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Abstract. Drought events have been linked with the enhancements of organic aerosols (OA), but the mechanisms 7 

have not been comprehensively understood. This study investigates the relationships between the monthly 8 

standardized precipitation–evapotranspiration index (SPEI) and surface OA in the contiguous United States 9 

(CONUS) during the summertime from 1998 to 20189. OA under severe drought conditions shows a significant 10 

increase in mass concentrations across most of the CONUS relative to non-drought periods with the Pacific 11 

Northwest (PNW) and Southeastern United States (SEUS) experiencing the highest average enhancement of 12 

1.79 µg m−3 (112 %) and 0.92 µg m−3 (33 %), respectively. In the SEUS, a linear regression approach between OA 13 

and sulfate was used to estimate the epoxydiols-derived secondary organic aerosol (IEPOX SOA), which is the 14 

primary driver of the OA enhancements under droughts due to the simultaneous increase in biogenic volatile organic 15 

compounds (VOCs; such as isoprene and monoterpene) emissions and sulfate. The rise of sulfate is mainly caused 16 

by the reduced wet deposition because of the up to 62% lower precipitation amount. In the PNW, OA enhancements 17 

are closely linked to intensified wildfire emissions, which raise OA mass concentrations to be four to eight times 18 

higher relative to non-fire conditions. All ten Earth system models participating in the sixth phase of the Coupled 19 

Model Intercomparison Project (CMIP6) can capture the slopes between SPEI and OA in the PNW with CESM2-20 

WACCM and GFDL-ESM4 performing the best and worst in predicting the OA enhancement under severe 21 

droughts. However, all models significantly underestimate the OA increase in the SEUS with Nor-ESM2-LM and 22 

MIRCO6 showing relatively better performance. This study reveals the key drivers of the elevated OA levels under 23 

droughts in the CONUS and underscores the deficiencies of current climate models in their predictive capacity for 24 

assessing the impact of future droughts on air quality.  25 

1. Introduction 26 

Drought events, marked by prolonged periods of water scarcity and precipitation deficits, have profound impacts on 27 

the hydrological cycle, ecosystems, and society (Wilhite et al., 2007). The contiguous United States (CONUS) is 28 

especially prone to droughts, and recent years have witnessed an escalation in both the frequency and severity of 29 

drought episodes across various regions (Leeper et al., 2022; Strzepek et al., 2010). These drought events are 30 

intricately linked to the modifications in atmospheric processes, such as emission, production, transport, and 31 

deposition, which can extend beyond the immediate hydrological impacts with far-reaching implications for air 32 
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quality. Specifically, organic aerosol (OA), a major component of the particulate matter with an aerodynamic 33 

diameter less than or equal to 2.5 μm (PM2.5), emerges as a critical air quality concern influenced by the complex 34 

interactions between drought-induced meteorological conditions and biogeochemical processes. 35 

OA can be directly emitted into the atmosphere through combustion activities, such as transportation fuel and 36 

biomass burning. This kind of OA is called primary organic aerosol (POA), whereas secondary organic aerosol 37 

(SOA) is produced by the oxidation of volatile organic compounds (VOCs). The intricate interplay between drought 38 

and OA dynamics involves complex feedback mechanisms. Biogenic isoprene, mainly emitted by terrestrial 39 

vegetation, is an important precursor of SOA and is highly sensitive to drought conditions. Both laboratory and field 40 

measurements have shown that biogenic emissions of isoprene will increase at the initial stage of drought 41 

development primarily due to temperature stimulus but drop eventually under prolonged severe drought limited by 42 

soil water availability (Pegoraro et al., 2005; Brilli et al., 2007; Potosnak et al., 2014). The abnormally high 43 

temperature and low humidity under droughts can enhance the volatility and oxidation of OA (Maria et al., 2004; 44 

Yli-Juuti et al., 2021), while low cloud water content lowers the aqueous SOA formation (Brégonzio-Rozier et al., 45 

2016; Tsui et al., 2019), leading to compensating changes in the mass and hygroscopicity of OA. Aerosols are most 46 

effectively removed by wet scavenging, which will be reduced under lower rainfall intensity and frequency (Dawson 47 

et al., 2007; Fang et al., 2011). In addition, dry conditions can trigger large and high-intensity wildfires, emitting 48 

more POA and VOC precursors into the atmosphere (Ruffault et al., 2018; Taufik et al., 2017). The interactions of 49 

these factors underscore the need for a comprehensive understanding of the mechanisms driving variations in OA 50 

during drought events. 51 

OA, due to its fine particulate nature and diverse chemical composition, exerts significant adverse effects on climate 52 

and human health. Exposure to SOA is associated with a 6.5 times higher mortality rate in the CONUS than total 53 

PM2.5 massOA is found to be associated with a higher county-level cardiorespiratory mortality rate than other major 54 

PM2.5 components, such as sulfate, ammonium, and nitrate (Pye et al., 2021). OA can scatter solar radiation, form 55 

cloud condensation nuclei, and affect cloud droplet concentrations, posing big uncertainties on radiative forcing and 56 

climate feedback (Carslaw et al., 2013; Lee et al., 2016). The coupled chemistry-climate models and Earth system 57 

models (ESMs) are fundamental tools for studying global warming and the accuracy of OA simulations in these 58 

models are crucial constraints on their credibility in climate change simulation and projection (Gomez et al., 2023; 59 

Thornhill et al., 2021). The Coupled Model Intercomparison Project Phase 6 (CMIP6), containing the new 60 

generation of ESMs with interactive aerosol and gas chemistry implemented (Turnock et al., 2020), provides a 61 

valuable opportunity to evaluate the simulated OA and its response to drought, which is projected to be more 62 

frequent in the future (Cook et al., 2018) 63 

Several case studies have focused on the impacts of droughts on the concentrations and speciation of PM2.5 in the 64 

CONUS by calculating the differences between drought and non-drought years (Wang et al., 2015; Borlina and 65 

Rennó, 2017; Zhao et al., 2019). Wang et al. (2015) and Zhao et al. (2019) compared the concentrations of PM2.5 66 

and its compositions in the southern/southeastern U.S. during the severe drought in the 2011 summertime against the 67 
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non-drought year of 2010 and 2013, respectively. They show that PM2.5 has a respective enhancement of 47% and 68 

65% with the largest contribution from the increase of organic carbon (OC) by 119% and 117%. Following OC, 69 

sulfate in the southeast US is enhanced by 84% during the 2011 drought relative to 2013. However, fewer studies 70 

have carried out long-term analyses, which can help derive a more robust drought-aerosol association than case 71 

studies. Wang et al. (2017) performed a 25-year analysis during the growing season (March-October) from 1990 to 72 

2014 and found that, on a monthly scale, the overall 17% enhancement of PM2.5 in the CONUS is mainly attributed 73 

to the increase of OA, sulfate, and dust. Each of these species has a unique spatial pattern in their response to 74 

droughts, which warrants a further subregional analysis to reveal the processes causing such spatial distribution 75 

discrepancy. 76 

In this study, we focus on the changes in OA under droughts over the CONUS during the study period of 77 

summertime from 1998 to 20189. Spatial patterns of the responses of OA to droughts will be explored, followed by 78 

a regional analysis focusing on the southeastern US (SEUS) and Pacific Northwest (PNW) where the highest 79 

responsive rates of OA to droughts are found. The processes responsible for the increase of OA in these regions will 80 

be discussed. At last, the observed drought-OA relationships will be used as a process-level metric to evaluate OA 81 

simulations in the CMIP6 ESMs, which can shed light on future model development and improve aerosol 82 

predictions. 83 

2. Datasets 84 

2.1 Drought indicator 85 

The one-month gridded Standardized Precipitation-Evapotranspiration Index (SPEI) data from the global SPEI 86 

database (https://spei.csic.es/, last access: November 27, 2023) was selected as the drought indicator because of its 87 

numerical nature allowing for statistical analysis (e.g., correlation and regression). The SPEI is a multi-scaler index, 88 

allowing for the identification and comparison of drought severity through time and space (Vicente-Serrano et al., 89 

2010). Negative values of SPEI are indicative of droughts and vice versa. The dataset has a spatial resolution of 0.5° 90 

× 0.5° and a temporal range of 1973-2018. A composite analysis can also be conducted by applying the criteria of 91 

SPEI < -1.3 and SPEI > -0.5 to denote severe drought and non-drought conditions, respectively, as suggested by Wang 92 

et al. (2017). 93 

2.2 Air quality and meteorological data 94 

To expand the spatial coverage, we created a gridded daily organic carbon (OC) dataset (0.5° × 0.5°) from 1998 to 95 

2018 that aggregates site-based observations from the Interagency Monitoring of Protected Visual Environments 96 

(IMPROVE) network using the modified inverse distance weighting method as done by Schnell et al. (2014). Data 97 

from the IMPROVE sites has been widely used by previous studies to investigate surface particulate matter trends or 98 

variations in the CONUS (e.g., Hand et al., 2012). A factor of 2.1 was used to convert OC observations to OA as 99 

suggested by other studies (Pye et al., 2017; Schroder et al., 2018). US Environmental Protection Agency Chemical 100 

Speciation Network (EPA-CSN) also provides long-term OA data, but the CSN network uses different sampling 101 
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practices and analytical methods from IMPROVE, which can lead to systematic differences in OA measurements 102 

(Hand et al., 2012; Gorham et al., 2021). Thus, we only used the IMPROVE dataset in this study. To reduce the artifact 103 

caused by different data completeness (e.g., old sites retired and new sites started), we selected the sites with data 104 

records longer than 5 years during the study period for interpolation following Li and Wang (2022). Based on this 105 

criterion, there are a total of 175 sites selected for interpolation, ~80% of which have a data record equal to or greater 106 

than 15 years, suggesting small temporal uncertainties caused by the spatial interpolation (Figure S1). 107 

Sulfate is known to influence the formation of epoxydiols derived secondary organic aerosol (IEPOX SOA), a key 108 

component of OA. To explore how this linkage changes with drought, we generated a gridded sulfate dataset following 109 

the same method as OC. Monthly sulfate wet depositions with associated precipitation amount and pH were obtained 110 

from the National Atmospheric Deposition Program (NADP). There is a total of 53 NADP sites in the SEUS (defined 111 

in Section 3.1) with a more than 5-year data record during the study period. We obtained the satellite-based low level 112 

(below 700 hPa) cloud cover and liquid water content (LWC) between 2000 to 2018 from the Clouds and the Earth's 113 

Radiant Energy System (CERES) monthly Single Scanner Footprint 1° × 1° (SSF1deg) product 114 

(https://asdc.larc.nasa.gov/project/CERES/CER_SSF1deg-Month_Terra-MODIS_Edition4A, last access: November 115 

28, 2023). To investigate OA changes from wildfire, monthly open fire emissions were from the Global Fire Emission 116 

Database version 4 (GFED4) for 1998–2018 (Giglio et al., 2013). The version of GFED4 we used includes the burned 117 

area contributions from small fires, which increases the total amount of burned area by 75% relative to its previous 118 

version and brings the prescribed burned area estimates into closer agreement with those reported by the National 119 

Interagency Fire Center (Randerson et al., 2012). Thus, the prescribed fire burning is partly, if not all, considered in 120 

the analysis. 121 

2.3 CMIP6 AerChemMIP models 122 

Ten models from the CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP) were selected: BCC-123 

ESM1, CESM2-WACCM, CNRM-ESM2-1, EC-Earth3-AerChem, GFDL-ESM4, GISS-E2-1-G, MIROC6, MRI-124 

ESM2-0, NorESM2-LM, and UKESM1-0-LL. They are the only models found by the time of writing with OA and 125 

sulfate mass concentration outputs from historical simulations with prescribed sea surface temperature in the 126 

AerChemMIP project from 1850 to 2014. No ensemble members were found for the ten models. Various aerosol 127 

schemes are used by the models with different treatments for gas phase reactions and secondary aerosol formation. 128 

More information and references (Danabasoglu et al., 2020; Dunne et al., 2020; Kelley et al., 2020; van Noije et al., 129 

2021; Séférian et al., 2019; Seland et al., 2020; Senior et al., 2020; Tatebe et al., 2019; Wu et al., 2020; Yukimoto et 130 

al., 2019) for each model are listed in Table S1.  131 

3. Results 132 

3.1 Spatial Distributions of Organic Aerosol Response to Drought 133 

Figure 1a shows the maps of the mean summertime (JJA 1998–2018) surface OA concentrations under non-drought 134 

conditions and their changes under severe droughts with the observational sites (dots) overlaid. The associated 135 
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frequency and OA standard deviation during non-drought and severe drought periods are displayed in Figure S2. 136 

The western US states along the Rocky Mountains exhibit the highest severe drought frequency of up to 25%, while 137 

wet and normal conditions are more common in the eastern US and southern California with a frequency of more 138 

than 80%.  Higher OA concentrations can be found in central California and the eastern US under non-drought 139 

conditions, reflecting the average spatial distributions of summertime OA. Under severe droughts, most of the grids 140 

and sites display an enhanced OA level with a mean increase of 0.72 µg m−3 across all the grids and 0.78 µg m−3 141 

across all the sites in the CONUS. Higher enhancements occur in the Pacific Northwest (PNW; 42-50∘N, 105-142 

125∘W; red box in Figure 1a) and southeast U.S. (SEUS; 25-37∘N, 75-100∘W; blue box in Figure 1a). In both 143 

regions, the overall gridded OA statistical distributions under severe droughts move towards the higher end 144 

compared with those under non-drought conditions (Figure 1b), with an increase in the mean value by 1.79 µg m−3 145 

(112 %) and 0.92 µg m−3 (33 %) across the PNW and SEUS, respectively. Similar results are found using on-site 146 

data with a respective increase of mean value by 2.18 µg m−3 (118 %) and 1.11 µg m−3 (34 %), which indicates the 147 

interpolation does not significantly affect the results. OA experienced a downward trend in the SEUS during the last 148 

two decades due to the reduction of anthropogenic emissions (Ridley et al., 2018). To verify whether the trend will 149 

significantly affect our results in the SEUS, we reproduced Figure 1b in Figure S3a using detrended OA. The 150 

detrend is conducted by removing the 7-year moving average from the raw data in the same month of each year 151 

following Wang et al. (2017) and Li et al. (2022). OA enhancement under severe droughts is 0.78 µg m−3 and 1.02 152 

µg m−3 for gridded and on-site data, respectively, which is comparable to those values derived from raw OA data in 153 

the SEUS area. This indicates that anthropogenic emission changes do not significantly interfere with our analysis 154 

and instead natural processes play a more important role in causing the enhancement of OA in the SEUS region.   155 

 156 
Figure 1. (a) Maps of the mean gridded and in situ (dots) OA under non-drought (wet and normal) conditions (left) from 157 
1998 to 20189 in JJA and its changes from severe drought conditions (right). (b) Comparisons of statistical distributions of 158 
gridded and on-site OA mass concentrations under severe drought (red boxes) and non-drought (blue boxes) conditions 159 
over the Pacific Northwest (left) and southeast region (right). (c-d) Same as a, but for OA monthly wildfire emissions from 160 
GFED4 inventory and sulfate, respectively. 161 
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Wildfire, a major source of biomass burning, is one of the biggest contributors to both POA and SOA globally 162 

(Hallquist et al., 2009; Gilman et al., 2015; Jen et al., 2019). In the western U.S., OA, as the largest component of 163 

PM2.5, experiences an upward trend, opposite to the rest of the country, due to the increasingly higher wildfire 164 

frequency (Dennison et al., 2014; McClure & Jaffe, 2018; Wang, et al., 2022). Indeed, we found many ‘hot spots’ of 165 

wildfire emissions of OA over the western U.S. under non-drought conditions based on the GFED4 wildfire fire 166 

inventory (Figure 1c). Severe droughts can lead to extremely high wildfire OA emissions over the PNW region, 167 

which corresponds to the highest OA enhancement and variability as shown in Figure 1a and Figure S2b, 168 

respectively. In contrast, the SEUS undergoes a much lower enhancement of wildfire OA emissions under severe 169 

droughts. Biogenic secondary organic aerosol (BSOA) is reported to be the major fine aerosol component in the 170 

SEUS, accounting for 60%–90% of the total PM2.5, due to the abundant isoprene emissions (Zhang et al., 2012; 171 

Hidy et al., 2014; Kim et al., 2015). The concentrations of BSOA in the SEUS region strongly depend on ambient 172 

sulfate through the reactive update of gas-phase epoxydiols (IEPOX) onto the aqueous acidified surface of sulfate 173 

particles (Surratt et al., 2010; Xu et al., 2015; Lopez-Hilfiker et al., 2016; Malm et al., 2017). Interestingly, the 174 

highest sulfate increase during drought is found in the SEUS (Figure 1d), presumably due to enhanced gas-phase 175 

sulfate production and reduced wet deposition (Wang et al., 2015; Xie et al., 2019). The higher sulfate 176 

concentrations during droughts lead to the enhanced formation of IEPOX SOA, which is likely an important factor 177 

leading to a higher OA level in the SEUS.  178 

 179 
Figure 2. (a) Map of the slopes between monthly gridded OA and SPEI. Black dots indicate the slopes with P-vales less than 180 
0.05. (b) Time series of SPEI (bar), normalized OA (black line), sulfate (blue line), and wildfire OA emissions from GFED4 181 
inventory (red line; right axis) averaged across the PNW (top) and SEUS (bottom) region. The numbers indicate the 182 
correlation coefficient (R) and P-value (P-val) between OA and sulfate (blue) and wildfire emissions (red). 183 



7 
 

 184 

Using the numerical drought indicator of SPEI, we calculated the linear slopes between monthly OA and SPEI in 185 

each grid (Figure 2a). Consistent with the composite analysis in Figure 1a, most of the grids show negative slopes 186 

with the highest absolute values of more than 2 µg m−3 per unit change of SPEI occurring in the PNW region. It is 187 

noteworthy that Since negative values of SPEI indicate droughts, and thus the negative slopes with SPEI signify an 188 

enhanced OA level over most of the CONUS during drought. We further examined the monthly time series of the 189 

regional mean of SPEI, normalized OA, sulfate, and OA wildfire emissions in the PNW and SEUS (Figure 2b). OA 190 

in the PNW region is strongly correlated with OA emissions from fire with a high correlation coefficient (R) of 0.88. 191 

The extremely high values of OA and OA fire emissions are also concurrent with droughts when SPEI is negative 192 

(red bars). On the contrary, SEUS has a weak correlation between OA and OA fire emissions yet a high association 193 

between OA and sulfate with an R value of 0.79. Wildfire seems only to have high contributions to peak OA values 194 

in extreme drought years, such as in 2011. Based on the correlation coefficients, more than 60% and 70% of the 195 

monthly OA variability can be explained by sulfate and wildfire emissions in the SEUS and PNW regions, 196 

respectively, which deserves an in-depth exploration in the next section. 197 

 198 

3.2 Regional Analysis in the Pacific Northwest and Southeast US 199 

In this section, we conducted a regional analysis of OA, focusing on OA relationships with sulfate in the SEUS and 200 

with wildfire emissions in the PNW. In the SEUS, we calculated the linear regression between OA and sulfate in 201 

Figure 3a following the method of Malm et al. (2017). Each data point represents the SPEI bin-averaged value of 202 

OA and sulfate from each grid cell. The bins are divided to have approximately the same number of samples 203 

following Xie et al (2019). Only the grids with all five SPEI bins present are used (N=673), which include more than 204 

95% of the total grids (687). Thus, the binned regression calculation can represent the regional conditions of each 205 

SPEI bin. The resulting linear lines and formula are also displayed in Figure 3a. Here the slope calculation is 206 

different from Zheng et al. (2020), in which they averaged OA and sulfate across all the sites in the SEUS and 207 

performed the linear regression temporally. We adopted a spatial calculation of the linear slopes for two reasons: (1) 208 

Averaging across all the sites/grids will significantly reduce the number of data points after the allocation among 209 

SPEI bins; (2) The regional mean of SPEI may average out some drought signals because drought is grid specific 210 

and can differ spatially within the SEUS (Ford et al., 2014). Despite the different methods used, the linear slope in 211 

our calculation (0.56) under non-drought conditions is similar to that of Zheng et al. (2020) using SEARCH 212 

(SouthEastern Aerosol Research and Characterization) sites (0.51). Therefore, our linear slope calculation method 213 

reproduces the sensitivity of OA to sulfate reported by the existing studies. 214 

As SPEI changes from positive (non-drought) to negative (drought), the slope between OA and sulfate becomes 215 

increasingly higher, ranging from 0.56 to 0.79. This indicates more OA formations per unit increase in sulfate as 216 

drought severity intensifiesdeteriorates. Although high correlations do not necessarily indicate causal relationships, 217 
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the chemical mechanism of IEPOX SOA formation with the presence of sulfate is well documented (e.g., 218 

Shrivastava et al., 2017). The higher sensitivities of OA to sulfate under droughts can be explained by the 219 

increasingly higher isoprene concentrations as shown in our previous studies in the SEUS (Li et al., 2022; Wang et 220 

al., 2022b), resulting in more IEPOX in the atmosphere to be further converted to particle phase catalyzed by 221 

sulfate. In addition, the formation of monoterpene-derived organosulfates, a major component of IEPOX SOA, is 222 

also dependent on sulfate (D’Ambro et al., 2019) and the biogenic emissions of monoterpenes are likely to be 223 

intensified during droughts (Llusià et al., 2008; Wu et al., 2015). Organosulfates originated from anthropogenic 224 

precursors are also reported by some studies (Riva et al., 2015; Le Breton et al., 2018), but they are mainly found in 225 

highly polluted urban areas. We further reproduced Figure 3a using detrended OA and sulfate data, which can 226 

remove the effects of anthropogenic emissions (Figure S3b). A similar pattern of the gradually increasing slope from 227 

the wettest (slope=0.18) to the driest (slope=0.48) SPEI bin was found, which verifies the stronger dependence of 228 

OA on sulfate under droughts is mainly caused by biogenic sources. 229 

 230 

 231 
Figure 3. (a) Scatter plot of the SPEI bin-averaged sulfate and OA at each grid in the SEUS with solid lines representing 232 
the linear regressions of OA and sulfate. The corresponding linear formula of each SPEI bin is listed in the bottom-right 233 
corner with N indicating the number of data points for each regression calculation. The star marks in the formula indicate 234 
the regression significance at a 95% confidence level. (b) The epoxydiols derived SOA (IEPOX SOA), other SOA, and 235 
sulfate changes with SPEI derived from the linear regressions in a. Vertical bars indicate one standard deviation. 236 

The intercept of the linear regression can be interpreted as other OA components that are not associated with sulfate-237 

catalyzed IEPOX SOA, such as POA and anthropogenic SOA (Malm et al., 2017). Figure 3b shows that the 238 

intercepts (other OA) are stable among the five SPEI bins with a less than 0.2 µg m−3 (15%) difference. The 239 

differences of regional mean OA minus the intercepts can then be considered as IEPOX SOA related to sulfate. The 240 

resulting estimate of IEPOX SOA is 1.45 µg m−3, 1.68 µg m−3, 1.78 µg m−3, 2.02 µg m−3 and 2.39 µg m−3 for the five 241 

SPEI bins ranging from wet to dry conditions. These values correspond to an increase of 0.30 µg m−3 IEPOX SOA 242 
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per unit decrease in SPEI. Interestingly, there is also an increasingly higher sulfate level from wet to dry SPEI bins 243 

with a mean value of 2.59 µg m−3, 2.63 µg m−3, 2.71 µg m−3, 2.80 µg m−3 and 3.03 µg m−3, respectively, 244 

corresponding to an overall increase rate of 0.14 µg m−3 sulfate per unit decrease of SPEI. Therefore, the increase of 245 

OA in the SEUS under droughts is largely caused by the boosted formation of BSOA due to the concurrent increase 246 

in VOC emissions and sulfate. This is consistent with the modeling case study by Zhao et al. (2019) who found that 247 

98% of the SOA increase during drought in the SEUS is of biogenic origin. It is noted that the approximation of 248 

IEPOX SOA here is the upper limit of BSOA since other processes that can lead to the simultaneous changes of 249 

sulfate and OA, such as wildfire, are miscounted as BSOA in the calculation. Further analysis is needed to attribute 250 

the changes of SOA to different sources more accurately.  251 

 252 
Figure 4. SPEI bin-averaged sulfate wet deposition (a), wet concentration (b), precipitation amount (c), precipitation pH 253 
values (d) from the NADP network, and the total cloud cover (e) and liquid water content (LWC; f) below 700 hPa from 254 
the MODIS satellite in the SEUS. Vertical bars indicate one standard deviation. 255 

 256 
The source and sink of atmospheric sulfate are greatly affected by clouds and precipitation because most of the 257 

sulfate is formed in clouds and efficiently removed by wet scavenging (Barth et al., 2000; Rasch et al., 2000; Berg et 258 

al., 2015). Thus, it is understandable that sulfate is sensitive to drought considering both clouds and precipitation are 259 

significantly modulated under droughts. To further investigate the processes causing the increase of sulfate, we 260 

analyzed sulfate wet deposition, wet concentration, precipitation amount, and pH values (Figure 4a-d) from the 261 

NADP network. There is a decreasing trend of sulfate wet deposition from 1.50 kg ha−1 month−1 at the wettest (SPEI 262 

> 1) to 0.87 kg ha−1 month−1 at the driest (SPEI < -1) level. The corresponding reduction in precipitation is 62%. 263 

Since sulfate wet deposition is calculated using sulfate wet concentration weighted by precipitation, the 50% 264 

decrease of sulfate wet deposition is driven by the reduced precipitation, which outweighs the increase of sulfate 265 

concentrations.  266 
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The low level (below 700 hPa) cloud cover and liquid water content (LWC) are not highly sensitive to droughts with 267 

less than 2% and 4% changes among the five SPEI bins, respectively (Figure 4e-f). Thus, the increase of sulfate wet 268 

concentrations in precipitation is likely indicative of an enhanced formation of aqueous sulfate in the clouds, which 269 

then precipitates. Alternatively, gas phase production of sulfate can also be elevated under droughts due to more 270 

sulfur dioxide (SO2) emissions (e.g. from increased electricity generation and fires) and higher temperatures (Tai et 271 

al., 2010; Wang et al., 2017), and then washed out by rainwater droplets causing higher sulfate wet concentrations in 272 

precipitation. Either of these two pathways suggests that there is higher sulfate formation under droughts which 273 

contributes to the enhanced sulfate besides reduced wet deposition. Furthermore, the mean pH value drops steadily 274 

with dryness levels from 4.98 to 4.87, which further intensifies the acid-catalyzed IEPOX ring opening and leads to 275 

faster BSOA formation (Surratt et al., 2010). Although the rate of IEPOX SOA formation is slower in cloud water 276 

compared to aerosol particles due to its relatively higher pH values (Gaston et al., 2014), the large liquid water 277 

content of clouds, which promotes dissolution, could lead to significant IEPOX SOA formation. Based on a box 278 

model simulation conducted by Tsui et al (2019), increasing pH values in cloud water while keeping the other 279 

factors constant results in a slower rate of IEPOX SOA formation. Additionally, cloud water processing at pH ≤ 4 280 

can produce more IEPOX SOA than aerosol particles. Despite the average pH value of ~5 across the SEUS region, 281 

some sites may experience more acidic rainwater in drought months. During the study period, we found two sites in 282 

Georgia and North Carolina with pH less than 4 and their corresponding SPEI values are –0.98 and –1.39. 283 

Therefore, droughts are likely to reduce cloud pH values lower enough at some locations and favorable for 284 

significant IEPOX SOA formation.   285 

Using the same approach as in the SEUS, we calculated the SPEI bin-averaged OA and OA wildfire emissions from 286 

the GFED4 inventory in the PNW region shown in Figure 5. OA fire emissions grow from 0.09 × 107 g per month at 287 

the wettest level to 4.94 × 107 g per month at the second driest level (SPEI between -1.5 and -1), followed by a small 288 

drop to 4.17 × 107 g per month at the driest level (SPEI less than -1.5). This drop is likely caused by the reduction in 289 

the supply of fire fuel load under extreme drought conditions (Scasta et al., 2016). Overall, OA fire emissions 290 

increase by 1.44 × 107 g per unit decrease of SPEI per month. The mass concentrations of OA resemble the changes 291 

of OA fire emissions with an overall increase rate of 1.01 µg m−3 per unit decrease of SPEI, which indicates more 292 

wildfire emissions are the major driver of the higher OA concentrations in the PNW.  293 
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 294 
Figure 5. Mean (point) and one standard deviation (vertical bar) of OA (black line), wildfire OA emissions from GFED4 295 
inventory (bright red line; right axis), and OA with (dark red line) and without (blue line) local fire occurrence within each 296 
SPEI bin. The dashed lines represent the linear regression with the slopes (Slope) and P-values (P-val) of each variable 297 
listed in the top-right corner.  298 

 299 
To better quantify the contributions of wildfire, we further separated OA values into those with local fire influences 300 

if OA fire emissions are greater than zero at each grid in each month and those without local fire influences if zero 301 

fire emissions are found. The time series of OA grouped by periods with and without wildfire emissions within each 302 

SPEI bin (Figure S4) shows that the two groups have nearly identical temporal coverage with data found in almost 303 

all years within most SPEI bins, which indicates the separation does not cause temporal inconsistency. We admit 304 

that this separation relies on the accuracy of fire emissions and cannot rule out the effects of the long-range 305 

transported OA from other regions, especially for the widespread drought events. As a result, it may overestimate 306 

OA values with no local fire occurrence. With this caveat in mind, we calculated the local fire effects as the 307 

difference between OA with and without fire emissions within each drought bin. Under the wettest conditions, there 308 

is a minor difference of 0.23 µg m−3 between OA with and without local fire effects, while this number becomes 309 

four to eight times higher under droughts (SPEI < zero). The local fire-affected OA with one unit decrease of SPEI 310 

also increases by 0.34 µg m−3 faster than that without local fire occurrence. This illustrates the considerable 311 

contributions of local wildfire emissions to the changes of OA under droughts. Other processes, such as long-range 312 

transported aged OA and locally produced BSOA, may also contribute to the differences if their contributions 313 

correlate with local fire emissions. 314 

In summary, there is an increasing sensitivity of OA to sulfate as drought conditions worsen in the SEUS, driven by 315 

the heightened biogenic VOC emissions and the subsequent formation of IEPOX SOA. Sulfate levels also rise under 316 

droughts, influenced mainly by the reduced precipitation and the potentially increased aqueous and gas-phase sulfate 317 

production. In the PNW, OA and OA wildfire emissions exhibit a close correlation, indicating that wildfire 318 

emissions significantly drive higher OA concentrations therein.  319 
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3.3 CMIP6 Models Simulated Organic Aerosol Response to Drought 320 

In this section, we evaluated the surface OA concentrations from ten CMPI6 models regarding their capability in 321 

predicting the observed SPEI-OA relationships over the CONUS during JJA 1998-2014. OA values from each 322 

model were interpolated linearly to match the spatial resolution of the gridded observational dataset. Figure 6a-j 323 

show the spatial distributions of the slopes between SPEI and OA simulated by each model. Compared with the 324 

observed slopes in Figure 2a, all models capture the strong negative slopes of more than 2 µg m−3 per unit decrease 325 

of SPEI in the PNW region except for GFDL-ESM4 which shows a much smaller slope of less than 1 µg m−3 per 326 

SPEI. This indicates the CMIP6 models correctly represent the sign and magnitude of the changes in OA fire 327 

emissions with droughts. By contrast, all the models have difficulties in reproducing the observed linear 328 

relationships between OA and SPEI in the SEUS. Compared to the significantly negative slope from observations, 329 

most of the models display insignificant or even positive slopes in the SEUS. BCC-ESM1, MRI-ESM2-0, and Nor-330 

ESM2-LM show negative slopes only in part of the SEUS grids.  331 

We also evaluated model predicted average OA enhancement under server droughts relative to non-drought periods 332 

in PNW and SEUS (Figure 6k). In the PNW region, CESM2-WACCM simulates an increase of OA mass 333 

concentration by 2.20 µg m−3, closest to the observed value of 2.41 µg m−3, followed by UKESM1-0-LL and 334 

CNRM-ESM2-1 with an enhancement of 1.74 µg m−3 and 1.64 µg m−3, respectively. GFDL-ESM4 shows the 335 

highest underestimation of the OA enhancement by 2 µg m−3 (83%), consistent with its smallest slopes shown in 336 

Figure 6e. Smaller underestimations are found in other models, ranging from 0.96 µg m−3 (40%) for MRI-ESM2-0 337 

to 1.4 µg m−3 (58%) for EC-Earth3-AerChem. In the SEUS, all the ten models underpredict the observed OA 338 

increase of 0.57 µg m−3 with the two lowest underestimations of 0.21 µg m−3 (37%) and 0.27 µg m−3 (47%) found 339 

for Nor-ESM2-LM and MIRCO6, respectively. The other eight models show marginal OA enhancements between 340 

0.02 µg m−3 to 0.21 µg m−3 or even a decrease (GISS-E2-1-G), indicating the incapabilities of these models in 341 

predicting OA changes in the SEUS under droughts.   342 
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 343 
Figure 6. (a-j) Slopes between CMIP6 model simulated OA and SPEI from 1998 to 2014 during summertime with black 344 
dots indicating the P-values less than 0.05. (k) Observed and simulated OA changes under severe droughts relative to non-345 
drought conditions during the same study period in the PNW and SEUS regions. 346 

 347 
The poor model performance in capturing the OA changes under severe drought in the SEUS inspires us to conduct 348 

a further regional analysis following Section 3.2. The observed and simulated changes of SEUS-mean OA, sulfate, 349 

and their slopes within each SPEI bin are shown in Figure 7a-c, respectively. The modeled slopes are calculated in 350 

the same way as observations (Figure 3a) and the associated scatter plot is shown in Figure S5. For the absolute OA 351 

mass concentrations, UKESM1-0-LL has the best predictions with a less than 0.5 µg m−3 mean bias in each SPEI 352 

bin. CESM2-WACCM, CNRM-ESM2-1, EC-Earth3-AerChem, MICRO6, and NorESM2-LM overestimate OA 353 

values, while the other four models show an underestimation. For the sensitivity of OA to droughts, NorESM2-LM 354 

performs the best with an increase rate of 0.13 µg m−3 per unit decrease of SPEI, although the rate is only 50% of the 355 

observed value of 0.25 µg m−3. This is consistent with the result that this model has the lowest underestimation of 356 

OA enhancement under severe droughts. Higher underestimations of the OA sensitivity to droughts are found in 357 

MRI-ESM2-0, BCC-ESM1, and GFDL-ESM4 with a respective change rate of 0.09 µg m−3, 0.06 µg m−3 and 0.02 358 

µg m−3 per SPEI. On the contrary, GISS-E2-1-G simulates a decrease in OA by 0.04 µg m−3 per unit decrease of 359 

SPEI, which is consistent with the negative OA changes under severe droughts. The rest of the models do not have a 360 

statistically significant change rate of OA with droughts at a 95% confidence level.   361 
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 362 
Figure 7. SPEI bin-averaged values of OA (a), sulfate (b), and slopes of OA and sulfate (c) from observations (black lines) 363 
and simulations (red lines) in the SEUS. Vertical bars indicate one standard deviation. The numbers in each subplot indicate 364 
the slopes (Slope) and P-values (P-val) of the linear regression between each variable and SPEI.  365 

(a) Observed and simulated OA changes with SPEI in the SEUS

(b) Observed and simulated sulfate changes with SPEI in the SEUS

(c) Observed and simulated slopes between OA and sulfate changes with SPEI in the SEUS
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 366 
As described in Figure 3, the increase of OA under droughts in the SEUS is due to the concurrent increase of sulfate 367 

and biogenic VOC emissions. To investigate if the models have this mechanism, we also evaluated the modeled 368 

sensitivities of sulfate and the OA-sulfate slopes to SPEI. Only two models, BCC-ESM1 and MRI-ESM2-0, have 369 

statistically significant increase rates of sulfate with the decrease of SPEI, despite their overestimation of ~1 µg m−3 370 

(30%) in terms of the absolute sulfate concentrations. BCC-ESM1 predicts the same change rate as observations 371 

with a value of 0.08 µg m−3 per unit change of SPEI, while MRI-ESM2-0 predicts a rate of 0.18 µg m−3, more than 372 

doubled the observed rate. The slopes between OA and sulfate derived from these two models are also the closest to 373 

the observed value of 0.53 in the two wettest SPEI bins, indicating the dependence of IEPOX SOA formation on 374 

sulfate is well captured by these two models when no drought occurs. For the slopes between OA and sulfate, 375 

hHowever, all modelsthe slopes stay stable among SPEI bins and cannot reproduce the observed increase rate of 376 

0.09 per unit decrease of SPEI. Similarly, this feature is not captured by the other eight models, although some of 377 

them show big variabilities (e.g., CESM2-WACCM and NorESM2-LM). This suggests either an insensitivity or a 378 

non-persistent change of biogenic VOC emissionsisoprene in response to droughts severity or a lack of explicit 379 

aqueous chemistry for SOA formation in theall models. In addition, seven out of ten models, excluding BCC-ESM1, 380 

MRI-ESM2-0, and GFDL-ESM4, generally overestimate the slopes between OA and sulfate regardless of the 381 

dryness conditions, signifying an overdependence of the formation of IEPOX SOA on sulfate in these models. For a 382 

further investigation, we summarized how SOA is treated in each model (Table S1). In fact, SOA schemes in the 10 383 

CMIP6 models are simplified to reduce computational cost as the climate models need to perform hundreds of years 384 

of simulations with many ensemble members (Eyring et al., 2016). BCC-ESM1 and CESM2-WACCM use a 385 

volatility basis set (VBS) approach that categorizes VOCs based on their volatility and simulates the chemical aging 386 

process that leads to the formation of SOA. In CNRM-ESM2-1, SOA is prescribed from a monthly inventory 387 

without inline calculation. EC-Earth3-AerChem, GISS-E2-1-G, and MIROC6 include the two-product scheme, in 388 

which VOC oxidation leads to non-volatile and semi-volatile products. The rest of the models assume a fixed 389 

percentage of yield from the emissions of VOCs. In short, the heterogeneous formation of IEPOX SOA through 390 

reactive uptake on aqueous sulfate is not parameterized in the models. Therefore, the linear relationship between OA 391 

and sulfate in the models is not indicative of the mechanistic dependence of OA on sulfate as demonstrated in 392 

observations. Similar anthropogenic sources (e.g., fossil fuel combustion) and photochemical oxidants (e.g., O3 and 393 

OH) leading to the simultaneous production of sulfate and OA can also result in positive correlations (Zhang et al., 394 

2011). The lack of the IEPOX SOA formation mechanism further explains why the enhancements of OA in the 395 

SEUS are barely captured by these models.  396 

To sum up, most of the models can represent the linear relationships between OA and SPEI in the PNW region with 397 

CESM2-WACCM and GFDL-ESM4 performing the best and worst in predicting the OA enhancement under severe 398 

droughts. However, all the models face challenges in capturing the OA increases under droughts in the SEUS, with 399 

Nor-ESM2-LM and MIRCO6 showing relatively better performance indicated by their lower underestimation of OA 400 

enhancement. These challenges are mainly caused by the lack of parameterizations of the aqueous formation of 401 

IEPOX SOA and the model deficiencies in capturing the increase pattern of sulfate as drought intensifies.  402 
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4 Conclusions 403 

In this study, the changes in organic aerosol (OA) in response to drought in the CONUS were examined. We first 404 

displayed the spatial patterns of OA under non-drought and severe drought conditions and found most of the 405 

CONUS experiences an abnormally higher level of OA by an average of 0.72 µg m−3 relative to wet and normal 406 

conditions. Regionally, the highest average increase occurs in the PNW and SEUS areas by 1.79 µg m−3 (112 %) and 407 

0.92 µg m−3 (33 %), respectively. The concurrent enhancement of wildfire OA emissions in the PNW and sulfate in 408 

the SEUS provides more insights into an in-depth investigation over these two regions. 409 

In the SEUS, a linear regression between OA and sulfate was applied to estimate the amount of IEPOX SOA and 410 

other OA. Results from this simplified method indicate that the IEPOX SOA drives the increase of total OA from 411 

wet to dry conditions while other OA stays stable. Both the increase of biogenic VOC emissions and sulfate under 412 

droughts lead to the enhancement of IEPOX SOA. Data from the NADP network shows that up to 62% lower 413 

precipitation under droughts induces slower sulfate wet deposition rates and thus leaves more sulfate in the 414 

atmosphere. Higher sulfate wet concentration in the precipitation indicates more in-cloud and/or gas-phase sulfate 415 

production under droughts since cloud cover and liquid content do not show a strong sensitivity to droughts.  416 

In the PNW, there is an overall increase of 1.44 × 107 g in the monthly OA wildfire emissions per unit decrease of 417 

SPEI, which is the main driver of the elevated OA. There is a plateau of the OA fire emissions with SPEI between -418 

1.5 and -1, followed by a drop with SPEI less than -1.5. This implies that wildfire activities are not linearly related to 419 

moisture and are also limited by the availability of fuel load. Dividing OA into groups with or without local fire 420 

influence, we found that local fire events can increase the OA concentrations by four to eight times relative to those 421 

without fire activities. Future work is needed to further investigate the changes in OA from other sources, such as 422 

long-range transported OA and BSOA, in this region.  423 

The evaluation of surface OA concentrations from ten CMIP6 models provides valuable insights into their predictive 424 

capabilities in capturing the observed relationships between SPEI and OA over the CONUS. All the models are 425 

found to successfully capture the negative slopes in the PNW area, indicating correct sensitivities of OA wildfire 426 

emissions to droughts in these models. However, deficiencies are revealed in the SEUS with most models displaying 427 

insignificant or positive slopes between OA and SPEI as opposed to significantly negative slopes from observations. 428 

The assessment of average OA enhancement during severe droughts relative to non-drought periods further 429 

underscores the models' varying degrees of accuracy in simulating OA response to drought. In the PNW, CESM2-430 

WACCM stands out with its simulated OA increase of 2.20 µg m−3 being closest to the observed value of 2.41 431 

µg m−3, while GFDL-ESM4 exhibits the highest underestimation of OA enhancement by 2 µg m−3 (83%). In the 432 

SEUS, all models consistently underpredict the observed OA increases, highlighting their limitations in predicting 433 

OA changes in this region under drought conditions. These limitations can be mainly attributed to the insensitivities 434 

of sulfate to SPEI and the model deficiencies in the parameterization of the IEPOX SOA dependence on inorganic 435 

sulfate.  436 
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This study reveals the key drivers of the enhanced OA mass concentrations in the CONUS, including higher wildfire 437 

emissions and the simultaneous increase in biogenic VOC emissions and inorganic sulfate, which highlights the 438 

complex physical and chemical processes involved in the aerosol composition changes under droughts. The 439 

discrepancies in simulating OA enhancements during severe droughts underscore the need for ongoing model 440 

improvement, particularly in accurately representing the emissions of biogenic isoprene and monoterpene, the life 441 

cycle of sulfate, and their intricate interactions. Addressing these limitations will be crucial for enhancing the 442 

reliability of climate models and their ability to predict the impact of future droughts on atmospheric composition 443 

and air quality in the CONUS.   444 
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