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Abstract

Forests in Europe experienced record-breaking dry conditions during the 2022 summer.

The direction in_which various forest types respond to climate extremes during their

growing season is contingent upon an array of internal and external factors. These factors

include the extent and severity of the extreme conditions and the tree ecophysiological

characteristics adapted to environmental cues, which exhibit significant regional

variations. In this study we aimed to: 1) quantify the extent and severity of the extreme

soil and atmospheric dryness in 2022 in comparison to two most extreme years in the

past (2003 and 2018), 2) quantify response of different forest types to atmospheric and

soil dryness in terms of canopy browning and photosynthesis, and 3) relate the functional

characteristics of the forests to the emerging responses observed remotely at the canopy

level. For this purpose, we used spatial meteorological datasets between 1970 to 2022

to identify conditions with extreme soil and atmospheric dryness. We used the near-

infrared reflectance of vegetation (NIRv) derived from the MOderate Resolution Imaging
Spectroradiometer (MODIS), and the OCO-2 solar induced fluorescence (GOSIF) as an

observational proxy for ecosystem gross productivity, to quantify the response of forests

at the canopy level.
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In summer 2022, southern regions of Europe experienced exceptionally pronounced

atmospheric _and soil dryness. These extreme conditions resulted in a 30% more

widespread decline in GOSIF across forests compared to the drought of 2018, and 60%

more widespread decline compared to the drought of 2003. Although the atmospheric

and soil drought were more extensive and severe (indicated by a larger observed

maximum_z-score) in 2018 compared to 2022, the negative impact on forests, as

indicated by declined GOSIF, was significantly larger in 2022. Different forest types were

affected in varying degrees by the extreme conditions in 2022. Deciduous broad-leaved

forests were the most negatively impacted due to the extent and severity of the drought

within their distribution range. In contrast, areas dominated by Evergreen Needle-Leaf

Forests (ENF) in northern Europe experienced a positive soil moisture (SM) anomaly and

minimal negative vapor pressure deficit (VPD) in 2022. These conditions led to enhanced

canopy greening and stronger solar-induced fluorescence (SIF) signals, benefiting from

the warming. The higher degree of canopy damage in 2022, despite less extreme

conditions, highlights the evident vulnerability of European forests to future droughts.

v

/| of internal and external factors. These factors include

Keywords: photosynthesis, soil drought, atmospheric drought, canopy browning, gross

primary production

Introduction

The frequency and intensity of drought events have been rising globally, and future global

warming is expected to further increase their occurrence (Seneviratne et al. 2012;

- | forests were most negatively affected by the extrer”T1])

Rothlisberger and Papritz 2023). Particularly over the past two decades, many regions in
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the extent and severity of the extreme conditions and
the tree ecophysiological characteristics adapted to
environmental cues, which exhibit significant regional
variations. In this study we aimed to: 1) quantify the
extent and severity of the extreme soil and atmospheric
dryness in 2022 in comparison to two most extreme
years in the past (i.e., 2003, 2018), 2) quantify response
of different forest types to atmospheric and soil drought
in terms of canopy browning and photosynthesis, and 3)
relate the functional characteristics of the forests to the
emerging responses observed at the canopy level. For
this purpose, we used the ERA5-Land spatial
meteorological dataset between 1970 to 2022 to identify
conditions with extreme soil and atmospheric dryness.
We used the near-infrared reflectance of vegetation
(NIRv) derived from the MOderate Resolution Imaging
Spectroradiometer (MODIS), and the OCO-2 solar
induced fluorescence (SIF) as an observational proxy
for photosynthesis based on the SIF data product, to
quantify the response of forests at the canopy level |

In summer 2022, particularly southern regions of
Europe experienced the most pronounced atmospheric
and soil dryness. As a result, the extremely dry
conditions led to an average 30% more widespread
decline in SIF across forests compared to drought in
2018, and 60% more widespread decline compared to
drought in 2003. Although the atmospheric and soil
drought were more extensive and severe (indicated by
a larger observed max z-score) in 2018 compared to
2022, the negative impact on forests, indicated by
declined SIF, was significantly larger in 2022. Across
different forest types, the deciduous broad-leaved

Deleted: Higher degree of canopy damage in 2022 in
spite of less extreme conditions compared to the
previous extreme year points to a legacy effect on forest
canopies, and a declined forest resilience in response
to more frequent drought events.

Europe, have experienced widespread drought conditions, notably during the summers of -
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2003, 2010, and 2018 (Bastos et al. 2020; Zhou et al. 2023)._The extreme conditions

caused widespread ecological disturbances (Miller and Bahn 2022) and reduced the
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capacity of forests for carbon uptake, thereby diminishing, their potential for mitigating

climate change (van der Woude et al. 2023). Additionally, heatwaves and prolonged "

droughts stress vegetation, making it more susceptible to other biotic and abiotic stress

factors. This increased vulnerability leads to higher tree mortality, elevated wildfire risks,
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and a loss of biodiversity among plants and animals living at the edge of their temperature

tolerance. These conditions also alter phenology and plant development, causing

cascading effects on ecosystem functioning (Seidl et al. 2017).

The spatial extent and severity of drought events vary, and their impacts depend on Jocal

ecological characteristics of the forests, species-specific temperature and moisture -

thresholds that limit tree functioning, as well as adaptation strategies and acclimation of

trees to more frequent and jntense extreme conditions (Gessler et al. 2020). For example,

comparing the 2003 and 2018 extreme years, the year 2018 was characterized by a
climatic dipole, featuring extremely hot and dry weather conditions north of the Alps but
comparably cool and moist conditions across large parts of the Mediterranean. Negative
drought impacts appeared to affect an area 1.5 times larger and to be significantly
stronger in summer 2018 compared to summer 2003 (Buras et al. 2020).

In 2022, Europe faced its second hottest and driest year on record, with the summer of

%y (Deleted: the
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ihat year being, the warmest summer ever recorded. Conditions in summer 2022 led to

record-breaking heatwave and drought events across many regions (Copernicus Climate
Change Service, 2023). Compound drought and heatwave conditions in 2022 caused
widespread crop damage, water shortages, and wildfires across Europe. The hardest-hit
areas were the Iberian Peninsula, France, and Italy, where temperatures exceeded 2.5°C
above normal, and severe droughts persisted from May to August (Tripathy and Mishra
2023). The reduced soil moisture due to precipitation deficits and high temperatures,
contributed to the persistence and severity of drought, creating a positive feedback loop
where dry soils led to even drier conditions (Tripathy and Mishra 2023).

Drought and heatwaves have a range of detrimental effects on frees and forests. The |
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Jn the soil or in the atmosphere, disrupt mesophyll and stomatal conductance, thereby .
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impairing carbon uptake (Marchin et al. 2021). Plants reduce stomatal conductance under
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severe drought to reduce water stress at the expense of reduced rates of photosynthesis
(Oren et al., 1999). Drought also increases the chance of hydraulic failure, which can lead
to tree mortality (Choat et al. 2018). Additionally, rising temperatures reduce the
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enzymatic activity in trees, which in turn diminishes the forest’s gross primary productivity

(Gourlez de la Motte et al. 2020). Elevated temperatures can also increase respiration
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rates jn both soil and frees, which reduces the forest’s net carbon uptake and_their ability

1o mitigate anthropogenic CO2 emissions (van der Molen et al. 2011; Anjileli et al. 2021).

Drought also restricts the movement of nutrients in soil water, reducing their availability
Bauke et al. 2022).

Changes in plant water-use and nutrient cycling can trigger feedback loops that magnify

to trees and consequently jmpacting their growth and productivit
the effects of drought and heat stress. For instance, reduced plant cover can increase
soil temperatures and further accelerate water loss and increase plant water demand
(Haesen et al. 2023). On the other hand, increased atmospheric dryness or reduced soil
moisture levels increase stomatal closure which limits transpiration and leads to higher

leaf temperature that intensifies heat stress on plants (Drake et al. 2018). Reduced

transpiration and photosynthesis glevate surface temperatures and atmospheric CO»

concentrations, altering local and regional climate patterns and jntensifying the frequency

and severity of extreme events (Humphrey et al. 2018). These effects vary significantly /

depending on forest type and species composition, Together with the characteristics of

the extreme_events themselves — such as their extent and severity- this variability |

complicates our understanding of how drought affects the functionality of different forest
ecosystems (Gharun et al. 2020; Shekhar et al. 2023a). These feedback loops highlight
the urgent need to assess how climate extremes jmpact different forest types, which are
Our stud
to 1) quantify the extent and severity of the extreme conditions in 2022 — focusing on soil |

crucial for sequestering significant portions of anthropogenic emission ims

and atmospheric dryness-, and compare fhem to those of two previous extreme years |

(2003, 2018), 2) quantify the responses of different forest types to drought in terms of

canopy browning and photosynthesis, and 3) connect the functional characteristics of the

forests with, the canopy-Jevel responses observed.

Methods

Meteorological dataset

We used Europe-wide gridded datasets covering daily mean air temperature (Tair; °C),

daily mean relative humidity (RH; %) and daily mean soil moisture (SM; m3m) for the, |~
topsoil layer (0-7 cm depth), spanning from 2000-2022. The study area encompasses
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"| 72°N, approximate area of 4.45 million km?) gridded
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generation of European Reanalysis (ERA5-Land) dataset (daily at 0.1°X0.1° resolution;

Munoz-Sabater et al., 2021). ERA5-Land provides soil moisture (SM) data at an hourly

interval with a spatial resolution of 0.1° x 0.1°. For our analysis, we aggregated the_ hourly

: (Formatted: Font: (Default) Arial
‘(Formatted: Font: (Default) Arial
(Deleted: The

‘(Deleted: SM

. (Deleted: dataset

SM data into daily averages. Recent validation studies using in-situ measurements and

satellite data have confirmed the high accuracy of surface SM simulations from ERA5- i]x

N AN AN AN A A A AN A

Deleted: was extracted from the most recent reanalysis
data from ECMWF's (European Centre for Medium-
range Weather Forecasts), new land component of the
fifth generation of European Reanalysis (ERA5-Land)

Land (Albergel et al., 2012; Lal et al., 2022; Mufioz-Sabater et al., 2021). Additionally, SM

data from ERA5-Land have, been utilized to jnvestigate drought and global SM patterns ‘

(see Lal et al., 2023; Shekhar et al., 2024b). We re-sampled the Tair, VPD, and SM data
from daily (0.1° x 0.1°) to 8-day (0.05° x 0.05°) intervals to align with the temporal and

spatial resolution of the vegetation response dataset,

‘(Formatted: Font: (Default) Arial
; (Formatted: Font: (Default) Arial
: : (Formatted: Font: (Default) Arial
‘ ] (Deleted: 9

Forest canopy response dataset

In order to assess the forest canopy response to drought stress, we used two satellite-
based proxies:
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broadleaf forest (DBF), mixed forest (MF), and woody savannas (WSA). The spatial
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distribution of the five different forest types across Europe is shown in Figure 1. We used
the yearly MODIS land cover product (MCD12C1 version 6.1 at 0.05°X0.05° resolution)
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area identified as forests, The forested areas selected for this study encompassed

907,875 km?, which represents approximately 24% of Europe’s total land area, Out of the

total area about 23% (206°212 km?) was dominated by ENFs distributed largely across
Northern Europe (NEU). Approximately 1% (7°000 km?) of the area was dominated by
EBFs, located entirely in Mediterranean Europe (MED), and about 10% (92°209 km?) was
dominated by DBF which was largely distributed across MED. Approximately 20%
(174934 km?) of the total forested area was dominated by MFs largely dominating Central
Europe (CEU), and about 47% (427°529 km?) was dominated by WSA mostly found in
NEU (Figure 1).
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etal., 2019, Dogan et al., 2012, Tsakiris and Vangelis, 2004). In this study, we classified,

drought conditions as occurring when soil moisture is below normal (SMz < -1) and VPD
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is_above normal (VPDz > 1), jndicating both soil AND atmospheric_dryness. This,
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threshold-based approach using standardized anomalies aligns with established methods

for drought identification and is pertinent for studying drought impacts on forests. Both

"CDeleted: approach

soil moisture and VPD directly affect vegetation functioning, making them effective

proxies for identifying environmental constraints on plant physiological performance,
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Furthermore, such classification of ‘normal’ (and thus, ‘above normal’ and ‘below normal’

used in this study) based on z-scores (also called standardized anomalies) can be done

| Deleted: in the literature and is relevant for studying

drought impact on forests as we know from the body of
literature that both SM and VPD directly influence
vegetation functioning and thus are suitable proxies for
identifying environmental limitations to plant
physiological functioning
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(Deleted: (

study, making the narration of results coherent across different variables.
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We used the Pearson correlation coefficient (r) and partial correlation coefficients (Pr) to<.

understand the spatial (across space for each year) and temporal (during each year)
correlation of GOSIF and NIRy anomalies with SM and VPD anomalies (Dang et al.,

2022). We calculated the partial correlation coefficient using equations 4-7:

r(GOSIF,SM) — r(GOSIF,VPD)Xr(SM,VPD) )

Pr(GOSIF,SM) =
J1-7(GOSIFVPD)? ~ [1-r(SMVPD)?

r(GOSIF,VPD) — r(GOSIF,SM)Xr(SM,VPD)
J1-7(GOSIF,SM)2 — [1-(SM,VPD)?

Pr(GOSIF,VPD) =

®)

r(NIRv,SM) — r(NIRv,V PD)x1(SM,VPD) ®)

Pr(NIRv,SM) =
J1-T(NIRVVPD)? ~ [1-7(SM,VPD)?

r(NIRv,VPD) — r(NIRv,SM)Xr(SM,VPD) 7)

Pr(NIRv,VPD) =
J1-T(NIRv,SM)? ~ [1-T(SM,VPD)?

Results

Severity of the 2022 summer drought compared to 2018 and 2003
Figure 2 shows the extent and magnitude of anomalies (z-score) of VPD and top layer (0-
7 cm) soil moisture content during the summer months in 2003, 2018, and 2022 across

Europe. In summer 2022, particularly southern regions of Europe experienced the most
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(Deleted: the entire region of

pronounced increase in atmospheric (z-score > 1) and soil dryness (z-score < -1) (Figure

2) while in 2018 we observed the most widespread VPD and SM anomalies, in northern

Europe (Figure 2).
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Figure 2 Standardized summer (JJA) anomalies (z-score) of mean vapor pressure deficit
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(VPD), and top layer (1-7 cm depth) soil moisture (SM) in 2003, 2018 and 2022, across

the region of Europe.

Figure 3 shows the intensity of atmospheric and soil drought via z-score values of VPD
and SM anomalies over the summer months (JJA) in 2003, 2018, and 2022. The total

affected area displayed in Figure 3 is the sum of all pixels within the given z-score bin

during the summer period where z-scores are averaged for each bin for the summer

period. Restricted to forested areas, atmospheric and soil drought was 55% and 58%

more extensive in 2018 compared to 2022, and in both years more extensive than in 2003

(Deleted: (

(Figure 3). In 2022, 28 Mha of forested areas in Europe experienced an extremely high

CDeleted: )

VPD (z-score > 1), while in 2018, 63 Mha experienced such extreme conditions. In 2022,
21 Mha of forested areas experienced an extremely low soil moisture content (z-score <
-1) while in 2018, 50 Mha of forests in Europe were affected by such extreme conditions.
In 2003 an area of 25 Mha was affected by extremely dry air and a similar area was

affected by extremely dry soil (Figure 3)._.A comparison of soil drought detected from SM

at 0-100 cm showed a similar result in terms of area and magnitude of drought and thus

we used SM at 0-7 cm soil layer for our analysis (see Supplementary Figure 1).
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anomalies across forested areas during the summer months (JJA), Z-score, values from

-1 and 1 are considered normal (within 1 standard deviation of the mean). Orange-shaded

area marks below normal and green-shaded area marks above normal conditions.

Forest canopy response to the 2022 drought
The intensity of GOSIF and NIRv anomalies over the summer months (JJA) in 2003,
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2018, and 2022 are displayed in Figure 4. The extent shown in Figure 4 is the sum of all

pixels within the given z-score bin during the summer period (z-scores are averaged for
each bin). Compared to 2018, the extremely dry conditions in 2022 led to 30% increase
in forested areas that exhibited declined photosynthesis (17 Mha in 2022 compared to 12

Mha in 2018) (Figure 4). The extent of the canopy browning observed in 2022 was similar
to 2018, which in both years was 120% of the extent of observed canopy browning in
2003 (11 Mha compared to 5 Mha observed in 2003) (Figure 4).
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Figure 5a shows the GOSIF anomalies (z-score) across all forested areas in Europe. The ) (F -
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intensity and extent of the GOSIF anomalies during the summer months (JJA) in each

year are shown for different forest types in Figure 5b. Across specific forest types, DBFs

showed the largest negative GOSIF anomaly in 2022 but the ENFs showed a positive
GOSIF anomaly in 2022, both in terms of magnitude and in terms of the spatial extent of
negative GOSIF anomalies (Figure 5).

Figure 6a shows the anomalies of NIRv (average z-score over the summer months)

across all forested areas in Europe. The intensity and extent of the NIRv anomalies during

the summer months (JJA) in each year are shown for different forest types in Figure 6b.

In terms of canopy browning response (NIRv anomalies), the largest negative NIRv
anomalies in 2022 were observed in southern Europe (Figure 6). Largest negative NIRv

anomalies (indicated by the maximum anomaly) were observed in the DBFs in 2022,
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fitting the declined GOSIF signals. The ENFs showed positive NIRv anomalies in 2022,

in terms of magnitude_ spatial coverage, and % of total area affected (Figure 6).
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In general, the values of NIRv and GOSIF were highly correlated (Supplementary Figure

-

2). The anomalies of NIRv and GOSIF were most correlated across WSAs (72 = 0.73.in ‘ (Deleted:
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2018) and least correlated across the ENFs (Supplementary Figure 2). Figure 7 shows
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the spatial regression between standardized GOSIF anomalies with (a) VPD and (b) SM ,(Deleted,

and Figure 8 shows the spatial regression between standardized NIRv anomalies with (a) [Deleted: r

VPD and (b) SM over the drought areas in summers 2003, 2018 and 2022. With the :@e‘e‘ed‘ 62
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increase in VPD (i.e., increased atmospheric dryness), GOSIF values declined across all
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forest types, across all years, except in 2022 in the WSA, and in 2018 and 2022 in EBFs
(Figure 7). With decrease in soil moisture (i.e., increased soil dryness), GOSIF values
also declined overall (r? = 0.34), but not as strongly as with the increase in air dryness (r?
= 0.39) (Figure 7). Across different forest types, GOSIF responded most strongly to VPD
anomalies in the MFs (mean r? = 0.48), and responded most directly to changes in the

soil moisture in the WSA (Figure 7).
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Between VPD and SM, in general GOSIF anomalies were more correlated with VPD than
with SM anomalies, and the decline in VPD correlated well with the larger GOSIF decline
that we observed in DBFs in 2022 and in ENFs in 2003 (Figure 7). Under typical

conditions (regardless of drought), GOSIF's response to both air dryness and soil

moisture anomalies was more pronounced than the response of NIRy, (? = 0.39 with
GOSIF, compared to r? = 0.29 for NIRv) (Figure 7, 8).
Figure 9 shows the partial correlation coefficient between GOSIF with SM and VPD during

summer months (JJA) for areas identified as affected (Figure 9a) and not affected (Figure
9b) by drought. The SM and VPD values, across all forest types correlated well, but across

drought), response of SIF to both air dryness and soil
moisture anomalies were larger than the response of
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DBFs the dryness in the atmosphere and the dryness in the soil were most correlated

(Figure 9). Regarding canopy response to VPD, European Needleleaf Forests (ENF)

exhibited the strongest reaction to changes in atmospheric dryness (Figure 9),

ENF EBF DBF MF WSA
20 0.0503-1,92 x R2=0.15, y=0.0427 -2.01 X R2=0.17, y=0.0474-2.25 x R2=0.24, y=-0.174-3.08 x
5 -00643-290 ¢ i =-0.597-2.14x A 8)y=-0.238_1.54x" R®=0.46,y=-0:348-3.66 x
0438551 x R® = =-0211-377x 9, y=0.297 - 2.8%

- 2003
- 2018
- 2022

NIRv anomaly

0.4 0.8 1.2 1.6 050 075 1.00 1.25 0.4 06 0.8 1.0 1.2

VPD (kPa)
b
ENF EBF DBF MF

15] AR?=0.19,y==0414+15x

== 2003
- 2018
- 2022

NIRv anomaly

0.1 0.2 0.3 01 02 03 04 05 0.2 0.4 0.6 0.2 0.4 0.6
SM (m°m™®)

Figure 8. Spatial (over all pixels) regression between standardized NIRv anomalies with

| Deleted: In terms of canopy response to VPD, ENF were
the forests that responded most strongly to changes in
the atmospheric dryness (Figure 9). |

e (Formatted: Font: 12 pt

(a) VPD and (b) SM over the drought areas and normal areas jn 2003, 2018 and 2022,
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Our analysis showed that across different regions, GOSIF anomalies corresponded more
strongly to increased atmospheric dryness than to increased soil dryness (Figure 7). This

environmental dryness.

supports the understanding that vapor pressure deficit plays a larger role in controlling [Deleted: fits the notion
SIF signals for trees over shorter time scales than soil moisture (Pickering et al. 2022). (Deteted: for trees,
Over shorter time frames, trees can often mitigate soil moisture deficits through g:::::: :Zr shorter fime soales
mechanisms within the rooting zone and py accessing deeper water sources, whereas “ (Deleted: can be mitigated by various
Ihere is no such buffer for the impact of atmospheric dryness on tree canopies. ( Deleted: through plant’s access to
Ground-based observations in forest ecosystems, including both, ecosystem and free- geleted Sj::::azf
level measurements, have shown that atmospheric dryness can constraint canopy gas ‘@eleted: no such buffer exists
exchange, even when soil moisture is not Jimiting (Gharun et al. 2014, Fu et al. 2022, ; : (Deleted:s
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climatic anomalies. Impact of drought on forests can significantly differ depending on the O’e'ete"‘ fast
forest type, tree species, species composition, and past exposure to extreme conditions kigefefe‘f :ur:]nff o
(Arthur and Dech 2016; Chen et al. 2022). Our analysis showed that conditions in summer [Deleted: s
2022 reduced vegetation functioning across DBFs the most, as it was indicated by [Deleted: different
declined GOSIF signals (Figure 5). While deciduous broad-leaved forests were most ‘ g:::: ::;y:crf;z/that are controlied by

negatively affected by the extreme conditions in 2022, Evergreen Needle-Leaf Forests

(ENF) distributed in northern regions of Europe were not exposed to extremely dry

conditions in 2022 and even showed enhanced canopy greening and GOSIF signals,

through benefiting from the episodic warming (Forzieri et al. 2022). Under similar drought

conditions, the mechanisms to cope with the level of drought stress vary largely among

forest types, and depend on a combination of characteristics that control water loss -

through the coordination of stomatal regulation, hydraulic architecture, and root k

characteristics (e.g., rooting depth, root distribution, root morphology) (Gharun et al. 2020;
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Peters et al. 2023). Stomata of trees exhibit a high sensitivity to VPD fluctuations, causing
areduction in stomatal conductance as VPD increases, which, in turn, limits the exchange
of CO2 with the atmosphere during photosynthesis (Bonal and Guehl in 2011; Li et al.

2023)._Different tree species show varying degrees of sensitivity in_their stomatal

- 'CDeleted:

responses to atmospheric dryness (Oren et al., 1999). For example, ring-porous species

tend to maintain robust gas exchange under dry conditions, while diffuse-porous species,

like those in ENFs, exhibit stronger stomatal regulation, reducing stomatal conductance

as water availability decreases (Klein, 2014). This variability places plants on a spectrum

of drought tolerance, reflecting their specific water relations strategies and leading to

different responses among forests in similar climatic regions.,

Increased frequency of extremes and declined resilience of forests

The increased canopy damage observed in 2022, despite less severe conditions+

compared to the previous extreme year, suggests a lasting impact on forest canopies that

could lead to a decline in forest resilience in the face of more frequent drought events

(Forzieri_et al., 2022). A potential decline in the resilience of forests has significant

implications for vital ecosystem services, including the forest's capacity to mitigate climate

change. Consequently, there is an urgent need to consider these trends when formulating

robust forest-based mitigation strategies. This need is especially critical given future

projections indicating that the frequency and intensity of extreme dryness across Europe

will more than triple by the end of the 21st century (Shekhar et al., 2024b). In this context,

it is increasingly important to investigate the vulnerability of forests to external

perturbations and to develop mitigation strategies tailored to site-specific

ecophysiological and environmental factors that influence forest resilience to drought.

Effective management strategies should be based on an understanding of these factors

to mitigate the legacy effects of drought (McDowell et al., 2020; Wang et al., 2023;
Shekhar et al., 2024a).,

Conclusion

The severity of the 2022 summer drought, marked by increased atmospheric dryness,

significantly compromised the photosynthetic capacity of trees, leading to widespread

declines in vegetation functioning, especially in deciduous broad-leaved forests. Our
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findings underscore the importance of considering atmospheric dryness as a critical factor

influencing canopy responses during extreme climatic events, alongside soil moisture

deficits. Despite less severe overall conditions compared to previous extreme years, the

greater canopy damage observed in 2022 suggests a growing vulnerability of forests to

drought. This raises concerns about the future climate mitigation capacity of forest

ecosystems, particularly as projections indicate a continued increase in the frequency and

intensity of extreme dryness across Europe
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