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Abstract. Drought events have been linked with the enhancements of organic aerosols (OA), but the mechanisms 7 

have not been comprehensively understood. This study investigates the relationships between the monthly 8 

standardized precipitation–evapotranspiration index (SPEI) and surface OA in the contiguous United States 9 

(CONUS) during the summertime from 1998 to 2018. OA under severe drought conditions shows a significant 10 

increase in mass concentrations across most of the CONUS relative to non-drought periods with the Pacific 11 

Northwest (PNW) and Southeastern United States (SEUS) experiencing the highest average enhancement of 12 

1.79 µg m−3 (112 %) and 0.92 µg m−3 (33 %), respectively. In the SEUS, a linear regression approach between OA 13 

and sulfate was used to estimate the epoxydiols-derived secondary organic aerosol (IEPOX SOA), which is the 14 

primary driver of the OA enhancements under droughts due to the simultaneous increase in biogenic volatile organic 15 

compounds (VOCs; such as isoprene and monoterpene) emissions and sulfate. The rise of sulfate is mainly caused 16 

by the reduced wet deposition because of the up to 62% lower precipitation amount. In the PNW, OA enhancements 17 

are closely linked to intensified wildfire emissions, which raise OA mass concentrations to be four to eight times 18 

higher relative to non-fire conditions. All ten Earth system models participating in the sixth phase of the Coupled 19 

Model Intercomparison Project (CMIP6) can capture the slopes between SPEI and OA in the PNW with CESM2-20 

WACCM and GFDL-ESM4 performing the best and worst in predicting the OA enhancement under severe 21 

droughts. However, all models significantly underestimate the OA increase in the SEUS with Nor-ESM2-LM and 22 

MIRCO6 showing relatively better performance. This study reveals the key drivers of the elevated OA levels under 23 

droughts in the CONUS and underscores the deficiencies of current climate models in their predictive capacity for 24 

assessing the impact of future droughts on air quality.  25 

1. Introduction 26 

Drought events, marked by prolonged periods of water scarcity and precipitation deficits, have profound impacts on 27 

the hydrological cycle, ecosystems, and society (Wilhite et al., 2007). The contiguous United States (CONUS) is 28 

especially prone to droughts, and recent years have witnessed an escalation in both the frequency and severity of 29 

drought episodes across various regions (Leeper et al., 2022; Strzepek et al., 2010). These drought events are 30 

intricately linked to the modifications in atmospheric processes, such as emission, production, transport, and 31 

deposition, which can extend beyond the immediate hydrological impacts with far-reaching implications for air 32 
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quality. Specifically, organic aerosol (OA), a major component of the particulate matter with an aerodynamic 33 

diameter less than or equal to 2.5 μm (PM2.5), emerges as a critical air quality concern influenced by the complex 34 

interactions between drought-induced meteorological conditions and biogeochemical processes. 35 

OA can be directly emitted into the atmosphere through combustion activities, such as transportation fuel and 36 

biomass burning. This kind of OA is called primary organic aerosol (POA), whereas secondary organic aerosol 37 

(SOA) is produced by the oxidation of volatile organic compounds (VOCs). The intricate interplay between drought 38 

and OA dynamics involves complex feedback mechanisms. Biogenic isoprene, mainly emitted by terrestrial 39 

vegetation, is an important precursor of SOA and is highly sensitive to drought conditions. Both laboratory and field 40 

measurements have shown that biogenic emissions of isoprene will increase at the initial stage of drought 41 

development primarily due to temperature stimulus but drop eventually under prolonged severe drought limited by 42 

soil water availability (Pegoraro et al., 2005; Brilli et al., 2007; Potosnak et al., 2014). The abnormally high 43 

temperature and low humidity under droughts can enhance the oxidation of OA (Maria et al., 2004; Yli-Juuti et al., 44 

2021), while low cloud water content lowers the aqueous SOA formation (Brégonzio-Rozier et al., 2016; Tsui et al., 45 

2019), leading to compensating changes in the mass and hygroscopicity of OA. Aerosols are most effectively 46 

removed by wet scavenging, which will be reduced under lower rainfall intensity and frequency (Dawson et al., 47 

2007; Fang et al., 2011). In addition, dry conditions can trigger large and high-intensity wildfires, emitting more 48 

POA and VOC precursors into the atmosphere (Ruffault et al., 2018; Taufik et al., 2017). The interactions of these 49 

factors underscore the need for a comprehensive understanding of the mechanisms driving variations in OA during 50 

drought events. 51 

OA, due to its fine particulate nature and diverse chemical composition, exerts significant adverse effects on climate 52 

and human health. OA is found to be associated with a higher county-level cardiorespiratory mortality rate than 53 

other major PM2.5 components, such as sulfate, ammonium, and nitrate (Pye et al., 2021). OA can scatter solar 54 

radiation, form cloud condensation nuclei, and affect cloud droplet concentrations, posing big uncertainties on 55 

radiative forcing and climate feedback (Carslaw et al., 2013; Lee et al., 2016). The coupled chemistry-climate 56 

models and Earth system models (ESMs) are fundamental tools for studying global warming and the accuracy of 57 

OA simulations in these models are crucial constraints on their credibility in climate change simulation and 58 

projection (Gomez et al., 2023; Thornhill et al., 2021). The Coupled Model Intercomparison Project Phase 6 59 

(CMIP6), containing the new generation of ESMs with interactive aerosol and gas chemistry implemented (Turnock 60 

et al., 2020), provides a valuable opportunity to evaluate the simulated OA and its response to drought, which is 61 

projected to be more frequent in the future (Cook et al., 2018) 62 

Several case studies have focused on the impacts of droughts on the concentrations and speciation of PM2.5 in the 63 

CONUS by calculating the differences between drought and non-drought years (Wang et al., 2015; Borlina and 64 

Rennó, 2017; Zhao et al., 2019). Wang et al. (2015) and Zhao et al. (2019) compared the concentrations of PM2.5 65 

and its compositions in the southern/southeastern U.S. during the severe drought in the 2011 summertime against the 66 

non-drought year of 2010 and 2013, respectively. They show that PM2.5 has a respective enhancement of 47% and 67 
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65% with the largest contribution from the increase of organic carbon (OC) by 119% and 117%. Following OC, 68 

sulfate in the southeast US is enhanced by 84% during the 2011 drought relative to 2013. However, fewer studies 69 

have carried out long-term analyses, which can help derive a more robust drought-aerosol association than case 70 

studies. Wang et al. (2017) performed a 25-year analysis during the growing season (March-October) from 1990 to 71 

2014 and found that, on a monthly scale, the overall 17% enhancement of PM2.5 in the CONUS is mainly attributed 72 

to the increase of OA, sulfate, and dust. Each of these species has a unique spatial pattern in their response to 73 

droughts, which warrants a further subregional analysis to reveal the processes causing such spatial distribution 74 

discrepancy. 75 

In this study, we focus on the changes in OA under droughts over the CONUS during the study period of 76 

summertime from 1998 to 2018. Spatial patterns of the responses of OA to droughts will be explored, followed by a 77 

regional analysis focusing on the southeastern US (SEUS) and Pacific Northwest (PNW) where the highest 78 

responsive rates of OA to droughts are found. The processes responsible for the increase of OA in these regions will 79 

be discussed. At last, the observed drought-OA relationships will be used as a process-level metric to evaluate OA 80 

simulations in the CMIP6 ESMs, which can shed light on future model development and improve aerosol 81 

predictions. 82 

2. Datasets 83 

2.1 Drought indicator 84 

The one-month gridded Standardized Precipitation-Evapotranspiration Index (SPEI) data from the global SPEI 85 

database (https://spei.csic.es/, last access: November 27, 2023) was selected as the drought indicator because of its 86 

numerical nature allowing for statistical analysis (e.g., correlation and regression). The SPEI is a multi-scaler index, 87 

allowing for the identification and comparison of drought severity through time and space (Vicente-Serrano et al., 88 

2010). Negative values of SPEI are indicative of droughts and vice versa. The dataset has a spatial resolution of 0.5° 89 

× 0.5° and a temporal range of 1973-2018. A composite analysis can also be conducted by applying the criteria of 90 

SPEI < -1.3 and SPEI > -0.5 to denote severe drought and non-drought conditions, respectively, as suggested by Wang 91 

et al. (2017). 92 

2.2 Air quality and meteorological data 93 

To expand the spatial coverage, we created a gridded daily organic carbon (OC) dataset (0.5° × 0.5°) from 1998 to 94 

2018 that aggregates site-based observations from the Interagency Monitoring of Protected Visual Environments 95 

(IMPROVE) network using the modified inverse distance weighting method as done by Schnell et al. (2014). Data 96 

from the IMPROVE sites has been widely used by previous studies to investigate surface particulate matter trends or 97 

variations in the CONUS (e.g., Hand et al., 2012). A factor of 2.1 was used to convert OC observations to OA as 98 

suggested by other studies (Pye et al., 2017; Schroder et al., 2018). US Environmental Protection Agency Chemical 99 

Speciation Network (EPA-CSN) also provides long-term OA data, but the CSN network uses different sampling 100 

practices and analytical methods from IMPROVE, which can lead to systematic differences in OA measurements 101 
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(Hand et al., 2012; Gorham et al., 2021). Thus, we only used the IMPROVE dataset in this study. To reduce the artifact 102 

caused by different data completeness (e.g., old sites retired and new sites started), we selected the sites with data 103 

records longer than 5 years during the study period for interpolation following Li and Wang (2022). Based on this 104 

criterion, there are a total of 175 sites selected for interpolation, ~80% of which have a data record equal to or greater 105 

than 15 years, suggesting small temporal uncertainties caused by the spatial interpolation (Figure S1). 106 

Sulfate is known to influence the formation of epoxydiols derived secondary organic aerosol (IEPOX SOA), a key 107 

component of OA. To explore how this linkage changes with drought, we generated a gridded sulfate dataset following 108 

the same method as OC. Monthly sulfate wet depositions with associated precipitation amount and pH were obtained 109 

from the National Atmospheric Deposition Program (NADP). There is a total of 53 NADP sites in the SEUS (defined 110 

in Section 3.1) with a more than 5-year data record during the study period. We obtained the satellite-based low level 111 

(below 700 hPa) cloud cover and liquid water content (LWC) between 2000 to 2018 from the Clouds and the Earth's 112 

Radiant Energy System (CERES) monthly Single Scanner Footprint 1° × 1° (SSF1deg) product 113 

(https://asdc.larc.nasa.gov/project/CERES/CER_SSF1deg-Month_Terra-MODIS_Edition4A, last access: November 114 

28, 2023). To investigate OA changes from wildfire, monthly open fire emissions were from the Global Fire Emission 115 

Database version 4 (GFED4) for 1998–2018 (Giglio et al., 2013). The version of GFED4 we used includes the burned 116 

area contributions from small fires, which increases the total amount of burned area by 75% relative to its previous 117 

version and brings the prescribed burned area estimates into closer agreement with those reported by the National 118 

Interagency Fire Center (Randerson et al., 2012). Thus, the prescribed fire burning is partly, if not all, considered in 119 

the analysis. 120 

2.3 CMIP6 AerChemMIP models 121 

Ten models from the CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP) were selected: BCC-122 

ESM1, CESM2-WACCM, CNRM-ESM2-1, EC-Earth3-AerChem, GFDL-ESM4, GISS-E2-1-G, MIROC6, MRI-123 

ESM2-0, NorESM2-LM, and UKESM1-0-LL. They are the only models found by the time of writing with OA and 124 

sulfate mass concentration outputs from historical simulations with prescribed sea surface temperature in the 125 

AerChemMIP project from 1850 to 2014. No ensemble members were found for the ten models. Various aerosol 126 

schemes are used by the models with different treatments for gas phase reactions and secondary aerosol formation. 127 

More information and references (Danabasoglu et al., 2020; Dunne et al., 2020; Kelley et al., 2020; van Noije et al., 128 

2021; Séférian et al., 2019; Seland et al., 2020; Senior et al., 2020; Tatebe et al., 2019; Wu et al., 2020; Yukimoto et 129 

al., 2019) for each model are listed in Table S1.  130 

3. Results 131 

3.1 Spatial Distributions of Organic Aerosol Response to Drought 132 

Figure 1a shows the maps of the mean summertime (JJA 1998–2018) surface OA concentrations under non-drought 133 

conditions and their changes under severe droughts with the observational sites (dots) overlaid. The associated 134 

frequency and OA standard deviation during non-drought and severe drought periods are displayed in Figure S2. 135 
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The western US states along the Rocky Mountains exhibit the highest severe drought frequency of up to 25%, while 136 

wet and normal conditions are more common in the eastern US and southern California with a frequency of more 137 

than 80%. Higher OA concentrations can be found in central California and the eastern US under non-drought 138 

conditions, reflecting the average spatial distributions of summertime OA. Under severe droughts, most of the grids 139 

and sites display an enhanced OA level with a mean increase of 0.72 µg m−3 across all the grids and 0.78 µg m−3 140 

across all the sites in the CONUS. Higher enhancements occur in the Pacific Northwest (PNW; 42-50∘N, 105-141 

125∘W; red box in Figure 1a) and southeast U.S. (SEUS; 25-37∘N, 75-100∘W; blue box in Figure 1a). In both 142 

regions, the overall gridded OA statistical distributions under severe droughts move towards the higher end 143 

compared with those under non-drought conditions (Figure 1b), with an increase in the mean value by 1.79 µg m−3 144 

(112 %) and 0.92 µg m−3 (33 %) across the PNW and SEUS, respectively. Similar results are found using on-site 145 

data with a respective increase of mean value by 2.18 µg m−3 (118 %) and 1.11 µg m−3 (34 %), which indicates the 146 

interpolation does not significantly affect the results. OA experienced a downward trend in the SEUS during the last 147 

two decades due to the reduction of anthropogenic emissions (Ridley et al., 2018). To verify whether the trend will 148 

significantly affect our results in the SEUS, we reproduced Figure 1b in Figure S3a using detrended OA. The 149 

detrend is conducted by removing the 7-year moving average from the raw data in the same month of each year 150 

following Wang et al. (2017) and Li et al. (2022). OA enhancement under severe droughts is 0.78 µg m−3 and 1.02 151 

µg m−3 for gridded and on-site data, respectively, which is comparable to those values derived from raw OA data in 152 

the SEUS area. This indicates that anthropogenic emission changes do not significantly interfere with our analysis 153 

and instead natural processes play a more important role in causing the enhancement of OA in the SEUS region.  154 

 155 

Figure 1. (a) Maps of the mean gridded and in situ (dots) OA under non-drought (wet and normal) conditions (left) from 156 
1998 to 2018 in JJA and its changes from severe drought conditions (right). (b) Comparisons of statistical distributions of 157 
gridded and on-site OA mass concentrations under severe drought (red boxes) and non-drought (blue boxes) conditions 158 
over the Pacific Northwest (left) and southeast region (right). (c-d) Same as a, but for OA monthly wildfire emissions from 159 
GFED4 inventory and sulfate, respectively. 160 
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Wildfire, a major source of biomass burning, is one of the biggest contributors to both POA and SOA globally 161 

(Hallquist et al., 2009; Gilman et al., 2015; Jen et al., 2019). In the western U.S., OA, as the largest component of 162 

PM2.5, experiences an upward trend, opposite to the rest of the country, due to the increasingly higher wildfire 163 

frequency (Dennison et al., 2014; McClure & Jaffe, 2018; Wang, et al., 2022). Indeed, we found many ‘hot spots’ of 164 

wildfire emissions of OA over the western U.S. under non-drought conditions based on the GFED4 wildfire fire 165 

inventory (Figure 1c). Severe droughts can lead to extremely high wildfire OA emissions over the PNW region, 166 

which corresponds to the highest OA enhancement and variability as shown in Figure 1a and Figure S2b, 167 

respectively. In contrast, the SEUS undergoes a much lower enhancement of wildfire OA emissions under severe 168 

droughts. Biogenic secondary organic aerosol (BSOA) is reported to be the major fine aerosol component in the 169 

SEUS, accounting for 60%–90% of the total PM2.5, due to the abundant isoprene emissions (Zhang et al., 2012; 170 

Hidy et al., 2014; Kim et al., 2015). The concentrations of BSOA in the SEUS region strongly depend on ambient 171 

sulfate through the reactive update of gas-phase epoxydiols (IEPOX) onto the aqueous acidified surface of sulfate 172 

particles (Surratt et al., 2010; Xu et al., 2015; Lopez-Hilfiker et al., 2016; Malm et al., 2017). Interestingly, the 173 

highest sulfate increase during drought is found in the SEUS (Figure 1d), presumably due to enhanced gas-phase 174 

sulfate production and reduced wet deposition (Wang et al., 2015; Xie et al., 2019). The higher sulfate 175 

concentrations during droughts lead to the enhanced formation of IEPOX SOA, which is likely an important factor 176 

leading to a higher OA level in the SEUS.  177 

 178 

Figure 2. (a) Map of the slopes between monthly gridded OA and SPEI. Black dots indicate the slopes with P-vales less than 179 
0.05. (b) Time series of SPEI (bar), normalized OA (black line), sulfate (blue line), and wildfire OA emissions from GFED4 180 
inventory (red line; right axis) averaged across the PNW (top) and SEUS (bottom) region. The numbers indicate the 181 
correlation coefficient (R) and P-value (P-val) between OA and sulfate (blue) and wildfire emissions (red). 182 



7 

 

 183 

Using the numerical drought indicator of SPEI, we calculated the linear slopes between monthly OA and SPEI in 184 

each grid (Figure 2a). Consistent with the composite analysis in Figure 1a, most of the grids show negative slopes 185 

with the highest absolute values of more than 2 µg m−3 per unit change of SPEI occurring in the PNW region. It is 186 

noteworthy that negative values of SPEI indicate droughts, and thus the negative slopes with SPEI signify an 187 

enhanced OA level over most of the CONUS during drought. We further examined the monthly time series of the 188 

regional mean of SPEI, normalized OA, sulfate, and OA wildfire emissions in the PNW and SEUS (Figure 2b). OA 189 

in the PNW region is strongly correlated with OA emissions from fire with a high correlation coefficient (R) of 0.88. 190 

The extremely high values of OA and OA fire emissions are also concurrent with droughts when SPEI is negative 191 

(red bars). On the contrary, SEUS has a weak correlation between OA and OA fire emissions yet a high association 192 

between OA and sulfate with an R value of 0.79. Wildfire seems only to have high contributions to peak OA values 193 

in extreme drought years, such as in 2011. Based on the correlation coefficients, more than 60% and 70% of the 194 

monthly OA variability can be explained by sulfate and wildfire emissions in the SEUS and PNW regions, 195 

respectively, which deserves an in-depth exploration in the next section. 196 

 197 

3.2 Regional Analysis in the Pacific Northwest and Southeast US 198 

In this section, we conducted a regional analysis of OA, focusing on OA relationships with sulfate in the SEUS and 199 

with wildfire emissions in the PNW. In the SEUS, we calculated the linear regression between OA and sulfate in 200 

Figure 3a following the method of Malm et al. (2017). Each data point represents the SPEI bin-averaged value of 201 

OA and sulfate from each grid cell. The bins are divided to have approximately the same number of samples 202 

following Xie et al (2019). Only the grids with all five SPEI bins present are used (N=673), which include more than 203 

95% of the total grids (687). Thus, the binned regression calculation can represent the regional conditions of each 204 

SPEI bin. The resulting linear lines and formula are also displayed in Figure 3a. Here the slope calculation is 205 

different from Zheng et al. (2020), in which they averaged OA and sulfate across all the sites in the SEUS and 206 

performed the linear regression temporally. We adopted a spatial calculation of the linear slopes for two reasons: (1) 207 

Averaging across all the sites/grids will significantly reduce the number of data points after the allocation among 208 

SPEI bins; (2) The regional mean of SPEI may average out some drought signals because drought is grid specific 209 

and can differ spatially within the SEUS (Ford et al., 2014). Despite the different methods used, the linear slope in 210 

our calculation (0.56) under non-drought conditions is similar to that of Zheng et al. (2020) using SEARCH 211 

(SouthEastern Aerosol Research and Characterization) sites (0.51). Therefore, our linear slope calculation method 212 

reproduces the sensitivity of OA to sulfate reported by the existing studies. 213 

As SPEI changes from positive (non-drought) to negative (drought), the slope between OA and sulfate becomes 214 

increasingly higher, ranging from 0.56 to 0.79. This indicates more OA formations per unit increase in sulfate as 215 

drought severity intensifies. Although high correlations do not necessarily indicate causal relationships, the chemical 216 
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mechanism of IEPOX SOA formation with the presence of sulfate is well documented (e.g., Shrivastava et al., 217 

2017). The higher sensitivities of OA to sulfate under droughts can be explained by the increasingly higher isoprene 218 

concentrations as shown in our previous studies in the SEUS (Li et al., 2022; Wang et al., 2022b), resulting in more 219 

IEPOX in the atmosphere to be further converted to particle phase catalyzed by sulfate. In addition, the formation of 220 

monoterpene-derived organosulfates, a major component of IEPOX SOA, is also dependent on sulfate (D’Ambro et 221 

al., 2019) and the biogenic emissions of monoterpenes are likely to be intensified during droughts (Llusià et al., 222 

2008; Wu et al., 2015). Organosulfates originated from anthropogenic precursors are also reported by some studies 223 

(Riva et al., 2015; Le Breton et al., 2018), but they are mainly found in highly polluted urban areas. We further 224 

reproduced Figure 3a using detrended OA and sulfate data, which can remove the effects of anthropogenic 225 

emissions (Figure S3b). A similar pattern of the gradually increasing slope from the wettest (slope=0.18) to the 226 

driest (slope=0.48) SPEI bin was found, which verifies the stronger dependence of OA on sulfate under droughts is 227 

mainly caused by biogenic sources. 228 

 229 

 230 

Figure 3. (a) Scatter plot of the SPEI bin-averaged sulfate and OA at each grid in the SEUS with solid lines representing 231 
the linear regressions of OA and sulfate. The corresponding linear formula of each SPEI bin is listed in the bottom-right 232 
corner with N indicating the number of data points for each regression calculation. The star marks in the formula indicate 233 
the regression significance at a 95% confidence level. (b) The epoxydiols derived SOA (IEPOX SOA), other SOA, and 234 
sulfate changes with SPEI derived from the linear regressions in a. Vertical bars indicate one standard deviation. 235 

The intercept of the linear regression can be interpreted as other OA components that are not associated with sulfate-236 

catalyzed IEPOX SOA, such as POA and anthropogenic SOA (Malm et al., 2017). Figure 3b shows that the 237 

intercepts (other OA) are stable among the five SPEI bins with a less than 0.2 µg m−3 (15%) difference. The 238 

differences of regional mean OA minus the intercepts can then be considered as IEPOX SOA related to sulfate. The 239 

resulting estimate of IEPOX SOA is 1.45 µg m−3, 1.68 µg m−3, 1.78 µg m−3, 2.02 µg m−3 and 2.39 µg m−3 for the five 240 

SPEI bins ranging from wet to dry conditions. These values correspond to an increase of 0.30 µg m−3 IEPOX SOA 241 
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per unit decrease in SPEI. Interestingly, there is also an increasingly higher sulfate level from wet to dry SPEI bins 242 

with a mean value of 2.59 µg m−3, 2.63 µg m−3, 2.71 µg m−3, 2.80 µg m−3 and 3.03 µg m−3, respectively, 243 

corresponding to an overall increase rate of 0.14 µg m−3 sulfate per unit decrease of SPEI. Therefore, the increase of 244 

OA in the SEUS under droughts is largely caused by the boosted formation of BSOA due to the concurrent increase 245 

in VOC emissions and sulfate. This is consistent with the modeling case study by Zhao et al. (2019) who found that 246 

98% of the SOA increase during drought in the SEUS is of biogenic origin. It is noted that the approximation of 247 

IEPOX SOA here is the upper limit of BSOA since other processes that can lead to the simultaneous changes of 248 

sulfate and OA, such as wildfire, are miscounted as BSOA in the calculation. Further analysis is needed to attribute 249 

the changes of SOA to different sources more accurately.  250 

 251 
Figure 4. SPEI bin-averaged sulfate wet deposition (a), wet concentration (b), precipitation amount (c), precipitation pH 252 
values (d) from the NADP network, and the total cloud cover (e) and liquid water content (LWC; f) below 700 hPa from 253 
the MODIS satellite in the SEUS. Vertical bars indicate one standard deviation. 254 

 255 

The source and sink of atmospheric sulfate are greatly affected by clouds and precipitation because most of the 256 

sulfate is formed in clouds and efficiently removed by wet scavenging (Barth et al., 2000; Rasch et al., 2000; Berg et 257 

al., 2015). Thus, it is understandable that sulfate is sensitive to drought considering both clouds and precipitation are 258 

significantly modulated under droughts. To further investigate the processes causing the increase of sulfate, we 259 

analyzed sulfate wet deposition, wet concentration, precipitation amount, and pH values (Figure 4a-d) from the 260 

NADP network. There is a decreasing trend of sulfate wet deposition from 1.50 kg ha−1 month−1 at the wettest (SPEI 261 

> 1) to 0.87 kg ha−1 month−1 at the driest (SPEI < -1) level. The corresponding reduction in precipitation is 62%. 262 

Since sulfate wet deposition is calculated using sulfate wet concentration weighted by precipitation, the 50% 263 

decrease of sulfate wet deposition is driven by the reduced precipitation, which outweighs the increase of sulfate 264 

concentrations.  265 
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The low level (below 700 hPa) cloud cover and liquid water content (LWC) are not highly sensitive to droughts with 266 

less than 2% and 4% changes among the five SPEI bins, respectively (Figure 4e-f). Thus, the increase of sulfate wet 267 

concentrations in precipitation is likely indicative of an enhanced formation of aqueous sulfate in the clouds, which 268 

then precipitates. Alternatively, gas phase production of sulfate can also be elevated under droughts due to more 269 

sulfur dioxide (SO2) emissions (e.g. from increased electricity generation and fires) and higher temperatures (Tai et 270 

al., 2010; Wang et al., 2017), and then washed out by rainwater droplets causing higher sulfate wet concentrations in 271 

precipitation. Either of these two pathways suggests that there is higher sulfate formation under droughts which 272 

contributes to the enhanced sulfate besides reduced wet deposition. Furthermore, the mean pH value drops steadily 273 

with dryness levels from 4.98 to 4.87, which further intensifies the acid-catalyzed IEPOX ring opening and leads to 274 

faster BSOA formation (Surratt et al., 2010). Although the rate of IEPOX SOA formation is slower in cloud water 275 

compared to aerosol particles due to its relatively higher pH values (Gaston et al., 2014), the large liquid water 276 

content of clouds, which promotes dissolution, could lead to significant IEPOX SOA formation. Based on a box 277 

model simulation conducted by Tsui et al (2019), increasing pH values in cloud water while keeping the other 278 

factors constant results in a slower rate of IEPOX SOA formation. Additionally, cloud water processing at pH ≤ 4 279 

can produce more IEPOX SOA than aerosol particles. Despite the average pH value of ~5 across the SEUS region, 280 

some sites may experience more acidic rainwater in drought months. During the study period, we found two sites in 281 

Georgia and North Carolina with pH less than 4 and their corresponding SPEI values are –0.98 and –1.39. 282 

Therefore, droughts are likely to reduce cloud pH values lower enough at some locations and favorable for 283 

significant IEPOX SOA formation.   284 

Using the same approach as in the SEUS, we calculated the SPEI bin-averaged OA and OA wildfire emissions from 285 

the GFED4 inventory in the PNW region shown in Figure 5. OA fire emissions grow from 0.09 × 107
 g per month at 286 

the wettest level to 4.94 × 107 g per month at the second driest level (SPEI between -1.5 and -1), followed by a small 287 

drop to 4.17 × 107
 g per month at the driest level (SPEI less than -1.5). This drop is likely caused by the reduction in 288 

the supply of fire fuel load under extreme drought conditions (Scasta et al., 2016). Overall, OA fire emissions 289 

increase by 1.44 × 107
 g per unit decrease of SPEI per month. The mass concentrations of OA resemble the changes 290 

of OA fire emissions with an overall increase rate of 1.01 µg m−3 per unit decrease of SPEI, which indicates more 291 

wildfire emissions are the major driver of the higher OA concentrations in the PNW.  292 
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 293 
Figure 5. Mean (point) and one standard deviation (vertical bar) of OA (black line), wildfire OA emissions from GFED4 294 
inventory (bright red line; right axis), and OA with (dark red line) and without (blue line) local fire occurrence within each 295 
SPEI bin. The dashed lines represent the linear regression with the slopes (Slope) and P-values (P-val) of each variable 296 
listed in the top-right corner.  297 

 298 

To better quantify the contributions of wildfire, we further separated OA values into those with local fire influences 299 

if OA fire emissions are greater than zero at each grid in each month and those without local fire influences if zero 300 

fire emissions are found. The time series of OA grouped by periods with and without wildfire emissions within each 301 

SPEI bin (Figure S4) shows that the two groups have nearly identical temporal coverage with data found in almost 302 

all years within most SPEI bins, which indicates the separation does not cause temporal inconsistency. We admit 303 

that this separation relies on the accuracy of fire emissions and cannot rule out the effects of the long-range 304 

transported OA from other regions, especially for the widespread drought events. As a result, it may overestimate 305 

OA values with no local fire occurrence. With this caveat in mind, we calculated the local fire effects as the 306 

difference between OA with and without fire emissions within each drought bin. Under the wettest conditions, there 307 

is a minor difference of 0.23 µg m−3 between OA with and without local fire effects, while this number becomes 308 

four to eight times higher under droughts (SPEI < zero). The local fire-affected OA with one unit decrease of SPEI 309 

also increases by 0.34 µg m−3 faster than that without local fire occurrence. This illustrates the considerable 310 

contributions of local wildfire emissions to the changes of OA under droughts. Other processes, such as long-range 311 

transported aged OA and locally produced BSOA, may also contribute to the differences if their contributions 312 

correlate with local fire emissions. 313 

In summary, there is an increasing sensitivity of OA to sulfate as drought conditions worsen in the SEUS, driven by 314 

the heightened biogenic VOC emissions and the subsequent formation of IEPOX SOA. Sulfate levels also rise under 315 

droughts, influenced mainly by the reduced precipitation and the potentially increased aqueous and gas-phase sulfate 316 

production. In the PNW, OA and OA wildfire emissions exhibit a close correlation, indicating that wildfire 317 

emissions significantly drive higher OA concentrations therein.  318 
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3.3 CMIP6 Models Simulated Organic Aerosol Response to Drought 319 

In this section, we evaluated the surface OA concentrations from ten CMPI6 models regarding their capability in 320 

predicting the observed SPEI-OA relationships over the CONUS during JJA 1998-2014. OA values from each 321 

model were interpolated linearly to match the spatial resolution of the gridded observational dataset. Figure 6a-j 322 

show the spatial distributions of the slopes between SPEI and OA simulated by each model. Compared with the 323 

observed slopes in Figure 2a, all models capture the strong negative slopes of more than 2 µg m−3 per unit decrease 324 

of SPEI in the PNW region except for GFDL-ESM4 which shows a much smaller slope of less than 1 µg m−3 per 325 

SPEI. This indicates the CMIP6 models correctly represent the sign and magnitude of the changes in OA fire 326 

emissions with droughts. By contrast, all the models have difficulties in reproducing the observed linear 327 

relationships between OA and SPEI in the SEUS. Compared to the significantly negative slope from observations, 328 

most of the models display insignificant or even positive slopes in the SEUS. BCC-ESM1, MRI-ESM2-0, and Nor-329 

ESM2-LM show negative slopes only in part of the SEUS grids.  330 

We also evaluated model predicted average OA enhancement under server droughts relative to non-drought periods 331 

in PNW and SEUS (Figure 6k). In the PNW region, CESM2-WACCM simulates an increase of OA mass 332 

concentration by 2.20 µg m−3, closest to the observed value of 2.41 µg m−3, followed by UKESM1-0-LL and 333 

CNRM-ESM2-1 with an enhancement of 1.74 µg m−3 and 1.64 µg m−3, respectively. GFDL-ESM4 shows the 334 

highest underestimation of the OA enhancement by 2 µg m−3 (83%), consistent with its smallest slopes shown in 335 

Figure 6e. Smaller underestimations are found in other models, ranging from 0.96 µg m−3 (40%) for MRI-ESM2-0 336 

to 1.4 µg m−3 (58%) for EC-Earth3-AerChem. In the SEUS, all the ten models underpredict the observed OA 337 

increase of 0.57 µg m−3 with the two lowest underestimations of 0.21 µg m−3 (37%) and 0.27 µg m−3 (47%) found 338 

for Nor-ESM2-LM and MIRCO6, respectively. The other eight models show marginal OA enhancements between 339 

0.02 µg m−3 to 0.21 µg m−3 or even a decrease (GISS-E2-1-G), indicating the incapabilities of these models in 340 

predicting OA changes in the SEUS under droughts.   341 



13 

 

 342 
Figure 6. (a-j) Slopes between CMIP6 model simulated OA and SPEI from 1998 to 2014 during summertime with black 343 
dots indicating the P-values less than 0.05. (k) Observed and simulated OA changes under severe droughts relative to non-344 
drought conditions during the same study period in the PNW and SEUS regions. 345 

 346 

The poor model performance in capturing the OA changes under severe drought in the SEUS inspires us to conduct 347 

a further regional analysis following Section 3.2. The observed and simulated changes of SEUS-mean OA, sulfate, 348 

and their slopes within each SPEI bin are shown in Figure 7a-c, respectively. The modeled slopes are calculated in 349 

the same way as observations (Figure 3a) and the associated scatter plot is shown in Figure S5. For the absolute OA 350 

mass concentrations, UKESM1-0-LL has the best predictions with a less than 0.5 µg m−3 mean bias in each SPEI 351 

bin. CESM2-WACCM, CNRM-ESM2-1, EC-Earth3-AerChem, MICRO6, and NorESM2-LM overestimate OA 352 

values, while the other four models show an underestimation. For the sensitivity of OA to droughts, NorESM2-LM 353 

performs the best with an increase rate of 0.13 µg m−3 per unit decrease of SPEI, although the rate is only 50% of the 354 

observed value of 0.25 µg m−3. This is consistent with the result that this model has the lowest underestimation of 355 

OA enhancement under severe droughts. Higher underestimations of the OA sensitivity to droughts are found in 356 

MRI-ESM2-0, BCC-ESM1, and GFDL-ESM4 with a respective change rate of 0.09 µg m−3, 0.06 µg m−3 and 0.02 357 

µg m−3 per SPEI. On the contrary, GISS-E2-1-G simulates a decrease in OA by 0.04 µg m−3 per unit decrease of 358 

SPEI, which is consistent with the negative OA changes under severe droughts. The rest of the models do not have a 359 

statistically significant change rate of OA with droughts at a 95% confidence level.   360 
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 361 
Figure 7. SPEI bin-averaged values of OA (a), sulfate (b), and slopes of OA and sulfate (c) from observations (black lines) 362 
and simulations (red lines) in the SEUS. Vertical bars indicate one standard deviation. The numbers in each subplot indicate 363 
the slopes (Slope) and P-values (P-val) of the linear regression between each variable and SPEI.  364 

(a) Observed and simulated OA changes with SPEI in the SEUS

(b) Observed and simulated sulfate changes with SPEI in the SEUS

(c) Observed and simulated slopes between OA and sulfate changes with SPEI in the SEUS
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 365 

As described in Figure 3, the increase of OA under droughts in the SEUS is due to the concurrent increase of sulfate 366 

and biogenic VOC emissions. To investigate if the models have this mechanism, we also evaluated the modeled 367 

sensitivities of sulfate and the OA-sulfate slopes to SPEI. Only two models, BCC-ESM1 and MRI-ESM2-0, have 368 

statistically significant increase rates of sulfate with the decrease of SPEI, despite their overestimation of ~1 µg m−3 369 

(30%) in terms of the absolute sulfate concentrations. BCC-ESM1 predicts the same change rate as observations 370 

with a value of 0.08 µg m−3 per unit change of SPEI, while MRI-ESM2-0 predicts a rate of 0.18 µg m−3, more than 371 

doubled the observed rate. For the slopes between OA and sulfate, however, all models cannot reproduce the 372 

observed increase rate of 0.09 per unit decrease of SPEI. This suggests either an insensitivity of biogenic VOC 373 

emissions in response to droughts or a lack of explicit aqueous chemistry for SOA formation in the models. For a 374 

further investigation, we summarized how SOA is treated in each model (Table S1). In fact, SOA schemes in the 10 375 

CMIP6 models are simplified to reduce computational cost as the climate models need to perform hundreds of years 376 

of simulations with many ensemble members (Eyring et al., 2016). BCC-ESM1 and CESM2-WACCM use a 377 

volatility basis set (VBS) approach that categorizes VOCs based on their volatility and simulates the chemical aging 378 

process that leads to the formation of SOA. In CNRM-ESM2-1, SOA is prescribed from a monthly inventory 379 

without inline calculation. EC-Earth3-AerChem, GISS-E2-1-G, and MIROC6 include the two-product scheme, in 380 

which VOC oxidation leads to non-volatile and semi-volatile products. The rest of the models assume a fixed 381 

percentage of yield from the emissions of VOCs. In short, the heterogeneous formation of IEPOX SOA through 382 

reactive uptake on aqueous sulfate is not parameterized in the models. Therefore, the linear relationship between OA 383 

and sulfate in the models is not indicative of the mechanistic dependence of OA on sulfate as demonstrated in 384 

observations. Similar anthropogenic sources (e.g., fossil fuel combustion) and photochemical oxidants (e.g., O3 and 385 

OH) leading to the simultaneous production of sulfate and OA can also result in positive correlations (Zhang et al., 386 

2011). The lack of the IEPOX SOA formation mechanism further explains why the enhancements of OA in the 387 

SEUS are barely captured by these models. To sum up, most of the models can represent the linear relationships 388 

between OA and SPEI in the PNW region with CESM2-WACCM and GFDL-ESM4 performing the best and worst 389 

in predicting the OA enhancement under severe droughts. However, all the models face challenges in capturing the 390 

OA increases under droughts in the SEUS, with Nor-ESM2-LM and MIRCO6 showing relatively better 391 

performance indicated by their lower underestimation of OA enhancement. These challenges are mainly caused by 392 

the lack of parameterizations of the aqueous formation of IEPOX SOA and the model deficiencies in capturing the 393 

increase pattern of sulfate as drought intensifies.  394 

4 Conclusions 395 

In this study, the changes in organic aerosol (OA) in response to drought in the CONUS were examined. We first 396 

displayed the spatial patterns of OA under non-drought and severe drought conditions and found most of the 397 

CONUS experiences an abnormally higher level of OA by an average of 0.72 µg m−3 relative to wet and normal 398 

conditions. Regionally, the highest average increase occurs in the PNW and SEUS areas by 1.79 µg m−3 (112 %) and 399 
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0.92 µg m−3 (33 %), respectively. The concurrent enhancement of wildfire OA emissions in the PNW and sulfate in 400 

the SEUS provides more insights into an in-depth investigation over these two regions. 401 

In the SEUS, a linear regression between OA and sulfate was applied to estimate the amount of IEPOX SOA and 402 

other OA. Results from this simplified method indicate that the IEPOX SOA drives the increase of total OA from 403 

wet to dry conditions while other OA stays stable. Both the increase of biogenic VOC emissions and sulfate under 404 

droughts lead to the enhancement of IEPOX SOA. Data from the NADP network shows that up to 62% lower 405 

precipitation under droughts induces slower sulfate wet deposition rates and thus leaves more sulfate in the 406 

atmosphere. Higher sulfate wet concentration in the precipitation indicates more in-cloud and/or gas-phase sulfate 407 

production under droughts since cloud cover and liquid content do not show a strong sensitivity to droughts.  408 

In the PNW, there is an overall increase of 1.44 × 107
 g in the monthly OA wildfire emissions per unit decrease of 409 

SPEI, which is the main driver of the elevated OA. There is a plateau of the OA fire emissions with SPEI between -410 

1.5 and -1, followed by a drop with SPEI less than -1.5. This implies that wildfire activities are not linearly related to 411 

moisture and are also limited by the availability of fuel load. Dividing OA into groups with or without local fire 412 

influence, we found that local fire events can increase the OA concentrations by four to eight times relative to those 413 

without fire activities. Future work is needed to further investigate the changes in OA from other sources, such as 414 

long-range transported OA and BSOA, in this region.  415 

The evaluation of surface OA concentrations from ten CMIP6 models provides valuable insights into their predictive 416 

capabilities in capturing the observed relationships between SPEI and OA over the CONUS. All the models are 417 

found to successfully capture the negative slopes in the PNW area, indicating correct sensitivities of OA wildfire 418 

emissions to droughts in these models. However, deficiencies are revealed in the SEUS with most models displaying 419 

insignificant or positive slopes between OA and SPEI as opposed to significantly negative slopes from observations. 420 

The assessment of average OA enhancement during severe droughts relative to non-drought periods further 421 

underscores the models' varying degrees of accuracy in simulating OA response to drought. In the PNW, CESM2-422 

WACCM stands out with its simulated OA increase of 2.20 µg m−3 being closest to the observed value of 2.41 423 

µg m−3, while GFDL-ESM4 exhibits the highest underestimation of OA enhancement by 2 µg m−3 (83%). In the 424 

SEUS, all models consistently underpredict the observed OA increases, highlighting their limitations in predicting 425 

OA changes in this region under drought conditions. These limitations can be mainly attributed to the insensitivities 426 

of sulfate to SPEI and the model deficiencies in the parameterization of the IEPOX SOA dependence on inorganic 427 

sulfate.  428 

This study reveals the key drivers of the enhanced OA mass concentrations in the CONUS, including higher wildfire 429 

emissions and the simultaneous increase in biogenic VOC emissions and inorganic sulfate, which highlights the 430 

complex physical and chemical processes involved in the aerosol composition changes under droughts. The 431 

discrepancies in simulating OA enhancements during severe droughts underscore the need for ongoing model 432 

improvement, particularly in accurately representing the emissions of biogenic isoprene and monoterpene, the life 433 

cycle of sulfate, and their intricate interactions. Addressing these limitations will be crucial for enhancing the 434 
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reliability of climate models and their ability to predict the impact of future droughts on atmospheric composition 435 

and air quality in the CONUS.   436 
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