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The authors would like to thank the reviewer for the time and valuable comments and suggestions. 

Below the reviewer comments are in blue, our responses are in black. All changes are highlighted in 

red in the revised manuscript. 

- In general it is hard to read the figures — the authors should consider saving them at a 

higher resolution and/or increasing font sizes. This is making it harder to interpret the 

figures.  

Response: Figure 2, 4, 5, 6, 7, 8 and 10 have been updated. Font sizes and resolution have been 

enhanced. 

- "Figure 2. Temporal variation of SWE, from CanSWE data and WRF model resolution over 

the SSRB region. The SWE data are aggregated for all stations inside the innermost domain. 

The spikes in the graph correspond to snowfall events." 

Do the spikes imply that the snow accumulated and then melts, or that this is a data artifact? 

The authors should state what they think is actually causing the spikes. It seems unusual to 

have the spikes consistent across all of the CanSWE observations.  

Response: The spikes are due to the snowfall events, indicating the accumulation and subsequent 

melting of snow. This information has also been included in the manuscript for further clarification. 

- "Figure 6. Simulated mean SWE (kg/m2)" 
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Response: It has been corrected. 

"is is because the actual topography and associated elevation will typically be much more variable 

over an area of 81 km2 than over 1 km..." 

Same here — correctly format km2.  

Response: It has been corrected. 

"The large bias in the coarsest resolution also may be due to the incapability of the WRF-9km to 

simulate the processes that are responsible for snow deposition and erosion in mountainous areas 

(Mott et al., 2018; Raparelli et al. 2021)."  

It is not clear what "snow erosion" is in this context. Maybe "snow redistribution"? The latter is the 

more commonly used term.  
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Abstract 

  Accurate estimation of snow water equivalent (SWE) over high mountainous regions is essential to support 

water resource management. Due to the sparse distribution of in situ observations in these regions, weather 

forecast models have been used to estimate SWE. However, the influence of horizontal resolution on the 

accuracy of the snow simulation remains poorly understood. The objective of this study is to evaluate the 

potential of the Weather Research and Forecasting (WRF) model run at horizontal resolutions of 9, 3 and 1 km 

to estimate the daily values of SWE over the mountainous South Saskatchewan River Basin (SSRB) in Western 

Canada for a representative water year, 2017-18. Special focus is given to investigating the impact of the WRF 

model grid cell size on accurate estimation of the peak time and value of SWE across the watershed.   

Observations from manual snow surveys show an accumulation period from October 2017 to the annual peak 

in April 2018, followed by a melting period to the end of water year. All WRF simulations tend to 

underestimate annual SWE, with largest biases (up to 58 kg/m2, i.e. relatively 24%) found at higher elevations 

and in simulations at coarser horizontal resolution. The two higher-resolution simulations capture the 

magnitude (and timing) of peak SWE very accurately, with only a 3 to 6% low bias for 1 km and 3 km 

simulations, respectively. This demonstrates that a 1 km resolution may be appropriate for estimating SWE 

accumulation across the region. A relationship is identified between model elevation bias and SWE biases, 

suggesting that the smoothing of topographic features at lower horizontal resolution leads to lower grid cell 

elevations, warmer temperatures, and lower SWE. Overall, this study indicates that high resolution WRF 

simulations can provide reliable SWE values as an accurate input for hydrologic modeling over a sparsely 

monitored mountainous catchment.  

Keywords: Snow water equivalent (SWE); WRF model; bias; South Saskatchewan River Basin (SSRB). 

 

1. Introduction  

      On average, almost 65% of Canada’s landmass is covered by annual snow cover for more than 

six months of the year (ECCC, 2022). Melting snow in spring is a critical component of the water 

cycle to determine water supplies and flood risk; however, estimating the effect of snowmelt on 

flooding depends on a reliable estimate of snow water equivalent (SWE) (Dozier et al. 2016; 

Wrzesien et al. 2017; Vionnet et al., 2020). SWE is defined as the product of snowpack depth and 

bulk density and is a key environmental variable for understanding climate (Brown et al., 2019). It 

represents the vertical depth of water that would be obtained if all the snow cover melted completely 

(WMO, 2018). The value of SWE shows the amount of liquid water, which is produced from a 

melting snowpack.  
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    Spatiotemporal distribution of SWE, particularly within northern latitudes and higher elevations, 

shows the extent of spring and summer runoff (Barnet et al., 2005; King et al., 2020). Due to the 

sparse distribution of in situ observations globally, regional weather forecast models are recently used 

to estimate the amount of SWE (Klehmet et al., 2013; Wrzesien et al. 2017; Raparelli et al., 2021). 

Reliable and accurate estimation of SWE has been significantly required to improve management and 

analyses of water resources. It is also essential for other applications, including global snow 

hydrology, global change analysis, and risk assessment (Taheri and Mahmoudian, 2022).  

Although there have been many studies that evaluate temperature and precipitation simulations over 

North America (Diaconescu et al., 2016; Xu et al., 2019; Holtzman et al., 2020), few studies have 

been performed regionally to validate the model estimation of the spatial and temporal patterns in 

SWE (e.g., Alonso-González et al. 2018; Mortezapour et al., 2020). There is ample evidence from 

previous studies that model horizontal resolution is one of the key factors that should be improved to 

increase the accuracy of a simulated snowpack (Blöschl, 1999; Leung et al. 2003). Regional climate 

simulations using a coarse horizontal grid spacing typically underestimate the snowfall compared to 

the observations. One specific example showed that reducing MM5 model (fifth-generation Penn 

State–NCAR Mesoscale Model) grid spacing to 13 km led to an improved estimation of the snowpack 

for the western United States (Leung and Qian, 2003). Garvert et al. (2007) found that a high-

resolution mesoscale model is required to appropriately simulate the snowfall over a complex terrain 

and to produce updraft and downdrafts that had a significant impact on the snowfall patterns. The 

WRF (Weather Research and Forecasting) model simulations at 2-km grid spacing for the Colorado 

Rocky Mountains are analyzed by Rasmussen et al. (2011). The estimations are verified using 

Snowpack Telemetry (SNOTEL) data. Their results show that the model successfully simulated 

spatial and temporal patterns of SWE over the region.  

    The Rocky Mountains in the USA and Canada stretch from the northernmost part of western 

Canada, to the northern New Mexico in the southwestern United States. The eastern slopes of the 

Canadian Rocky Mountains, is a complex region and several factors such as season, vegetation, and 

topography, control the discharge of headwater streams from high elevation catchments to valley 

bottoms (Hauer et al., 1997). Our study region comprises the eastern foothills region of the Rocky 

Mountains and the mountain headwaters region of the South Saskatchewan River Basin (SSRB) (see 

Fig. 1) and it has been more focused on the western SSRB region, which includes mountainous areas 

of the SSRB. The SSRB in Western Canada is a major agricultural basin of Canada with a semi-arid 

climate and highly dependent on surface water (Martz et al. 2007) which mainly comes from the 

spring snowmelt (Tanzeeba and Gan, 2012). The SSRB is a major sub-basin of the Nelson River 

Basin of Canada, rising from the Rocky Mountains in the west and extending eastward through 

southern Alberta (Tanzeeba and Gan, 2012). The watershed has a sub humid to semiarid continental 

climate. Temperatures can reach 40°C during the summer and −40°C during winter (Martz et al. 

2007). During the wintertime, precipitation is principally in the form of snow. Most of the annual 

runoff (around 70%) of the rivers in this region is supplied from the Rocky Mountains and the 

foothills (Ashmore and Church 2001). Annually SSRB accounts for nearly 57% of the total water 

allocated in Alberta. The surface water supply in SSRB region mainly comes from the spring 

snowmelt (Tanzeeba and Gan, 2012), which makes it highly suitable to study the variability of SWE 

and its potential hydrologic impact.  

The main objective of this paper is to evaluate the potential of the high-resolution Weather Research 

and Forecasting (WRF) model run to correctly simulate the daily values of snow water equivalent 

https://en.wikipedia.org/wiki/Western_Canada
https://en.wikipedia.org/wiki/Western_Canada
https://en.wikipedia.org/wiki/New_Mexico
https://en.wikipedia.org/wiki/Southwestern_United_States
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(SWE) over the SSRB region. To pursue this objective, in-situ observation of snow using the 

Canadian historical Snow Water Equivalent (CanSWE) dataset is used to evaluate the potential of 

WRF to detect the variability in SWE. Particular attention is paid to investigate the role of WRF 

model grid cell size on the accurate estimation of peak SWE time and value across the watershed. 

The impact of elevation has been also examined by evaluating several statistical diagnostics. This 

study can provide information related to the regional water management and hazard prevention.  

This paper is organized as follows. Section 2 includes the details about the study region as well as 

introduction on WRF model, ERA5, ERA5-Land and CanSWE dataset. Section 3.1 analyze the area-

averaged temporal evaluation of WRF SWE and quantifies bias and errors between WRF, ERA5, 

ERA5-Land and CanSWE dataset throughout the study period. Section 3.2 present WRF SWE spatial 

evaluations for individual stations using statistical metrics, so can provide insights into probable 

impact of elevation on biases, which is studied in section 3.3. A summary and conclusions are 

provided in Sect. 4. 

 

2. Data and Methodology 

2-1 CanSWE dataset 

In-situ observation of SWE has been widely used in many applications including water and flood 

forecasting, climate studies, and evaluation of numerical weather prediction models. SWE can be 

measured manually or automatically as the mathematical product of snow depth and density. The 

methods that widely are used to measure SWE include, snow cores, snow pits and snow pillows (Elder 

et al., 1998; Andreadis and Lettenmaier, 2006; Dixon and Boon, 2012). Snow pits and snow courses 

are manual methods and rely on interpolation to characterize snow depth. This may lead to some 

errors if snow depth is variable (Lopez-Moreno et al., 2011). However, Snow pillows, measuring 

SWE by weighing the mass of a snow column, are the most common automatic method for continuous 

monitoring of SWE at a fixed location. It provides valuable time series of snow, despite they are 

spatially sparse and expensive to install and maintain (Johnson and Marks, 2004).  

The Canadian historical Snow Water Equivalent dataset (CanSWE) combines manual (snow surveys) 

and automated (includes snow snow pillows and passive gamma sensors) pan-Canadian SWE 

observations (Vionnet et al., 2021). This new dataset replaces the Canadian Historical Snow Survey 

(CHSSD) dataset (Brown et al., 2019) by correcting the metadata, removing duplicate observations 

and controlling the quality of the records. In Canada, the majority of in situ SWE measurements are 

collected by provincial or territorial governments and hydropower companies and their partners. 

CanSWE dataset was compiled from 15 different sources and includes SWE information for all 

provinces and territories that measure SWE from 2607 locations across Canada over the period from 

1928 to 2020. More details on this dataset are provided by Vionnet et al. (2021).  

Table 1 shows the location of stations selected to evaluate WRF model performance. Nine stations 

have been selected based on the availability of daily SWE data with minimal data gaps, obtained from 

automated snow pillow stations, during the study period. These stations were located over the area 

represented by the innermost WRF model domain. The evaluation was conducted from 1st October 

2017 to 1st October 2018, as the 2018 water year. Our preliminary investigation shows that the 2018 

water year had approximately average SWE values during 1984 to 2021 according to the CanSWE 

stations. Therefore, 2018 can be a representative of the region’s climate over the past 38 years. 

Statistical metrics were considered to evaluate the model simulations against CanSWE data: root-

https://essd.copernicus.org/articles/13/4603/2021/essd-13-4603-2021-discussion.html
https://library.seg.org/doi/10.1190/geo2015-0121.1#r2
https://library.seg.org/doi/10.1190/geo2015-0121.1#r27
https://library.seg.org/doi/10.1190/geo2015-0121.1#r19
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mean squared error (RMSE), mean bias (MB), mean absolute error (MAE) and standard deviation 

(SD). The evaluation has been done for each station as well as the aggregate of the stations by 

examining SWE timeseries and its annual and spatial distribution.  

 

Table 1.  Location of the stations from CanSWE in British Columbia and Alberta.  

 
 

 

2-2 WRF model configuration 

The Weather Research and Forecasting (WRF) model was developed by the National Center for 

Atmospheric Research (NCAR) to support both operational weather forecasting and atmospheric 

research. Detailed documentation of WRF model can be found in Skamarock et al. (2008). In this 

study, the Advanced Research WRF (ARW) version 4.3.2 is used with three one-way nested domains, 

each with progressively finer horizontal resolution. The outer domain has a resolution of 9 km and 

covers most of western Canada (Fig.1). The middle domain, with a resolution of 3 km, extends over 

British Columbia and parts of Alberta. The innermost domain has the highest horizontal resolution of 

1 km and covers the western part of the Southern Saskatchewan River Basin (Fig.1). This version of 

WRF runs with 38 vertical levels between the Earth's surface and a model top at 50 hPa, which is the 

same for all domains. For the remainder of this paper, the WRF simulations at 9 km, 3 km, and 1 km 

resolutions will be referred as WRF9K, WRF3K, and WRF1K, respectively. The initial and lateral 

boundary conditions are derived from the 3-hourly and 0.25o resolution ERA5 reanalysis (Hersbach 

et al., 2020) from the European Centre for Medium-Range Weather Forecasts (ECMWF). Simulation 

results are output on a 6-hour time step, which is aggregated to daily frequency for direct comparison 

with observations. 

The physical parameterization schemes are selected based on previous studies that employ the WRF 

model to evaluate the simulation of terrestrial snow  accumulation over the northern hemisphere (e.g., 

Niu et al., 2011; Wrzesien et al. 2015; Liu et al., 2017; Li and Li, 2021). In particular, the Thompson 

et al. (2008) cloud microphysics scheme, the rapid radiative transfer model longwave scheme 

(Mlawer et al., 1997), the Dudhia shortwave scheme (Dudhia, 1989), the Yonsei University planetary 

boundary layer scheme (Hong et al., 2006), the modified Kain–Fritsch convective parameterization 

for the outer domain (Kain and Fritsch, 1990, 1993; Kain, 2004), and the Noah LSM with multi-

parameterization (Noah-MP) option (Niu et al., 2011) are used here. Previous studies show that Noah-

MP simulates snow more accurately at finer resolution  than previous versions of the Noah land 

surface model (e.g., Wrzesien et al. 2015). Simulated values were extracted at the nearest grid-cell 

corresponding to the location of each station, assuming that the in-situ observation is representative 

of a model gridded area. It is acknowledged that such point comparisons of SWE are inherently 

Station name Station Number Lattitude Longtitude Elevation (m) Province

Wild Cat Creek 1 51.70 -116.63 2122 British Columbia 

Skoki Lodge 2 51.54 -116.06 2120 Alberta 

Floe Lake 3 51.05 -116.13 2090 British Columbia 

Sunshine Village 4 51.08 -115.78 2230 Alberta 

Three Isle Lake 5 50.63 -115.28 2160 Alberta 

Little Elbow Summit 6 50.71 -114.99 2120 Alberta 

Mount Oldum 7 50.49 -114.91 2060 Alberta 

Lost Creek South 8 50.17 -114.71 2130 Alberta 

Soth Racehorse Creek 9 49.78 -114.60 1920 Alberta 
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challenging due to the heterogeneity in elevation, aspect and land cover (Cui et al., 2023). However, 

given the reasonably representative station density within the innermost WRF domain (Fig.1), we 

attempt to mitigate these issues by also comparing simulated and observed spatial mean SWE using 

a spatial mean taken over all stations. 

The evaluation of WRF results in the current study has been focused on the discussion on innermost 

domain that includes the eastern foothills region of the Rocky Mountains and the mountain 

headwaters region of the SSRB (Fig. 1). We emphasize that this innermost domain is simulated at all 

three resolutions; in other words, at each resolution the model produces output over its entire domain, 

not just the outer part. 

 

Figure 1.  WRF model domains over Western Canada and the terrain height for the inner domain. The outer boundary 

of the 9km (red), 3km (yellow) and 1km (green) domains are indicated by the rectangles. Black squares indicate the 

location of CanSWE automated stations in British Columbia and Alberta. The topography of the 1km domain is shown 

magnified on the right with the CanSWE stations from Table 1 indicated in the yellow circles. 

 

 

2-3 ERA5 and ERA5-L 

The datasets used in this study also included ERA5 and ERA5-Land (hereafter, ERA-L), to explore 

the consistency of the ERA5 and ERA5-L reanalysis datasets in the SWE estimation. As mentioned 

in section 2-2, the 0.25o resolution ERA5 reanalysis has been also used as the initial and lateral 

boundary conditions for WRF run. ERA5 is the fifth generation ECMWF atmospheric reanalysis 

(Hersbach et al., 2020) and has a grid resolution of 31 km. This is higher resolution than in the older 

ERA-Interim of 80 km. ERA5 is based on advanced modeling and data assimilation systems, i.e. the 

Integrated Forecasting System (IFS) Cycle 41r2, and combines large amounts of historical 

observations into global estimates. It provides hourly fields for all variables. ERA5 assimilates snow 

properties from several SYNOP stations, and from year 2004 onwards, it also uses IMS data over NH 

(Hersbach et al., 2020). On the other hand, ERA5-L is the land component from ERA5 with a finer 

spatial resolution of 9 km. It is produced with land model H_TESSEL and without coupling the 

atmospheric module without data assimilation (Muñoz-Sabater et al., 2021). These reanalysis data 
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are used to evaluate their SWE values and to understand the role of resolution in SWE estimation 

over the region. 

 

3. Results 

3-1 Evaluation of the spatial mean SWE 

The time series of daily SWE values from CanSWE, ERA5, ERA5-L and WRF simulations averaged 

over the inner domain of the SSRB are presented in Figure 2. The results suggest that, on average, 

improved resolution improves SWE estimation. The seasonal cycle of SWE in observations shows a 

clear accumulation period from Oct 1 to peak SWE (648 mm) in late April, and a melting period from 

late April until late June. In general, this seasonal evolution of the snowpack is well represented by 

the WRF simulations at all three resolutions as well as the reanalysis ERA5 and ERA5-L. However, 

in agreement with previous studies (e.g., Wrzesien et al. 2018), our results confirm that the reanalysis 

products significantly underestimate mountain SWE. The ERA5-L SWE at 9km resolution performs 

less well than the WRF9K simulation. The peak SWE occurs on the same day, 22nd April, for all WRF 

resolutions and the CanSWE observations, indicating that the WRF model is conserving the primary 

details of the meteorological lateral boundary forcing required for snow accumulation and melt. The 

two higher-resolution simulations (3km and 1km) capture the magnitude of peak SWE very 

accurately, with only a 3 to 6% low bias for WRF1K and WRF3K over the accumulation period, 

respectively. This demonstrates that both simulations may have value for providing accurate estimates 

of average SWE accumulation across the study region. The standard deviation values illustrate the 

disparity between the CanSWE-SD and estimated-SD, highlighting their inconsistency (Figure 2). 

The lowest SD were associated with WRF1K, indicates a smaller spread between the WRF1K and 

CanSWE dataset, suggesting relative consistency and less variability in their values. WRF9K 

simulation displays a systematic low bias of about 108 mm (31%) in SWE throughout the 

accumulation period, suggesting that either there is too little total precipitation reaching the surface 

at this resolution, or a temperature bias is causing a lower proportion of precipitation to fall as snow. 

Examining the role of these two forcings on simulated SWE at the three resolutions, we find very 

close agreement in temperature (Fig.3a), but a systematic low bias in accumulated precipitation at 

WRF9K (Fig.3b), indicating that lower total precipitation is the most likely cause of the SWE bias at 

the lowest resolution. The WRF simulations are configured using a 3-hourly ERA5 forcing at the 

lateral boundary (i.e., the boundary of the 9km domain). Therefore, the fact that the WRF9K produces 

lower total accumulated precipitation than the two higher-resolution simulations over a mountainous 

region strongly suggests that the cause is orographic enhancement of precipitation within WRF. 

Interestingly, given that all three of our domains have higher resolutions than ERA5 itself (27 km), 

this implies that underestimated orographic enhancement may be contributing to a low bias in 

precipitation at high elevations in ERA5, which in turn leads to a low bias in SWE (Fig.2). 

Figure 2 also shows that the WRF simulation at all three resolutions estimates the melting period in 

two phases: a rapid phase from April to early Jun, then a more gradual phase until late June. Also, the 

difference in melt rate between the two phases is most apparent at the lower resolutions, indicating 

that melt processes may be more accurately represented at higher resolution based on the melting 

rate.  
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Figure 2.  Temporal variation of SWE, from CanSWE data, WRF model resolutions, ERA5L and ERA5 over the SSRB 

region. The SWE data are aggregated for all stations inside the innermost domain. The spikes in the graph correspond to 

snowfall events, indicating the accumulation and subsequent melting of snow. The difference between CanSWE SD and 

each dataset is shown in the upper left. 

 

(a) 

 

(b) 
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Figure 3.  Temporal variation of 2m temperature (a) and precipitation (b) from the three WRF model resolutions over 

the SSRB region for the innermost domain. 

 

    Summary statistics for the melting and accumulation period are shown in Figure 4 presents the 

RMSE, MB, MAE and SD over the region. Generally, Fig. 4 suggests that there is an obvious 

tendency for RMSE, MB, MAE and SD to decrease at finer resolutions. Following ERA5 with 27 km 

and ERA5-L with 9km resolution, the coarsest model run shows a high value for RMSE especially 

during accumulation period. WRF9K underestimate SWE values more than the other two finer 

resolutions during both understudied periods, perhaps due to the incapability of the WRF9K to 

simulate the processes that are responsible for snow deposition and redistribution in mountainous 

areas that are characterized by heterogeneous snow distribution. Lower error metrics in WRF3K and 

WRF1K shows the effect of the model’s scale on the estimation of SWE, leading to biases in SWE 

simulation. The standard deviation values indicate that, overall, the variance of the estimation differs 

from the observations, however, there is a trend of decreasing SD with finer resolution, such as in 

WRF3K and WRF1K. The decrease in SD aligns with lower MAE, RMSE and bias in WRF1K SWE 

estimation.  

(a) 

 

(b) 

 

Figure 4.  SWE evaluation during (a) accumulation period (1st October 2017- 22nd April 2018) and (b) melting period 

(23nd April 2018 to 1st October 2018) over the inner WRF model domain using RMSE, MB, MAE and SD. 

   

3-2 Evaluation of spatially varying SWE 

In this section, the representation of spatial heterogeneity of SWE in the WRF simulations is 

evaluated by comparing observed and simulated SWE at individual stations within the inner domain. 
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It is important to highlight that the point-to-grid data comparison may introduce uncertainties in the 

verification results for individual stations. In this context, the emphasis is on the spatial heterogeneity 

of SWE estimation rather than asserting WRF’s accuracy in estimating SWE at a specific point scale. 

To evaluate the SWE spatial variability, timeseries in each individual station, are depicted in Figure 

5. Moreover, the elevation in each station as well as the estimated elevation by WRF simulation at all 

three resolutions is summarized in Table 2. Mostly in the stations on the leeward side of the 

mountains, including the four southern stations, there is an underestimation of SWE for all runs. In 

most stations, the WRF run with the finest resolution shows the best performance. SWE experiences 

significant changes in both space and time; therefore, the accumulation and the snowpack melting are 

variable because of the complex topography. During the accumulation period, the difference is more 

pronounced at each station. Comparison between Fig.2 and Fig.5, shows that, aggregation of the 

station may smooth the differences between estimations and observation. This effect that is previously 

introduced by Blöschl (1999) as aggregation filtering, may cause by the change of scale due to the 

aggregation. 

 

(1) 

 

(2) 

 

(3) 

 
 

(4) 

 

 

(5) 

 

 

(6) 

 
(7) 

 

(8) 

 

(9) 

 

 
 

Figure 5.  Estimation of SWE using WRF comparing to the CanSWE data for station 1 to 9.  
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Table 2.  Observed elevation of each station vs. the estimated elevation by WRF. 

 

 

Spatial distribution and extent of the SWE for each WRF horizontal resolution are shown in Figure 

6(a-f) for accumulation and melting period. As shown in section 3-1, snow accumulates in the 

mountains from October through April, and snowmelt usually begins in May. The spatial variability 

in SWE is influenced by various processes occurring across different spatial scales. For example, 

spatial variability in snow accumulation in mountainous regions may result from the preferential 

deposition of snow in microscale topographic depressions (Clark et al. 2011). Winds cause the 

redistribution of snow in the alpine zone, with scouring on the windward side of ridges, and deposition 

on the leeward side (Clow et al., 2012). Both periods show similar spatial distribution of SWE, 

however, the impact of resolution is obvious. There is a maximum in SWE value in all three 

simulations over northern parts of the domain both for accumulation and melting period. During the 

accumulation period, WRF1K has larger SWE values in compare with WRF9K in most areas.  

(a) 

 

(b) 

 

(c) 

 

Observation WRF9K WRF3K WRF1K

1 2122 2099 2372 2413

2 2120 2500 2712 2225

3 2090 2086 2233 2218

4 2230 2199 2028 2164

5 2160 2365 2479 2483

6 2120 2144 2163 2306

7 2060 2242 2345 2118

8 2130 2265 2156 2158

9 1920 1834 1894 1856

Elevation(m)

Station Number
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(d) 

 

(e) 

 

(f) 

 

Figure 6.  Simulated mean SWE (kg/m2) during the accumulation (1st October 2017- 22nd April 2018) and melting 

(23nd April 2018 to 1st October 2018) period for WRF9K (a,d), WRF3K(b,e) and WRF1K (c,f) over the inner model 

domain. 

 

To show the errors of the estimates spatially, RMSE, bias, MAE and SD in each station are compared 

in Figure 7 for the accumulation and melting periods. This indicates a geographic sensitivity to bias 

and errors. Both rms and mean absolute errors show that the estimates are more accurate in the 

southern portion of the domain, where there is also a negative bias. Result implies that during the 

melting period, model horizontal resolution becomes critical and there is a substantial SWE 

underestimation results with coarser resolution. Large  differences in SD occurred during melting 

season, however in most of the stations WRF1K performs better than the other two resolutions. 

Factors such as snow drifting, wind scour, and falling debris may also affect patterns and produce 

different melt rates during the melting period (Dressler et al. 2006).  

There are a number of factors that complicate SWE estimation spatially. Spatial variability of the 

environment, including elevation, slope of the mountain and boundary roughness, changes 

continuously from place to place, so greatly affects the SWE estimation (Blöschl,1999, Rice and 

Bales, 2010). In the following section, results are analyzed to investigate the role of the terrain 

elevation in explaining the model errors and biases in SWE simulation. 

(a) 

 

(b) 
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(c) 

 

d) 

 
(e) 

 

(f) 

 
(g) 

 

(h) 

 

 

Figure 7.  Evaluation metrics for each station including RMSE (a,b), MB (c,d), MAE (e,f) and SD (g,h)  for 

accumulation (left column) and melting (right column) period. 

 

To study the ability of WRF model to estimate the date and the value of peak SWE at each station, 

Table 3 and Figure 8 evaluated the estimated peak SWE date and values, respectively. Late April to 

early May 2018 is an approximate estimation of the peak SWE date over the region in according to 

the observation (Table 3). Across the nine stations there is an approximately two-week spread in the 

observed dates of peak SWE between 18 April and 3 May, and the magnitude of the peak appears 

unrelated to its date. The course resolution may affect the predicted peak SWE, which is the 

consequence of averaging snow-free features into larger snow-covered cells. WRF1K is in good 

agreement with CanSWE for the date and value of peak SWE in most stations.  

Table 5.  Comparison between the date of maximum SWE in CanSWE and anomalies in estimated peak SWE date by 

WRF in each station during 1st October 2017-2018. The anomaly shows the number of days that peak SWE is 

before/after CanSWE. 

 

Peak SWE Date Anomaly (Day)

1

2

3

4

5

6

7

8

9

WRF9K WRF3K WRF1K

2-May

22-Apr

3-May

18-Apr

Station

Peak SWE Date 

CanSWE

24-Apr

23-Apr

25-Apr

23-Apr

25-Apr

-15

0

-6

12

-3

-1

-3

-3

-5

7

-9

0

-9

0

-11

0

8

-1

-3

-1

-7

-14

1

-1

-4

8

12
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Figure 8.  The anomalies in the value WRF maximum SWE estimation for each station during 1st October 2017-2018. 

The anomaly shows how much the value of SWE is estimated more/less at each resolution (1 to 9). The value of 

maximum SWE for CanSWE at each station is shown in the upper right. 

 

Although the timing of the peak SWE is quite similar across all stations, there are differences in the 

estimated magnitude of maximum SWE in each WRF resolution (Figure 8). In most stations, WRF 

underestimate the value of the peak SWE, however, it tends to overestimate the value of the peak 

SWE in the two northern stations.   

 

3-3 The role of elevation  

There are clear differences in the surface terrain height imposed as the lower boundary condition for 

the three resolutions of WRF (Fig.9), which suggests a possible role for elevation in the errors in 

simulated SWE. As is common, the spatial variability in elevation is more pronounced in the highest 

resolution simulation (Fig.9c) and becomes smoother with decreasing the spatial resolution (Figs.9 a, 

b). In the northern portion of the domain, where the simulated SWE estimates are less accurate, the 

elevation is higher and more variable than the southern areas. Because of the larger spacing of the 

data in WRF9K, the small-scale variability in features may not be captured. A potential explanation 

for the SWE biases is that the WRF9K was not fine enough to resolve the localized peaks in the 

mountainous topography that experience a cooler mean climate and, typically, higher mean SWE.  
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(a) 

 

(b) 

 

(c) 

 

Figure 9.  Spatial distribution of terrain height for WRF9K (a), WRF3K (b) and WRF1K(c) during the 2018 water year.  

  

   Correlation analysis shows that the absolute grid cell elevation is not correlated with SWE MB, 

RMSE or MAE (not shown); however, the elevation bias—the difference between the actual station’s 

elevation and the estimated elevation by the model in a grid cell—does appear to play a significant 

role. Elevation bias shows a strong positive correlation with MB at all resolutions (Fig.10a), but an 

important finding is that the correlation becomes weaker at higher resolutions. In other words, when 

the elevation biases are large, they are a better indicator of the bias in SWE, and when elevation biases 

are small, they do not contribute as much to SWE errors. Therefore, it can be deduced that all WRF 

estimations include uncertainties and biases in simulating SWE, and one important source is biases 

in the grid cell elevation. On the other hand, elevation bias is not significantly correlated with error 

metrics at any resolution; however, the value of correlation coefficient becomes stronger at finer 

resolutions. This implies that error likely depends on other atmospheric variables rather than 

elevation. Previous research highlighted measurement inaccuracies due to instrumentation 

sensitivities and equipment issues like ice bridging in mountainous areas when using snow pillows 

(Dressler et al. 2006).  Therefore, additional perspectives could be considered in future work to better 

understand the mechanisms and potential cause of uncertainties in SWE estimations over the 

mountains. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure 10.  Elevation bias against MB (a), RMSE (b), MAE (c) and SD (d) of SWE estimation.  

 

4- Discussion and Conclusions 

   The objective of this study is to evaluate the potential of the high-resolution Weather Research and 

Forecasting (WRF) model to detect the daily values of snow water equivalent (SWE) over the South 

Saskatchewan River Basin (SSRB) in Western Canada. Three nested domains with fine horizontal 

resolution of 9, 3 and 1 km are used. Canadian historical Snow Water Equivalent (CanSWE) dataset 

is used to evaluate the potential of WRF to detect the spatio-temporal variability in SWE. The 

evaluation was conducted from 1st October 2017 to 1st October 2018, as the 2018 water year, with 

average SWE values during 1984 to 2021. Special focus is given to investigate the role of WRF model 

grid cell size on the accurate estimation of peak SWE time and value across the watershed. Although 

it is acknowledged that the use of point data for the evaluation of WRF gridded SWE is problematic 

and introduce uncertainties because of scaling issues, we attempt to mitigate these issues by using a 

spatial mean taken over all stations. However, earlier studies also showed that the small-scale SWE 

can be representative of the grid mean value (e.g., Pan et al., 2003) for the local SWE evaluation. 

   In general, our initial results over the averaged area, show that all WRF runs behaves nearly similar 

and show high value of correlation with CanSWE data, though there is a slight difference exist 

between accumulation and melting period. All WRF estimations mainly tend to underestimate SWE 

over the whole year, with a largest negative bias in the coarsest resolutions. Results show that WRF 

fine resolution (at 3km and 1km), significantly improves the simulations of SWE during the year over 

an averaged area. The coarsest run shows less accuracy during accumulation period, which is likely 

caused by a systematic bias in accumulated precipitation at 9km. The underestimated precipitation 

over the mountainous regions at coarse resolutions has been shown by Li et al. (2019). The large bias 

in the coarsest resolution also may be due to the incapability of the WRF9K to simulate the processes 

https://essd.copernicus.org/articles/13/4603/2021/essd-13-4603-2021-discussion.html
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that are responsible for snow deposition and redistribution in mountainous areas (Mott et al., 2018; 

Raparelli et al. 2021). Over the whole region, there is an obvious tendency for RMSE, MB, MAE and 

SD to decrease at finer resolutions, therefore, decreasing the horizontal grid spacing within WRF, 

lead to the reliable SWE estimate over the SSRB region. So, it can be concluded that the accuracy of 

SWE is closely related to the horizontal resolution. Earlier studies also revealed that there is a 

dependence of snow estimation on NWP model resolution to capture the orographic processes over 

the Western Canada and US (Pavelsky et al. 2011; Schirmer and Jamieson, 2015; Wrzesien et al. 

2015).  

  The spatial variability in SWE is influenced by various processes including variability in snow 

accumulation that result from the preferential deposition of snow in microscale topographic 

depressions. Evaluation of the SWE in individual station showed that there is less amount of snow on 

the windward side of ridges, and snow deposition on the leeward side. Mostly on the leeward side of 

the mountains, there is an underestimation of SWE for all WRF performances. There is a maximum 

in SWE value in all three simulations over northern parts of the domain both for accumulation and 

melting period. Low temperatures and high cyclonic activity over the northern part of the domain 

may cause long snow duration and high value of SWE (SWIPA, 2011). Local characteristics of each 

station, including the terrain and land cover characteristics, as well as the interactions with the local 

wind, would play a major role in SWE variability over the region. 

  Investigating the ability of WRF model to estimate the date and the value of peak SWE in each 

station reveal that there is an approximately two-week spread in the observed dates of peak SWE 

between late April and early May, in accordance with the observation. Although the timing of the 

peak SWE is quite similar across all stations, there are differences in the estimated magnitude of 

maximum SWE in each WRF resolution. In most stations, the value of the peak SWE is 

underestimated, which is consistent with the findings of previous studies (e.g., Jin and Wen, 2012; 

Wrzesien et al., 2018; He et al., 2019), however, WRF1K is in good agreement with CanSWE for the 

date and value of peak SWE. Overall, WRF can also provide reliable data for peak SWE date and 

value, especially in fine horizontal resolution. 

Analysis of the role of elevation shows that elevation itself doesn’t show any correlation with MB, 

MAE and RMSE however the elevation bias shows a strong positive correlation with MB at all 

resolutions, which becomes weaker at higher resolutions and would be a better indicator of the bias 

in SWE in coarse resolution. This result highlights an important consideration when comparing point 

observations to output from a model grid cell, namely that the agreement in elevation between any 

individual station and the model’s mean elevation in a grid cell will be closer, on average, for a 1 km 

grid cell compared to a 9 km grid cell. This is because the actual topography and associated elevation 

will typically be much more variable over an area of 81 km2 than over 1 km2. Another way to frame 

this is that an individual station is significantly less representative of the actual variations in elevation, 

precipitation, SWE etc. within a 9 km grid cell than a 1 km grid cell, and so one might find better 

agreement between the model and a distributed network of stations within the grid cell. Unresolved 

topography contributes to the inaccurate SWE estimation in the coarse resolution. The bias in 

elevation, meaning the lower or upper mountains, affect the condensation of water vapor, 

precipitation, topography related temperature and therefore the amount of estimated SWE over the 

region. An earlier study also showed that increasing resolution in regional models resolve more small-

http://amap.no/swipa/
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scale features (Xu et al., 2019) and therefore improve SWE estimation. On the other hand, as the 

elevation bias does not impact the RMSE, MAE and SD in any resolution, error likely depends on 

other atmospheric variables rather than elevation. Therefore, additional perspectives could be 

considered in future work to better understand the mechanisms and potential cause of uncertainties 

in SWE estimations over the mountains. 

In the end, this study has shown that high resolution WRF can provide reliable and reasonable 

estimates of SWE values as an input data for accurate hydrologic modeling, required for runoff 

forecasts. Analysis presented in this paper revealed that WRF’s high resolution can represent spatio-

temporal variability of SWE over the mountainous region, and it is expected to be helpful for flood 

forecasting in mountainous regions. However, further work is needed to remove the biases and 

capture the accurate value of SWE over the western Canada.  
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