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Supplemental 1

Governing equations and eigenvalue analysis, non-negligible c; (Morris and Williams’ approach)

Morris and Williams (1996) argued that an assumption of negligible solid concentration is not appropriate for many natural
streams and, therefore, determined the eigenvalues of a system of equations considering a finite ¢;. The continuity and
momentum equations of the mixture and the continuity equation for the sediment in Morris and Williams’ approach are as
follows:
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where, ¢ = q/(qs + q), and p,, = c;ps + (1 — ¢5)p is the density of the mixture. Since the solid concentration is not
negligible, the water and sediment discharge per unit width are obtained from the following equations (assuming that the solid

particles move with the same velocity of water):
q =uh(1—c) 2

gs = uhc (3)
In system 1, one can substitute the terms dcg;/dx and dc,/dt with following equations:
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where, A = (p; —p)/(2p,,) ; and B = ((1 — Po)ps + pop) /pm , are dimensionless parameters. In order to find the

eigenvalues of this system, it is also needed to compute the differential of u, h, and zj,:
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Now, the eigenvalues of the system can be obtained by equalizing the determinant of the set of system (6) accompanied by

equations (7)-(9) to zero (De Vries 1965; Cunge et al. 1980):
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25 This equation was expanded by Morris and Williams (1996) and the characteristic polynomial equation was obtained as

follows:
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and in the dimensionless form as below:
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(L= po)IDAGE + (Fr 2 = Dles = (L —po)] |+ Fr2 (w52 = 52) = 0

where, A = A/u = relative celerity. By solving this cubic equation, one can obtain the three celerities of the system exactly.
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