
boundaries

::
of

:::
1.5

::::
times

:::
the

::::
IQR,

::
to

::::
better

:::::::
describe

:::::
skewed

::::::::::
distributions.

:::::
Points

:::
that

:::
fall

::::::
outside

::
the

:::::::
whiskers

:::
are

:::::::
classified

:
as
:::::::

outliers.
:
Panels (a) and (b) show box plots of the posterior marginal mean estimated by INLA for simulations of lengths n= 500 and

n= 1000, respectively. The blue line shows the true b used in the simulation. Panel
:::::
Panels (c) and (d) show box plots of the estimated

posterior probability of the slope being positive given the
:::::
against

:::::::
different

:
true value

:::::
values

::::
used

:
for simulations of length n= 500 and

n= 1000, respectively.

The results of the analysis is presented in
:::
are

::::::::
presented

::
in

:::::
Table 1 and displayed graphically as box plots in Fig. 2. Since the

posterior distribution of b is skewed, especially when its absolute value approaches 1, ordinary box plots would classify a larger

number of points as outliers. We use instead an adjusted box plot proposed by (Hubert and Vandervieren, 2008) which is better

suited for skewed distributions. We obtain decent accuracy of the posterior marginal means b̂, with a smallunderestimation

when b−→−1 and a small overestimation when b−→ 1. The posterior probabilities suggests that when |b| ≥ 0.2 there is335

both a low chance of false negatives (high sensitivity) and false positives (high specificity)
:
,
:::
but

:::::::::
consistent,

::::::::::::::
underestimation

:::::
which

::::::::
decreases

:::
as

:
n
:::::::::

increases.
::
In

::::::
panels

:::
(c)

::::
and

:::
(d)

::
of

::::
Fig.

::
2

:::
we

:::::::
observe

::::
some

::::::::
variation

::
in
:::::::::
P (b > 0)

:::
for

:::::
small

:::::
values

:::
of
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::
|b|,

::::
and

::::
less

::
so

:::
for

::::::::
|b| ≥ 0.2. For smaller absolute values however, especially those generated under b= 0, more variation in

posterior probabilities were observed. This behaviour
::::
also improves when n increases from 500 to 1000. For

:::
500

::
to

:::::
1000.

:::
By

:::::::
counting

:::
the

:::::::
number

::
of

::::::::::
simulations

::::
with

:::::::
detected

:::::
EWS

:::
for

:::::
b≤ 0

:::::
using

::::::::
threshold

::::::::::::::
P (b > 0)≥ 0.95

:::
we

:::
find

:::
54

::::
false

::::::::
positives340

::
for

:
n= 500we find that out of nr = 1000 simulations there were zero false positives ,

:::
and

:::
56

:
for b≤−0.1,

::::::::
n= 1000.

::::
Out

::
of

::::
8000

::::::::::
simulations

:::
for

::::::
b≥ 0.1

:::
we

::::
find

:::
669

::::
false

::::::::
negatives

:::
for

::::::::
n= 500 and a single false negative at b≥ 0.1. For n= 1000, no

false positives or negativeswere found.
:::
321

:::
for

:::::::::
n= 1000,

::
as

:::::::
reported

::
in

:::::
Table

::
1.

:

::
In

::::
order

::
to

::::::
assess

::::
how

:::::::
sensitive

:::
the

:::::
model

::
is

::
to

:::
the

::::::
choice

::
of

::::
prior

::::::::::
distribution

:::
we

:::::
repeat

:::
the

::::
same

:::::::::
simulation

:::::::::
procedure

::::
with

:::::::
n= 500

::::
using

::::::::
different

::::::::
Gaussian

:::::
priors

::
on

:::
the

::::::::::
parameters

::
in

::::
their

::::::
internal

:::::::
scaling345

(log(κ),θa,θb)∼N (0,σθI) ,
::::::::::::::::::::::::

(26)

:::::
where

::::::::::::::
σθ ∈ {0.1,1,10}

:::
and

::
I

::
is

:::
the

::::::
identity

::::::
matrix.

::::
The

:::::::
posterior

::::::::
marginal

::::::
means

:::
and

::::::::
posterior

::::::::::
probabilities

::::::::
P (b > 0)

:::
for

:::
the

:::::::
different

:::::
priors

:::
are

::::::::
compared

::
to

:::
the

::::::
default

::::
prior

::
in

::::
Fig.

::
3.

:::
The

::::::
results

::::
show

::::
that

::::
using

:::
the

:::::
most

:::::::::
informative

:::::
prior,

::::::::::::
corresponding

::
to

::::::::
σθ = 0.1,

:::
will

::::
pull

:
b
:::
too

:::::
much

:::::::
towards

::
the

::::::
central

:::::
value

::
of

:::::
b= 0,

::::::::
resulting

::
in

:::::
worse

::::::::
estimates

:::
for

:
b.
::::
This

::::
pull

::
is

:::
also

::::::::
reflected

::
in

::
the

::::::::
posterior

:::::::::
probability

:::::::::
estimates,

::::::::
P (b > 0),

:::::
where

::::
this

::::
prior

::::::::
performs

:::
less

::::
well

:::::::::
compared

::
to

:::
the

:::::
others,

::::::::
although

:::
the

:::::
effect350

:
is
::::
less

:::::
strong

:::::
here.

::::::::
Counting

::
the

:::::::
number

::
of

:::::::::::::::
misclassifications

::
we

:::::
find,

::
for

:::
σθ :::::

equal
::
to

:::
0.1,

::
1

:::
and

:::
10,

::
4,

::
48

::::
and

::
67

::::
false

::::::::
positives

:::
our

::
of

:::::
9000

::::::::::
simulations

:::
and

:::::
1255,

::::
657

::::
and

:::
631

:::::
false

::::::::
negatives

:::
out

:::
of

::::
8000

:::::::::::
simulations,

:::::::::::
respectively.

::::
This

::
is

::::::
overall

:::::
quite

:::::::::
comparable

::
to
:::::

using
:::
the

:::::::
default

:::::
priors,

::::::
which

:::::
found

:::
54

::::
false

:::::::
positives

::::
and

::::
669

::::
false

::::::::
negatives.

:::::::
Overall,

:::
we

::::
find

:::
the

::::::
model

::
to

::
be

::::
quite

::::::
robust

::
to

:::
the

::::::
choice

::
of

::::
prior

:::::::::::
distributions

::
as

::::
most

::
of

:::
the

:::::
priors

:::::::
perform

::::
very

::::::
similar

::
in
:::::
terms

:::
of

:::
the

:::::::
posterior

::::::::
marginal

::::
mean

::::
and

:::::::
posterior

::::::::::::
probabilities.

::::::::
However,

:::
we

:::
also

::::
find

::::
that

:::::
using

:::
too

::::::::::
informative

:::::
priors

:::::
could

:::::
cause

:::
the

:::::
model

:::
to

::
be

::::::
overly355

:::::::
cautious,

:::::::
making

:
it
::::
less

::::
able

::
to

:::::
detect

:::::
EWS.

:
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Figure 3.
::::
Prior

::::::::
sensitivity

::::::
analysis

::
on

::::::::
simulated

:::
data

::::
using

:::
the

:::::
default

:::::
priors

:::::
(black)

:::
and

::::::::
Gaussian

::::
priors

:::::::::
N (0,0.12)

::::
(red),

::::::
N (0,1)

:::::::
(orange)

:::
and

::::::::
N (0,102)

:::::::
(yellow).

::::
Panel

:::
(a)

:::::
shows

:::
the

:::::::
ensemble

::::::
average

::
of

:::
the

:::::::
posterior

:::::::
marginal

::::
mean

::::::::
estimates

::
for

::
b

:::::::
compared

::
to

:::
the

:::
true

:::::
value

:::::
(blue),

:::
and

::::
panel

:::
(b)

:::::
shows

::
the

:::::::
ensemble

::::::
average

:::
for

:::
the

:::::::
posterior

:::::::::
probabilities

::::::::
P (b > 0).

:::
The

:::::
shaded

::::
grey

:::
area

::
in
::::
both

:::::
panels

:::::::
represent

:::
the

:::::::
ensemble

:::::
spread

::
of

:::
the

:::::::
estimates

::::
from

::
the

::::::
default

::::
prior

::::
using

:::
the

::
2.5

:::
and

::::::
97.5%

:::::::
quantiles.

n= 500 n= 1000 n= 500 n= 1000
:::::::
n= 500

::::::::
n= 1000

True b b̂
::
⟨b̂⟩ b̂

::
⟨b̂⟩ P (b > 0)

:::::::::
⟨P (b > 0)⟩

:
P (b > 0)

:::::::::
⟨P (b > 0)⟩

: :
#
::::::::::::::
P (b > 0)> 0.95

: :
#
::::::::::::::
P (b > 0)> 0.95

:

-0.8 -0.766
:::::
-0.781

:
-0.78

:::::
-0.792

:
0 0

:
0
: :

0

-0.7 -0.67 -0.687
:::::
-0.694

:
0 0

:
0
: :

0

-0.6 -0.578
:::::
-0.586

:
-0.591

:::::
-0.595

:
0 0

:
0
: :

0

-0.5 -0.483
:::::
-0.487

:
-0.493

:::::
-0.496

:
0 0

:
0
: :

0

-0.4 -0.385 -0.393
:::::
-0.398

:
0 0

:
0
: :

0

-0.3 -0.291
:::::
-0.293

:
-0.295

:::::
-0.299

:
0.001 0

:
0
: :

0

-0.2 -0.192
:::::
-0.194

:
-0.197

:::::
-0.195

:
0.015 0.001

:
0
: :

0

-0.1 -0.095
:::::
-0.091

:
-0.1

:::::
-0.096

:
0.151

::::
0.16 0.065

::::
0.074

: :
1
: :

1

0 -0.004
:
0 0.002

:::::
-0.001

:
0.478

:::
0.5 0.508

::::
0.498

: ::
53

: ::
55

0.1 0.097 0.1 0.854
:::::
0.096 0.937

::::
0.856

: :::::
0.926

:::
425

: :::
685

0.2 0.199
:::::
0.196 0.197

:::
0.2 0.985

:::::
0.984 0.999

::::
0.998

: :::
907

: :::
994

0.3 0.292
:::::
0.298 0.294

:::::
0.299 0.999 1

:::
999

: ::::
1000

0.4 0.392
:::::
0.393 0.394

:::::
0.396 1 1

::::
1000

: ::::
1000

0.5 0.485
:::::
0.492 0.494 1 1

::::
1000

: ::::
1000

0.6 0.583
:::::
0.588 0.592

:::::
0.594 1 1

::::
1000

: ::::
1000

0.7 0.675 0.688
:::::
0.695 1 1

::::
1000

: ::::
1000

0.8 0.768
:::::
0.783 0.781

:::::
0.793 1 1

::::
1000

: ::::
1000

Table 1. Results from accuracy tests on nr = 1000 simulated time-dependent AR(1) series of length n for each b ranging from -0.8 to 0.8.

The table includes the ensemble average
::::::
averages

:
of the posterior marginal means b̂ and posterior probabilities of positive slope P (b > 0)

for each value of b, and for time series’ lengths of n= 500 and n= 1000.
::
We

:::
also

:::::
show

::
the

::::::
number

::
of

:::::::
detected

::::
early

::::::
warning

:::::
signals

:::::
using

:::::::
threshold

:::::::::::::
P (b > 0)≥ 0.95.
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4.2 DO-events
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Figure 4. NGRIP δ18O proxy record. The time-series used in our study are the parts of the curves drawn in blue
::::::

turquoise
:
which are the

cold stadial periods preceeding
:::::::
preceding

:
the onsets of interstadial periods drawn in red. The red and blue

::::::
turquoise

:
vertical bars represent

respectively the start and the end
::::
points

:
of inter-stadial (warm)

::
the

::::::::
interstadial

:
periods,

::::::::::
respectively.

We apply our time-dependent AR(1) model on the high resolution NGRIP δ18O record, which is partitioned into stadial and

interstadial periods as shown in Fig. 4. This version of the NGRIP record is sampled regularly every 5cm steps in depth, but is

non-constant in time. Having modified our model to allow for irregular time points we are able to use the raw NGRIP record360

without having to perform interpolation or other types of pre-processing, such as that of Boers (2018). This grants us a larger

dataset for each event which could significantly improve parameter estimation. Having implemented the model using INLA

we are able to take advantage of this extra resolution while keeping computational time low.

Some of these datasets appear non-stationary and thus require trend estimation. Since there is no obvious choice of forcing

we consider different alternatives for trend components which are
::::
then compared. The R-INLA framework allows us to very365

easily incorporate these trends into our model and estimates all model components simultaneously. First, we fit our model to

the data without any additional trend, then we assume a linear trend, followed by a 2nd order polynomial trend. Finally, we

model the trend using a continuous 2nd order random walk (RW2) spline. More details on the comparison between the different

trends are included in appendix C, which also includes a plot of how well each trend fit
:::
fits the data.

Having looked
:::::::
Looking at the fits for each event we observe that most events can be fitted easily with linear or even constant370

::
no trend, but a few events require non-linearity. We choose the 2nd order polynomial trend as this gives a nice trade-off between

flexibility and simplicity and appears to provide a decent fit for all events. The ϕ(t) = a+bt evolutions for all events using 2nd

order polynomial detrending is
::
are

:
included in Fig. 5. ,

::::
and

:::
the

:::::::
posterior

::::::::
marginal

:::::::::
distribution

::
of

:::
the

:::::
trend,

::::::::
π(b | x),

:
is
::::::::
included

::
in

:::
Fig.

::
6.

:

The models are fitted to the stadial period
::::::
periods preceding each of the 17 DO events and the posterior probability of375

ϕ(t) = a+ bt being increasing, P (b > 0), is compared for all events and trend assumptions. These
:::
The

::::::
results

:
are included
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in table
::::
Table

:
2. Using the conventional threshold of P (b > 0)≥ 0.95 we are able to detect early warning signals in 4 events

using no detrending , and 5 events
:
5

:::::
events

::::
both

:::::::
without

:::::::::
detrending

:::
and

:::::
while using linear or 2nd order polynomial trends,

:
and

6 events using the continuous RW2 model as a trend. Averaging over
:::
the

::::::::
estimated

::::::::
P (b > 0)

:::
for all events we are not able to

conclude that early warning signals has
::::
have been found over the ensemble of events for any detrending model.380

Having found EWS in multiple stadial periods preceding DO events therefore indicates that DO events are not solely

noise-induced unlike the hypothesis
::
can

:::::::
exhibit

::::::::
evidence

::
of

::::::::
ongoing

::::::::::::
destabilization

::::::
unlike

:::
the

::::::::::
conclusion

:
formulated in

Ditlevsen and Johnsen (2010). These differences in results can be explained by both the use of a higher-resolution dataset

and a methodology not involving time windows. However,

::::::::
However,

:::::
given

:
the absence of EWS in the ensemble of events does not support the hypothesis that all DO events are385

bifurcation-induced and hence
::::::::
exhibiting

:::::
signs

:::
of

:::::::
ongoing

::::::::::::
destabilization

::::
and

:::::
hence

::::
one cannot exclude the possibility for

some events to be
:::::
purely

:
noise-induced

:::
and

:::
not

::::::::::
approaching

::
a

:::::::::
bifurcation

:::::
point. Our results do, however, suggest that some

specific transitions may be bifurcation induced,
:::
have

:::::::::
undergone

:::::::::::::
destabilization

:
which is in line with the results of Rypdal

(2016) and Boers (2018), in which
::::::
wherein

:
significant EWS have also been found only for some specific events. These studies

use different versions of the NGRIP record from our study and their methodologies differ from oursas they use a scale-invariant390

fGn model to describe the noise, as opposed to an AR(1) process. .
:
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Figure 5. The evolution of the lag-one autocorrelation parameter a+ bt for each of the 17 transitions analyzed in this paper. The blue lines

represents the posterior marginal means of each Greenland stadial phase, and the red shaded areas represent the 95% credible intervals

:::::::::::
(corresponding

::
to

:::::
region

:::::::
between

:::
the

:::
2.5

:::
and

:::::
97.5%

::::::::
quantiles

::
of

:::
the

:::::::
posterior

:::::::::
distribution). The δ18O proxy measurements have been

detrended using a second order polynomial. The probability of an increasing slope, P (b > 0), given the posterior distribution, is also included.
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Figure 6.
:::
The

:::::::
marginal

:::::::
posterior

:::::::::
distribution

::
of

::
the

::::
trend

::::::::
parameter

::
b.

:::
The

:::
red

:::::
dotted

:::
line

:::::::
represent

:::::
b= 0

:::
and

::
the

:::
red

:::::
shaded

::::
area

:::::::
illustrate

::
the

::::::
density

::::::::
P (b > 0).

:
If
:::
the

:::::
shaded

::::
area

:
is
:::::

larger
::::
than

:::
0.95

:
e
:::::::

conclude
::::
that

::::
EWS

:
is
:::::::

detected.
:
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Event No trend Linear Square RW2 Rypdal Boers

1 0.8824
::::::
0.8765 0.8558

:::::
0.854 0.9022

::::::
0.9146 0.9512

::::::
0.9552 p= 0.02 −

2 0.9660
:::::
0.9658 0.9886

:::::
0.9902 0.973

:::::
0.9728 0.9655

:::::
0.9672 p= 0.008 p < 0.05

3 0.4949
::::::
0.5252 0.4983

::::::
0.5174 0.5005

::::::
0.4893 0.6137

:::::
0.647 − −

4 0.0714
::::::
0.0684 0.0878

:::::
0.078 0.0821

:::::
0.084 0.0928

::::::
0.1007 − p < 0.05

5 0.9958 0.9956
:::::
0.9959 0.9952

:::::
0.9959 0.9918

:::::
0.9893 p= 0.13 −

6 0.2924
::::
0.28 0.3052

::::::
0.3174 0.2159

::::::
0.2123 0.2249

::::::
0.2068 − p<0.05

:::::::
p < 0.05

:

7 0.7569
::::::
0.7703 0.7182

::::::
0.7517 0.6695

::::::
0.7132 0.9819

::::
0.79 − −

8 0.9117
::::::
0.8976 0.9141

::::::
0.9189 0.8747

::::::
0.8878 0.8394

::::::
0.8524 − −

9 0.9862
:::::
0.9857 0.9669

:::::
0.9628 0.9563

::::
0.953 0.9557

:::::
0.9818 p= 0.16 −

10 0.0415
:::::
0.019 0.1549

::::::
0.1413 0.0942

::::::
0.0732 0.1311

::::::
0.1001 − −

11 0.9325
:::::
0.967 0.9516

::::
0.967 0.9614

:::::
0.9643 0.9488

::::::
0.9635 − p < 0.05

12 0.1393
::::::
0.1483 0.1441

::::::
0.1319 0.1268

::::::
0.1662 0.0287

:
0
:

− −
13 0.8898

::::::
0.8872 0.8864

::::::
0.8953 0.8923

::::::
0.8912 0.9059

::::::
0.9043 p= 0.39 p < 0.05

14 0.7261
::::::
0.7781 0.866

:::::
0.914 0.684

::::::
0.6629 0.7511

::::::
0.7808 − p < 0.05

15 0.0304
::::::
0.0227 0.0599

::::::
0.0546 0.0695

::::::
0.0637 0.0754

::::::
0.0446 − p < 0.05

16 0.9903
:::::
0.9885 0.9918

:::::
0.9915 0.9935 0.9953

:::::
0.9939 − −

17 0.5889
::::::
0.6748 0.5581

::::::
0.6366 0.5766

::::::
0.6043 0.5285

::::::
0.5855 − −

Ensemble 0.6292
::::::
0.6383 0.6437

:::::
0.654 0.6216

:::::
0.626 0.646

:::::
0.639 − −

Table 2. Table comparing the probability of positive slope P (b > 0) for each event given posterior distributions obtained using the time-

dependent AR(1) model. We ran the model using different trends including no trend (except for the intercept), a linear effect, a second order

polynomial and a 2nd order random walk spline. Our results are also compared with the p values obtained from Rypdal (2016) and Boers

(2018).

5 Conclusions

This paper presents

::
In

:::
this

:::::
paper

:::
we

::::::::
introduce a Bayesian framework to analyze early warning signals , using an

:
in

::::
time

:::::
series

::::
data.

:::::::::::
Specifically,

::
we

::::::
define

:
a
:::::::::::::
time-dependent

:
AR(1) process where the lag-one correlation parameter is assumed to increase linearly over time.395

Bayesian inference is obtained using a latent Gaussian model formulation and implemented using the R-INLA framework. In

addition to computing the posterior marginal distribution for all variables and parameters in the model, implementation in the

R-INLA framework grants a number of benefits. First, it provides a great reduction in computational cost, both in terms of

speed and memory . Second, the framework is very versatile and other model components such as trends can be easily added

to the predictor. Third, R-INLA uses posterior prediction to impute missing data automatically. The model has been applied to400

simulated data and shows decent accuracy.
::::
The

::::
slope

::
of

::::
this

::::::::
parameter

::::::::
indicates

:::::::
whether

::
or

:::
not

:::::::
memory

::
is

:::::::::
increasing

:::
and

::::
thus
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:
if
:::::
early

:::::::
warning

::::::
signals

:::
are

:::::::
detected.

::::::
Using

:
a
::::::::
Bayesian

::::::::
approach

:::
we

:::::::::::
automatically

:::::
obtain

::::::::::
uncertainty

:::::::::::
quantification

:::::::::
expressed

::
by

::::::::
posterior

::::::::::
distributions

:::
and

:::::
allow

:::
for

:::::
prior

:::::::::
knowledge

::
to

::
be

:::::::
utilized.

:

To detect early warning signals of DO events we have applied our model to
:::::::::
interstadial

::::::
periods

::
of

:
the raw 5cm NGRIP water

isotope record. This record is sampled evenly in depth, but not in time
:
,
:
requiring us to make some necessary modifications to405

allow for non-equidistant
::::::::::
non-constant

:
time steps.

Using the time-dependent AR(1) model we were unable to detect statistically significant EWS for the ensemble of 17 DO

events, and only detected EWS individually for
::
six

:
5 events using a second-order polynomial detrending. Unlike Ditlevsen and

Johnsen (2010), we find evidence of EWS in some events, corroborating Rypdal (2016) and Boers (2018). We were, however,

unable to conclude that DO events are
::::::::::
individually

::
or generally bifurcation-induced. To better compare with Rypdal (2016) and410

Boers (2018)
:::::
other

::::::
studies, we would have liked to employ a long-range dependent process such as the fGn. However, this task

is more difficult than for the AR(1) process, as necessary modifications have to be made to the model. Moreover, this would

also require working with non-sparse precision matrices which are far more computationally demanding. We did attempt to

implement the time-dependent fGn model presented by Ryvkina (2015), but we were unable to ensure sufficient stability. This

is, however, a very interesting topic for future work.415

Currently, our model can only fit an AR(1) process where the lag-one correlation parameter is expressed as a linear function

::
of

::::
time, which is not realistic. Although this is sufficient for detecting whether or not there has been a statistically significant

increase in EWS
::
are

:::::
EWS

::::::::
expressed

::
by

::
a
:::::
linear

::::
trend, our model is unable to perform predictions or give an indication of when

the tipping point could be reached. More advanced functions for the evolution of the lag-one correlation parameter should be

possible, but would have to be implemented. One possible extension would be to
:::::
include

::
a
:::::
break

::::
point

::::
such

::::
that

:::
the

:::::::
memory

::
is420

:::::::
constant

::
for

:::
all

::::
steps

::::::
before

:::
this

:::::
point,

::::
and

:::::
starts

::::::::
increasing

::
or

:::::::::
decreasing

::::::::::
afterwards.

::
A

::::::
simple

:::::::::::::
implementation

:::
and

:::::::::
discussion

::
of

:::
this

::
is

:::::::
included

:::
in

::::::::
Appendix

:::
D.

:::::::
Another

::::::::
extension

:::::
would

:::
be

::
to

:
formulate a model where the memory parameter follows a

polynomial ϕ(t) = a+ btc, where the exponent term c > 0 is an additional hyperparameter. This would perhaps help give an

indication of the rate of which the correlation has increased. However, when adding more parameters one needs to be careful

to avoid overfitting.425

:::
The

::::::
ability

::
to

::::::
update

::::
prior

::::::
beliefs

::
in

:::::
light

::
of

::::
new

:::::::
evidence

:::::::
presents

::
a
::::
great

::::::
benefit

:::
of

:
a
::::::::
Bayesian

::::::::
approach,

::::
and

::
it

:::::::
presents

::
an

:::::::
intuitive

:::::::::
framework

:::
for

:::::::::
iteratively

:::::::
updating

:::
the

::::::::
posterior

::::::::::
distribution

::
as

::::
new

:::
data

::::::::
becomes

::::::::
available

::
by

:::::
using

:::
the

::::::::
posterior

:::::::::
distribution

::::
from

::::::::
previous

:::::::
analyses

::
as

:::
the

::::
prior

::::::::::
distribution

::
in

:::
the

::
the

::::::::
analysis.

::::
This

:
is
::
of
:::::
great

::::::::
relevance

:::
for

:::::::::
monitoring

:::::::
climatic

::::::
systems

:::::::::
suspected

::
of

::::::::::
approaching

::
a

::::::
tipping

:::::
point.

To make the methodology more accessible we have released the code associated with this model as an R package titled430

INLA.ews. This package performs all analysis and includes functions to plot and print key results from the analysis very

easily. Although this paper focuses on the detection of EWS in DO events observed in Greenland ice core records, our method-

ology is general and the INLA.ews package should be applicable to tipping points observed in other proxy records as well.

We have also implemented the option of including forcing, for which the package will estimate the necessary parameters and

compute the resulting forcing response. The package is demonstrated on simulated data in the appendix.435
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Code and data availability. The code and data sets used for this paper is available through the R-package, INLA.ews, which can be down-

loaded from: github.com/eirikmn/INLA.ews (last access July 30, 2024).

Appendix A:
:::::::::::::
Demonstration

::
of

:::
the

::::::::::
INLA.ews

:::::::
package

:::
We

::::::::::
demonstrate

:::
the

:::::::::::
INLA.ews

:::::::
package

:::
on

::::::::
simulated

::::::
forced

::::
data

::::
with

::::::::::::::
non-equidistant

::::
time

:::::
steps.

::::
The

::::
time

:::::
steps

:::
tk :::

are

:::::::
obtained

::
by

::::::
adding

::::::::
Gaussian

:::::
noise

::::
such

:::
that

::::::::::
t̃k = k+ ξk::::

and
:::::::::
normalized

::::::::::::::::::::
tk = (t̃k − t̃0)/(t̃n − t̃0)::::

such
::::
that

:::::
t0 = 0

:::
and

:::::::
tn = 1.440

:::
We

::::::
assume

::
a

::::
time

:::::::::
dependent

:::::
AR(1)

:::::::
process

::
of

::::::
length

::::::::
n= 1000

:::
for

:::
the

:::::::::::
observations,

::::::::
sampled

::
at

:::::
times

:::::::
t̃1, ..., t̃n.

::::
The

::::::
AR(1)

::::::
process

:::
has

:::::
scale

::::::::
parameter

::::::::
κ= 0.04

:::
and

:::::::::::::
time-dependent

::::::
lag-one

:::::::::
correlation

:::::::::::::
ϕ(t) = a+ btk :::::

given
::
by

::::::
a= 0.3

::::
and

:::::::
b= 0.2.

:::
We

:::
also

:::::::
include

:
a
:::::::
forcing

:::::
F (t),

:::::::
obtained

:::
by

:::::::::
simulation

:::::
from

::::::
another

::::::
AR(1)

:::::::
process

::::
with

::::
unit

:::::::
variance

::::
and

::::::
lag-one

::::::::::
correlation

::::::::
ϕ̃= 0.95.

:::
The

:::::::
forcing

:::::::
response

::
is

:::::::::::
approximated

:::
by

ν(tk) =
σf√
2λ(tk)

tk∑
s=t0

e−λ(tk)(tk−ts)
(
F0 +F (s)

)
,

::::::::::::::::::::::::::::::::::::::::

(A1)445

::::
with

:::::::::
parameters

:::
set

::
to

::::::::
σf = 0.1

:::
and

:::::::
F0 = 0,

::::
and

:::::
added

::
to

:::
the

:::::::::
simulated

:::::::::::
observations.

:::
We

::::::
assign

:::::::::::::
Gamma(1,0.01)

::::::
priors

:::
for

::
the

::::::::
precision

::::::::::
parameters

::
κ

:::
and

:::
κf ,

:::::::
uniform

::::::
priors

::
on

::
b
:::
and

::
a
:::
and

::
a
::::::::
Gaussian

::::
prior

:::::::::
N (0,102)

:::
on

:::
F0.

:::
For

:::::::::::
INLA.ews,

:::::
these

:::::
priors

::::
must

::
be

:::::::::::
transformed

:::
for

:::
the

:::::::::::
unconstrained

::::::::::::::
parameterization

::::::::::::::::::::::::
θ = (logκ,θb,θa, logκf ,F0),:::::

using
:::
the

::::::::::::::::
change-of-variable

:::::::
formula.

:::
The

:::::::::
logarithm

::
of

:::
the

::::
prior

:::::::::::
distributions

:::
are

:::::::
specified

:::
by

:::::::
creating

:
a
:::::::
function

:

450
1:

:::::::
my

:
.
::::
log

:
.
::::::
prior

::::
<-

:::::::::::
function

:
(

::::::
theta

:
)
::
{

2:
:::::::::::::::::

lprior
::
=
:::::::::
dgamma

:
(

:::
exp

::
(

::::::
theta

::::::
[1]),

:::::::
shape

:::
=1,

::::::
rate

::::::
=0.1)

:::
+

:::::::
theta

::::
[1]

::
+
::
#
::::::
kappa

3:
::::::::::::::::

-
::::::
theta

:::
[2]

:::::
-2*::::

log
:::
(1+

::::
exp

::
(-

::::::
theta

::::::
[2]))

:::
+

::
#
:
b

4:
::::::::::::::::

-
::::::
theta

:::
[3]

:::::
-2*::::

log
:::
(1+

::::
exp

::
(-

::::::
theta

::::::
[3]))

:::
+

::
#
:
a

5:
::::::::::::::::::::::

dgamma
:
(

:::
exp

::
(

::::::
theta

::::::
[4]),

:::::::
shape

:::
=1,

::::::
rate

::::::
=0.1)

:::
+

:::::::
theta

::::
[4]

::
+
::
#
:::::::::
kappa_f455

6:
::::::::::::::::::::

dnorm
::
(

::::::
theta

::::
[5],

::::
sd

:::::
=10,

:::::
log

:
=

:::::
TRUE

:
)

::
#
:::
F0

7:
::::::::::::

return
:
(
:::::::
lprior

::
)

8:
::::

}

:::
and

::::::
passing

::
it

:::
into

::::::::::
inla.ews

::::
using

:::
the

:::::::::::
log.prior

::::::::
argument.

:::
The

::::::
AR(1)

:::::
model

:::
and

:::::::
forcing

:
z

::::::
sampled

::
at

::::
time

::::::
points

:::::
time460

:::
can

::
be

:::::
fitted

::
to

:::
the

::::
data

:
y

:::
with

::::::
INLA

::::
using

:::
the

:::::::::::
inla.ews

:::::::
wrapper

:::::::
function:

:

1:
::::::::
results

::::
<-

::::::
inla

:
.
::::
ews

:
(
:::::
data

:
=
:
y
:
,
::::::::::
forcing

:
=
:
z
::
,

::::
log

::
.

::::::
prior

:
=

::
my

:
.
::::
log

:
.
::::::
prior

:
,
::::::::::::
timesteps

::
=

::::
time

::
)

:::
The

::::::::::
inla.ews

:::::::
function

::::::::
computes

:::
all

::::::::
posterior

:::::::
marginal

:::::::::::
distributions,

:::::::::
computes

::::::::
summary

::::::::
statistics,

:::::::
formats

:::
the

::::::
results465

:::
and

::::::
returns

::
all

::::::::::
information

:::
as

::
an

::::::::::
inla.ews

:::
list

::::::
object.

::::::::
Summary

:::::::
statistics

::::
and

::::
other

:::::::::
important

:::::
results

::::
can

::
be

::::::::
extracted

:::::
using

::
the

:::::::::
summary

:::::::
function:

:

1:
:
>
::::::::::
summary

:
(
::::::::
results

::
)
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2:470

3:
:::::
Call

:
:

4:
:::::
inla

:
.
::::
ews

:
(

:::::
data

::
=
::
y
::
,

:::::::::
forcing

:::
=

:::::::::
forcing

:
,
:::::
log

:
.
::::::
prior

::
=

::
my

:
.
::::
log

:
.
::::::
prior

:
,
::::::::::::
timesteps

:
=
:::::
time

:
)

5:

6:
:::::
Time

::::::
used

:
:

7:
::::::::::::

Running
::::::
INLA

::::::
Post

:::::::::::::
processing

:::::::::::::::::::
Total475

8:
::::::::::::::::::

503.1737
:::::::::::::::::::

151.8262
:::::::::::::::::::

655.5909

9:

10:
:::::::::::
Posterior

:::::::::::
marginal

::::::::::::::::
distributions

:::::
for

:::::
all

:::::::::::::
parameters

::::::
have

::::::
been

:::::::::::
computed

:
.

11:

12:
::::::::
Summary

::::::::::::::
statistics

::::
for

::::::::
using

::::
ar1

::::::::
model

::
(
:::::
with

:::::::::
forcing

:::
):480

13:
::::::::::::::::::

mean
::::::::

sd
::::::::
0.025

::::::
quant

::::
0.5

::::::
quant

::::::::
0.975

::::::
quant

14:
:
a
:::::::::::::::::

0.3065
::::::::
0.0546

::::::::::::::
0.1974

::::::::::
0.3072

::::::::::::::
0.4148

15:
:
b
:::::::::::::::::

0.1929
::::::::
0.0615

::::::::::::::
0.0524

::::::::::
0.2018

::::::::::::::
0.2878

16:
::::::
sigma

::::::::::::
7.0249

::::::::
0.4522

::::::::::::::
6.3420

::::::::::
6.9522

::::::::::::::
8.0780

17:
::::::::
sigma_f

::::::::::
0.1000

::::::::
0.0096

::::::::::::::
0.0862

::::::::::
0.0982

::::::::::::::
0.1229485

18:
::
F0

::::::::::::::::
-0.0047

::::::::
0.0223

::::::::::::::
-0.0514

::::::::::
-0.0034

::::::::::::::
0.0355

19:

20:
:::::::
Memory

::::::::::::
evolution

::::
is

:::::::::
sampled

::::
on

::::
an

::::::::::::
irregular

::::::
grid

:
.

21:
::::::::
Summary

:::::
for

:::::::
first

:::::
and

::::::
last

:::::::
point

::::
in

:::::::::::
smoothed

:::::::::::::
trajectory

::
(
::
a

:
+

:
b
:*:::::
time

::
):

22:
:::::::::::::::::

mean
::::::::

sd
:::::::
0.025

::::::
quant

:::::
0.5

::::::
quant

:::::::
0.975

::::::
quant490

23:
:::::
phi0

:::
[1]

:::::::::
0.3065

::::::::
0.0546

:::::::::::::
0.1974

:::::::::::
0.3072

:::::::::::::
0.4148

24:
:::::
phi0

:
[
:
n
:
]
:::::::::
0.4980

::::::::
0.0587

:::::::::::::
0.3667

:::::::::::
0.5039

:::::::::::::
0.5945

25:
:::::
Mean

:::::
and

::::
95%

:::::::::::
credible

::::::::::::
intervals

:::::
for

::::::::
forced

:::::::::::
response

::::::
have

::::::
also

::::::
been

:::::::::::
computed

:
.

26:

27:
:::::::::::::
Probability

::::
of

:::::::::::
positive

:::::::
slope

::
'
:
b
::
'

:::
is

::::::::::::
0.9954214495

28: %DIF >

29:
::::::::::
Marginal

::::
log

::
-

::::::::::::
Likelihood

:
:

:::::::::::
-3088.35

:::
The

::::::
results

::::
may

::
be

::::::::
displayed

::::::::::
graphically

:::::
using

:::
the

:::
plot

::::::::
function:

500
1:

:
>
::::::
plot

:
(
:::::::::
results

:
)

:::
For

:::
this

:::::::
example

:::
the

:::::::::
estimated

:::::::
memory

::::::::
evolution

:::
and

:::::::
forcing

:::::::
response

:::
are

::::::::
presented

::
in
::::
Fig.

::::
A1.

:::
The

::::::::
estimated

::::::::::
parameters

::
are

:::::::::::
summarized

::
in

:::::
Table

:::
A1.

:
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:::::::
Parameter

: ::::
True

::::
value

:::::::
Posterior

:::::::
marginal

::::
mean

:::
95%

:::::::
credible

::::::
Interval

:
a
: ::

0.3
: ::::

0.306
: :::::

(0.197,
:::::
0.415)

:

:
b

::
0.2

::::
0.193

: :::::
(0.052,

:::::
0.288)

:

:
σ
: :

5
: ::::

7.025
: :::::

(6.342,
:::::
8.078)

:

::
σf: ::

0.1
: ::

0.1
: :::::

(0.086,
:::::
0.123)

:

::
F0: :

0
: :::::

-0.005
::::::
(-0.051,

:::::
0.036)

Table A1.
::::::::
Underlying

:::::
values

::::
used

::
for

::::::::
simulating

:::
the

::::
data,

::::
along

::::
with

:::::::
estimated

:::::::
posterior

:::::::
marginal

:::::
means

:::
and

::::
95%

::::::
credible

:::::::
intervals

::
for

:::
all

::::::::::::
hyperparameters.

:::::::::
Combining

::::::
forcing

::::
with

:::::::
irregular

::::
time

:::::
steps

:::::::
requires

::::
more

::::::::::::::
computationally

:::::::
intensive

::::::::::
calculations

::::::
within

::::::::::
rgeneric,

::::::
which505

:::::::
increases

:::
the

::::
total

::::::::::::
computational

::::
time

::
to

::::::
around

:::
ten

::::::::
minutes,

::::::::
compared

::
to

::
10

:::::::
seconds

:::::
using

:::
any

:::::
other

::::::
model

:::::::::::
configuration.

:::
To

:::::
reduce

::::
this

:::
we

::::
have

:::::::::::
implemented

:::
the

::::::
model

::
in

::::::::::
cgeneric

:::::
which

::::::
grants

:
a
:::::::::
substantial

:::::
boost

::
in
::::::
speed.

::::::::
However,

::::
this

:::::::
requires

:::::::::::
pre-compiled

:
C

::::
code

::::
using

:::::
more

::::::::
simplistic

:::::
priors

:::
for

:::
the

::::::::::
parameters,

:::::
which

::::::
cannot

::
be

:::::::
changed

:::::::
without

::::::::::
recompiling

:::
the

::::::
source

::::
code.

:::::
Thus

::::
there

:::::
could

:::::::::
potentially

:::
be

:
a
:::::
small

::::
loss

::
in

:::::::
accuracy

::
of

:::
the

:::::
fitted

::::::
model

:
at
:::

the
::::
cost

::
of

:::
the

::::::::
improved

::::::
speed.

:::
To

:::
use

:::
the

::::::::::
cgeneric

::::::
version

::
of

:::
the

::::::
model,

:::
set

:::::::::::::::::::
do.cgeneric=TRUE

::
in

::
the

:::::::::::
inla.ews

:::::::
function

::::
call.510

Appendix B:
:::::
Latent

:::::::::
Gaussian

::::::
model

::::::::::
formulation

::::::
Section

:::
3.1

::::::
defines

:::
our

::::::
model

:::::
within

::
a
::::::::
Bayesian

:::::::::
framework.

:::::::::
However,

::
in

::::
order

:::
for

:::
the

::::::
model

::
to

::
be

::::::::::
compatible

::::
with

:::::
INLA

:::
we

::::::
require

::::
some

::::::::::::
modifications

::::
such

::::
that

::
it

:
is
:::::::::

expressed
::
in

:::::
terms

::
of

::
a
:::::
latent

::::::::
Gaussian

::::::
model.

::::::
Latent

::::::::
Gaussian

::::::
models

:::::::::
represents

:
a
::::::
subset

::
of

::::::::::
hierarchical

::::::::
Bayesian

:::::::
models

:::::
which

::::
are

::::::
defined

::
in
:::::

three
::::::
stages.

:::::
First,

:::
the

:::::::::
likelihood

:::::::
function

:::
is

::::::::
specified.

::::
The

::::::::
likelihood

::
is

::::
then

::::::::
expressed

:::::
using

::
a

::::
latent

:::::
field

::
of

:::::::::
unobserved

::::::::
Gaussian

::::::::
variables

::::::::::::::
w = (w1, ...,wn)::::::

whose
:::::::::::
specification

:::::
forms515

::
the

::::::
second

::::::
stage.

:::::
These

::::::
depend

::
on

::
a
::::::
number

::
of
::::::::
unknown

:::::::::::::::
hyperparameters.

:::
The

::::
final

:::::
stage

::
is

::
to

:::::
assign

::::
prior

:::::::::::
distributions

::
to

:::
the

::::::::::::::
hyperparameters.

::::
Since

:::
our

::::::
model

::
is

::::::::
originally

:
a
:::
two

:::::
stage

::::::
model,

:
a
::::::::
Gaussian

::::::::
likelihood

::::
that

::::::
depend

::
on

:::::
some

:::::::::
parameters

::::::
without

:::
an

::::::::::
intermediate

::::
latent

:::::
field

::
w,

:::
we

:::::::
reshape

:::
this

::::
into

:::::
three

:::::
stages

::
by

::::::::
defining

:::
the

::::::
former

::::::::
likelihood

::
as

:::
the

:::::
latent

:::::
field

::
w

:::
and

:::
the

:::::::::::
observations

::
x

::
to

::
be

:::
the

:::::
latent

::::
field

::::
with

:::::
some

::::::::
additional

:::::::::
negligible

::::
noise

:
520

π(x |w,θ) =

n∏
i=1

N
(
wi(θ),σ

2
x

)
,

:::::::::::::::::::::::::::

(B1)

:::::
where

:::::::
σ2
x ≈ 0,

:::::::::
essentially

:::::
stating

::::
that

:::::::
x≈w.

::::
This

::::
trick

::::
does

:::
not

::::::
change

::::
our

::::::
model,

:::
but

::::::
creates

:
a
::::::::::::
reformulation

::
of

:::
the

::::::
model

:::
into

::
a
:::::

latent
::::::::
Gaussian

::::::
model

:::::
where

:::
the

:::::
latent

::::
field

::
w

::
is
:::
the

::::
prior

:::
of

:::
the

::::
mean

:::
of

:::
the

:::::::::
likelihood.

:::
The

:::::
latent

::::::::
variables

::
w

::::::
follows

::
a
::::::::::
multivariate

::::::::
Gaussian

::::::
process

:

w | θ ∼N
(
µ,Q(θ)−1

)
,

::::::::::::::::::::
(B2)525
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Figure A1.
::::::
Panel(a)

:::::
shows

:::
the

:::::::
simulated

:::
data

:::::
(gray)

:::::
where

:
a
::::::::
simulated

:::::
forcing

:::::::
response

:::::
(black)

:::
has

::::
been

:::::
added.

::::
Panel

:::
(b)

::::
shows

:::
the

:::::::
posterior

::::::
marginal

:::::
mean

:::::
(blue)

:::
and

::::
95%

::::::
credible

::::::
intervals

:::::
(red)

::
of

::
the

::::::
forcing

:::::::
response.

:::::
Panel

::
(c)

:::::
shows

:::
the

:::::::
posterior

:::::::
marginal

::::
mean

::
of

:::
the

::::::
lag-one

::::::::
correlation

::::::::
parameter

::
of

::
the

::::::::
simulated

:::
data

::::::
(gray).

:::
The

:::::::::
fluctuations

:::
are

:::::
caused

::
by

:::::
being

:::::::
sampled

:
at
::::::::::
non-constant

::::
time

::::
steps.

::::
The

:::::::
posterior

::::::
marginal

:::::
mean

::
of

::
the

:::::::
smoother

::::::::
evolution

::
of

:::::
a+ bt

:
is
:::::::
included

:::::
(blue),

::::
along

::::
with

::::
95%

::::::
credible

:::::::
intervals

::::
(red)

:::
and

::
the

::::
true

:::::
values

::::::
(white).

26



:::::
where

:::
the

::::::::
precision

:::::
matrix

::
Q

::
is

:::::
given

::
by

::::
(11)

:::
and

::
µ
:::::::
describe

::::
any

:::::::
potential

:::::
trends

:::
as

:::::::
specified

::
in

:::
the

::::::
model.

:::
We

::::
will

:::
not

::::::
discuss

::::
such

:::::
trends

::::
here.

::::::
When

::::
using

::::::
INLA

:
it
::
is

:::::::
essential

::::
that

:::
the

::::::::
precision

:::::
matrix

::
is

:::::
sparse

::
in
:::::
order

::
to

:::::
retain

::::::::::::
computational

:::::::::
efficiency.

::::
Since

::::
the

:::::::
Gaussian

:::::::
process

::::
now

:::::::
describe

::::
the

:::::
latent

:::::::
variables

:::::::
instead

::
of

:::
the

:::::::::
likelihood,

:::
the

::::::::::
parameters

::
θ

:::::
which

::::::
govern

:::
w

:::
will

::::
now

:::
be

:::::
called

::::::::::::::
hyperparameters,

:::::
since

::::
they

:::
are

:::
the

:::::::::
parameters

:::
of

:
a
::::
prior

:::::::::::
distribution.

:::
The

:::::
final

:::
step

:::
of

:::::::
defining

:::
the

:::::
latent530

:::::::
Gaussian

::::::
model

::
is

::
to

::::::
assign

::::
prior

:::::::::::
distributions

::
to

:::
the

:::::::::::::::
hyperparameters,

:::
but

:::::
since

:::::
INLA

:::::::
prefers

::
to

:::::
work

::::
with

::::::::::::
unconstrained

:::::::
variables

:::::
these

:::
are

:::::::
specified

:::::::
through

:::
the

:::::::::::::::
parameterizations

::::::
derived

::
in

:::::::
Section

:
3
:

θ ∼ π(logκ)π(θb)π(θa | θb).
:::::::::::::::::::::::

(B3)

:::::::::::
Transforming

:::::
priors

::::::
chosen

:::
for

::::::
(κ,b,a)

::
to

:::
the

::::::::::::
corresponding

:::::
priors

::::::
chosen

::
for

::::::::::::
(logκ,θb,θa) :::

can
::
be

::::
done

:::::
using

:::
the

::::::::::::::::
change-of-variables

:::::::
formula.535

:::
We

::::
want

::
to

:::::::
estimate

:::
the

::::::::
marginal

:::::::
posterior

::::::::::
distribution

:::
for

::
all

::::::::::::::
hyperparameters

::::
and

::::
latent

:::::::::
variables.

:::::
These

:::
are

::::::::
computed

:::
by

::::::::
evaluating

:::
the

::::::::
integrals

π(wi | x)
:::::::

=

∫
π(wi | θ,x)π(θ | x)dθ

::::::::::::::::::::::

(B4)

π(θj | x)
:::::::

=

∫
π(θ | x)dθ−j .

:::::::::::::::

(B5)

::
Of

:::::
these

::
we

:::
are

::::::::
primarily

:::::::::
concerned

::::
with

:::
the

::::
latter,

:::::
since

:::
the

:::::
latent

::::
field

:::
will

::::
very

::::::
similar

::
to

:::
the

::::::::
observed

:::::
values

::
x

::::
since

:::::::
σx ≈ 0.540

::
To

::::::::
compute

:::::
these

:::::::
integrals

::::::
INLA

::::
uses

::::::
various

:::::::::
numerical

:::::::::::
optimization

:::::::::
techniques

:::
to

:::::
obtain

:::
an

::::::::::
appropriate

:::::::::::::
approximation.

::::
Most

::::::::::
importantly

::
is

:::
the

:::::::
Laplace

::::::::::::
approximation

:::::::::::::::::::::::
(Tierney and Kadane, 1986)

:
,
:::::
which

::
is

::::
used

::
to

:::::::::::
approximate

:::
the

::::
joint

::::::::
posterior

:::::::::
distribution

:

π(θ | x)≈ π(w,θ,x)

πG(w | θ,x)

∣∣∣∣
w=w∗(θ)

,

::::::::::::::::::::::::::::

(B6)

:::::
where

::::::
w∗(θ)

::
is

:::
the

::::
mode

:::
of

:::
the

:::::
latent

::::
field

:::::
w(θ)

:::
and

:::::::::::
πG(w | θ,x)

::
is

:::
the

::::::::
Gaussian

::::::::::::
approximation

::
of545

π(w | θ,y)∝ π(w | θ)π(x |w,θ).
::::::::::::::::::::::::::::

(B7)

:::
The

:::::::::::
methodology

::
is

:::::::
available

:::
as

::
the

:::::
open

:::::
source

::
R

:::::::
package

::::::::
R-INLA,

::::::
which

:::
can

::
be

::::::::::
downloaded

::
at

:
www.r-inla.org

::::
(last

::::::
access:

July 30, 2024
:
).
:

::::
Since

:::::
there

:::
are

:::
no

::::::
model

::::::::::
components

:::::::
already

:::::::::::
implemented

:::
for

::::::::
R-INLA

:::
that

:::::
meet

:::
our

::::::::::::
specifications

:::
we

:::
are

:::::::
required

:::
to

:::::::::
implement

:::
the

:::::
model

::::::::::
components

::::::::
ourselves

:::::
using

:::
the

:::::::
custom

::::::::
modeling

:::::::::
framework

::
of

:::::::
R-INLA

::::::
called

::::::::::
rgeneric.

:::::
This

::::
adds550

::::
more

:::::
work

:::
and

:::::::::
complexity

::
in

::::::::::::
implementing

:::
our

::::::
model,

:::
and

::::
adds

::
an

:::::::::
additional

::::::
barrier

::
to

:::::
further

:::::::::
adoptation

::
of

:::
our

::::::::::::
methodology,

:::::
which

::::::::
motivated

:::
us

::
to

:::::
create

:
a
:::::

more
:::::::::::
user-friendly

::
R

:::::::
-package

:::::
titled

::::::::::
INLA.ews,

::::::::
available

::
at www.github.com/eirikmn/INLA.

ews
:::
(last

::::::
access:

:
July 30, 2024

:
).
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Appendix C: Comparison of different detrending approaches

Since there is no clear choice of forcing for DO events, and not all data windows appear stationary, we assume that there is555

some unknown trend component reflected in the data. This trend needs to be managed or the estimates of other components will

suffer. Often, this is done by first detrending the data, before the parameters of interest are estimated. This
:::::
bears

:::
the risk that

variation caused by the time-dependent noise component may be attributed to the trend, and it is therefore better to estimate

both the trend and noise components simultaneously. This can be achieved using INLA, which supports many common model

components. We perform the same analysis on the data windows preceding all 17 DO events using four different trend models.560

– No trend: The data is explained using the time-dependent AR(1) noise component εt and an intercept β0 only,

yt ∼ β0 + εt. (C1)

We only expect this to provide accurate results for stationary data windows. The results in this paper can be recreated

using the INLA.ews package. Let y denote the δ18O ratios and time denote the GICC05 chronology, then the model

can be fitted by
::::::::
prompting

:
565

results = inla.ews(data=y, timesteps=time, formula = y ~ 1)

To omit the intercept term set the formula argument to formula = y ∼ -1 instead. The rgeneric model com-

ponent corresponding to the time-dependent AR(1) noise is added automatically.
::
To

:::::::
improve

:::::::::
numerical

:::::::::::
convergence,

::
we

:::::::
perform

:::
the

:::::::
analysis

::
in
:::::::::
iterations,

::::::::
restarting

::::
from

:::
the

::::::::
previous

:::::
found

::::::
optima

::::
with

:::::::
reduced

::::
step

:::::::
lengths.

::::
This

:::
can

:::
be

:::::::
specified

:::::
using

:::
the

::::::::::
stepsize

:::::::::
argument

::
in

:::
the

::::::::::
inla.ews

::::::::
function.

::::
The

:::::
length

::
of
::::

this
::::::::
argument

::::::::::
corresponds

:::
to

:::
the570

::::::
number

::
of

:::::::::
iterations.

::::
Here

:::
we

::::
used

:::::::::::::::::::::::::::::::::::::::::
stepsizes = c(0.01, 0.005, 0.001).

– Linear trend: We incorporate an additional linear effect β1 in the model,

yt ∼ β0 +β1t+ εt. (C2)

This can capture linear increases, but will not be able to model any non-linearity in the model
::::
data. This model can be

fitted using575

results = inla.ews(data=data.frame(y=y, trend1=time_norm),

timesteps=time, formula = y ~ 1 + trend1)

where trend1 = time_norm is the covariate corresponding to the normalized time steps,

time_norm = (time-time[1])/(time[n]-time[1])
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– 2nd order polynomial: We add another effect β2 which allows for non-linearity to be described using a second order580

polynomial trend,

yt ∼ β0 +β1t+β2t
2 + εt. (C3)

This model can be fitted using

results = inla.ews(data=data.frame(y=y,trend1=time_norm,trend2=time_norm^2),

timesteps=time, formula = y ~ 1 + trend1 + trend2)585

where trend2 specifies a linear response to the covariates defined as the square of the normalized GICC05 chronology

trend2=time_norm**2.

– 2nd order random walk (RW2): We use a random effect f(t) described by a continuous 2nd order random walk to

describe the trend,

yt ∼ f(t)+ εt. (C4)590

This is a continuous extension (Lindgren and Rue, 2008) of a stochastic spline model which assumes that the second-

order increments are independent Gaussian processes

xi − 2xi+1 +xi+2 ∼N (0,σ2
RW2). (C5)

This model is able to capture more general non-linearities compared to the 2nd degree polynomial trend, but makes the

model less interpretable. Similar as in R-INLA, the RW2 model is specified using the following call595

results = inla.ews(data=data.frame(y=y, idx=time,

timesteps=time, formula = y ~ 1 + f(idx, model="crw2"))

where idx specifies the time steps of the continuous RW2 trend.

In Table 2 we present the estimated posterior probability of a positive trend, P (b > 0 | y), compared to the corresponding

p-values by Rypdal (2016) and Boers (2018). We show the fitted trends for each data interval in Fig C1. We observe that the600

models tend to agree, with some exceptions where the assumed trend is unable to capture the variation of the data. Although the

RW2 trend is the more
::::
most

:
flexible model it appear

::::::
appears to exhibit irregular fluctuation for several events. The second order

polynomial trend appear
::::::
appears to be sufficiently flexible for all events, and provides a much smoother and more interpretable

fit.

Appendix D:
::::::::::
Break-point

::
in

::::::::
memory

::::::::
evolution605
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Figure C1. δ18O proxy data from the NGRIP record (gray), with Greenland stadial phases highlighted. The posterior marginal mean (blue)

and 95% credible intervals (red) of the fitted trends are included for each event.
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::::
Early

:::::::
warning

::::::
signals

:::
are

:::::
most

:::::
easily

:::::::::
detectable

::::::
shortly

:::::
before

::
a
:::::::::
bifurcation

:::::
point.

::
If
:::
the

::::::
dataset

::::::
covers

:
a
:::::
much

::::::
larger

::::::
period,

::
for

::::::
which

::::
most

::
of

::
it

::
is

::::::::
stationary,

::
it

:::::
could

::
be

:::::
more

::::::
difficult

:::
for

:::
the

:::::::::::::
time-dependent

::::::
AR(1)

:::::
model

::
to

:::::
detect

:::::
early

:::::::
warning

::::::
signals

:
if
::::
they

:::
are

:::::::::
observable

::::
only

:::
for

:
a
:::::
much

:::::::
smaller

:::::
subset

::
of
:::
the

:::::
data.

::
To

::::::::::::
accommodate

:::
this

::::
one

:::::
could

:::
add

:
a
:::::::::::
break-point,

:
a
:::::
point

::
in

::::
time

:::::
where

:::
the

::::::
lag-one

::::::::::
correlation

::::::::
transitions

:::::
from

:::::::
constant

::
to

:::::::
linearly

:::::::::
increasing.

:::
Let

::
tbp::::::

denote
::
a

::::::::::
break-point,

:::
the

::::::
lag-one

:::::::::
correlation

:::::::::
parameter

::
is

::::
then

::::::
defined

:::
by610

ϕ(t) =

a, t≤ tbp

a+ b
1−tbp

(t− tbp) t > tbp

.

::::::::::::::::::::::::::::::

(D1)

:::
For

:::::::
stability,

:::
we

::::::::
constrain

:::
the

:::::::::
break-point

:::::::::
parameter

::::
using

::::::::::::::
parameterization

:::::::::::::::::::::
θbp = 1/(1+ exp(−tbp)),:::::

such
:::
that

::::::::::
tbp ∈ (0,1).

::::
This

:::::
model

::
is

:::::::::::
demonstrated

:::
by

:::::
fitting

::
it

::
to

::::::::
simulated

::::
data

:::::
where

::::::::
tbp = 0.5.

::::
The

::::::
results

:::
are

::::::::
presented

:::::::
visually

::
in

:::
Fig.

::::
E1.

Appendix E: Demonstration of the INLA.ews package

We demonstrate the INLA.ews package on simulated forced data with non-equidistant time steps. The time steps tk are615

obtained by adding Gaussian noise such that t̃k = k+ ξk and normalized tk = (t̃k − t̃0)/(t̃n − t̃0) such that t0 = 0 and tn = 1.

We assume a time dependent AR(1) process of length n= 1000 for the observations, sampled at times t1, ..., tn. The AR(1)

process has standard deviation σ = 5 and time-dependent lag-one correlation ϕ(t) = a+ btk given by a= 0.3 and b= 0.2. We

also include a forcing F (t), obtained by simulation from another AR(1) process with unit variance and ϕ̃= 0.95. The forcing

response is approximated by620

µ(tk) =
σf√
2λ(tk)

tk∑
s=t0

e−λ(tk)(tk−ts) (F0 +F (s)) , (E1)

with parameters set to σf = 0.1 and F0 = 0, and added to the simulated observations. The AR(1) model and forcing z sampled

at time points time can be fitted to the data ywith INLA using the inla.ews wrapper function:

1: results <- inla.ews(data=y, forcing=z, formula=y ~ -1, timesteps=time)625

The inla.ews function computes all posterior marginal distributions, computes summary statistics, formats the results 390

and returns all information as an inla.ews list object. Summary statistics and other important results can be extracted using

the summary function:
630

1: > summary(results)

2: -

3: Call:

4: inla.ews(data = y, forcing = z, timesteps = time, formula = y ~ -1)
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5: -635

6: Time used:

7: Running INLA Post processing Total

8: 616.7390 142.4620 759.6259

9: -

10: Posterior marginal distributions for all parameters have been computed.640

11: -

12: Summary statistics for using ar1 model (with forcing):

13: mean sd 0.025quant 0.5quant 0.975quant

14: a 0.2938 0.0353 0.2279 0.2927 0.3672

15: b 0.2127 0.0449 0.1350 0.2087 0.3091645

16: sigma 7.1593 0.3223 6.5160 7.1651 7.7789

17: sigma_f 0.1019 0.0055 0.0910 0.1019 0.1127

18: F0 -0.0036 0.0202 -0.0453 -0.0028 0.0338

19: -

20: Memory evolution is sampled on an irregular grid.650

21: Summary for first and last point in smoothed trajectory (a+b*time):

22: mean sd 0.025quant 0.5quant 0.975quant

23: phi0[1] 0.2938 0.0353 0.2279 0.2927 0.3672

24: phi0[n] 0.5060 0.0366 0.4370 0.5050 0.5798

25: Mean and 95% credible intervals for forced response have also been computed.655

26: -

27: Probability of positive slope is 0.9999925

28: -

29: Marginal log-Likelihood: -3090.02660

The results may be displayed graphically using the plot function:

1: > plot(results)

For this example the estimated memory evolution and forcing response is included in Fig. A1. The estimated parameters665

are summarized in Table A1.

Combining forcing with irregular time steps requires more computationally intensive calculations within rgeneric, which

increases the total computational time to around ten minutes, compared to 10 seconds using any other model configuration. To

reduce this we have implemented the model in cgeneric which grants a substantial boost in speed. However, this requires

pre-compiled C code using more simplistic priors for the parameters, which cannot be changed without recompiling the source670
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Figure E1. Panel (a) shows the posterior marginal mean of the lag-one correlation parameter of the simulated data (gray
:::

black) . The

fluctuations are caused by being sampled
:::
with

::
a
:::::::::
break-point

::::::
located at non-constant time steps

:::::
t= 0.5. The posterior marginal mean of

:::::
shaded

::::
gray

:::
area

:::::::
describes the smoother evolution of a+ bt is included (blue), along with 95% credible intervals (red) and

::::::
standard

:::::::
deviation

:::::
derived

::::
from

:::::
using the true values(white). Panel (b) shows the simulated observations (gray) along with the posterior marginal mean

:::::
means

(blue) and 95% credible intervals (red)of ,
::::
with the forcing response

:::
true

::::::
memory

:::::::
evolution

::::::
(black).

code. Thus there could potentially be a small loss in accuracy of the fitted model at the cost of the improved speed. To use the

cgeneric version of the model, set do.cgeneric=TRUE in the inla.ews function call.

Parameter True value Posterior marginal mean 95% credible Interval a 0.3 0.294 (0.228, 0.367) b 0.20.213 (0.135, 0.309) σ

5 7.159 (6.516, 7.779) σf 0.1 0.102 (0.091, 0.113) F0 0 -0.004 (-0.045, 0.034) Underlying values used for simulating the data,

along with estimated posterior marginal means and 95% credible intervals for all hyperparameters.675
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