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Abstract 13 

Forests in Europe experienced record-breaking dry conditions during the 2022 summer. 14 

The direction in which various forest types respond to climate extremes during their 15 

growing season is contingent upon an array of internal and external factors. These factors 16 

include the extent and severity of the extreme conditions and the tree ecophysiological 17 

characteristics adapted to environmental cues, which exhibit significant regional 18 

variations. In this study we aimed to: 1) quantify the extent and severity of the extreme 19 

soil and atmospheric dryness in 2022 in comparison to two most extreme years in the 20 

past (2003 and 2018), 2) quantify response of different forest types to atmospheric and 21 

soil dryness in terms of canopy browning and photosynthesis, and 3) relate the functional 22 

characteristics of the forests to the emerging responses observed remotely at the canopy 23 

level. For this purpose, we used spatial meteorological datasets between 2000 to 2022 24 

to identify conditions with extreme soil and atmospheric dryness. We used the near-25 

infrared reflectance of vegetation (NIRv) derived from the MOderate Resolution Imaging 26 

Spectroradiometer (MODIS), and the Global OCO-2 Solar Induced Fluorescence 27 

(GOSIF) as an observational proxy for ecosystem gross productivity, to quantify the 28 

response of forests at the canopy level. 29 
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In summer 2022, southern regions of Europe experienced exceptionally pronounced 30 

atmospheric and soil dryness. These extreme conditions resulted in a 30% more 31 

widespread decline in GOSIF across forests compared to the drought of 2018, and 60% 32 

more widespread decline compared to the drought of 2003. Although the atmospheric 33 

and soil drought were more extensive and severe (indicated by a larger observed 34 

maximum z-score) in 2018 compared to 2022, the negative impact on forests, as 35 

indicated by declined GOSIF, was significantly larger in 2022. Different forest types were 36 

affected in varying degrees by the extreme conditions in 2022. Deciduous broad-leaved 37 

forests were the most negatively impacted due to the extent and severity of the drought 38 

within their distribution range. In contrast, areas dominated by Evergreen Needle-Leaf 39 

Forests (ENF) in northern Europe experienced a positive soil moisture (SM) anomaly and 40 

minimal negative vapor pressure deficit (VPD) in 2022. These conditions led to enhanced 41 

canopy greening and stronger solar-induced fluorescence (SIF) signals, benefiting from 42 

the warming. The higher degree of canopy damage in 2022, despite less extreme 43 

conditions, highlights the evident vulnerability of European forests to future droughts. 44 

 45 
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primary production  47 

Introduction 48 

The frequency and intensity of drought events have been rising globally, and future global 49 

warming is expected to further increase their occurrence (Seneviratne et al. 2021; 50 

Röthlisberger and Papritz 2023). Particularly over the past two decades, many regions in 51 

Europe have experienced widespread drought conditions, notably during the summers of 52 

2003, 2010, and 2018 (Bastos et al. 2020; Zhou et al. 2023). The extreme conditions 53 

caused widespread ecological disturbances (Müller and Bahn 2022) and reduced the 54 

capacity of forests for carbon uptake, thereby diminishing their potential for mitigating 55 

climate change (van der Woude et al. 2023). Additionally, heatwaves and prolonged 56 

droughts stress vegetation, making it more susceptible to other biotic and abiotic stress 57 

factors. This increased vulnerability leads to higher tree mortality, elevated wildfire risks, 58 
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and a loss of biodiversity among plants and animals living at the edge of their temperature 59 

tolerance. These conditions also alter phenology and plant development, causing 60 

cascading effects on ecosystem functioning (Seidl et al. 2017).  61 

The spatial extent and severity of drought events vary, and their impacts depend on local 62 

ecological characteristics of the forests, species-specific temperature and moisture 63 

thresholds that limit tree functioning, as well as adaptation strategies and acclimation of 64 

trees to more frequent and intense extreme conditions (Gessler et al. 2020). For example, 65 

comparing the 2003 and 2018 extreme years, the year 2018 was characterized by a 66 

climatic dipole, featuring extremely hot and dry weather conditions north of the Alps but 67 

comparably cool and moist conditions across large parts of the Mediterranean. Negative 68 

drought impacts appeared to affect an area 1.5 times larger and to be significantly 69 

stronger in summer 2018 compared to summer 2003 (Buras et al. 2020).  70 

In 2022, Europe faced its second hottest and driest year on record, with the summer of 71 

that year being the warmest summer ever recorded. Conditions in summer 2022 led to 72 

record-breaking heatwave and drought events across many regions (Copernicus Climate 73 

Change Service, 2023). Compound drought and heatwave conditions in 2022 caused 74 

widespread crop damage, water shortages, and wildfires across Europe. The hardest-hit 75 

areas were the Iberian Peninsula, France, and Italy, where temperatures exceeded 2.5°C 76 

above normal, and severe droughts persisted from May to August (Tripathy and Mishra 77 

2023). The reduced soil moisture due to precipitation deficits and high temperatures, 78 

contributed to the persistence and severity of drought, creating a positive feedback loop 79 

where dry soils led to even drier conditions (Tripathy and Mishra 2023). 80 

Drought and heatwaves have a range of detrimental effects on trees and forests. The 81 

most immediate impact is that elevated air temperatures and increased dryness, whether 82 

in the soil or in the atmosphere, disrupt mesophyll and stomatal conductance, thereby 83 

impairing carbon uptake (Marchin et al. 2022). Plants reduce stomatal conductance under 84 

severe drought to reduce water stress at the expense of reduced rates of photosynthesis 85 

(Oren et al., 1999). Drought also increases the chance of hydraulic failure, which can lead 86 

to tree mortality (Choat et al. 2018). Additionally, rising temperatures reduce the 87 

enzymatic activity in trees, which in turn diminishes the forest´s gross primary productivity 88 

(Gourlez de la Motte et al. 2020). Elevated temperatures can also increase respiration 89 
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rates in both soil and trees, which reduces the forest´s net carbon uptake and their ability 90 

to mitigate anthropogenic CO2 emissions (van der Molen et al. 2011; Anjileli et al. 2021). 91 

Drought also restricts the movement of nutrients in soil water, reducing their availability 92 

to trees and consequently impacting their growth and productivity (Bauke et al. 2022).  93 

Changes in plant water-use and nutrient cycling can trigger feedback loops that magnify 94 

the effects of drought and heat stress. For instance, reduced plant cover can increase 95 

soil temperatures and further accelerate water loss and increase plant water demand 96 

(Haesen et al. 2023). On the other hand, increased atmospheric dryness or reduced soil 97 

moisture levels increase stomatal closure which limits transpiration and leads to higher 98 

leaf temperature that intensifies heat stress on plants (Drake et al. 2018). Reduced 99 

transpiration and photosynthesis elevate surface temperatures and atmospheric CO2 100 

concentrations, altering local and regional climate patterns and intensifying the frequency 101 

and severity of extreme events (Humphrey et al. 2018). These effects vary significantly 102 

depending on forest type and species composition. Together with the characteristics of 103 

the extreme events themselves – such as their extent and severity- this variability 104 

complicates our understanding of how drought affects the functionality of different forest 105 

ecosystems (Gharun et al. 2020; Shekhar et al. 2023). These feedback loops highlight 106 

the urgent need to assess how climate extremes impact different forest types, which are 107 

crucial for sequestering significant portions of anthropogenic emissions. Our study aims 108 

to 1) quantify the extent and severity of the extreme conditions in 2022 – focusing on soil 109 

and atmospheric dryness- and compare them to those of two previous extreme years 110 

(2003, 2018), 2) quantify the responses of different forest types to drought in terms of 111 

canopy browning and photosynthesis, and 3) connect the functional characteristics of the 112 

forests with the canopy-level responses observed. 113 

Methods 114 

Meteorological dataset  115 

We used Europe-wide gridded datasets covering daily mean air temperature (Tair; °C), 116 

daily mean relative humidity (RH; %) and daily mean soil moisture (SM; m3m-3) for the 117 

topsoil layer (0-7 cm depth), spanning from 2000-2022. The study area encompasses 118 
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longitudes from 11°W to 32°E, and latitudes from 35.8°N to 72°N, approximately 4.45 119 

million km2. We sourced the Tair and RH datasets from the E-OBS v27.0e dataset which 120 

provides daily data at 0.1°✕0.1° spatial resolution (Cornes et al., 2018; Klein et al., 2002). 121 

We calculated daily mean vapor pressure deficit (VPD; kPa) from Tair and RH using 122 

Equation 1 (Dee et al. 2011). 123 

 124 

𝑉𝑃𝐷	 = 	 (1 − !"
#$$
) × 0.6107 × 10

!.#×%&'(
)*!.*+%&'(  (1) 125 

 126 

The topsoil SM dataset was extracted from the most recent reanalysis data from 127 

ECMWF's (European Centre for Medium-range Weather Forecasts) new land component 128 

of the fifth generation of European Reanalysis (ERA5-Land) dataset (daily at 0.1°✕0.1° 129 

resolution; Munoz-Sabater et al., 2021). ERA5-Land provides soil moisture (SM) data at 130 

an hourly interval with a spatial resolution of 0.1° × 0.1°. For our analysis, we aggregated 131 

the hourly SM data into daily averages. Recent validation studies using in-situ 132 

measurements and satellite data have confirmed the high accuracy of surface SM 133 

simulations from ERA5-Land (Albergel et al., 2012; Lal et al., 2022; Muñoz-Sabater et al., 134 

2021). Additionally, SM data from ERA5-Land have been utilized to investigate drought 135 

and global SM patterns (see Lal et al., 2023; Shekhar et al., 2024b).  We re-sampled the 136 

Tair, VPD, and SM data from daily (0.1° × 0.1°) to 8-day (0.05° × 0.05°) intervals to align 137 

with the temporal and spatial resolution of the vegetation response dataset (see below).  138 

Forest canopy response dataset 139 

In order to assess the forest canopy response to drought stress, we used two satellite-140 

based proxies:  141 

1) The structure-based NIRv (Near-Infrared Reflectance of Vegetation) index derived 142 

from MODIS (Moderate Resolution Imaging Spectroradiometer; 8-day 500m x 500m 143 

MOD09Q1 v6.1 product) which is calculated using surface spectral reflectance at near-144 

infrared band (RNIR) and red band (RRed) as shown in Equation 2 (Badgley et al. 2017). 145 

The calculated NIRv at 500m resolution was aggregated to a 0.05°✕0.05° resolution 146 

(daily) by averaging. 147 
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  148 

𝑁𝐼𝑅% 	= 	𝑅&'! ×	
!,-.	)	!./0
!,-.	*	!./0

   (2) 149 

 150 

2) The physiological-based reconstructed global OCO-2 (Observation Carbon 151 

Observatory - 2) solar induced fluorescence (GOSIF) dataset.  Solar-induced 152 

fluorescence (SIF) is an energy flux (unit: Wm-2µm.sr-1) re-emitted as fluorescence by the 153 

chlorophyll a molecules in the plants during photosynthesis (Baker, 2008). Recent 154 

extensive research has established a strong link between Solar-Induced Fluorescence 155 

(SIF) and vegetation photosynthesis, validating SIF as an effective proxy for ecosystem 156 

gross primary productivity (GPP) (Li et al. 2018; Magney et al. 2019; Shekhar et al., 2022). 157 

The GOSIF dataset was created by training a Cubist Regression Tree model to gap-fill 158 

SIF retrievals from OCO-2 satellite. This was done using MODIS Enhanced Vegetation 159 

Index (EVI) and meteorological reanalysis data from MERRA-2 (Modern-Era 160 

Retrospective analysis for Research and Applications), which includes photosynthetically 161 

active radiation (PAR), VPD, and air temperature (see Li and Xiao, 2019). We 162 

downloaded GOSIF data set (v2) from the Global Ecology Data Repository 163 

(http://data.globalecology.unh.edu/data/GOSIF_v2/, last accessed on 25 July 2024). The 164 

GOSIF was available from 2000-2022 at 8-day temporal scale with a spatial resolution of 165 

0.05°✕0.05° (Li and Xiao, 2019).  166 

GOSIF signals provide information about physiological response of forest photosynthesis 167 

while NIRv (a recently developed vegetation index) signals provide information about the 168 

health status of the canopy. NIRv is preferred over NDVI and EVI as it can isolate the 169 

vegetation signal, mitigate mixed-pixel issue, and partly address the influences of 170 

background brightness and soil contamination (Zhang et al. 2022). The two vegetation 171 

proxies used in this study are anticipated to offer complementary insights into vegetation 172 

response to drought. 173 

Land cover dataset 174 

In this study, we focused on five different types of forests (and woodlands) across Europe, 175 

namely, evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous 176 

http://data.globalecology.unh.edu/data/GOSIF_v2/
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broadleaf forest (DBF), mixed forest (MF), and woody savannas (WSA). The spatial 177 

distribution of the five different forest types across Europe is shown in Figure 1. We used 178 

the yearly MODIS land cover product (MCD12C1 version 6.1 at 0.05°✕0.05° resolution) 179 

for the years of 2001, 2006, 2011, 2016 and 2021, to extract total areas covered by each 180 

forest type. Area of each grid cell was calculated using trigonometric equations 181 

considering the latitudinal and longitudinal variations arising due to Earth’s spherical 182 

shape (Ellipsoid). Only areas that were consistently identified as each forest type over the 183 

five-year period were included in the analysis. This means that only pixels common 184 

across these five years were selected, and with more than 50% of the 0.05°✕0.05° pixel 185 

area identified as forests. The forested areas selected for this study encompassed 186 

907,875 km², which represents approximately 24% of Europe’s total land area. Out of the 187 

total area about 23% (206´212 km2) was dominated by ENFs distributed largely across 188 

Northern Europe (NEU). Approximately 1% (7´000 km2) of the area was dominated by 189 

EBFs, located entirely in Mediterranean Europe (MED), and about 10% (92´209 km2) was 190 

dominated by DBF which was largely distributed across MED. Approximately 20% 191 

(174´934 km2) of the total forested area was dominated by MFs largely dominating Central 192 

Europe (CEU), and about 47% (427´529 km2) was dominated by WSA mostly found in 193 

NEU (Figure 1).  194 

Drought detection and statistical data analysis 195 

The focus of our analysis was on the summer months during three extreme years of 2003, 196 

2018, and 2022. For this purpose, we subset VPD, soil moisture (SM), and both 197 

vegetation proxies (NIRv and GOSIF) for the months of June, July, August (JJA) which 198 

consisted of fourteen 8-day periods, for each forested pixel between 2000 and 2022.  We 199 

restricted our analysis to the months of June-July-August so our study is 1) comparable 200 

with existing studies focused on the summer drought 2) to capture the peak of the warm 201 

and dry conditions across Europe, that would be most stressful for the vegetation 202 

functioning, from the perspective of heat and water supply. 203 

To account for the impact of the observed greening trend across Europe on vegetation 204 

proxy anomalies during the extreme years (2003, 2018, 2022), we applied a detrending 205 

process to the summer mean NIRv and GOSIF data. This detrending was performed 206 
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pixel-wise from 2000 to 2022 using a simple linear regression model (Buras et al., 2020). 207 

We then calculated pixel-wise standardized summer anomalies, expressed as z-scores 208 

(Varz), for all variables—VPD, SM, and the detrended NIRv and GOSIF (hereafter 209 

referred to as NIRv and GOSIF)—for each year, including the extreme years, using 210 

Equation 3.  211 

 212 

𝑉𝑎𝑟+	(𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠) 	=
%,-	)	%,-1/&2

%,-30
	   (3) 213 

 214 

where, Varmean and Varsd are mean and standard deviation of any variable over the 2000-215 

2022 period.  216 

 217 

In drought identification studies, classification of ‘normal’ (not to be confused with normal 218 

distribution), ‘drought’ (used synonymously with ‘dry’), or ‘wet’, is largely done using a 219 

standardized index, such as SPI (Standardized Precipitation Index), SPEI (Standardized 220 

Precipitation Evapotranspiration Index), and z-score among others (see Mishra and 221 

Singh, 2011). All studies that use a standardized index for classification, classify “normal” 222 

conditions when the index is between -1 and 1, and “below normal” conditions when the 223 

index is < -1, and “above normal” conditions when the index > 1 (Jain et al., 2015, Wable 224 

et al., 2019, Dogan et al., 2012, Tsakiris and Vangelis, 2005). In this study, we classified 225 

drought conditions as occurring when soil moisture is below normal (SMz < -1) and VPD 226 

is above normal (VPDz > 1), indicating both soil AND atmospheric dryness. This 227 

threshold-based approach using standardized anomalies aligns with established methods 228 

for drought identification and is pertinent for studying drought impacts on forests. Both 229 

soil moisture and VPD directly affect vegetation functioning, making them effective 230 

proxies for identifying environmental constraints on plant physiological performance. 231 

Furthermore, such classification of ‘normal’ (and thus, ‘above normal’ and ‘below normal’ 232 

used in this study) based on z-scores (also called standardized anomalies) can be done 233 

for any meteorological and/or response variables, such as NIRv and GOSIF done in this 234 

study, making the narration of results coherent across different variables. 235 

We used the Pearson correlation coefficient (r) and partial correlation coefficients (Pr) to 236 

understand the spatial (across space for each year) and temporal (during each year) 237 
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correlation of GOSIF and NIRv anomalies with SM and VPD anomalies (Dang et al., 238 

2022). We calculated the partial correlation coefficient using equations 4-7: 239 

 240 

𝑃𝑟(𝐺𝑂𝑆𝐼𝐹, 𝑆𝑀) 	= 	 -(/01'2,14)	)	-(/01'2,%67)×-(14,%67)
9#)-(/01'2,%67))	)	9#)-(14,%67))

   (4) 241 

 242 

𝑃𝑟(𝐺𝑂𝑆𝐼𝐹, 𝑉𝑃𝐷) 	= 	 -(/01'2,%67)	)	-(/01'2,14)×-(14,%67)
9#)-(/01'2,14))	)	9#)-(14,%67))

   (5) 243 

 244 

𝑃𝑟(𝑁𝐼𝑅𝑣, 𝑆𝑀) 	= 	 -(&'!:,14)	)	-(&'!:,%67)×-(14,%67)
9#)-(&'!:,%67))	)	9#)-(14,%67))

                        (6) 245 

 246 

𝑃𝑟(𝑁𝐼𝑅𝑣, 𝑉𝑃𝐷) 	= 	 -(&'!:,%67)	)	-(&'!:,14)×-(14,%67)
9#)-(&'!:,14))	)	9#)-(14,%67))

             (7) 247 

Results  248 

Severity of the 2022 summer drought compared to 2018 and 2003  249 

Figure 2 shows the extent and magnitude of anomalies (z-score) of VPD and top layer (0-250 

7 cm) soil moisture content during the summer months in 2003, 2018, and 2022 across 251 

Europe. In summer 2022, particularly southern regions of Europe experienced the most 252 

pronounced increase in atmospheric (z-score > 1) and soil dryness (z-score < -1) (Figure 253 

2) while in 2018 we observed the most widespread VPD and SM anomalies in northern 254 

Europe (Figure 2).  255 

Figure 3 shows the intensity of atmospheric and soil drought via z-score values of VPD 256 

and SM anomalies over the summer months (JJA) in 2003, 2018, and 2022. The total 257 

affected area displayed in Figure 3 is the sum of all pixels within the given z-score bin 258 

during the summer period where z-scores are averaged for each bin for the summer 259 

period. Restricted to forested areas, atmospheric and soil drought was 55% and 58% 260 

more extensive in 2018 compared to 2022, and in both years more extensive than in 2003 261 

(Figure 3). In 2022, 28 Mha of forested areas in Europe experienced an extremely high 262 

VPD (z-score > 1), while in 2018, 63 Mha experienced such extreme conditions. In 2022, 263 

21 Mha of forested areas experienced an extremely low soil moisture content (z-score < 264 
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-1) while in 2018, 50 Mha of forests in Europe were affected by such extreme conditions. 265 

In 2003 an area of 25 Mha was affected by extremely dry air and a similar area was 266 

affected by extremely dry soil (Figure 3). A comparison of soil drought detected from SM 267 

at 0-100 cm showed a similar result in terms of drought severity and spatial coverage and 268 

thus we used SM at 0-7 cm soil layer for our analysis (see Supplementary Figure 1).  269 
 270 
Forest canopy response to the 2022 drought  271 

The intensity of GOSIF and NIRv anomalies over the summer months (JJA) in 2003, 272 

2018, and 2022 are displayed in Figure 4. The extent shown in Figure 4 is the sum of all 273 

pixels within the given z-score bin during the summer period (z-scores are averaged for 274 

each bin). Compared to 2018, the extremely dry conditions in 2022 led to 30% increase 275 

in forested areas that exhibited declined photosynthesis (17 Mha in 2022 compared to 12 276 

Mha in 2018) (Figure 4). The extent of the canopy browning observed in 2022 was similar 277 

to 2018, which in both years was 120% of the extent of observed canopy browning in 278 

2003 (11 Mha compared to 5 Mha observed in 2003) (Figure 4).  279 

Figure 5a shows the GOSIF anomalies (z-score) across all forested areas in Europe. The 280 

intensity and extent of the GOSIF anomalies during the summer months (JJA) in each 281 

year are shown for different forest types in Figure 5b. Across specific forest types, DBFs 282 

showed the largest negative GOSIF anomaly in 2022 but the ENFs showed a positive 283 

GOSIF anomaly in 2022, both in terms of magnitude and in terms of the spatial extent of 284 

negative GOSIF anomalies (Figure 5).  285 

Figure 6a shows the anomalies of NIRv (average z-score over the summer months) 286 

across all forested areas in Europe. The intensity and extent of the NIRv anomalies during 287 

the summer months (JJA) in each year are shown for different forest types in Figure 6b. 288 

In terms of canopy browning response (NIRv anomalies), the largest negative NIRv 289 

anomalies in 2022 were observed in southern Europe (Figure 6). Largest negative NIRv 290 

anomalies (indicated by the maximum anomaly) were observed in the DBFs in 2022, 291 

fitting the declined GOSIF signals. The ENFs showed positive NIRv anomalies in 2022, 292 

in terms of magnitude, spatial coverage, and % of total area affected (Figure 6). 293 
 294 
Relationship between GOSIF and NIRv 295 
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In general, the values of NIRv and GOSIF were highly correlated (Supplementary Figure 296 

2). The anomalies of NIRv and GOSIF were most correlated across WSAs (r2 = 0.73 in 297 

2018) and least correlated across the ENFs (Supplementary Figure 2). Figure 7 shows 298 

the spatial regression between standardized GOSIF anomalies with (a) VPD and (b) SM 299 

and Figure 8 shows the spatial regression between standardized NIRv anomalies with (a) 300 

VPD and (b) SM over the drought areas in summers 2003, 2018 and 2022. With the 301 

increase in VPD (i.e., increased atmospheric dryness), GOSIF values declined across all 302 

forest types, across all years, except in 2022 in the WSA, and in 2018 and 2022 in EBFs 303 

(Figure 7). With decrease in soil moisture (i.e., increased soil dryness), GOSIF values 304 

also declined overall (r2 = 0.34), but not as strongly as with the increase in air dryness (r2 305 

= 0.39) (Figure 7). Across different forest types, GOSIF responded most strongly to VPD 306 

anomalies in the MFs (mean r2 = 0.48), and responded most directly to changes in the 307 

soil moisture in the WSA (Figure 7).  308 

Between VPD and SM, in general GOSIF anomalies were more correlated with VPD than 309 

with SM anomalies, and the decline in VPD correlated well with the larger GOSIF decline 310 

that we observed in DBFs in 2022 and in ENFs in 2003 (Figure 7). Under typical 311 

conditions (regardless of drought), GOSIF's response to both air dryness and soil 312 

moisture anomalies was more pronounced than the response of NIRv (r2 = 0.39 with 313 

GOSIF, compared to r2 = 0.29 for NIRv) (Figure 7, 8).  314 

Figure 9 shows the partial correlation coefficient between GOSIF with SM and VPD during 315 

summer months (JJA) for areas identified as affected (Figure 9a) and not affected (Figure 316 

9b) by drought. The SM and VPD values across all forest types correlated well, but across 317 

DBFs the dryness in the atmosphere and the dryness in the soil were most correlated 318 

(Figure 9). Regarding canopy response to VPD, European Needleleaf Forests (ENF) 319 

exhibited the strongest reaction to changes in atmospheric dryness (Figure 9) 320 

Discussion 321 

Severity of the 2022 summer drought 322 

Although the years 2003, 2018, and 2022 are all categorized as "extreme," the specific 323 

characteristics of the extreme conditions varied significantly among these years. For 324 
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example, in 2003, widespread negative anomalies in soil moisture signaled a significant 325 

soil drought, whereas in 2022, widespread positive VPD anomalies indicated a notably 326 

drier atmosphere (Figure 3). It is important to note that ERA-5 Land datasets have been 327 

shown to underestimate the extent of European heatwaves in 2003, 2010, and 2018 328 

(Duveiller et al., 2023), partly due to the use of a static leaf area index in their modeling 329 

framework. Consequently, the SM droughts in the years 2003, 2018, and 2022 may be 330 

more severe than indicated by our study, suggesting that our results might be somewhat 331 

conservative. The extensive summer drought in 2022 primarily impacted southern 332 

Europe, in contrast to the 2003 summer drought, which affected central Europe, and the 333 

2018 drought, which extended to central and northern Europe (Figure 2) (Bastos et al., 334 

2020). Consequently, the severe dry conditions in 2022 resulted in an average decline in 335 

GOSIF across forests that was 30% more widespread compared to 2018, and 60% more 336 

widespread compared to 2003 (Figure 4). These above-normal dry conditions during the 337 

summer reduced the photosynthetic capacity of plants and, consequently, the 338 

ecosystem's ability to absorb carbon from the atmosphere (Peters et al., 2018; van der 339 

Woude et al., 2023). Although the atmospheric and soil droughts in 2018 were more 340 

extensive and severe compared to 2022 (as indicated by the maximum observed z-341 

scores), the adverse impact on forests, as reflected by the decline in GOSIF, was greater 342 

in 2022. 343 

Canopy response to soil versus atmospheric dryness 344 

The GOSIF dataset used in this study has been shown to be a reliable proxy for 345 

vegetation gross productivity, as demonstrated by comparisons with ground-based flux 346 

measurements (Shekhar et al. 2022; Pickering et al. 2022). It is important to note that 347 

GOSIF estimates are derived from a machine learning model trained with OCO-2 SIF 348 

observations, MODIS EVI data, and meteorological reanalysis data. As a result, the 349 

meteorological data used in our analyses are not entirely independent of the SIF data. 350 

However, this overlap is unlikely to impact our findings. A recent study that compared 351 

GOSIF with original OCO-2 data to assess the impacts of the 2018 U.S. drought found 352 

similar responses to drought between the two datasets (Li et al., 2020).  353 
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NIRv and SIF signals are well-correlated and effectively capture seasonal patterns in GPP 354 

(Getachew Mengistu et al. 2021). Although the strength of their relationship can vary with 355 

time, location, and forest type (see Supplementary Figure 2), reductions in SIF signals 356 

are directly associated with decreased photosynthesis. While both SIF and NIRv are 357 

reliable indicators of canopy responses to extreme climate events, SIF is more responsive 358 

to short-term climatic changes (Figure 7).  359 

Our analysis showed that across different regions, GOSIF anomalies corresponded more 360 

strongly to increased atmospheric dryness than to increased soil dryness (Figure 7). This 361 

supports the understanding that vapor pressure deficit plays a larger role in controlling 362 

SIF signals for trees over shorter time scales than soil moisture (Pickering et al. 2022). 363 

Over shorter time frames, trees can often mitigate soil moisture deficits through 364 

mechanisms within the rooting zone and by accessing deeper water sources, whereas 365 

there is no such buffer for the impact of atmospheric dryness on tree canopies.  366 

Ground-based observations in forest ecosystems, including both ecosystem and tree-367 

level measurements, have shown that atmospheric dryness can constraint canopy gas 368 

exchange, even when soil moisture is not limiting (Gharun et al. 2014, Fu et al. 2022, 369 

Shekhar et al. 2024a). These findings highlight the importance of considering atmospheric 370 

dryness as a limiting factor for tree photosynthesis during extremely dry conditions and 371 

demonstrate the rapid response of various canopy types to increased levels of 372 

environmental dryness.  373 

Canopy response to drought across different forest types 374 

The spread of drought, measured as the total area across z-scores, exhibited distinct 375 

patterns in different years, leading to varied responses of different forest types to the 376 

climatic anomalies. Impact of drought on forests can significantly differ depending on the 377 

forest type, tree species, species composition, and past exposure to extreme conditions 378 

(Arthur and Dech 2016; Chen et al. 2022). Our analysis showed that conditions in summer 379 

2022 reduced vegetation functioning across DBFs the most, as it was indicated by 380 

declined GOSIF signals (Figure 5). While deciduous broad-leaved forests were most 381 

negatively affected by the extreme conditions in 2022, Evergreen Needle-Leaf Forests 382 

(ENF) distributed in northern regions of Europe were not exposed to extremely dry 383 

conditions in 2022 and even showed enhanced canopy greening and GOSIF signals, 384 
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through benefiting from the episodic warming (Forzieri et al. 2022). Under similar drought 385 

conditions, the mechanisms to cope with the level of drought stress vary largely among 386 

forest types, and depend on a combination of characteristics that control water loss 387 

through the coordination of stomatal regulation, hydraulic architecture, and root 388 

characteristics (e.g., rooting depth, root distribution, root morphology) (Gharun et al. 2020; 389 

Peters et al. 2023). Stomata of trees exhibit a high sensitivity to VPD fluctuations, causing 390 

a reduction in stomatal conductance as VPD increases, which, in turn, limits the exchange 391 

of CO2 with the atmosphere during photosynthesis (Bonal and Guehl in 2011; Li et al. 392 

2023). Different tree species show varying degrees of sensitivity in their stomatal 393 

responses to atmospheric dryness (Oren et al., 1999). For example, ring-porous species 394 

tend to maintain robust gas exchange under dry conditions, while diffuse-porous species, 395 

like those in ENFs, exhibit stronger stomatal regulation, reducing stomatal conductance 396 

as water availability decreases (Klein, 2014). This variability places plants on a spectrum 397 

of drought tolerance, reflecting their specific water relations strategies and leading to 398 

different responses among forests in similar climatic regions. 399 

Vulnerability of forests to more frequent drought  400 

The increased canopy damage observed in 2022, despite less severe conditions 401 

compared to the previous extreme year, suggests a lasting impact on forest canopies that 402 

could lead to a decline in forest resilience in the face of more frequent drought events 403 

(Forzieri et al., 2022). A potential decline in the resilience of forests has significant 404 

implications for vital ecosystem services, including the forest's capacity to mitigate climate 405 

change. Consequently, there is an urgent need to consider these trends when formulating 406 

robust forest-based mitigation strategies. This need is especially critical given future 407 

projections indicating that the frequency and intensity of extreme dryness across Europe 408 

will more than triple by the end of the 21st century (Shekhar et al., 2024b). In this context, 409 

it is increasingly important to investigate the vulnerability of forests to external 410 

perturbations and to develop mitigation strategies tailored to site-specific 411 

ecophysiological and environmental factors that influence forest resilience to drought. 412 

Effective management strategies should be based on an understanding of these factors 413 
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to mitigate the legacy effects of drought (McDowell et al., 2020; Wang et al., 2023; 414 

Shekhar et al., 2024a). 415 

 416 

Conclusion 417 

The severity of the 2022 summer drought, marked by increased atmospheric dryness, 418 

significantly compromised the photosynthetic capacity of trees, leading to widespread 419 

declines in vegetation functioning, especially in deciduous broad-leaved forests. Our 420 

findings underscore the importance of considering atmospheric dryness as a critical factor 421 

influencing canopy responses during extreme climatic events, alongside soil moisture 422 

deficits. Despite less severe overall conditions compared to previous extreme years, the 423 

greater canopy damage observed in 2022 suggests a growing vulnerability of forests to 424 

drought. This raises concerns about the future climate mitigation capacity of forest 425 

ecosystems, particularly as projections indicate a continued increase in the frequency and 426 

intensity of extreme dryness across Europe. 427 
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 441 
Figure 1 Spatial coverage of forests (ENF - evergreen needleleaf forest; EBF - evergreen 442 

broadleaf forest; DBF - deciduous broadleaf forest; MF - mixed forest), and woodlands 443 

(WSA - woody savannas) across Europe. Areas are differentiated into Northern Europe 444 

(NEU), Central Europe (CEU), and Mediterranean Europe (MED) following Markonis et 445 

al. (2021). The map is based on MODIS land cover product MCD12C1 (version 6.1). 446 
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 447 
Figure 2 Standardized summer (JJA) anomalies (z-score) of mean vapor pressure deficit 448 

(VPD), and top layer (0-7 cm depth) soil moisture (SM) in 2003, 2018 and 2022, across 449 

the region of Europe.  450 

 451 

 452 

 453 

 454 
 455 

Figure 3 Intensity (z-score) and extent (area affected, Mha) of (a) VPD, and (b) SM 456 

anomalies across forested areas during the summer months (JJA). Z-score, values from 457 

-1 and 1 are considered normal (within 1 standard deviation of the mean). Orange-shaded 458 

area marks below normal and green-shaded area marks above normal conditions. 459 
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 460 
Figure 4 Intensity (z-score) and extent (area affected, Mha) for (a) GOSIF, and (b) NIRv 461 

anomalies across forested areas during the summer months (JJA). Z-score, values from 462 

-1 and 1 are considered normal (within 1 standard deviation of the mean). Orange-shaded 463 

area marks below normal and green-shaded area marks above normal conditions. 464 

 465 

 466 
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 467 
Figure 5 (a) GOSIF anomaly (in terms of z-score) across Europe, and (b) area coverage 468 

(in terms of percentage of total area for each forest type) during the summer months (JJA) 469 

in 2003, 2018 and 2022. Orange-shaded area marks below normal and green-shaded 470 

area marks above normal conditions. White areas on the map mark non-forested regions. 471 

 472 

 473 
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 474 
 475 

Figure 6 (a) NIRv anomaly (in terms of z-score) across Europe, and (b) area coverage 476 

(in terms of percentage of total area for each forest type) during the summer months (JJA) 477 

in 2003, 2018 and 2022. In panel (b) Orange-shaded area marks below normal and green-478 

shaded area marks above normal conditions. White areas on the map mark non-forested 479 

regions. 480 
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 481 
Figure 7 Spatial regression between standardized GOSIF anomalies with (a) VPD and 482 

(b) SM over the drought areas during the summer months (JJA) 2003, 2018 and 2022. 483 

Dashed lines mark a non-significant relationship (p > 0.05).  484 

 485 

 486 

 487 
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 488 
 489 

Figure 8. Spatial (over all pixels) regression between standardized NIRv anomalies with 490 

(a) VPD and (b) SM over the drought areas and normal areas in 2003, 2018, and 2022 491 

during the summer months (JJA).  492 

 493 

 494 

 495 

 496 
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 497 
Figure 9. Temporal partial correlation coefficient of GOSIF with the absolute values of 498 

SM and VPD during the summer months (JJA) in 2003, 2018 and 2022, for detected (a) 499 

drought areas and (b) normal areas. A comparable figure for NIRv can be found in 500 

Supplementary Figure 3. 501 

 502 

 503 
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