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Abstract. Under the Paris Agreement, countries report their anthropogenic greenhouse gas emissions in national inventories, 

used to track progress towards mitigation goals, but they must be independently verified.  Atmospheric observations of CO2, 

interpreted using inverse methods, can potentially provide that verification. Conventional CO2 inverse methods infer natural 15 

CO2 fluxes by subtracting a~priori estimates of fuel combustion from the a~posteriori net CO2 fluxes, assuming that a~priori 

knowledge for combustion emissions is better than for natural fluxes. We describe an inverse method that uses measurements 

of CO2 and carbon monoxide (CO), a trace gas that is co-emitted with CO2 during combustion, to report self-consistent 

combustion emissions and natural fluxes of CO2. We use an ensemble Kalman filter and the GEOS-Chem atmospheric 

transport model to explore how satellite observations of CO and CO2 collected by TROPOMI and OCO-2, respectively, can 20 

improve understanding of combustion emissions and natural CO2 fluxes across the UK and mainland Europe, 2018-2021. We 

assess the value of using satellite observations of CO2, with and without CO, above what is already available from the in~situ 

network. Using CO2 satellite observations leads to small corrections to a~priori emissions that are inconsistent with in~situ 

observations, due partly to the insensitivity of the atmospheric CO2 column to CO2 emission changes. When we introduce 

satellite CO observations, we find better agreement with our in~situ inversion and a better model fit to atmospheric CO2 25 

observations. Our regional mean a~posteriori combustion CO2 emission ranges 4.6—5.0 Gt a-1 (1.5—2.4% relative standard 

deviation), with all inversions reporting an overestimate for Germany’s wintertime emissions. Our national a~posteriori CO2 

combustion emissions are highly dependent on the assumed relationship between CO2 and CO uncertainties, as expected. 

Generally, we find better results when we use grid-scale based a~priori CO2:CO uncertainty estimates rather than a fixed 

relationship between the two species. 30 
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1 Introduction 

More than 40% of the cumulative net CO2 emissions from 1850 to 2019 have occurred since 1990, resulting in a global mean 

surface temperature rise of 0.45°C (IPCC, 2022). If the 2019 emission rate continues to 2030, we will have exhausted the 

remaining carbon budget to keep global mean temperatures within 1.5oC and depleted a third of the remaining carbon budget 35 

for 2oC (IPCC, 2022). These estimates assume that the land biosphere and ocean will continue to respond to changes in climate 

as they do today. The most effective lever at our disposal to rapidly reduce atmospheric concentrations of CO2 is a 

commensurately large, rapid, and targeted reduction in emissions, as recognized by the Paris Agreement. A clearer 

understanding of the national importance of individual CO2 emitting sectors is needed to develop effective emission mitigation 

policies. Similarly, global to regional observing networks are needed to verify the effectiveness of these policies to reduce 40 

national emissions from individual sectors. Here, we focus on the potential of satellite observations to verify changes in 

combustion emissions of CO2 across the UK and mainland Europe. 

 

Under the Paris agreement, countries annually report estimates of their anthropogenic greenhouse gas emissions in national 

inventories, typically with a lag of more than 12 months, as an approach to establish and track progress towards emission 45 

mitigation goals. These inventory-based estimates use ‘bottom-up’ methods that typically rely on national activity data (e.g., 

power plant fuel consumption) and country-specific emission factors (e.g., CO2 emissions per unit of fuel consumed); the 

corresponding emission uncertainties are related to the underlying datasets and methodologies. To set effective national 

emission mitigation targets and track progress, it is important to estimate CO2 combustion emissions accurately in these 

inventories, including accurate estimates of their uncertainties. 50 

 

Observations of atmospheric CO2 provide an independent evaluation of reported bottom-up CO2 flux estimates (e.g., Peylin et 

al., 2013). A ‘top-down’ approach uses these atmospheric measurements to infer the most likely a posteriori distribution of 

CO2 fluxes that would explain the observations, accounting for uncertainties associated with the measurements of the method. 

An atmospheric transport model is used to relate the gridded a priori estimates of CO2 fluxes to 4-D distributions of 55 

atmospheric CO2 concentrations. An observation operator is then applied to this 4-D distribution, which describes how a 

particular instrument samples the atmosphere at a given time and place. The resulting model atmospheric CO2 measurements 

are then confronted with the observations, and the a priori flux estimates are adjusted to minimize any model-observation 

differences, resulting in a posteriori flux estimates that are consistent with a priori and measurement information. Ground-

based in situ observations from the pan European measurement network have been used extensively to estimate regional net 60 

CO2 fluxes (e.g., Scholze et al., 2019, Ramonet et al., 2020; Rödenbeck et al., 2020; Thompson et al., 2020). 

 

Separating the combustion and natural components of the net a posteriori CO2 flux estimates is non-trivial, which has resulted 

in a range of approaches being developed by researchers (e.g., Konovalov et al, 2016, Boschetti et al., 2018; Yang et al., 2023, 
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Feng et al, 2024). The most common approach is to assume we have near-perfect knowledge of anthropogenic emissions, 65 

subtract these a priori emission estimates from the net a posteriori values, and then interpret the residual as fluxes from the 

natural biosphere to compare with inventory estimates (e.g., White et al., 2019; Deng et al., 2022). The spatial and temporal 

information on both emissions and uncertainties are often highly uncertain but also needed to interpret atmospheric 

measurements (Super et al., 2020, Oda et al, 2023). There is also now a greater focus on estimating changes in anthropogenic 

emissions, as countries introduce policies to decarbonize their economies.  70 

 

With this impetus in mind, there is an urgent need to develop and evaluate robust methods that separate the combustion and 

natural influences on changes in atmospheric CO2 at city-scale (e.g., Silva et al., 2013; Reuter et al., 2019; Goldberg et al., 

2019; Yang et al., 2023) and national-scale (Palmer et al., 2006) using additional observations of trace gases co-emitted during 

the combustion process, e.g., CO and NO2. Previous work has focused on using ground-based or aircraft in situ measurements 75 

of CO2 and co-emitted trace gases (see references above), but we need to understand how we best use satellite observations to 

estimate anthropogenic emissions of CO2, particularly in the context of the billion-euro investment in the Copernicus CO2 

Monitoring Mission, CO2M (Sierk et al., 2021). 

 

Observations of atmospheric CO2 collected by satellites have the advantage of global spatial coverage, subject to cloud cover, 80 

and have been used to constrain CO2 flux estimates on the spatial scale of 1000s km (e.g., Chevallier et al., 2014; Feng et al., 

2017; Chevallier et al., 2019; Palmer et al., 2019, Byrne et al, 2023). To date, few studies have focused on using these data to 

constrain CO2 flux estimates over mainland Europe or the UK because there is less information about surface CO2 on those 

spatial scales from the current generation of CO2 satellites (OCO-2 and GOSAT) than the in situ measurement networks. This 

is in part because satellite observations of the atmospheric column of CO2 are less sensitive to CO2 surface fluxes compared 85 

to in situ measurement networks. It is widely anticipated that the significant increase in the volume and spatial coverage of 

data collected by CO2M will dramatically increase the competitiveness of satellite observations for estimating national-scale 

emissions across mainland Europe and the UK. CO2M will focus on quantifying anthropogenic emissions of CO2 and methane 

and will form part of the European measurement and verification support capacity (Janssens-Maenhout et al, 2020). It will 

likely consist of three satellites, each with a push-broom imaging spectrometer that has an across-track swath of ~250 km with 90 

a spatial resolution of 4 km2 (Sierk et al., 2021).  

 

In this study, we quantify the ability of current satellite observations of CO2 and CO to constrain country-scale combustion 

and non-combustion CO2 flux estimates across the UK and mainland Europe. We use atmospheric CO2 observations from the 

NASA OCO-2 instrument and CO observations from the ESA TROPOspheric Monitoring Instrument (TROPOMI) to estimate 95 

monthly CO2 fluxes for 2018-2021. Our work is part of a larger effort to develop rigorous methods to evaluate nationally 

reported CO2 emissions using in situ and satellite observations. In the next section, we describe the methods we use to infer 
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simultaneously combustion and natural fluxes of CO2 using OCO-2 and TROPOMI data. Section 3 describes our results. We 

conclude the paper in Section 4. 

2 Data and Methods 100 

Here, we describe the measurements we use to infer CO2 fluxes across the UK and mainland Europe; the GEOS-Chem 

atmospheric chemistry transport model that describes the relationship between a priori inventories, atmospheric chemistry and 

transport, and the observed atmospheric concentrations of CO2; and the ensemble Kalman Filter that is used to infer CO2 fluxes 

from a priori knowledge and the measurements. We describe the results from three inversions. For the first inversion we 

independently estimate a posteriori emissions of CO and CO2. For the second and third inversions we assume combustion CO 105 

and CO2 emission errors are correlated and report jointly estimated a posteriori CO and CO2 fluxes. For the second inversion 

we assume a perfect correlation between these emissions errors and for the third inversion we use emission error correlations 

that are determined from sector-based errors in the bottom-up emission inventory (Super et al, 2024). 

 

2.1 Satellite and In Situ Observations 110 

 

For CO2, we use observations of the atmospheric CO2 column-averaged dry-air mole fraction (XCO2) from the OCO-2 satellite, 

launched in 2014 (Crisp et al., 2017; Eldering et al., 2017). We use OCO-2 ACOS v10r data for 2018-2021 (OCO-2 Science 

Team et al., 2020; Taylor et al., 2023). For CO, we use XCO observations from TROPOMI, July 2018 – December 2021, 

aboard the Sentinel-5P satellite, launched in 2017 (Veefkind et al., 2012; for CO retrieval: Vidot et al., 2012; Landgraf et al., 115 

2016). For both satellite products, we filter observations as recommended in the Product User Guide, including a strict quality 

assurance flag value of >0.75 for TROPOMI XCO. We remove glint observations and those over the oceans and collate satellite 

columns and averaging kernels to a 0.25° x 0.3125° spatial grid to match model output (Figure 1). To compare our model 

output to the satellite observations, we first sampled the model at the overpass time and location of each instrument. We then 

interpolate our model pressure levels to the satellite pressure levels and apply the scene-dependent retrieval averaging kernel 120 

to our 3-D model concentration fields. Different instrument sensitivities to CO and CO2, described by their averaging kernels, 

are taken into account in the inversion framework described below. 

 

We use in situ observations for 2018-2021 (Figure 1). We use the DECC surface measurement network in the UK (Stanley et 

al., 2018; Arnold et al, 2019; O’Doherty et al, 2019a,b) and the ICOS measurement network for Europe (ICOS R., 2022). We 125 

retain in situ observations collected between 0900 and 1800 local time – to avoid instances when tall tower inlets sit above a 

shallow boundary layer – and then time-average to 3-hourly intervals to match our GEOS FP model meteorology. All in situ 

sites have CO2 observations, but some sites are missing CO observations. We additionally remove observations when the 

atmosphere is not well-mixed. We consider the atmosphere to be well-mixed when the standard deviation of CO2 
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concentrations across the lowest five vertical model levels is smaller than 0.3 ppm; this subjective value is based on three times 130 

the measurement precision of in situ measurements.  

 

Figure 1 also shows European sites from the Total Carbon Column Observing Network (TCCON). Five sites are within our 

domain, including Bremen (Germany; Notholt et al, 2022), Karlsruhe (Germany; Hase et al, 2023), Nicosia (Cyprus; Petri et 

al, 2022), Orléans (France; Warneke et al, 2022), and Paris (France; Té et al, 2022). We use the TCCON observations as an 135 

independent comparison for our inversion results. 

 

2.2 Forward Model Description 

 

The forward model 𝐇  describes the relationship between a priori flux estimates of CO2 and CO and the atmospheric 140 

observations. We use the GEOS-Chem atmospheric chemistry transport model to relate surface fluxes of CO2 and CO to 4-D 

atmospheric concentrations. We then sample these concentration fields at the time and location of measurements. In the case 

of satellite observations, we also use the scene-dependent averaging kernel to describe the instrument vertical sensitivity to 

changes in CO2 and CO. Resulting sampled model atmospheric values can then be compared with observations: 

 145 

𝐲 = 𝐇 ∙ 𝐱  (1) 

 

where 𝐲 denotes the observation vector, and 𝐱 denotes the state vector that includes our a priori CO2 and CO flux estimates. 

 

We use the GEOS-Chem version 12.5.2 atmospheric chemistry and transport model which we run at 0.25° x 0.3125° resolution 150 

for a nested European domain (-15 to 35° E longitude and 34 to 66° N latitude) with 47 vertical levels. GEOS-Chem is driven 

by GEOS FP meteorological re-analyses fields from the NASA Global Modelling and Assimilation Office (GMAO) Global 

Circulation Model.  

 

Our a priori flux estimates (𝐱) include all sources contributing to observed atmospheric CO2 and CO. Equation 2 shows the 155 

sources for CO2 including combustion emissions (CO2Combust), non-combustion fluxes (both biogenic and non-combustion 

anthropogenic sources; CO2Bio), and background CO2 that is transported to and from our domain (CO2Trans). Atmospheric CO 

sources include combustion emissions (COCombust), transport (COTrans), and production of CO through oxidation (COChem), as 

shown in equation 3.  

 160 

𝐶𝑂! = 𝐶𝑂!"#$%& + 𝐶𝑂!'()*+&, + 𝐶𝑂!-.(  (2) 

𝐶𝑂 = 𝐶𝑂"#$%& + 𝐶𝑂'()*+&, + 𝐶𝑂'/0)  (3) 
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For our 2018-2021 a priori fluxes, we use a combination of regional and global inventories (Figure 2). Combustion emissions 

for both species (CO2Combust and COCombust) are from the TNO (Nederlandse Organisatie voor Toegepast 165 

Natuurwetenschappelijk Onderzoek; Netherlands Organisation for Applied Scientific Research) GHGco v5.0 emission 

inventory at 0.1° x 0.05° resolution (Super et al., 2020; Kuenen et al., 2022) with national totals based on emissions reported 

in national inventories and extrapolated from 2019 to more recent years; 2019 represents the latest year for which we have air 

pollution and greenhouse gas inventories (Kuenen et al, 2022). We apply scaling factors provided by TNO to reflect monthly, 

hourly, and daily patterns in emissions by sector with the same scaling factors used for each year. Our combustion source also 170 

includes biomass burning emissions from the GFAS v1.2 inventory (Kaiser et al., 2021). Non-combustion fluxes (CO2Bio) 

include ocean fluxes from the NEMO-PISCES model (Lefèvre et al., 2020), lateral carbon fluxes related to crop removal (Deng 

et al., 2022), and hourly terrestrial biosphere fluxes at 1/120° x 1/60° resolution produced by the VPRM model following 

methods described by Gerbig (2021) driven by ERA5 meteorology. We include non-combustion (e.g., fugitives) anthropogenic 

emissions from the TNO inventory in our non-combustion fluxes. Fugitive emissions of CO2 are typically very small, e.g., 175 

escape from agricultural greenhouses enriched with CO2.  

 

For our nested domain, we use lateral boundary conditions for CO2 (CO2Trans) from the CAMS inversion-optimized global 

greenhouse gas analysis with assimilation of in situ observations (Chevallier, 2020). Our boundary conditions for CO (COTrans) 

are from the CAMS global reanalysis (Inness et al., 2019). We use the CAMS fields at their provided temporal resolution (3-180 

hourly) and re-grid them to the GEOS-Chem horizontal spatial resolution of 2° x 2.5° so we can use them as boundary 

conditions for our finer-resolution nested model, centred over Europe.  Because the vertical resolution of GEOS-Chem does 

not align with CAMS, we translate the CAMS native vertical resolution to our 47 model layers using linear interpolation of 

logarithmic pressure values. We fill in the species concentrations at the lowest or highest pressure level in CAMS for the top 

or surface of the atmosphere, respectively, when the GEOS-Chem pressure levels go beyond the bounds of CAMS. 185 

 

We treat the relationship between surface fluxes and concentrations (equation 1) as linear (e.g., a doubling of emissions leads 

to a doubling of the atmospheric signal). To linearize the CO simulation, we use offline chemistry terms to represent the 

chemical production of CO (COChem). CO is primarily produced by oxidation of methane and non-methane volatile organic 

compounds by the hydroxyl radical (OH), so we generate the production terms using offline 3-D loss fields of OH generated 190 

from a previous GEOS-Chem full-chemistry simulation (Fisher et al., 2017). 

 

2.3 Inverse Model Description 

 

For our inversion, we use the Ensemble Kalman Filter (EnKF) approach as discussed in detail by others (e.g., Peters et al., 195 

2005; Hunt et al., 2007; Feng et al., 2009; Liu et al., 2016). We specifically follow the methods derived by Hunt et al. (2007) 

and summarized by Liu et al. (2016) for the Local Ensemble Transform Kalman Filter (LETKF).  
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We solve the inversion in ensemble space rather than for the state vector elements. For each state vector element, we have an 

ensemble of potential scale factors that follow our prescribed error statistics. For each assimilation time-period (over which 200 

we ingest observations), we solve for the mean a posteriori state vector (𝐱)$) that represents the mean of our N ensemble 

members (where we use N = 100):  

 

𝐱)$ = 𝐱)* +𝐊(𝐲(*& − 𝐲)*),  (4)    

 205 

where 𝐱)$ and 𝐱)* are the means across ensemble members for our a posteriori and a priori state vectors, respectively. We use 

error statistics, as described in Section 2.4, to generate the a priori state vector ensemble members. 𝐲(*& is the observation 

vector and each element of 𝐲)*  is the mean of model-predicted concentrations across N ensemble members. For the nth 

ensemble member (𝐱%*), the model-predicted concentrations are 𝐲%* = H(𝐱%*).  

 210 

𝐊 describes our Kalman gain matrix that regulates the degree to which any disagreement between model and observation will 

adjust the state vector. We determine 𝐊 using the matrix 𝐗*, which describes the difference between the ensemble members 

and their mean, and the matrix 𝐘*, which describes the difference between the model-predicted concentrations and their mean: 

 

𝐊 = 𝐗*𝐏2$(𝐘*)1𝐑23,  (5) 215 

 

where the nth column of 𝐗*  is 𝐱%* − 𝐱)*  and the nth column of 𝐘*  is 𝐲%* − 𝐲)*  (each column representing an ensemble 

member). 𝐑 is the observation error covariance matrix, which includes the errors from our forward model, estimates based on 

prior studies, and from observations. For CO2, we use an a priori model error of 1.5 ppm for the satellite inversion (Feng et 

al., 2017) and 3 ppm for the in situ inversion (within the range of Monteil et al., 2020 and White et al., 2019). For CO, we use 220 

an a priori model error of 15 and 20 ppb for the satellite and in situ inversions, respectively (Northern Hemisphere CO column 

and surface mole fraction model-observation differences from Bukosa et al., 2023). For the observations, we use the errors as 

provided for the satellite or in situ network, averaged to the model resolution. We generate the off-diagonal covariance for 𝐑 

based on the spatial and temporal proximity of observations following an exponential decay with spatial and temporal length 

scales of 100 km and 4 hours, respectively; these values are based on our preparatory work (not shown) using this model 225 

definition.  

 

The 𝐏24 matrix is a representation of the a posteriori error covariance in ensemble space: 

 

𝐏2$ =	 [(𝑁 − 1)𝐈 + (𝐘*)1𝐑23𝐘*]23,  (6) 230 
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where 𝐈 is an identity matrix and N is our number of ensemble members. 𝐏2$ is used to determine the a posteriori ensemble 

members (𝐗$) where the nth column of 𝐗$ is 𝐱%$ − 𝐱)$ and the error covariance matrix (𝐏$): 

 

𝐗$ =	𝐗*[(𝑁 − 1)𝐏2$]3/!  (7) 235 

𝐏$ = 𝐗$(𝐗$)"(𝑁 − 1)23.  (8) 

 

We use an assimilation window of two weeks and a lag window of one month, accounting for the impact of historical emissions 

on our assimilation period. This means that the state vector for each time-step includes scale factors for the assimilation window 

and lag window. Our preparatory work revealed that using a lag window longer than a month did not significantly impact our 240 

results because signals by that time have decayed substantially (not shown). We perform our inversion sequentially, using the 

a posteriori scale factors for a given assimilation window to update the a priori scale factors for the next lag window over the 

same date range. To avoid unrealistically small prior uncertainties, we apply a 10% error inflation when we update the a priori 

state vector. 

 245 

The benefit of the LETKF is that we can localize the inversion so that each state vector element is only influenced by a subset 

of observations. For our inversions using in situ observations, we localize by distance so that each state vector element that 

represents a grid-scale variable is only influenced by observations within a 1000 km range. We chose that upper limit as a 

compromise to ensure we included observations that had the most sensitivity to the emissions and to discard observations with 

much smaller sensitivities that potentially could introduce spurious correlations.   250 

 

2.4 Description of Inverse Model Experiments 

 

We test different approaches to investigate the usefulness of satellite observations for evaluating CO2 combustion emissions. 

The approaches vary in the observations that are used and the representation of error covariances for our a priori estimates. 255 

For each type of inversion, we compare our satellite inversion results to comparable inversions using in situ observations.  

 

In the inversions, instead of solving for CO2 or CO fluxes, we solve for scale factors that scale up or scale down the source 

terms from equations 2-3. We first assume that our a priori scale factors are all equal to one. We solve for a posteriori scale 

factors that, when applied to our source terms, will result in modelled atmospheric CO2 or CO concentrations in better 260 

agreement with observations.  

 

For our first approach (CO2-only), we perform a CO2-only inversion that assimilates CO2 observations. Our state vector 

includes scale factors for the sources of equation 2: 



9 
 

 265 

𝐱67! = :𝐱67!1849:, 𝐱67!;<7, 𝐱67!=7>?@:A<  (9) 

 

where 𝐱67!;<7  and 𝐱67!=7>?@:A  are a vector of scalers, common to all inversions, with each element applying to a non-

combustion or combustion grid cell at 0.5° x 0.625° resolution (Appendix A). The four transport scale factors for CO2 (and 

four for CO), described by 𝐱67!1849:, common to all our inversion calculations, applies to the four lateral boundary conditions 270 

of the nested model domain. 

 

In our second approach (Joint CO2:CO), we perform a joint CO2:CO inversion that assimilates both CO2 and CO observations. 

For the joint inversion, we assume there is 100% correlation for the CO2 and CO combustion emission errors. This means any 

adjustment made by our inversion to the CO2 combustion scale factors will also apply to the CO scale factors and vice versa. 275 

We can then use a common combustion scaling term for both species in our state vector (𝐱=7>?@:A). We do not account for the 

atmospheric CO2 production from the oxidation of CO and other reduced carbon species (Suntharalingam et al, 2005). Our 

state vector also includes four scale factors for lateral boundary transport of each species (as described above). For CO we also 

include two scale factors to the state vector for the chemistry terms (𝐱67=BC>), describing the secondary production of CO 

from the oxidation of methane and non-methane volatile organic compounds. The two scale factors reflect differences in their 280 

emission distributions and atmospheric lifetimes. The CO2 and CO state vectors are described as: 

 

𝐱67! = :𝐱67!1849:, 𝐱67!;<7, 𝐱=7>?@:A<  (10) 

𝐱67 = :𝐱671849:, 𝐱67=BC>, 𝐱=7>?@:A<.  (11) 

 285 

For our first two approaches, we assume an a priori uncertainty of 20% (relative standard deviation) for the combustion scale 

factors (𝐱=7>?@:A). We use an a priori uncertainty of 50% for the non-combustion scale factors (𝐱67!;<7), and 5% for the 

atmospheric transport and chemistry scale factors. These are informed estimates based on our previous work, e.g., Feng et al, 

(2017).  For our non-combustion and combustion scale factors, we generate error covariances for nearby grid cells that 

exponentially decays with increasing distance. Our method for generating the error covariance matrix based on these 290 

uncertainties is described in detail in Appendix A.  

 

We acknowledge that the assumption of 100% error correlation for CO2 and CO combustion emissions is likely to be a gross 

overestimate, but it serves as an illustrative upper limit for our calculations. For example, we may underestimate CO emissions 

due to an underestimate of incomplete combustion activities, and this will not translate to the same underestimate in CO2.  295 
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For our third approach (TNO CO2:CO), we test this assumption by solving for the CO2 and CO combustion scaling terms 

separately:  

 

𝐱67! = :𝐱67!1849:, 𝐱67!;<7, 𝐱67!=7>?@:A<  (12) 300 

𝐱67 = :𝐱671849:, 𝐱67=BC>, 𝐱67=7>?@:A<  (13) 

 

We call this our TNO approach because we use estimates of the uncertainties in the TNO emission inventory to create our 

error covariance matrix (Super et al., 2024). We increase the provided uncertainties by a factor of three to make them more 

comparable with our other simulations. This results in a mean grid-scale CO2 combustion uncertainty of 18%, though there is 305 

greater variability in grid cell uncertainties compared to our other approaches. We expect higher correlation between CO2 and 

CO gridded emissions in regions where the same spatial product, e.g., road network maps, is used to distribute emissions for 

both species and that spatial product has high uncertainties. The spatial products and how they are used to distribute air 

pollutant emissions is described by Kuenen et al (2022). 

 310 

3 Results and Discussion 

 

First, we describe the comparison between our a priori and a posteriori model simulations against observations. We then 

report our a posteriori CO2 fluxes for Europe and its constituent countries and the UK. 

 315 

3.1 Inversion performance 

 

Our a priori CO2 emissions are already consistent with data from the five relevant TCCON sites (locations shown in Figure 1; 

Pearson correlation coefficient R= 0.87), and in situ (R=0.76) and satellite (R=0.84) observations. The model has a small, 

positive relative mean bias compared to TCCON (0.7%) and a very small bias compared to in situ and satellite observations 320 

(0.2%). Table A1 reports a statistical summary of the model-observation comparisons. The satellite inversions show 

improvement for the model-satellite fit (R=0.92-0.95), as expected, and the model-in situ fit (R=0.80-0.82). Similarly, the in 

situ inversions improve model-in situ fit (R=0.83-0.84) and to a lesser extent the model-satellite fit (R=0.85-0.87).  

 

In general, including CO and TNO uncertainty estimates improves the model-observation fit and reduces the mean bias. For 325 

example, the satellite joint CO2:CO (R=0.93) and TNO (R=0.92) inversions show the greatest improvement in fit with TCCON. 

The one exception is that the mean bias compared to TCCON is slightly larger with CO (0.3-0.5%) compared to CO2-only 

(0.2-0.4%), a small difference that is likely a result of introducing the CO:CO2 error correlation. The TCCON CO2 bias is 

seasonal (not shown) with the a priori model showing no bias in July-August and a positive bias of 1-4 ppm for the rest of the 

year. The in situ inversions reduce the mean bias for March-June by 1 ppm, and this improvement lines up with a reduction in 330 
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the biosphere sink for these inversions (discussed later). We also compare our a priori and a posteriori fields with TROPOMI 

CO but the improvement is marginal. The Pearson correlation coefficient between the a posteriori model and in situ data 

increases by 4% for the joint CO2:CO inversion and by 5% for the TNO joint inversion. For a similar comparison but using 

satellite data, the correlation coefficient increases by 6% for the joint CO2:CO inversion and by 4% for the TNO joint inversion.  

 335 

We also assess inversion performance by the degree of uncertainty reduction for the a posteriori CO2 combustion emission 

estimates. Table 1 shows a posteriori uncertainties for our domain-scale CO2 combustion emissions. The reductions in relative 

uncertainty achieved at the domain scale for all inversions are small (6-12%) with the CO2-only and TNO satellite inversions 

showing no reduction. The TNO inversions show smaller reductions in uncertainty (0-6%) compared to the joint inversions 

(8-12%), but they also start with a lower a priori uncertainty at 1.6% (relative standard deviation; RSD = sample standard 340 

deviation/sample mean) compared to 2.4% for non-TNO a priori uncertainties. 

 

At the national scale, we see the greatest uncertainty reduction in CO2 combustion emissions for the top 10 emitting countries 

when satellite CO observations or in situ CO2 measurements are included and the non-TNO uncertainties are used (Table A2 

and A3). The average uncertainty reductions for the joint satellite and CO2-only in situ inversions are 11% and 9%, 345 

respectively. This is not surprising given the greater number of observations provided by these two platforms and increased 

sensitivity to surface fluxes compared to OCO-2. Including in situ CO observations in the inversion does not improve the 

national-scale uncertainty reduction. Because we use lower a priori uncertainties in the TNO inversion (national-scale 2-10% 

RSD) compared to the other inversions (6-14% RSD), fewer countries have reduced uncertainties for the TNO inversion, 

though a posteriori uncertainties are reduced in the Netherlands (2%) for both in-situ and satellite compared to a priori 350 

uncertainties (3%). 

 

3.2 Emission Estimates for the UK and mainland Europe 

 

Table 1 shows our mean domain-scale (includes the UK and mainland Europe) combustion emissions for 2018-2021. The 355 

inversions show a small decrease or no change from the a priori emissions (4.9 Gt a-1), except for the joint satellite and in situ 

inversions that show a larger decrease (4.6 Gt a-1) and an increase (5.0 Gt a-1) from the a priori, respectively. Figure 3 shows 

that the joint satellite inversion decreases combustion emissions year-round for all years with the greatest decreases in winter. 

The TNO satellite/in situ and CO2-only in situ inversions also show decreases in the winter and early spring (Figures 3 and 4), 

providing more confidence in this scaling down of emissions.  360 

 

In contrast, the joint in situ inversion is higher than the a priori values for all months and all years (Figure 4). This pattern is 

not reflected in our other inversion approaches and is likely, in part, due to the model underestimating the fine-scale variability 

in CO compared to what is measured at some in situ sites combined with the use of a common scale factor for both CO and 
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CO2, leading to an over-correction upward of combustion emissions. For example, we find that removing a single site close to 365 

an urban region in northern Italy (Ispra ICOS site) reverses the sign of scaling in the region from an increase to a decrease. 

The disagreement between satellite and in situ CO2:CO inversions is less pronounced for the TNO inversions because the 

separation of CO2 and CO in our state vector prevents the CO underestimates from heavily influencing the CO2 combustion 

emissions.  

 370 

Figure 3 shows a slight (1%) decrease in mean a priori combustion emissions from 2018 to 2021, and all satellite and in situ 

inversion results show a similar trend (Figure 3 and 4). The mean a priori non-combustion (biogenic) CO2 sink shows a slight 

increase (1%) for 2018-2021, and the inversion results show a similar (satellite; Figure 3) or greater increase (in situ; Figure 

4) in the CO2 sink. Figure 4 shows the monthly mean biogenic CO2 sink is weakened for the in situ inversions, mostly in 

summer, whereas Figure 3 shows almost no change in the sink for the satellite inversions (also listed in Table A4), indicating 375 

that the CO2 in situ observations, due to the coverage and sensitivity they provide, are needed for constraining biogenic flux 

estimates. 

 

The differences between a posteriori and a priori annual emissions for all inversions except the joint satellite inversion are not 

statistically significant and remain within the 1-σ uncertainties of the a priori estimate. The inter-annual trends are also smaller 380 

in magnitude than the a posteriori uncertainties, making it difficult to assess if CO2 combustions in Europe have decreased 

from 2018 to 2021. For the joint satellite and in situ inversions, we assumed that CO was a strong tracer for CO2 combustion 

emissions on this regional scale by using a common scale factor, but we find that this assumption leads to more extreme, likely 

unrealistic, divergence from the a priori, in disagreement with the other inversion results. This reflects the difficulties of using 

CO as a tracer for CO2 combustion emissions at regional scales, and the importance of error characterization.       385 

 

3.3 National-scale Emission Estimates 

 

Figure 5 shows national CO2 combustion emissions for the top 10 emitting countries in our European domain (also listed in 

Tables A2 and A3). Germany is the highest emitter with an a priori emission of 821 Tg a-1. Most inversions show a decrease 390 

in Germany’s emissions (717-806 Tg a-1) except for the in situ joint inversion which shows an increase (830 Tg a-1) and the 

CO2-only inversion which shows little change from the a priori estimate (819 Tg a-1). The other top emitting countries, 

including Poland, the UK, France, Italy, Spain, Belgium, the Czech Republic, the Netherlands, and Romania, show emission 

decreases for the satellite joint (3-17%) and TNO (0-4%) inversions. The in situ CO2-only and TNO inversions generally show 

only small changes (<1%) in national emissions except for a 4% national emission decrease in the Netherlands and Belgium 395 

for the CO2-only inversion.   
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The joint inversions show the largest changes in national emissions but in opposite directions. In contrast, the TNO inversions 

show smaller changes from the a priori (in part, due to the lower a priori uncertainties) and better agreement, including 

agreement in Germany where there is greater divergence from the a priori estimate (2% decrease for both TNO inversions).  400 

 

Despite the national-scale disagreements for some inversions, we find regional corrections to combustion emissions are 

consistent for all inversions. Figure 6 shows that the populated North Rhine-Westphalia region in western Germany shows a 

posteriori CO2 combustion emission estimates are smaller than a priori values for all inversions. The TNO and CO2-only 

inversions show mixed corrections in Poland with TNO inversions showing the best agreement. Most inversions, including 405 

both TNO inversions, show an increase in emissions near Milan and Vienna, but over other major cities like Paris, Madrid, 

and London there is less agreement in the sign and magnitude of the emissions changes.  

 

The differences in the joint inversions are due to contrasting corrections to CO emissions that carry over into the CO2 emissions. 

Figures A1 and A2 show that the in situ joint inversion shows decreases for high-emitting regions in Europe for winter and 410 

spring, but this is mostly offset by large emission increases in summer and fall. In contrast, the satellite joint inversion shows 

decreases for all seasons. For the TNO inversion, there is less disagreement between the seasonal emissions corrections for 

CO2, but there are disagreements in CO corrections. Figure A3 shows the CO corrections for the TNO inversion generally 

occur at the national-scale and we know there is low error correlation between the two species at the national-scale (Super et 

al., 2024), so it is not surprising that these corrections do not carry over to CO2. The improvement in the agreement between 415 

our a posteriori CO emissions and TROPOMI and in situ CO measurements, relative to our a priori emissions, is larger than 

for the similar comparison using CO2. This reflects the larger assumed CO errors. A posteriori CO estimates agreed better with 

these measurements for the joint CO2:CO and the TNO inversions, with the TNO inversion performing slightly better. 

 

Figure 7 shows national non-combustion (biogenic) emissions for the countries in Figure 5. All countries show a net sink with 420 

France having the largest net sink. The in situ inversions tend to decrease (lessen) the CO2 sink for all countries and reduce 

uncertainties. Figure 8 shows the spatial pattern in the flux changes is consistent for all in situ inversions. In contrast, the 

national CO2 biogenic fluxes show little change from the a priori for the satellite inversions, highlighting the importance of in 

situ CO2 observations for constraining biogenic flux estimates. For all inversions, the CO2 sink in northern Germany is 

strengthened (more negative fluxes) and weakened in southern Germany and Switzerland, though there are conflicting 425 

corrections in surrounding regions such as France and northern Italy. These disagreements may be due to the differing 

observing capacities with satellites having seasonal limitations due to snow and clouds. We find low a posteriori error 

correlations between national-scale combustion and biogenic fluxes (mostly R<0.1, except for Germany R=-0.2), indicating 

that the disagreement in in situ and satellite a posteriori biogenic fluxes will not carry over into combustion emission estimates. 

 430 

4 Conclusions 
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We find that using CO2 satellite observations from OCO-2 alone cannot reproduce a posteriori European CO2 fluxes inferred 

from the European in situ CO2 measurement network. The satellite observations (CO2-only) do not show significant 

combustion emissions changes from our a priori estimates, whereas when we use in situ CO2 or CO2 and CO satellite 435 

observations, we see greater divergence from the a priori emissions. This is likely due to in situ data being more sensitive to 

emissions and to coverage provided by the current generation of satellites being insufficient to update significantly the state 

vector. We find that the in situ network is still essential for constraining biogenic fluxes, though we also find low correlation 

between combustion and biogenic fluxes indicating that our inability to constrain the biogenic flux estimate using satellites 

does not prevent the estimation of combustion emissions at the national scale using satellite observations. 440 

 

All our inversions indicate that CO2 combustion emissions for regions of Germany are overestimated in winter, and most 

inversions show this overestimate extends to other countries in Europe. We also find that the in situ inversions show a smaller 

summertime European CO2 sink which is not shown for the satellite inversions. We find that the existing observational 

networks are not able to significantly reduce the errors for our European or national emission estimates to the extent necessary 445 

for distinguishing inter-annual emission trends that represent only a few percent of total emissions.  

 

When using CO as a tracer for CO2 combustion emissions in our inversion system, we find that our interpretation of inversion 

results is highly dependent on the assumptions of a priori error correlation between CO and CO2. The use of a CO:CO2 

inversion system can potentially improve our ability to track CO2 combustion emissions provided we have well-characterized 450 

error correlations between the two species which may require broad measurement based studies to determine the error 

correlations specific to a source and region. This suggests that the increase in observational capacity for CO2 and co-emitted 

trace gases promised by the Copernicus CO2 Monitoring (CO2M) satellite mission has the potential to improve our ability to 

constrain national combustion emission estimates provided that the error correlations for CO2 combustion emissions and the 

co-emitted species are strong and well characterized using empirical data.  455 

 

In general, the improvements in model-observation fit are small and we do not see significant reduction in uncertainties 

compared to our a priori estimates. This is expected because we have extensive knowledge about sector emissions that 

underpin these regional inventories, reflected in the small uncertainties associated with combustion emission estimates across 

the UK and mainland Europe. The use of CO observations and TNO error estimates leads to better agreement between satellite 460 

and in situ inversions and the best model-observation fit, though including CO does not reduce the model bias compared to 

TCCON and likely reflects the need for in situ CO2 observations for reducing biases related to biogenic fluxes. Despite the 

sensitivity of our a posteriori emission estimates to the choice of a priori CO2 and CO uncertainties, the joint and TNO satellite 

inversions perform similarly when compared to TCCON. This highlights the need for not only further satellite observing 
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capacity but also improved ground-based networks for evaluating satellites and the usefulness of including co-emitted species 465 

observations.  
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Table 1. Average domain CO2 combustion emissions for 2018-2021 

 

 

 

 660 

 

 

 

 

 665 

 

aThe arrows indicate the change of the mean from the a priori. Blue-downward pointing arrows show a decrease, red-upward 

show an increase, and grey dashes show no change. RSD stands for relative standard deviation. 
bThe a priori uncertainty labelled as ‘A priori’ is for the CO2-only and joint inversions, so we also include the a priori 

uncertainty for the TNO inversion. 670 
cThe Joint and TNO satellite inversions only include July 2018 - December 2021. The a priori combustion emission for this 

period is 4.8 Gt a-1 so we show no change for the TNO a posteriori emissions. 

  

 Mean (Gt a-1) RSD a 

(%)  Emission Change a 

A priorib 4.9  2.4 

TNO a priorib 4.9  1.6 

Satellite    

 CO2-only 4.9 - 2.4 

 Joint  CO2:COc 4.6 ▼ 2.1 

 TNO  CO2:COc 4.8 - 1.6 

In-situ    

 CO2-only 4.8 ▼ 2.2 

 Joint  CO2:CO 5.0 ▲ 2.2 

 TNO  CO2:CO 4.9 - 1.5 
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Figure 1. Annual mean CO2 and CO observed by satellite and in situ networks across Europe for 2018-2021. Satellite 675 

observations of XCO2 and XCO are from OCO-2 and TROPOMI, respectively, and in situ observations are from the 

DECC and ICOS networks. The red X points in the in situ CO plot show the locations of the four out of the five TCCON 

sites for which we use XCO2 and XCO data to evaluate our inversions; the fifth site, based in Cyprus is located outside 

the figure domain. The observations are filtered as stated in the text and satellite observations are shown at 0.25° x 

0.3125° resolution. TROPOMI observations only include observations after July 2018. 680 
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Figure 2. Annual mean emissions for 2018-2021 in the a priori inventories. Combustion emissions (CO2combust, COcombust) 

are from the TNO inventory while biogenic fluxes (CO2bio) are from the VPRM model (negative values indicate a CO2 

sink). 685 
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 690 
Figure 3. Annual and monthly mean European CO2 combustion and non-combustion emissions inferred from satellite 

inversions for 2018-2021. The non-combustion emissions include biogenic and non-combustion anthropogenic emission 

sources. The top row shows annual mean CO2 flux estimates by inversion type, with errors bars showing the 1-σ errors 

except for the a priori errors which are shown as a shaded region. The bottom row shows monthly mean fluxes for 2018-

2021. The TNO and joint inversions only include July 2018-December 2021 for combustion and 2019-2021 for non-695 

combustion. Please note differences in the range used for the y axes. 
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Figure 4. The same as Figure 4 for in situ inversions. 
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 700 

 
Figure 5. Annual mean a priori and a posteriori CO2 combustion emissions by country for satellite (top) and in situ 

(bottom) inversions. We show the top 10 emitting countries in our European domain with emissions averaged over 

2018-2021. The TNO and joint satellite inversion averages do not include dates prior to July 2018. 

 705 
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Figure 6. Annual mean CO2 combustion emissions difference (a posteriori minus a priori) for satellite (top row) and in 

situ (bottom row) inversions, 2018-2021, shown at the native model resolution of 0.25° x 0.3125°. The TNO and joint 710 

satellite inversion averages do not include dates prior to July 2018.  

  



29 
 

 

 

 715 
Figure 7. As Figure 5 but for non-combustion CO2 fluxes estimates. The TNO and joint satellite inversion averages do 

not include 2018. The non-combustion emissions include biogenic and non-combustion anthropogenic emission sources. 
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 720 

 
Figure 8. As Figure 6 but for non-combustion CO2 flux estimates. The TNO and joint satellite inversion averages do 

not include 2018. The non-combustion emissions include biogenic and non-combustion anthropogenic emission sources. 
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Appendix A 

 

 730 

1 Description of an a priori ensemble generation 

For the a priori ensemble perturbations that represent our state vector (𝐱%* for the nth ensemble member), we generate an 

ensemble of scale factors based on the desired error statistics, described in Section 2.3. For the combustion and non-combustion 

scale factors, we solve for scale factors on a 0.5° x 0.625° resolution grid (double our nested model resolution). Each ensemble 

member is then a grid of perturbations that we will apply to our emissions grid. To generate the ensemble members, we first 735 

generate an error covariance matrix (𝐏):  

 

𝐏 = 𝐏D ∙ =𝑒2
𝐃
"## 	 ∙ 𝐏D?, 

 

where 𝐏D is a diagonal matrix with the variance for each state vector element along its diagonal. Covariance between grid cells 740 

is based on the spatial proximity between each grid cell and its neighbor with distances between grid cells represented by the 

matrix 𝐃. The influence of neighboring grid cells decreases with distance following an exponential decay with a length scale 

of 100 km, assuming isotropy. 

 

We then perform a Cholesky decomposition on 𝐏. We generate each a priori ensemble member by applying a random 745 

perturbation vector with mean zero and standard deviation equal to one (𝛈) to the decomposed matrix (𝐋) and adding one 

(which is the assumed a priori mean of all ensemble members): 

 

𝐱%* = 1 + 𝐋 ∙ 𝛈. 

 750 

The TNO emissions inventory is constructed by allocating national emissions to a grid using a spatial map of activity data 

(e.g., a population map), so the uncertainty in the gridded emission estimate is a combination of the uncertainty in the national 

emissions and the uncertainty in the spatial product used to distribute emissions. We use uncertainty estimates for the national 

emissions, uncertainties for the spatial products, and estimates of the correlation of uncertainties for the two species to generate 

an ensemble of gridded emissions by sector, following a Monte Carlo approach. This method is described in Super et al. (2023). 755 

We use the emissions ensemble to generate an error covariance matrix (𝐏) and follow the steps outlined in the main text.  

 

 

 

 760 
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Table A1. Fit of a priori and a posteriori modelled CO2 compared to observations for 2018-2021a 
aWe use the 

Pearson’s 

correlation 

coefficient 765 

and relative 

mean bias 

(the means 

of the a 

posteriori 770 

and a priori 

difference 

divided by 

the a priori) 

as measures 775 

of fit.  
bFive sites 

are within our domain (Figure 2) include Bremen (Germany), Karlsruhe (Germany), Nicosia (Cyprus), Orléans (France), and 

Paris (France). 

 780 

  

 Correlation coefficient Relative mean bias (%) 

 In situ TCCONb Satellite In situ TCCON Satellite 

A priori 0.76 0.87 0.84 0.2 0.7 0.2 

Satellite inversions       

 CO2-only 0.81 0.90 0.92 -0.2 0.4 -0.1 

 Joint  CO2:COc 0.80 0.93 0.95 -0.2 0.5 <0.05 

 TNO  CO2:COc 0.82 0.92 0.95 -0.1 0.5 <0.05 

In situ inversions       

 CO2-only 0.83 0.85 0.85 -0.4 0.2 -0.2 

 Joint  CO2:CO 0.84 0.85 0.86 -0.3 0.4 -0.1 

 TNO  CO2:CO 0.84 0.86 0.87 -0.3 0.3 -0.1 
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Table A2. Annual mean national CO2 combustion emissions (Emis; Tg a-1) and relative standard deviations (RSD; %) 
for 2018-2021 satellite inversions  

Country 
 

Country 
Abbr. 

Prior CO2-only Jointa TNOa,b 

Emis RSD Emis RSD Emis RSD Emis RSD PRSD 

Germany DEU 821 7 819 7 717 6 806 6 6 

Poland POL 361 9 362 9 336 8 358 5 5 

United Kingdom  GBR 351 9 352 9 335 8 345 5 6 

France FRA 342 6 343 6 327 5 338 2 2 

Italy ITA 326 7 325 7 291 6 314 5 5 

Spain ESP 242 6 242 6 233 5 239 4 4 

Belgium BEL 137 14 137 14 116 13 136 4 4 

Czech Republic CZE 113 11 113 11 102 10 111 3 3 

Netherlands NLD 112 13 112 13 93 12 112 2 3 

Romania ROU 97 8 97 8 95 8 93 10 10 
aThe satellite inversions that include CO only show means for July 2018 - December 2021. 
bThe a priori uncertainties for TNO differ from the CO2-only and joint inversions, so we list the TNO a priori uncertainties 785 

(PRSD) as well. The higher a posteriori error for Romania is due to the error inflation factor used in the sequential inversion. 
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Table A3. Annual mean national CO2 combustion emissions (Emis; Tg a-1) and relative standard deviations (RSD; %) 
for 2018-2021 in situ inversionsa  790 

Country 
 

Country 
Abbr. 

CO2-only Joint TNO 

Emis RSD Emis RSD Emis RSD 

Germany DEU 796 6 830 6 802 6 

Poland POL 360 8 380 8 361 5 

United Kingdom  GBR 353 8 356 8 352 6 

France FRA 342 5 353 5 342 2 

Italy ITA 327 6 336 6 328 5 

Spain ESP 243 6 243 6 243 3 

Belgium BEL 132 13 139 12 137 4 

Czech Republic CZE 112 10 119 10 113 3 

Netherlands NLD 107 12 112 12 112 2 

Romania ROU 97 8 98 8 97 9 
aOnly the a posteriori emissions are shown. The a priori emissions and uncertainties are listed in Table A2. 
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Table A4. Domain mean CO2 non-combustion emissions for 2018-2021a 

 795 

 

 

 

 

 800 

 

 

 

 

 805 
 

 

 

 

 810 
a The non-combustion emissions include biogenic and non-combustion anthropogenic emission sources.  
bJoint and TNO inversion satellite results only include 2019-2021. The a priori non-combustion flux is the same for this period 

(-3.0 Gt a-1).  

 

 815 

  

 
Mean 

(Gt a-1) 

RSD 

(%) 

A priori -3.0 14 

Satellite   

 CO2-only -3.0 14 

 Joint  CO2:COb -3.0 14 

 TNO  CO2:COb -3.0 14 

In-situ   

 CO2-only -2.8 14 

 Joint  CO2:CO -2.8 14 

 TNO  CO2:CO -2.8 14 
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Figure A1. Seasonal mean a posteriori and a priori CO2 combustion emissions difference for satellite inversions for 

2018-2021. The inversions including CO satellite observations do not include emissions differences prior to July 2018. 820 
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Figure A2. Same as Figure A1 for in situ inversions.  

  825 
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Figure A3. Same as Figure A1 for CO in satellite and in situ inversions.  

 


