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November 22nd, 2024 
 
General comment 
In the manuscript, Eslami et al. (2024) have investigated the celerity of aggradations in a 
controlled flume experiment and explored the relationship between the celerity of 
aggradation waves with the celerity of propagation of small perturbations. This is a nice 
work and detailed analysis of the experiments; however, I have a number of questions, 
partly regarding the theoretical conceptualization and clarifications on several points. 

Many thanks for appreciating the work, spending time on it and providing useful 
comments. We have taken the liberty to group the comments by category 
(choosing some category titles and changing the comment order), to make our 
responses more effective. 

 
 
 
Eigenvalues as the celerities of small disturbances 
The authors seem to accept the celerity parameters are eigenvalues of the coefficient 
matrix of a system of partial differential equations as proposed previously in the literature. 
I am skeptical about whether these eigenvalues are indeed representing the celerity of a 
disturbance (of bed or surface water). Thus, I would recommend adding a theoretical 
background section to introduce how the eigenvalues become celerity from a 
mathematical perspective. For example, after linearizing the non-linear partial differential 
equation and establishing a system of differential equations, dU/dt + AdU/dx = 0, explain 
how this concept translates into the celerity of a disturbance happening at a water surface 
or streambed. Essentially, you can mention that this problem can be treated as Reimann 
invariant (e.g., Lyn and Altinakar, 2002) under a characteristic path of dx/dt = lambda, 
where lambda is characteristic speed or wave speed, which I think is how the term celerity 
arises. In this path, the disturbance waves move at constant speed over spatial and 
temporal scales. 

We have indeed presented the system of differential equations in eq. (5) of the 
manuscript (that is, however, a system of non-linear equations). In a revised 
manuscript, we will expand the explanation at lines 113-116 by adding the concept 
of Riemann invariant; thanks for the suggestion. 

 
In the introduction, the concept of celerity of propagation of small perturbations and 
aggradation wave is not clearly defined. I do not understand what are referred to as small 
perturbations, and in what criteria the authors define a “small” perturbation here. As I read 
the introduction of the manuscript, I assumed that the celerity of propagation of small 
perturbations is in this context, water wave celerity and bed wave celerity. It would be nice 
to introduce/explain this concept in a clearer way. 

The “small” or “infinitesimal” disturbances are the terms used in the literature when 
the surface of bed or water are perturbed locally and the resulting waves are of 
limited amplitude (e.g., Rosatti et al., 2004). As mentioned, the eigenvalues of the 
coefficient matrix of a system of partial differential equations are interpreted as the 
celerity of propagation for these local, small-scale waves. In the revised manuscript 
we will rephrase for clarity. 



 
Eigenvalues are the solutions of characteristic equations that encompass information of 
matrix coefficients of a system of differential equations. Hence, it is difficult to say, for 
example, that lambda 1 is celerity of water flow, as this manuscript and previous authors 
suggested, or lambda 2 and lambda 3 are celerity of bed perturbations. Rather, it may be 
a combined effect of both water flow and streambed on these eigenvalues. What are the 
viewpoints of the authors for these parameters, according to the experiment performed 
here? Additionally, does this characteristic equation det(A-I) = 0 always have 3 real roots? 
Is there any scenario such that the equation yields two negative roots instead of one, as 
shown in this paper? 

Considering the first question, we have mentioned in the manuscript that there is 
no complete agreement on how the eigenvalues should be associated to 
perturbations in the water and bed surfaces (lines 129-132 for De Vries, lines 138-
140 for Lyn and Altinakar). In our view, the issue can be hardly solved 
experimentally because, as mentioned in the previous comment of the Reviewer, 
the “small perturbations” are not well defined and thus can be hardly observed. We 
will add this consideration to the revised manuscript. 
Since the governing system of equations is hyperbolic, it is well-established that it 
always produces real and distinct eigenvalues (Rosatti et al., 2004; Rosatti & 
Fraccarollo, 2006). In agreement with this theory, our experimental results 
consistently yielded three real eigenvalues. A different behavior may be 
encountered, instead, with approximate determinations of the eigenvalues. While 
the approximate solution proposed by Goutière et al. (2008), which is valid for any 
value of the Froude number, always resulted in three real eigenvalues during our 
experiments, methods such as those by Lyn and Altinakar (2002) or De Vries 
(1965, 1971, 1973, 1993) sometimes produced non-real roots. These 
approximated determinations are not valid across the full range of Froude 
numbers, which led to inconsistencies in certain conditions. 
As per the last question, we have never encountered cases with two negative and 
one positive eigenvalues. 

 
 
 
Definition of an aggradation celerity and its relationship with the previous one 
As mentioned in the manuscript, the celerity of the aggradation is easily quantified in low 
Froude number flow since the translational migration of bedload can be captured visually. 
The authors noted that in the high Froude number flow, sediment and water are moving 
more dispersive; thus, the celerity of aggradation needs to be more precisely defined 
before diving into the analysis of the partial differential equations in chapter 2, and later 
quantified by equation 20. 

An aggradation wave represents a larger-scale process compared to “small 
perturbations” and thus requires a different definition for its celerity of propagation. 
We will rephrase the Introduction of the revised manuscript to improve clarity. 

 
Line 165, equation 19: I don’t understand why setting dX/dt = 0 in Equation 19. Does that 
imply that C = -(dX/dt)/(dX/dx) = 0? Later, the authors used bed elevation for their 



calculations, but dzb/dt is not 0, which is a contradiction. Also, in lines 163 and 164, if I 
understand correctly, celerity is a scalar quantity, while velocity is a vector quantity; they 
are not the same. On line 67, you mentioned “the celerity of propagation of small 
perturbations is not the celerity of propagation of the aggradation wave." Then, in equation 
19, you defined the local and instantaneous Cx = dx/dt, which is the same as the celerity 
of a disturbance. This is again another contradiction. 

The short reply is that there are no contradictions but, evidently, in the manuscript 
we have not been effective enough in our explanations. We here reply to all the 
questions of the Reviewer and declare an intent to expand the explanation in the 
revised manuscript. 
Regarding the first question: as mentioned in the manuscript (line 164) the celerity 
of propagation of a certain quantity X is equal to the velocity at which an observer 
needs to move to see a constant value for X. “Constant value for X” then translates 
into dX = 0 and then dX/dt = 0. Here we have a total derivation, “d”. On the other 
hand, in eq. (19) we have partial derivatives, “𝜕”. Therefore, not at all a condition 
that dX/dt = 0 will imply that C = 0. 
We impose dzb/dt = 0 to find the celerity at which any value of the bed elevation 
migrates, and this is fully appropriate even if the bed elevation varies in both space 
and time. In this respect, we present the following depiction, that we produced 
reworking Fig. 2(a) of the manuscript. Here, we see that any zb value in a profile 
for a certain time may be found in a profile for larger time, at a downstream location. 
This indeed demonstrates that a zb value migrates downstream, at a certain 
celerity whose determination requires looking for the same value at another space 
and another time, so exploiting dzb/dt = 0. In the plot, we show values of zb in a 
range from 2 cm to 9.5 cm, every 0.5 cm. Migration is depicted by a horizontal 
displacement from a red circle to a black star (note that a black star may have a 
red circle around if it becomes the starting point for another displacement). 

 
Figure R1. Migration of zb values along the channel during the experiment (symbols explained in the text 
just above). 
 

Third issue: velocity is indeed a vector, but here we are exploring the propagation 
in 1D conditions. Therefore, the direction of this vector would be confined to the 
channel's longitudinal direction, effectively reducing it to a scalar in the 1D 
framework. 
Last issue is a contradiction possibly arising due to using dx/dt for every celerity. 
Actually, indeed a celerity is always a dx/dt, since it is a velocity. But different 
objects may have different celerities (like, for example, a person walking on a 



moving train and the train itself). In the manuscript, we wrote (line 383) that “the 
smaller, the faster”. Morphological processes, indeed, are frequently characterized 
by multiscale propagation. Let us mention a couple of examples from our recent 
experience. Zanchi and Radice (2021) noticed that, in their aggradation processes 
under subcritical flow, dunes were sometimes superimposed on depositional 
forms. The propagation celerity of the dunes may be different from that of the 
aggradation front. Radice (2021) investigated the propagation of bed-load dunes 
along a channel at equilibrium, and spotted a multi-celerity propagation 
considering the dunes, the sediment particles, and the sediment gusts triggered 
by turbulent flow events. In the present study, an aggradation wave (large object) 
moves at a different celerity compared to the “small perturbations”. 

 
Line 255, equation 20: Is equation 20 derived from equation 19? It seems to me that 
celerity can be simply defined as C = dx/dt (as in de Vries, 1993; if x is difficult to quantify, 
you can then use dx/dt = (dX/dt)/(dX/dx) where X is easily to quantify (e.g., bed elevation 
in the paper). I am not sure about the minus sign in this equation, as it contradicts the 
standard definition from de Vries or from Morris and Williams. 

We first rewrite the Reviewer’s equation with other symbols, because again it is 
important to see partial derivatives correctly. The Reviewer writes: 

d𝑥
d𝑡

ൌ  
𝜕𝑋 𝜕𝑡⁄

𝜕𝑋 𝜕𝑥⁄
 

In a standard case with aggradation, depicted below (fig. R2), this quantity is 
negative if applied to the bed elevation, because the numerator is positive while 
the denominator is negative. Since we intend to use these derivatives to depict the 
downstream propagation of an aggradation wave, the change of sign is 
appropriate. 

 
Figure R2. Sketch of the aggradation process. 
 
Line 67-68: Why is the celerity of propagation of small perturbations not the celerity of 
propagation of the aggradation wave? For example, if the aggradation wave is moving 
downstream and generating disturbances, can these disturbances generate perturbations 
of water and bed? 

The replies above should have clarified the issue that different objects may move 
at different velocities. Here we add that the points depicted in Fig. R1 can be used 
to estimate the celerity of the aggradation wave, since any couple of points (a red 
circle and a black star) corresponds to a displacement within a certain time and 
thus to a celerity. The celerity values computed for those couples of points are 
depicted in Fig. R3 (color bar on the right is for the celerity values). Taking 



0.015 m/s as a reference value, it corresponds to C/U = 0.02 for U = 0.705 m/s 
that is the nominal flow velocity for the experiment. These values are, as expected, 
in agreement with those of Fig. 5 of the manuscript, obtained from eq. (20); by 
contrast, they are largely different from those of the eigenvalues (see again Fig. 
10 of the manuscript). 

 
Figure R3. Celerities of migrating bed elevations computed from the point couples of Fig. R1. 
 
 
 
Research questions and their answers 
The goal of the present manuscript is not clear according to the results presented there. 
The authors aim to answer 3 questions. (1) How can one quantify the scales of 
propagation in an aggradation process? (2) What is the relationship between the 
aggradation celerity and the celerity of small perturbations? And finally, (3) Which is the 
impact of considering or not the sediment concentration on the previous point? However, 
results and discussions were not focused on answering them; instead, the authors 
presented some graphical results between the aggradation celerity and the celerity of 
small perturbations, and no specific formula or relationships between have been clearly 
determined. What are some findings for questions 1 and 2, I did not see it? How one can 
predict the spatial and temporal scales of an aggradation wave, given the information to 
solve the system of differential equations here? Having read the title and introduction, I 
hope the present study can show when and where the aggradations are likely to happen 
based on the celerity of propagation of aggradations. 

Regarding the first question: as mentioned, under high Froude number conditions, 
the aggradation induced by sediment overloading is dispersive and, as a result, 
front tracing methods cannot be used to estimate the celerity of the aggradation 
wave. We thus employed the standard definition of the celerity of a specific 
quantity, as outlined by Chow et al. (1988) and Jain (2001), which is presented in 
section 3 of the manuscript. Indeed, by introducing the bed elevation as the specific 
quantity, we successfully determined the celerity of propagation of the aggradation 
wave. Figure 5 shows this celerity of propagation in dimensional and 
dimensionless form. Therefore, the short answer to question 1 is: by applying eq. 



(19-20) to the bed elevation. We might rephrase slightly question 1, pointing at 
supercritical/dispersive aggradation conditions. 
Regarding the second question: Figure 10 illustrates the correlation between the 
dimensionless eigenvalues of the system (representing the celerity of propagation 
of small perturbations) and the dimensionless celerity of the aggradation wave 
(determined in section 3). The aim of this work is not to derive a formula explicitly 
relating the two celerity scales, but rather to demonstrate how these two scales 
correlate to each other. Based on this, it might be more appropriate to revise the 
second question to: “How does the aggradation celerity correlate with the celerity 
of small perturbations?”. Furthermore, in response to one of the first reviewer’s 
suggestions, we have computed the Pearson correlation coefficients to quantify 
the strength of the relationships between 𝐶/𝑢 and 𝐹𝑟, as well as 𝐶/𝑢 and 𝜆௜/𝑢 
(Figures 8 and 10). The values in the following table range between 0.5 and 0.6, 
indicating a moderate correlation between the variables. We can add this table and 
the resulting interpretation to our manuscript to strengthen this aspect of the 
analysis, and thus the answer to question 2. 

  Goutière et al. (2008) Morris and Williams (1996)
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𝑪/𝒖 -0.53 0.54 -0.60 -0.54 0.55 -0.59 -0.55 

Regarding, finally, the third question: in different parts of the manuscript, we have 
addressed the impact of considering or disregarding sediment concentration on 
the correlation between the celerity of small perturbations and the celerity of the 
aggradation wave. For example, in discussion part, line 374 it has been mentioned 
that: “In the context of a relationship between the λand C, the possibility or not to 
discard the sediment concentration while expressing the eigenvalues loses its 
merit. Obviously, formulating the eigenvalues with or without concentration 
changes their values (even by 50 – 100% for λଶ, that is the eigenvalue most 
affected by the sediment concentration), but it will be always possible to find a 
trend linking the celerities of small perturbations and the celerity of the aggradation 
wave”. Similarly, the conclusion chapter briefly summarizes these findings: “From 
a mathematical point of view, using a model that considers or not the solid 
concentration may obviously lead to different results for the eigenvalues of the 
system (while λଵ is almost the same for the two approaches and a slight difference 
exists in λଷ, a major difference is observed for λଶ that has a higher absolute value 
when the concentration is discarded). However, considering or not solid 
concentration in the governing equations does not affect the qualitative 
relationships between the different celerities”. 

 
 
 
Interpretation/discussion 
In the discussion section, there is little interpretation of values of lamda1, 2, and 3, as well 
as c, in the context of the performed experiment. What exactly do these lambdas 
represent? The authors just presented results with minimal intuition and without 



comparison with previous work (i.e., Zanchi and Radice, 2021) to distinguish between 
subcritical and supercritical cases. I expected to see more on the comparison of how 
changing lambdas can impact the bed aggradation and bed elevations. 

Based on the explanations provided above and in the manuscript, we believe we 
have addressed the first part of the question regarding the interpretation of 
eigenvalues and C. We will ensure this is made clearer in the manuscript, 
particularly by elaborating on the distinction between small-scale waves and large-
scale waves, as well as their respective celerities.  
Regarding the second part of the comment, it is important to note that the work of 
Zanchi and Radice (2021) primarily focused on a bulk approach to the issue rather 
than investigation of the correlation between the two types of celerity of 
propagation. However, in the reply to a following issue (implications for field 
conditions) we present the c/U values of the experiments of Zanchi and Radice 
(2021). It is worth mentioning that the experiment presented in this manuscript is 
one of several conducted in an extended experimental campaign, the global results 
of which will be presented in future papers. Basically, in a bulk analysis, we have 
extracted bulk values of celerity for each experiment and derived a formula 
predicting the celerity of propagation of the aggradation wave based on the control 
parameters. However, this is beyond the scope of the present manuscript. 

 
Line 345: I don’t quite understand how the correlation trends are obviously consistent. 
Which one is consistent with the other? 

What we intended is the following. Let one consider three quantities, A, B and C. 
If A increases with B and decreases with C, then B needs to decrease with C. If 
one finds the latter the trends are consistent; if one instead finds that B increases 
with C, then there is something wrong. In the present study we found consistent 
trends; in the revised manuscript we will rephrase to make the statement better 
understandable. 

 
Line 347: The authors stated: “The second correlation (𝐹𝑟 - 𝐶/𝑢) has returned the 
dimensionless celerity as a decreasing function of the Froude number”. However, there 
are some clusters (e.g., 3 lines on top) where C/u increases with respect to Froude 
number (Figure 8). 

As mentioned in line 378, these points correspond to the initial stages of the 
experiment, where the water discharge had not yet been adjusted to its nominal 
value. Specifically, the text states: “The points before the water discharge achieves 
its nominal value show opposite trends to the others. The approaches introduced 
above are for unsteady flows, so the different trend cannot be attributed to a 
limitation of the mathematical depiction. The different trend thus needs to be 
attributed to the swift change of the flow rate at the very beginning of the 
experiment.” 

 
Line 360: If lambda2 and lambda3 are attributed to the bed perturbations, can you explain 
more on the negative values of lambda 2? 

In numerical studies, the eigenvalues are considered to propagate the effect of 
boundary conditions into the domain (e.g., Fasolato et al., 2009). A negative value 



of 2 would thus indicate that this eigenvalue propagates into the domain the 
boundary condition imposed at the downstream end. An equilibrium condition is 
frequently imposed at the downstream end of a simulated channel (i.e., no 
variation in the bed elevation), which is also what we did experimentally with a 
downstream sill (see profiles in Fig. R1). In this context, a higher |2| would tend 
to transport faster a condition of no aggradation and thus increase the local 
channel slope and in turn the aggradation celerity. The first version of the 
manuscript did not contain these arguments, that we could instead add to a revised 
one. 

 
Line 378: The authors claimed that it is always possible to find a trend linking celerity of 
small perturbations and celerity of aggradation wave. This is a bold statement that needs 
to be tested not only in experimental studies but also at field scale, where things are much 
more complicated. And I am highly skeptical about this. 

The statement was related to Fig. 10, where the plots on the left and those on the 
right have the same shape, even if the eigenvalues may change. So, what we 
intended to say is that, since considering concentration or not does not change the 
shape of the point scatter, a correlation would exist in both cases. On the other 
hand, we do not know if this would hold for any concentration value, thus the 
Reviewer is right in issuing a warning. In the revised manuscript, we will reduce 
the boldness of the statement adding the above considerations. 

 
 
 
Reproducibility 
In the result section, I assumed the author performed many experiments and listed the 
average results or best results, but I only see a table summary of the experiment. Is this 
experiment (and results) reproducible? Updated: I see now in the results section, the 
authors mentioned that “This result, shown here for a single experiment, was confirmed 
by the others run in the current experimental campaign”. If the authors run other 
experiments to confirm the findings here, they should be presented in the manuscript, or 
at least should be in supplemental information. 
Line 215, table 1: It seems that only one experiment was performed (e.g., Table 1). I’m 
worried about the reproducibility of the results presented in this manuscript. 

The key trends found in this study apply also to the other runs of the campaign, 
even though in this manuscript we preferred to show one as a proof of concept. 
This will be made explicit in the discussion.  

 
 
 
Implications for field conditions / Engineering relevance 
It is very nice that the authors found the ratio C/u<0.04 based on the experiment. If I 
interpret it correctly, doesn't this suggest that during high Froude number flows, sediment 
transport is more dispersive, making aggradation much harder to occur? I wonder what 
the threshold for the ratio C/u would be under field conditions. If the results presented 
here are valid, I am curious whether this has implications for understanding aggradation 



at field conditions. For example, how long would it take for sediment transport under high 
Froude number flow to alter riverbed and channel morphology? 

The last question of the Reviewer is exactly the initial thrust that motivated an 
extensive campaign on propagation of aggradation. 
Let us tell the full story: Radice et al. (2013) discussed how morphologic processes 
may impact hydraulic hazard assessment and management in upland 
environments. They thus performed numerical simulations for a mountain river and 
found that the aggradation in the downstream portion of the modelled reach (that 
was an in-town portion, thus a key spot to be considered for flood hazard) was 
independent on a sediment feeding used as an upstream boundary condition. 
Then the question was, indeed: how long will it take for the upstream feeding 
condition to get to the town? Radice and Rosatti (2012), for the same river of the 
other study, compared the bed profiles obtained for a numerical simulation with a 
certain upstream sediment yield and for another one with zero yield, and tracked 
the point at which the two solutions coincided; this point moved at around 50 m/h, 
which is obviously not a general result and also requires trusting the numerical 
models, but corresponds to a small percentage of the typical flow velocity in a 
mountain stream. 
Finally, once a suitable laboratory facility was available, experiments have been 
performed, first in subcritical conditions (Zanchi and Radice, 2021 and other 
companion works), then in supercritical conditions (the present study and 
companion works). 
By the way, the plots below (Fig. R4) present a manipulation of Zanchi and 
Radice’s data, showing a front celerity (that is actually a bulk celerity values, since 
in that case a front could be indeed tracked) that, with one exception, was below 
0.05 times the flow velocity. 
We would not put all this story in the revised manuscript; even if it is the path that 
took us here, it is probably too long and irrelevant for a reader. Furthermore, we 
think that the value of 0.04 may be left unchanged in the manuscript to stick to the 
present experimental conditions, possibly adding a warning that the results should 
not be generalized at this stage. As mentioned in a previous reply, we are presently 
working on another manuscript that will aim at being a counterpart of Zanchi and 
Radice (2021) for supercritical flows, to provide a bulk celerity predictor valid for 
these conditions. 

  
Figure R4. Dimensionless front celerities for the experiments of Zanchi and Radice (2021). 
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Other 
Line 69: What is “something different” here? 

We think that it is actually the definition of eq. (1), then becoming (20). We will 
rephrase for clarity. 

 
Line 73: Missing parenthesis. 

Will be fixed. 
 
Line 129, equation 10: Lack of definition for Froude number. 

Will be defined. 
 
Line 221: The authors mentioned that they did not set the camera to capture the profile 
before 140 cm, which piques my curiosity. Was there any aggradation or erosion in this 
section during the experiment? 

In all the experiments conducted during our campaign, the overloading ratio was 
consistently greater than 1. As a result, aggradation was observed along the entire 
length of the channel, thus also for x < 140 cm.  

 
Line 320, 335: Were results shown in Figures 8 and 10 for the entire profile of the riverbed 
in this experiment (e.g., 140 to 520 cm) or only for some selected locations along this 
section? 

They are for the entire profile of the riverbed (140 to 520 cm). 
 
Line 383: What are other processes in this context? 

We were referring, as examples, to the processes investigated by the referenced 
studies (long waves for Lanzoni et al., 2006, and bed-load dunes for Radice, 2021). 
In the revised manuscript, we will revise for clarity. 
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