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Abstract. The manuscript presents an investigation of the scales of propagation for sediment aggradation in an overloaded 10 

channel. The process has relevant implications for land protection, since bed aggradation reduces channel conveyance and thus 

increases inundation hazard; knowing the time needed for the aggradation to take place is important for undertaking suitable 

actions. Attention is here focused on supercritical flow, under which the process is dispersive and a depositional front cannot 

be clearly recognized; in these conditions, one needs to define propagation scales locally and instantaneously. Based on spatial 

and temporal rates of variation of the bed elevation we quantify a celerity of propagation for the sediment aggradation wave. 15 

Furthermore, considering that morphological processes are modeled by differential equations, the eigenvalues of the latter’s 

system are the celerities of the so-called small perturbations. With reference to a laboratory experiment with temporally and 

spatially detailed measurements, and after a review of existing approaches to determine the celerity of small perturbations 

considering or discarding the concentration of transported sediment, the manuscript shows how the celerities of propagation 

correlate with one another, while their values differ by orders of magnitude. It is argued that accounting or not for the solid 20 

concentration in the governing equations does not significantly impact the correlation trends, even one of the eigenvalues 

changes significantly. Finally, a bulk value of a dimensionless aggradation celerity is provided, that can serve as a rule-of-

thumb estimation, useful for engineering purposes. 

1 Introduction 

River sediment transport is one of the key processes shaping the Earth’s surface and has a number of implications for human 25 

life (Dotterweich, 2008; Mazzorana et al., 2013; Haddadchi et al., 2014; Longoni et al., 2016; Pizarro et al., 2020). The 

morphologic evolution of rivers can be studied at a huge range of scales, the longest and shortest ones being related to 

geology/geomorphology and particle mechanics, respectively (e.g., Aksoy and Kavvas, 2005; Ancey, 2020, respectively). This 

paper is focused on the bed aggradation that results from an imbalance between an amount of supplied sediment and the 

transport capacity of the flow within a generic extreme event. The engineering relevance of this process has been demonstrated 30 

by a number of studies discussing how, during a calamitous event, sediment aggradation may increase hydraulic hazard (Sear 

et al., 1995; Stover and Montgomery, 2001; Lane et al., 2007; Radice et al., 2013). Sediment aggradation has been studied in 

the past for both the effects of pulsed sediment supply (e.g., Cui et al., 2003; Cui and Parker, 2005; Sklar et al., 2009) and the 

formation of depositional fronts (e.g., Soni, 1981; Yen et al., 1992; Alves and Cardoso, 1999; Zanchi and Radice, 2021). 

Besides the magnitude of morphologic changes, the scales of the progressive evolution of the process are also important. In 35 

fact, when a channel is overloaded with sediment, an aggradation wave propagates with a certain celerity along the reach. 

Knowing the celerity of propagation is crucial for estimating when an aggradation wave will reach any key spot along the 

stream. 

Aggrading fronts induced by sediment overloading may be either translational or dispersive (Lisle et al., 2001). A translational 

front appears as a sharp discontinuity in the bed elevation. In a dispersive process, instead, a depositional wedge becomes 40 
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progressively longer and thinner downstream. Zanchi and Radice (2021), based on laboratory experiments in subcritical 

conditions, could estimate the celerity of the aggradation wave by applying a tracing method since the sediment front was 

translational and therefore detectable in the performed experiments. They argued that translational features are favored by low 

Froude number and high overloading ratio (the ratio between the sediment inflow discharge and the initial sediment transport 

capacity of the flow), the opposite holding for dispersive features. In a supercritical flow, given a relatively high value of the 45 

Froude number, one expects a dispersive process to take place. In such a condition, due to the absence of a sharp sediment 

front, it is not possible to track the latter to estimate the celerity of propagation of the aggradation wave. Therefore, alternative 

methods are needed. The present manuscript indeed considers sediment aggradation in supercritical flow with the purpose of 

investigating its propagations scales, as most (if not all) prior investigations have been conducted for subcritical conditions. 

From a mathematical point of view, several studies have been performed to simulate the sediment transport process in rivers 50 

by using a quasi-two-phase approach in a one-dimensional framework (for example, De Vries, 1965, 1971, 1973, 1993; 

Armanini and Di Silvio, 1988; Sieben, 1997, 1999; Kassem and Chaudry, 1998; Lyn and Altinakar, 2002; Lee and Hsieh, 

2003; Rosatti et al., 2005; Rosatti and Fraccarollo, 2006; Goutière et al., 2008; Armanini et al., 2009; Garegnani et al., 2011; 

Armanini, 2018). In a quasi-two-phase approach, the hydro-morphologic evolution of the bed and water surfaces is depicted 

by a hyperbolic system of partial differential equations, including mass and momentum conservation equations for the mixture 55 

phase and one continuity equation (the Exner equation) for the sediment phase. When the volumetric concentration of the 

transported sediment (that is the ratio of sediment discharge to the water-sediment mixture discharge) is negligible, this system 

may be transformed into another one containing mass and momentum conservation equations for the clear water (i.e., the 

Saint-Venant equations) and the Exner equation. De Vries (1965) proposed to consider the sediment concentration negligible 

below a threshold value of around 0.002, while Garegnani et al. (2011, 2013) introduced a higher threshold of 0.01. However, 60 

several authors have argued that the eigenvalues of the hyperbolic system represent the celerity of propagation of small 

perturbations in bed and water. Furthermore, some studies have proposed approximate determinations of the eigenvalues of a 

simplified system of equations for negligible sediment concentration (De Vries, 1965, 1971, 1973; Lyn, 1987; Lyn and 

Altinakar, 2002; Goutière et al., 2008; Armanini, 2018); by contrast, Morris and Williams (1996) argued that the assumption 

of a negligible concentration is not appropriate for many natural streams and, based on that, provided an equation to estimate 65 

the eigenvalues of the full system of equations. 

The celerity of propagation of small perturbations is not the celerity of propagation of the aggradation wave, as also happens 

considering water in a fixed-bed flood wave model. Therefore, if one needs to provide a celerity for the sediment involved in 

the aggradation process, something different is needed and may be quantified considering the spatial and temporal rate of 

variation of the bed elevation. A key objective of the present study is investigating the correlation between the celerity of 70 

propagation of the aggradation wave (determined as just mentioned) and the celerity of small perturbations (determined as the 

eigenvalues of the system. 

Based on the arguments above, the present manuscript is articulated around the following questions: (1) How can one quantify 

the scales of propagation in an aggradation process? (2) What is the relationship between the aggradation celerity and the 

celerity of small perturbations? and finally (3) Which is the impact of considering or not the sediment concentration on the 75 

previous point? These issues are investigated with reference to an aggradation experiment performed in a laboratory flume. 

The manuscript is structured as follows: Section 2 provides a review of how the eigenvalues of the hyperbolic equations have 

been treated by several studies with or without an assumption of negligible sediment concentration. Section 3 shows how one 

may estimate the local and instantaneous celerity of propagation. In section 4, the experimental setup and the measurement 

techniques are presented; furthermore, the methods for the quantitative determination, based on the measurement of the bed 80 

elevation, of the scales of propagation are described. Sections 5 and 6 contain the experimental results and a discussion, 

respectively. Finally, the key conclusions of the study are provided. 
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2 Mathematical modeling of channel morphologic evolution: a review of quasi-two-phase approaches and the celerity 
of small perturbations 

In a fully-two-phase approach, the governing equations for one-dimensional modeling of channel morphologic evolution 85 

comprehend four partial differential equations (e.g., Greco et al., 2012), including two mass and momentum equations for the 

mixture phase and the same equations for the solid phase. However, since in the literature a quasi-two-phase approach has 

been widely taken to simulate mobile-bed flows, we follow this approach also in this study. A quasi-two-phase model for river 

morphology is based on two main hypotheses (e.g., Garegnani et al., 2013). First, if the volumetric concentration of the 

transported sediment, 𝑐௦, does not exceed a certain value (for example, Armanini et al., 2009 proposed a threshold at 0.05), 90 

then the bed shear stress may be computed using the same equations one uses for clear-water conditions. Second, water and 

sediment move at almost the same velocity. As mentioned above, in a quasi-two-phase approach, due to the second assumption, 

a hyperbolic system of partial differential equations includes one continuity equation for the mixture, one momentum equation 

for the mixture, and one continuity equation for the bed sediment (Exner equation). The two equations for the mixture can be 

simplified to the well-known Saint-Venant equations for clear water if the solid concentration is negligible.  95 

2.1 Governing equations and eigenvalue analysis for negligible 𝒄𝒔 

Several authors (e.g., De Vries, 1965, 1971, 1973, 1993; Sieben, 1997, 1999; Armanini, 2018; Goutière et al., 2008; Garegnani 

et al., 2011, 2013) have argued that in fluvial environments the volumetric solid concentration may be assumed to be very 

small. With this assumption, the Saint-Venant and Exner equations are obtained for a unit-width rectangular channel as 

follows: 100 
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where ℎ = water depth; 𝑢 = depth-averaged water velocity; 𝑔 = gravity acceleration; 𝑧௕ = bed elevation; 𝑆௙ = friction slope; 

𝑝଴ = bed porosity; and 𝑞௦ = sediment discharge per unit width. This system contains five unknowns, namely ℎ, 𝑢, 𝑧௕, 𝑆௙, 𝑞௦, 

and only three equations; therefore, in order to ensure the existence of a solution two other equations, working as closure 

relationships, are needed. The latter express 𝑆௙ and 𝑞௦. For the friction slope, the Manning formula is frequently used: 

𝑆௙ ൌ
𝑛ଶ ൈ 𝑢ଶ

𝑅ு
ସ/ଷ  (2) 

where 𝑛 = Manning’s coefficient; and 𝑅ு  = hydraulic radius. To evaluate the sediment discharge, 𝑞௦, many formulae are 105 

available. For example, Goutiére et al. (2008) expanded the formula of Meyer-Peter and Müller (1948) as follows: 

𝑞௦ሺ𝑞, ℎሻ ൌ 8ට𝑔ሺ𝑠 െ 1ሻ𝑑ହ଴
ଷ ቆ

𝑛ଶ𝑞ଶ

ሺ𝑠 െ 1ሻ𝑑ହ଴ℎ଻/ଷ െ 0.047ቇ
ଷ/ଶ

 (3) 

where 𝑞 = 𝑢ℎ = water discharge per unit width; 𝑠 = 𝜌௦/𝜌 = relative sediment density (𝜌௦ and 𝜌 represent the sediment and 

water densities, respectively); and 𝑑ହ଴ = median grain diameter. 

Exploiting a compound derivative for 𝜕𝑞௦ 𝜕𝑥⁄  and the derivation of the product for 𝜕ሺ𝑢ℎሻ 𝜕𝑥⁄ , system (1) becomes: 
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System (4) can be written in the vector form as (Armanini, 2018): 110 
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are the vector of unknowns, the matrix of coefficients, and the vector of known terms, respectively. 

One can then determine the eigenvalues (𝜆ଵ, 𝜆ଶ, and 𝜆ଷ) of the coefficient matrix, 𝑨𝑼, that represent the slope of the so-called 

characteristic curves and, according to the literature (De Vries, 1965, 1971, 1973; Lyn, 1987; Lyn and Altinakar, 2002; 115 

Goutière et al., 2008; Armanini, 2018), the celerity of propagation of small perturbations in the bed and water surfaces. The 

three eigenvalues of the system can be obtained by solving the following equation: 

𝑑𝑒𝑡ሺ𝑨𝑼 െ  𝜆𝑰ሻ ൌ 𝟎 (7) 

where 𝑰 is the identity matrix. By developing (7) one obtains a cubic equation which is known as the characteristic polynomial 

equation (Armanini, 2018): 

𝑝ሺ𝜆ሻ ൌ െ𝜆ଷ ൅ 2𝑢𝜆ଶ ൅ ሺ𝑔ℎ െ 𝑢ଶ ൅ 𝑔ℎ𝐴ఒሻ𝜆 െ 𝑔ℎ𝑢ሺ𝐴ఒ െ 𝐵ఒሻ ൌ 0 (8) 

where:  120 
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are dimensionless parameters. Though the three real and distinct eigenvalues (Rosatti and Fraccarollo, 2006) of the system can 

be computed exactly by solving this cubic equation, approximated solutions may be useful for interpretation purposes (Lyn, 

1987). Numerous studies have thus been performed to investigate the characteristic curves (Lyn and Altinakar, 2002) and to 

present approximated formulations for 𝜆ଵ, 𝜆ଶ, and 𝜆ଷ. In the following, some of them are reviewed.  

2.1.1 De Vries’ approach 125 

De Vries (1965, 1971, 1973, 1993) referred to the eigenvalues of the system as the “celerities of the surface and bed waves in 

mobile-bed flows”. To estimate them, he proposed an approximated solution valid for Froude numbers (𝐹𝑟) lower than 0.8 or 

higher than 1.2: 
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In Eq. (10), one recognizes that 𝜆ଵ  and 𝜆ଶ  are the well-known surface wave celerities for the Saint-Venant equations 

representing water flow. In this approach, therefore, for a flow sufficiently distant from the critical conditions and negligible 130 
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solid concentration, the first two eigenvalues are not affected by the presence of sediment transport. Instead, 𝜆ଷ was considered 

as the celerity of the bed surface perturbations.  

The eigenvalues 𝜆ଶ and 𝜆ଷ have a different sign in subcritical and supercritical flow. Therefore, an alternative version of Eq. 

(10) has been proposed to obtain eigenvalues with the same sign (𝜆ଵ> 0, 𝜆ଶ< 0, 𝜆ଷ> 0) for both the flow conditions: 

𝐹𝑟 ൏ 0.8 
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2.1.2 Lyn and Altinakar’s approach 135 

Lyn (1987), then followed by Lyn and Altinakar (2002), presented different approximations to estimate the three eigenvalues 

for near-critical flows (0.8 ൑ 𝐹𝑟ଶ  ൑ 1.2): 
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Lyn and Altinakar (2002) argued that 𝜆ଶ and 𝜆ଷ are not devoted merely to a surface wave or a bed wave but, rather, they 

represent the celerity of propagation of both surface and bed waves. This finding is somehow consistent with Sieben’s (1997, 

1999) statement that in near-critical regimes the bed waves interact strongly with the surface waves. 140 

2.1.3 Goutière et al.’s approach 

Goutière et al. (2008) developed approximated formulations for the eigenvalues of a system of partial differential equations 

slightly different from (1), where ℎ, 𝑞 and 𝑧௕ were the main dependent variables: 
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To estimate the three eigenvalues of the system they proposed the following equations:  
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Differently from the approaches of De Vries and Lyn and Altinakar, Eq. (14) are to be intended as valid for the whole range 145 

of Froude numbers. 
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2.2 Governing equations and eigenvalue analysis for non-negligible 𝒄𝒔 

Morris and Williams (1996) argued that an assumption of negligible solid concentration is not appropriate for many natural 

streams and, therefore, determined the eigenvalues of a system of equations considering a finite 𝑐௦ . The continuity and 

momentum equations of the mixture and the continuity equation for the sediment in Morris and Williams’ approach are as 150 

follows: 
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where, 𝑐௦ ൌ 𝑞௦/ሺ𝑞௦ ൅ 𝑞ሻ, and 𝜌௠ ൌ 𝑐௦𝜌௦ ൅ ሺ1 െ 𝑐௦ሻ𝜌  is the density of the mixture. Since the solid concentration is not 

negligible, the water and sediment discharge per unit width are obtained from the following equations (always assuming that 

the solid particles move with the same velocity of water): 

𝑞 ൌ 𝑢ℎሺ1 െ 𝑐௦ሻ  (16) 

𝑞௦ ൌ 𝑢ℎ𝑐௦    (17) 

The system can be again closed using Eq. (2) and Eq. (3), as the latter furnishes a mean to compute 𝑐௦ from Eq. (17). 155 

The eigenvalues of the system (15) are determined by solving the following cubic equation (for the sake of completeness, an 

extended report of Morris and Williams’ derivations is included in Supplemental 1): 

𝜆ଷ ቄ𝐵𝑢
డ௖ೞ

డ௨
െ ℎ

డ௖ೞ

డ௛
െ ሾ𝑐௦ െ ሺ1 െ 𝑝଴ሻሿቅ +  𝜆ଶ ቀሼ𝐴𝑔ℎሾ𝑐௦ െ ሺ1 െ 𝑝଴ሻሿ െ 2𝐵𝑢ଶሽ డ௖ೞ

డ௨
൅ ሺ2 ൅ 𝐵ሻ𝑢ℎ

డ௖ೞ

డ௛
൅

2𝑢ሾ𝑐௦ െ ሺ1 െ 𝑝଴ሻሿቁ + 𝜆 ൤ሺ𝐵𝑢ଷ െ 𝑢𝑔ℎሼ1 ൅ 𝐴ሾ𝑐௦ െ ሺ1 െ 𝑝଴ሻሿሽሻ డ௖ೞ

డ௨
െ ൫ሺ1 ൅ 𝐵ሻ𝑢ଶℎ െ 𝑔ℎଶሼ1 ൅

𝐴ሾ𝑐௦ െ ሺ1 െ 𝑝଴ሻሿሽ൯
డ௖ೞ

డ௛
െ ሺ𝑢ଶ െ 𝑔ℎሻሾ𝑐௦ െ ሺ1 െ 𝑝଴ሻሿ൨ + 𝑢𝑔ℎ ቀ𝑢

డ௖ೞ

డ௨
െ ℎ

డ௖ೞ

డ௛
ቁ ൌ 0   

(18) 

where 𝐴 ൌ ሺ𝜌௦ െ 𝜌ሻ ሺ2𝜌௠ሻ⁄  and 𝐵 ൌ ൫ሺ1 െ 𝑝଴ሻ𝜌௦ ൅ 𝑝଴𝜌൯/𝜌௠ are dimensionless parameters. Differently from the previous 

approaches for negligible 𝑐௦, this last one does not carry explicit approximated equations for the 𝜆 values. 

3 Estimation of the local and instantaneous celerity of propagation of sediment aggradation  160 

To determine the celerity of propagation of a certain quantity 𝑋, that varies in space and time, one can borrow the developments 

provided for unsteady flow by, for example, Chow et al. (1988) or Jain (2001). The celerity of propagation is defined as the 

velocity at which a given value of that quantity migrates along the system with respect to a still observer or, conversely, the 

velocity that an observer needs to move at to see a constant value for the quantity. One can thus obtain the celerity of 

propagation of 𝑋 as follows:  165 

d𝑋
d𝑡

ൌ
𝜕𝑋
𝜕𝑡

൅
𝜕𝑋
𝜕𝑥

d𝑥
d𝑡

ൌ 0 → 𝐶௑ ൌ
𝑑𝑥
𝑑𝑡

ൌ െ
𝜕𝑋 𝜕𝑡⁄

𝜕𝑋 𝜕𝑥⁄
 (19) 

In a clear-water wave model, suitable quantities to be used as 𝑋 are, for example, water depth or discharge. In the present case, 

any quantity related to the morphologic process may be used; in the next section we will motivate a choice of using the bed 

elevation, after a presentation of the experimental methods. 
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4 Materials and methods 

The aggradation experiment presented in this paper has been run at the Mountain Hydraulics Laboratory of the Politecnico di 170 

Milano, Lecco campus (Italy). The experimental setup and procedures are briefly reported below, referring to prior work for 

details.  

4.1 Experimental setup, procedures, and measuring methods 

The configuration of the used flume is shown in Fig. 1. The flume has a length of 5.2 m, a width of 0.3 m, a bank height of 

0.45 m, and is entirely made of Plexiglas. The water discharge, 𝑄, pumped from an underground container into an upstream 175 

tank, is adjusted using a guillotine valve and measured by an electromagnetic flowmeter. The erodible channel bed has a 

thickness of 0.15 m and is made of Polyvinyl Chloride (PVC), uniform sediment cylinders with a density 𝜌௦ of 1443 kg/m3, 

an equivalent diameter (computed for a sphere with the same volume of a cylinder) 𝑑 of 3.8 mm, porosity 𝑝଴ of 0.45 (Unigarro 

Villota, 2017), and a Manning roughness coefficient 𝑛 of 0.015 s/m1/3 (as determined during preliminary tests by Zanchi and 

Radice, 2021). A sediment feeding system with a vibrating channel and a hopper is employed upstream. At the downstream 180 

end, the channel is equipped with sediment collectors. The bed is fixed in an upstream and a downstream portion to avoid 

undesired scour. A laser distance sensor is installed to continuously measure the water elevation in the inlet tank. 

 

Figure 1. Flume used for the aggradation experiment. Camera 1 shoots the collector; camera 2 shoots the channel from the side; 
camera 3 shoots the vibrating channel of the sediment feeding system. 185 

Prior to executing an experiment, the sediment bed is leveled and sprayed with water to avoid surface tension effects at water 

arrival. Then, the water pumping system is switched on and the flume is filled at negligible discharge to avoid any significant 

disturbance to the sediment. In this term, several cameras placed around the flume (see again Fig. 1) are turned on. After 

saturation of the bed, which typically takes some minutes, the water discharge is increased to the test value in roughly one 

minute; in this phase, the continuous reading of the discharge measured by the flowmeter and the laser measurement of the 190 

water elevation in the inlet tank furnish the necessary data to compute the temporal evolution of the flow rate entering the 

flume. When the sediment in the flume starts being transported, the sediment feeding is activated (the time at which the feeder 

is turned on is considered the initial time of the experiment). During the experiment, the hopper is refilled manually, and the 

experiment ends when no more sediment material is available (the duration of the aggradation phase is generally less than 10 

minutes). 195 

All the measurements are taken by image analysis, using the videos acquired by the various cameras. First, the sediment 

feeding rate, 𝑄௦ି௜௡, is obtained from the videos recorded by camera 3 placed above the vibrating channel. Particle image 

velocimetry is used to measure the velocity of the particles moving along the vibrating channel; then, this velocity is converted 

into a sediment feeding rate using a predetermined transfer function (for details on the calibration of the method the reader can 

refer to Radice and Zanchi, 2018). 200 
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Second, in order to measure the bed and water elevation during the experiment, a motion-detection method is applied to the 

videos captured by camera 2 placed beside the channel. For the measurement of the bed elevation, this method is based on the 

concept that the bed-load layer is part of the mixture flow while the bed is atop the still sediment in the bottom layer; according 

to that, the bed is located at the maximum elevation where no sediment motion occurs (see Eslami et al., 2022). For the 

measurement of the water surface elevation, instead, the method relies on detecting the motion of sediment particles sparsely 205 

transported within the flow. Two subsequent frames of the movie are subtracted from each other and imposing a threshold 

value to the resulting difference determines the border between motion and stillness; the upper and lower edges of the detected 

motion layer are considered as the water and bed surface elevations, respectively. The method has been validated against 

manual measurements taken during the experimental campaign that includes the run presented in this manuscript. 

Third, the sediment transport capacity of the initial flow, 𝑄௦଴, is measured by two methods, one relying on the sediment volume 210 

progressively accumulated into the downstream collector and one obtaining the sediment volume leaving the flume from those 

fed and accumulated in the channel (thus applying the mass conservation principle). Full details are also provided in Eslami et 

al. (2022). The measurement of 𝑄௦଴ is necessary to obtain the sediment overloading ratio 𝐿𝑟 ൌ 𝑄௦ି௜௡/𝑄௦଴. 

4.2 Aggradation experiment and raw results 

Table 1 lists the control parameters of the aggradation experiment performed in the current work (symbols not already defined 215 

in the text include 𝑇 as the experiment duration, 𝑆଴ as the initial channel slope, and 𝑄 as the flow rate). 

Table 1. Parameters of the aggradation experiment performed in the present study. 

𝑻 (𝒔) 𝑺𝟎 (%) 𝑸 (𝒍/𝒔) 𝑸𝒔ି𝒊𝒏 ሺ𝒎𝟑 𝒔ሻ⁄  𝑸𝒔𝟎 ሺ𝒎𝟑 𝒔ሻ⁄   𝑳𝒓 

316 1.37 7.0 4.28×10-4 1.33×10-4 3.2 

 

Figures 2(a) and 2(b) present the spatial evolution profiles of the bed and water surface at some specific time instants for the 

performed experiment. The profiles are provided from the x-coordinate (increasing from upstream to downstream) equal to 220 

140 cm (distance from the upstream) because the channel is monitored by the camera from this coordinate (it should be 

mentioned that the x-coordinate of the channel feeding point is equal to 30 cm). As it is evident from the bed surface profiles, 

a sediment front is not clearly detectable during the experiment, i.e., it is of a dispersive type, since the experiment was 

performed with a relatively high flow velocity. Furthermore, after a time of around 190 s, the profiles do not further evolve, 

indicating the achievement of an equilibrium condition. 225 

 

 

 

 

 230 
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(a) 

 235 

(b) 

 

Figure 2. Spatial profiles of (a) bed elevation (b) water elevation, during the experiment. 

Figure 3 depicts color gradient maps for the elevations of the bed and water surface, to appreciate spatial and temporal 

evolutions simultaneously. The contour lines become vertical for times larger than 190 s, again demonstrating the achievement 240 

of morphological equilibrium in the performed experiment.  

Finally, Fig. 4 depicts the color gradient map of the Froude number, obtained from local and instantaneous velocity and depth. 

The Froude number was larger than 1 for most of the experiment (with a mean value of 1.3 for the entire map), corresponding 

to a supercritical flow condition. 

 245 
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(a) (b) 

Figure 3. Color gradient maps of (a) bed elevation (b) water elevation, for the performed experiment. 250 

 

Figure 4. Color gradient map of Froude number for the performed experiment. 

4.3 Estimation of the local and instantaneous celerity of propagation of sediment aggradation  

Eq. (19) is applied to the bed elevation 𝑧௕ that is the most suitable quantity to determine the celerity of the sediment wave. The 

bed elevation was preferred to, for example, the sediment transport rate because it was directly measured during the 255 

experiments with high spatial and temporal resolution. To exploit the equation for the present purposes, it was converted into 

a discrete form: 

𝐶 ൌ െ
∆𝑧௕ ∆𝑡⁄

∆𝑧௕ ∆𝑥⁄
 (20) 

where ∆𝑡 and ∆𝑥 are suitable time and space steps. In this work, ∆𝑡 and ∆𝑥 are chosen as equal to 1 s and 1.8 cm, respectively. 

4.4 Eigenvalue determination using approaches for negligible and non-negligible sediment concentration 

Within the approaches for negligible solid concentration, the equations proposed by Goutière et al. (2008) are used in this 260 

study, since these equations are valid for the entire range of the Froude number providing determinations very similar to those 

from the exact solution of Eq. (8). Since all the quantities involved in the eigenvalue determination vary in space and time, 

one obtains a corresponding space-time variation of the 𝜆 values. In order to make the eigenvalue determination fully consistent 

with the performed experiment, Eq. (3) was preliminarily calibrated introducing a bed-load factor 𝛼and an equivalent Manning 

coefficient accounting for sediment transport (excluding for simplicity the threshold Shields number from the calibration 265 

parameters): 
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𝑞௦ሺ𝑞, ℎሻ ൌ 𝛼8ට𝑔ሺ𝑠 െ 1ሻ𝑑ହ଴
ଷ ቆ

𝑛௖௔௟௜௕௥௔௧௘ௗ
ଶ 𝑞ଶ

ሺ𝑠 െ 1ሻ𝑑ହ଴ℎ଻/ଷ െ 0.047ቇ
ଷ/ଶ

 (21) 

Following Eslami et al. (2022), the calibration was performed by using Eq. (21) in a numerical simulation of the experiment 

and achieving a good consistency between experimental and numerical profiles of the bed and water surface. The values 

obtained for 𝛼 and 𝑛௖௔௟௜௕௥௔௧௘ௗ are equal to 1.73 and 0.017 s/m1/3, respectively. Furthermore, by substituting 𝑞 ൌ 𝑢ℎ in Eq. 

(21), explicit equations for 𝜕𝑞௦ 𝜕𝑢⁄  and 𝜕𝑞௦ 𝜕ℎ⁄  were obtained to determine 𝐴ఒ and 𝐵ఒ from Eq. (10). Finally, 𝜆ଵ, 𝜆ଶ, and 𝜆ଷ 270 

could be computed by Eq. (14). 

There is no explicit equation in the literature to estimate 𝜆ଵ, 𝜆ଶ, and 𝜆ଷ for non-negligible solid concentration; therefore, in the 

current study, the eigenvalues were determined by finding the roots of  Eq. (18). Since the sediment transport rate was 

expressed by Eq. (21), an equation for sediment concentration was obtained from that one as: 

𝑐௦ሺ𝑢, ℎሻ ൌ
8αඥ𝑔ሺ𝑠 െ 1ሻ𝑑ହ଴

ଷ ൬
𝑛௖௔௟௜௕௥௔௧௘ௗ

ଶ ሺ𝑢ℎሺ1 െ 𝑐௦ሻሻଶ

ሺ𝑠 െ 1ሻ𝑑ହ଴ℎ଻/ଷ െ 0.047൰
ଷ/ଶ

𝑢ℎ
 

(22) 

to be solved iteratively to determine 𝑐௦. Furthermore, Eq. (18) requires the derivatives 𝜕𝑐௦/𝜕𝑢 and 𝜕𝑐௦/𝜕ℎ, that were obtained 275 

introducing a function 𝐹ሺ𝑢, ℎ, 𝑐௦ሻ as follows: 

𝐹ሺ𝑢, ℎ, 𝑐௦ሻ ൌ
8αඥ𝑔ሺ𝑠 െ 1ሻ𝑑ହ଴

ଷ ൬
𝑛௖௔௟௜௕௥௔௧௘ௗ

ଶ ሺ𝑢ℎሺ1 െ 𝑐௦ሻሻଶ

ሺ𝑠 െ 1ሻ𝑑ହ଴ℎ଻/ଷ െ 0.047൰
ଷ/ଶ

𝑢ℎ
െ 𝑐௦ 

(23) 

and, finally, determining the needed derivatives  

𝜕𝑐௦

𝜕𝑢
ൌ െ

𝜕𝐹ሺ𝑢, ℎ, 𝑐௦ሻ 𝜕𝑢⁄

𝜕𝐹ሺ𝑢, ℎ, 𝑐௦ሻ 𝜕𝑐௦⁄
 (24) 

𝜕𝑐௦

𝜕ℎ
ൌ െ

𝜕𝐹ሺ𝑢, ℎ, 𝑐௦ሻ 𝜕ℎ⁄

𝜕𝐹ሺ𝑢, ℎ, 𝑐௦ሻ 𝜕𝑐௦⁄
 (25) 

5 Results 

5.1 Local and instantaneous celerity of propagation of sediment aggradation  

The color gradient map of 𝐶 as obtained by Eq. (20) is depicted in Fig. 5(a) with a dimensionless counterpart (using the local 280 

and instantaneous flow velocity as a normalization parameter) in Fig. 5(b). The space-time distribution of the celerity values 

was smoothed by replacing any 64 values (8×8 values in space and time) with their average. This smoothing operation does 

not alter the key result but obviously provides a nicer plot for the following interpretation. 

The local and instantaneous celerity evidently tends to reach a zero value at the time around 190 s, coinciding with the 

previously mentioned achievement of a morphologic equilibrium. While the average values of the celerity and dimensionless 285 

celerity by considering the whole duration of the experiment are equal to 0.393 cm/s and around 0.006, respectively, they are 

equal to 0.642 cm/s and 0.010 considering only times lower than 190 s (in both cases, all the locations along the channel are 

considered).  
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(a) (b)

 

Figure 5. Smoothened color gradient maps of (a) dimensional and (b) dimensionless local and instantaneous celerity of propagation 
of sediment aggradation. 290 

5.2 Eigenvalues of the system of PDEs 

Figure 6(a, b, c) shows the color gradient maps of the dimensionless eigenvalues, 𝜆ଵ/𝑢, 𝜆ଶ/𝑢, and 𝜆ଷ/𝑢, obtained from the 

approximated solutions proposed by Goutière et al. (2008) and from the exact solutions of the equation obtained by Morris 

and Williams (1996) (left and right panels, respectively). The smoothing, described above for the mass celerity, was also 

applied to these celerities of small perturbations. The average values of 𝜆ଵ/𝑢, 𝜆ଶ/𝑢, and 𝜆ଷ/𝑢 for the entire duration of the 295 

experiment and until the equilibrium time are equal to 1.77, -0.21 and 0.43 and to 1.77, -0.13 and 0.46, respectively, for the 

approaches of Goutière et al. (2008) and Morris and Williams (1996). Therefore, the values are quite similar for 𝜆ଵ and 𝜆ଷ 

while a significant difference is obtained for 𝜆ଶ. 
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(a) 

    

(b) 

    

(c) 

    

Figure 6. Comparison between the smoothened color gradient maps of (a) 𝝀𝟏/𝒖, (b) 𝝀𝟐/𝒖 and (c) 𝝀𝟑/𝒖. The left graphs are obtained 300 
from the approximated solutions proposed by Goutière et al. (2008) and the right graphs are derived from the exact solution of 
Morris and Williams’ (1996) approach. 

5.3 Quantification of sediment concentration 

The smoothed color gradient map of the volumetric sediment concentration as obtained using Eq. (22) is depicted in Fig. 7. 

The average value of 𝑐௦ for the whole duration of the experiment and also until the equilibrium time is around 0.032, indicating 305 

that, according to the criteria proposed by De Vries (1965) with maximum 𝑐௦=0.002 and by Garegnani et al. (2011, 2013) with 

maximum 𝑐௦=0.01, the solid concentration was not negligible in the performed experiment. However, the average value of 𝑐௦ 

does not exceed the maximum value of 0.05, proposed by Armanini et al. (2009) for the validity of the quasi-two-phase 

approach. 
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 310 

Figure 7. Smoothened color gradient map of the volumetric solid concentration. 

5.4 Correlations between the two types of celerities and the Froude number 

Figure 8 shows the correlation between the Froude number and the dimensionless local and instantaneous celerity of 

aggradation during the experiment. For the sake of this comparison, the 𝐹𝑟 map of Fig. 4 was also smoothened as those of Fig. 

5 and 6. Since the celerity tends to zero after the achievement of an equilibrium condition, only the points for t < 190 s are 315 

included in this plot. A general decrease of dimensionless celerity for increasing Froude number is observed. An opposite trend 

is evident for the highest points in the scatter, that are related to the initial stages of the experiment with a flow rate that was 

still increasing to the test value (this opposite trend is present also in the correlation plots that will be shown later, but will not 

be discussed again). 

 320 
Figure 8. Correlation between the Froude number and the local and instantaneous celerity of aggradation. 

The relationships between the Froude number and the dimensionless eigenvalues are presented in Fig. 9 for both the Goutière 

et al.’s and Morris and Williams’ approaches. This depiction corresponds to the typical curves shown in mathematical studies 

(e.g., Lyn and Altinakar, 2002; Garegnani et al., 2013), the values coming in this case from experimental parameters. The 

results further demonstrate the difference between the values obtained for 𝜆ଶ  considering or discarding the sediment 325 

concentration. 
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Figure 9. Correlation between the Froude number and the dimensionless eigenvalues. 
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(a) 

    

(b) 

    

(c) 

  
Figure 10. Correlations between the dimensionless eigenvalues and celerity of the aggradation wave. The left graphs are obtained 
from the approximated solutions proposed by Goutière et al. (2008) and, the right graphs are derived from the exact solution of 
Morris and Williams’ (1996) approach. 

Finally, Fig. 10(a, b, and c) shows how the dimensionless celerity of small perturbations and the dimensionless celerity of 

aggradation correlate with one another, again for both the Goutière et al.’s and Morris and Williams’ approaches (left and right 335 

panels, respectively). The dimensionless celerity of aggradation increases with dimensionless 𝜆ଵ  and with the module of 

dimensionless 𝜆ଶ (that is negative), while it decreases with dimensionless 𝜆ଷ. 

6 Discussion 

The measurement and analysis methods used in the present manuscript have enabled a depiction of the spatial and temporal 

evolutions of various quantities. In particular, based on experimental parameters, a local and instantaneous determination was 340 
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achieved for the celerity of propagation of an aggradation wave and the eigenvalues of the equations modeling the process, 

representative of the celerity of small perturbations. 

We have shown three types of correlation plots: 𝐹𝑟 െ  𝜆 /𝑢 (Fig. 9), 𝐹𝑟 െ 𝐶/𝑢 (Fig. 8), 𝜆/𝑢 െ 𝐶/𝑢 (Fig. 10). The different 

trends of correlation are obviously consistent with one another. The first one has been already presented and discussed in works 

related to the mathematical modelling of the hydro-morphologic process. The others, involving 𝐶 as determined by Eq. (20), 345 

are instead an original depiction of this study. 

The second correlation (𝐹𝑟 െ 𝐶/𝑢) has returned the dimensionless celerity as a decreasing function of the Froude number. On 

the one hand, this reflects the obvious tendencies (i) of the Froude number to increase during an experiment (because the 

channel needs to achieve a sediment transport capacity equal to the imposed feeding rate by increasing its slope) and (ii) of the 

celerity towards a zero value at morphological equilibrium. On the other hand, one would expect propagation to be enhanced 350 

by an increasing velocity, but this may be somehow masked by any scale used for normalization. Indeed, the appearance of 𝑢 

at the numerator of 𝐹𝑟 and at the denominator of 𝐶/𝑢 has determined the obtained trend because, evidently, with increasing 

flow velocity, 𝐶 was increasing less than 𝑢. 

The trends (𝜆௜/𝑢 െ 𝐶/𝑢) depict the relationship between the celerity of small perturbations and that of the aggradation wave. 

The first eigenvalue, 𝜆ଵ, is (positive and thus) directed to the downstream; reasonably, one would attribute to it an enhancement 355 

of downstream propagation. In fact, this is the detected trend (Fig. 10a). This eigenvalue is normally attributed to water surface 

perturbations (De Vries, 1965, 1971, 1973, 1993; Sieben, 1997, 1999; Lyn and Altinakar, 2002; Rosatti and Fraccarollo, 2006; 

Goutière et al., 2008; Armanini, 2018), but a higher velocity will also induce a higher celerity of sediment aggradation. The 

eigenvalues 𝜆ଶ and/or 𝜆ଷ are instead attributed to bed perturbations; in this regard, as mentioned above, while De Vries (1965, 

1971, 1973, 1993) discussed that just 𝜆ଷ is the celerity of bed surface perturbations, Goutière et al. (2008) and Armanini (2018) 360 

concluded that 𝜆ଶ and 𝜆ଷ correspond to bed perturbations, and Lyn and Altinakar (2002) and Sieben (1997,1999) argued that 

𝜆ଶ and 𝜆ଷ may be attributed to both bed and water surface perturbations in near-critical conditions. The eigenvalue 𝜆ଶ is 

directed to the upstream and thus one would think that a higher |𝜆ଶ| value would induce lower 𝐶. The result is contrary to this 

expectation. Finally, 𝜆ଷ is directed to the downstream, but an increase of 𝜆ଷ determines a reduction of 𝐶, again challenging the 

interpretation of the result. However, one may consider two aspects: (i) the Froude number increases as time goes on, and (ii) 365 

the data points corresponding with higher 𝐶/𝑢 values are associated with the early stages of the experiment; therefore, the 

initial time of the experiment in Fig. 10(a) is positioned on the right side of the graphs and in Fig. 10(b) and  10(c) is located 

on the left side of the graphs. As mentioned, the dimensionless celerity has a decreasing relationship with the Froude number 

(Fig. 8) and decreases during the experiment. Considering the two above-mentioned aspects, this trend can be recognized also 

in all graphs of Fig. 10. Furthermore, Fig. 9 shows that, while 𝜆ଵ and |𝜆ଶ| decrease with 𝐹𝑟, 𝜆ଷ increases with 𝐹𝑟. Once again, 370 

by considering the mentioned aspects, these relationships between 𝜆௜ and 𝐹𝑟 are realized in the graphs of Fig. 10, where, 𝜆ଵ 

and |𝜆ଶ| decrease as time elapses (which coincides with increasing 𝐹𝑟) and, 𝜆ଷ increases over time. In summary, one may 

conclude that the celerities of small perturbations are linked to the celerity of the aggradation wave through the Froude number. 

In the context of a relationship between the 𝜆and 𝐶 , the possibility or not to discard the sediment concentration while 

expressing the eigenvalues loses its merit. Obviously, formulating the eigenvalues with or without concentration changes their 375 

values (even by 50 – 100% for 𝜆ଶ, that is the eigenvalue most affected by the sediment concentration), but it will be always 

possible to find a trend linking the celerities of small perturbations and the celerity of the aggradation wave. 

The points before the water discharge achieves its nominal value show opposite trends to the others. The approaches introduced 

above are for unsteady flows, so the different trend cannot be attributed to a limitation of the mathematical depiction. The 

different trend thus needs to be attributed to the swift change of the flow rate at the very beginning of the experiment. 380 

The celerities of the two types are largely different in value (as an example for all, this is conceptually expected for the 

properties of the quantities at equilibrium, where 𝐶 tends to 0 while the eigenvalues do not) and follow a general trend like the 

smaller, the faster, spotted in different ways also for other processes (e.g., Lanzoni et al., 2006; Radice, 2021). From an 
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engineering point of view, the mismatch means that one cannot rely on the eigenvalues to determine when sediment supplied 

into a river will create problems at any certain point (because the estimate would result in negligible time available for action), 385 

and gives merit to the experimental determination of the  celerity of propagation of the aggradation wave. A bulk result obtained 

in the present work is that 𝐶/𝑢 is less than 0.04. This result, shown here for a single experiment, was confirmed by the others 

run in the current experimental campaign. This is a crucial piece of information one needs to assess if supplied sediment will 

reach some key spots along a channel. Extensive analysis will reveal how this bulk celerity may depend on the control 

parameters, following earlier investigations for sediment plumes or fronts under subcritical flow. 390 

Finally, the system of the governing differential equations has been considered in this study in terms of its eigenvalues. The 

literature shows that several research efforts have been focused on simplifying the above-mentioned hyperbolic system of 

partial differential equations to a single parabolic diffusion equation and presenting an analytical solution for this simplified 

equation, under the main assumptions of quasi-steady flow, quasi-uniform flow conditions, and the constancy of the roughness 

coefficient (e.g., Culling, 1960; Soni et al., 1980; Gill, 1983; Jaramillo and Jain, 1984; Zhang and Kahawita, 1987). The 395 

existence of these contributions offers additional means for comparison and interpretation of the present experimental results. 

7 Conclusions 

If a high detail is maintained in an aggradation experiment for measuring the bed and water surface elevations in space and 

time, a corresponding spatial and temporal evolution can be obtained for a celerity of propagation of the aggradation wave. 

Besides, an analogous quantification can be obtained for the eigenvalues of the governing equations under a quasi-two-phase 400 

approach, these eigenvalues representing the celerity of small perturbations.  

The analysis performed in the present work has been focused on the correlation between the celerities of the two types and has 

led to the following major conclusions: 

(i) The celerity of aggradation is correlated with the eigenvalues through the Froude number and the general trends show 𝐶 

increasing with 𝜆ଵand |𝜆ଶ| and decreasing with 𝜆ଷ. 405 

(ii) Even though there is a correlation between the 𝐶 and 𝜆, they are largely different in magnitude, with the celerity of the 

aggradation wave being much smaller than the others. 

(iii) From a mathematical point of view, using a model that considers or not the solid concentration may obviously lead to 

different results for the eigenvalues of the system (while 𝜆ଵ is almost the same for the two approaches and a slight difference 

exists in 𝜆ଷ, a major difference is observed for 𝜆ଶ that has a higher absolute value when the concentration is discarded). 410 

However, considering or not solid concentration in the governing equations does not affect the qualitative relationships 

between the different celerities. 

(iv) The celerity of aggradation, 𝐶, is in the order of 10-2 times the bulk water velocity for the aggradation process simulated 

in the laboratory run that was used in this study. 

Data availability statement 415 

The raw data of the experiment are provided here: https://doi.org/10.5281/zenodo.10641001. 

Author contribution 

Conceptualization: H.E., A.R.; Methodology: H.E., A.R.; Software: E.P., E.Z.; Formal analysis and Visualization: H.E., E.P., 

M.H., K.T., M.Y.N., E.Z., R.Z.; Writing – original draft preparation: H.E.; Writing: review & editing: H.E., A.R.; Funding 

acquisition: A.R. 420 

https://doi.org/10.5194/egusphere-2024-414
Preprint. Discussion started: 6 September 2024
c© Author(s) 2024. CC BY 4.0 License.



19 
 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgments 

The present study has been financially supported by the Italian Ministry of University and Research through the Ph.D. 

scholarship of H.E. and by the European Union – Next Generation EU through the PRIN project “Sediment Transport REsearch 425 

for cAtchments Management” (STREAM), project no. 2022SAFKS4. 

References 

Aksoy, H., & Kavvas, M. L. (2005). A review of hillslope and watershed scale erosion and sediment transport models. 

CATENA, 64(2), 247–271. https://doi.org/10.1016/j.catena.2005.08.008 

Alves, E., & Cardoso, A. (1999). Experimental study on aggradation. Int. J. Sediment Res., 14(1): 1-15 430 

Ancey, C. (2020). Bedload transport: a walk between randomness and determinism. Part 1. The state of the art. Journal of 

Hydraulic Research, 58(1), 1–17. https://doi.org/10.1080/00221686.2019.1702594 

Armanini, A. (2018). Principles of River Hydraulics. Chapter 7. Mathematical Models of Riverbed Evolution (pp. 131–172). 

Springer International Publishing. https://doi.org/10.1007/978-3-319-68101-6_7 

Armanini, A., Fraccarollo, L., & Rosatti, G. (2009). Two-dimensional simulation of debris flows in erodible channels. 435 

Computers & Geosciences, 35(5), 993–1006. https://doi.org/10.1016/j.cageo.2007.11.008 

Armanini, A., &Di Silvio, G. (1988). A one-dimensional model for the transport of a sediment mixture in non-equilibrium 

conditions. Journal of Hydraulic Research, 26(3), 275–292. https://doi.org/10.1080/00221688809499212 

Chow, V. T., Maidment, D. R. & Mays, L. W. (1988). Applied hydrology. McGraw-Hill. ISBN: 0070108102. 

Cui, Y., & Parker, G. (2005). Numerical Model of Sediment Pulses and Sediment-Supply Disturbances in Mountain Rivers. 440 

Journal of Hydraulic Engineering, 131(8), 646–656. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:8(646) 

Cui, Y., Parker, G., Lisle, T. E., Gott, J., Hansler-Ball, M. E., Pizzuto, J. E., Allmendinger, N. E., & Reed, J. M. (2003). 

Sediment pulses in mountain rivers: 1. Experiments. Water Resources Research, 39(9). 

https://doi.org/10.1029/2002WR001803 

Culling, W. E. H. (1960). Analytical theory of erosion. Journal of Geology, 68(3), 336-344. https://doi.org/10.1086/626663 445 

de Vries, M. (1965). Consideration about non-steady bed-load-transport in open channels. Proc. of the 11th Congress of IAHR, 

Leningrad, 3.8.1–3.8.8 

de Vries, M. (1971). Solving river problems by hydraulic and mathematical models. Delft Hydraulic Laboratory Publications, 

Delft, The Netherlands 

de Vries, M. (1973). River-bed variations-aggradation and degradation. Delft Hydraulic Laboratory Publications, Delft, The 450 

Netherlands 

de Vries, M. (1993). River Engineering: Lecture notes f10. Delft University of Technology, Faculty of Civil Engineering 

Department of Hydraulic Engineering, Delft, The Netherlands 

Dotterweich, M. (2008). The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering 

the long-term interaction between humans and the environment — A review. Geomorphology, 101(1), 192–208. 455 

https://doi.org/10.1016/j.geomorph.2008.05.023 

Eslami, H., Yousefyani, H., Yavary Nia, M., & Radice, A. (2022). On how defining and measuring a channel bed elevation 

impacts key quantities in sediment overloading with supercritical flow. Acta Geophysica, 70(5), 2511–2528. 

https://doi.org/10.1007/s11600-022-00851-2 

https://doi.org/10.5194/egusphere-2024-414
Preprint. Discussion started: 6 September 2024
c© Author(s) 2024. CC BY 4.0 License.



20 
 

Garegnani, G., Rosatti, G., & Bonaventura, L. (2011). Free surface flows over mobile bed: Mathematical analysis and 460 

numerical modeling of coupled and decoupled approaches. Communications in Applied and Industrial Mathematics, 2(1), 

1-22. https://doi.org/10.1685/journal.caim.371 

Garegnani, G., Rosatti, G., & Bonaventura, L. (2013). On the range of validity of the Exner-based models for mobile-bed river 

flow simulations. Journal of Hydraulic Research, 51(4), 380–391. https://doi.org/10.1080/00221686.2013.791647 

Gill, M. A. (1983). Diffusion model for aggrading channels. Journal of Hydraulic Research, 21(5), 355-367. 465 

https://doi:10.1080/00221688309499457 

Goutière, L., Soares-Frazão, S., Savary, C., Laraichi, T., & Zech, Y. (2008). One-Dimensional Model for Transient Flows 

Involving Bed-Load Sediment Transport and Changes in Flow Regimes. Journal of Hydraulic Engineering, 134(6), 726–

735. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:6(726) 

Greco, M., Iervolino, M., Leopardi, A., & Vacca, A. (2012). A two-phase model for fast geomorphic shallow flows. 470 

International Journal of Sediment Research, 27(4), 409–425. https://doi.org/10.1016/S1001-6279(13)60001-3 

Haddadchi, A., Nosrati, K., & Ahmadi, F. (2014). Differences between the source contribution of bed material and suspended 

sediments in a mountainous agricultural catchment of western Iran. CATENA, 116, 105–113. 

https://doi.org/10.1016/j.catena.2013.12.011 

Jain, S.C. (2001). Open-channel flow. John Wiley & Sons, ISBN: 0471356417. 475 

Jaramillo, W. F., & Jain, S.C. (1984). Aggradation and degradation of alluvial-channel beds. Journal of Hydraulic Engineering, 

110(8), 1072–1085. https://doi:10.1061/(ASCE)0733-9429(1984)110:8(1072) 

Kassem, A. A., & Chaudhry, M. H. (1998). Comparison of coupled and semicoupled numerical models for alluvial channels. 

Journal of Hydraulic Engineering, 124(8), 794–802. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:8(794) 

Lane, S. N., Tayefi, V., Reid, S. C., Yu, D., & Hardy, R. J. (2007). Interactions between sediment delivery, channel change, 480 

climate change and flood risk in a temperate upland environment. Earth Surface Processes and Landforms, 32(3), 429–

446. https://doi.org/10.1002/esp.1404 

Lanzoni, S., Siviglia, A., Frascati, A., & Seminara, G. (2006). Long waves in erodible channels and morphodynamic influence. 

Water Resources Research , 42(6). https://doi:10.1029/2006WR004916 

Lee, H.-Y., & Hsieh, H. (2003). Numerical simulations of scour and deposition in a channel network. International Journal of 485 

Sediment Research, 18(1), 32-49. 

Lisle, T. E., Cui, Y., Parker, G., Pizzuto, J. E., & Dodd, A. M. (2001). The dominance of dispersion in the evolution of bed 

material waves in gravel-bed rivers. Earth Surface Processes and Landforms, 26(13), 1409–1420. 

https://doi.org/10.1002/esp.300 

Longoni, L., Papini, M., Brambilla, D., Barazzetti, L., Roncoroni, F., Scaioni, M., & Ivanov, V. I. (2016). Monitoring riverbank 490 

erosion in mountain catchments using terrestrial laser scanning. Remote Sensing, 8(3), 241. 

https://doi.org/10.3390/rs8030241 

Lyn, D. A. (1987). Unsteady sediment‐transport modeling. Journal of Hydraulic Engineering, 113(1), 1–15. 

https://doi.org/10.1061/(ASCE)0733-9429(1987)113:1(1) 

Lyn, D. A., & Altinakar, M. (2002). St. Venant–Exner equations for near-critical and transcritical flows. Journal of Hydraulic 495 

Engineering, 128(6), 579–587. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:6(579) 

Mazzorana, B., Comiti, F., & Fuchs, S. (2013). A structured approach to enhance flood hazard assessment in mountain streams. 

Natural Hazards, 67(3), 991–1009. https://doi.org/10.1007/s11069-011-9811-y 

Morris, P. H., & Williams, D. J. (1996). Relative celerities of mobile bed flows with finite solids concentrations. Journal of 

Hydraulic Engineering, 122(6), 311–315. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(311) 500 

Pizarro, A., Manfreda, S., & Tubaldi, E. (2020). The science behind scour at bridge foundations: A review. Water, 12(2). 

https://doi.org/10.3390/w12020374 

https://doi.org/10.5194/egusphere-2024-414
Preprint. Discussion started: 6 September 2024
c© Author(s) 2024. CC BY 4.0 License.



21 
 

Radice, A. (2021). An experimental investigation of sediment kinematics and multi-scale propagation for laboratory bed-load 

dunes. Sedimentology, 68(7), 3476–3493. https://doi.org/10.1111/sed.12906 

Radice, A., & Zanchi, B. (2018). Multicamera, multimethod measurements for hydromorphologic laboratory experiments. 505 

Geosciences, 8. https://doi.org/ 10.3390/geosciences8050172 

Radice, A., Rosatti, G., Ballio, F., Franzetti, S., Mauri, M., Spagnolatti, M., & Garegnani, G. (2013). Management of flood 

hazard via hydro-morphological river modelling. The case of the Mallero in Italian Alps. Journal of Flood Risk 

Management, 6(3), 197–209. https://doi.org/10.1111/j.1753-318X.2012.01170.x 

Rosatti, G., Chemotti, R., & Bonaventura, L. (2005). High order interpolation methods for semi‐Lagrangian models of mobile‐510 

bed hydrodynamics on Cartesian grids with cut cells. International Journal for Numerical Methods in Fluids, 47(10-11), 

1269–1275. https://doi.org/10.1002/fld.910 

Rosatti, G., & Fraccarollo, L. (2006). A well-balanced approach for flows over mobile-bed with high sediment-transport. 

Journal of Computational Physics, 220(1), 312–338. https://doi.org/10.1016/j.jcp.2006.05.012 

Sear, D. A., Newson, M. D., & Brookes, A. (1995). Sediment-related river maintenance: The role of fluvial geomorphology. 515 

Earth Surface Processes and Landforms, 20(7), 629–647. https://doi.org/10.1002/esp.3290200706 

Sieben, J. (1997). Modelling of Hydraulics and Morphology in Mountain Rivers. PHD thesis, Delft University of Technology, 

Faculty of Civil Engineering, Delft, The Netherlands 

Sieben, J. (1999). A theoretical analysis of discontinuous flow with mobile bed. Journal of Hydraulic Research, 37(2), 199–

212. https://doi.org/10.1080/00221689909498306 520 

Sklar, L. S., Fadde, J., Venditti, J. G., Nelson, P., Wydzga, M. A., Cui, Y., & Dietrich, W. E. (2009). Translation and dispersion 

of sediment pulses in flume experiments simulating gravel augmentation below dams. Water Resources Research, 45(8). 

https://doi.org/10.1029/2008WR007346 

Soni, J. P., Garde, R. J., & Ranga Raju, K. G. (1980). Aggradation in streams due to overloading. Journal of the 

Hydraulics Division, ASCE, 106(1), 117-132. https://doi: 10.1061/JYCEAJ.0005338 525 

Soni, J. P. (1981). Laboratory study of aggradation in alluvial channels. Journal of Hydrology, 49(1), 87–106. 

https://doi.org/10.1016/0022-1694(81)90207-9 

Stover, S. C., & Montgomery, D. R. (2001). Channel change and flooding, Skokomish River, Washington. Journal of 

Hydrology, 243(3), 272–286. https://doi.org/10.1016/S0022-1694(00)00421-2 

Unigarro Villota, S. (2017). Laboratory study of channel aggradation due to overloading 530 

Yen, C., Chang, S., & Lee, H. (1992). Aggradation‐degradation process in alluvial channels. Journal of Hydraulic Engineering, 

118(12), 1651–1669. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:12(1651) 

Zanchi, B., & Radice, A. (2021). Celerity and height of aggradation fronts in gravel-bed laboratory channel. Journal of 

Hydraulic Engineering, 147(10), 4021034. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001923 

Zhang, H., & Kahawita, R. (1987). Nonlinear model for aggradation in alluvial channels. Journal of Hydraulic Engineering, 535 

113(3), 353–369. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:3(353) 

 

 

https://doi.org/10.5194/egusphere-2024-414
Preprint. Discussion started: 6 September 2024
c© Author(s) 2024. CC BY 4.0 License.


