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Abstract 24 

The tropospheric hydroxyl radical (TOH) is a key player in regulating oxidation of various compounds in 25 
Earth’s atmosphere. Despite its pivotal role, the spatiotemporal distributions of OH are poorly constrained. 26 
Past modeling studies suggest that the main drivers of OH, including NO2, tropospheric ozone (TO3), and 27 
H2O(v), have increased TOH globally. However, these findings often offer a global average and may not 28 
include more recent changes in diverse compounds emitted on various spatiotemporal scales. Here, we aim 29 
to deepen our understanding of global TOH trends for more recent years (2005-2019) at 1×1 degrees. To 30 
achieve this, we use satellite observations of HCHO and NO2 to constrain simulated TOH using a technique 31 
based on a Bayesian data fusion method, alongside an interpretable machine learning module named 32 
ECCOH, which is integrated into NASA’s GEOS global model. This innovative module helps efficiently 33 
predict the convoluted response of TOH to its drivers/proxies. Aura Ozone Monitoring Instrument (OMI) 34 
NO2 observations suggest that the simulation has high biases over biomass burning activities in Africa and 35 
Eastern Europe, resulting in overestimation of up to 20% in TOH, regionally. OMI HCHO primarily 36 
impacts oceans where TOH linearly correlates with this proxy. Five key parameters including TO3, H2O(v), 37 
NO2, HCHO, and stratospheric ozone can collectively explain 65% of variance in TOH trends. The overall 38 
trend of TOH influenced by NO2 remains positive, but it varies greatly because of the differences in the 39 
signs of anthropogenic emissions. Over oceans, TOH trends are primarily positive in the northern 40 
hemisphere, resulting from the upward trends in HCHO, TO3, and H2O(v). Using the present framework, 41 
we can tap the power of satellites to quickly gain a deeper understanding of simulated TOH trends and 42 
biases. 43 

1. Introduction 44 

The hydroxyl radical (OH) regulates the lifetimes of a vast number of key atmospheric compounds, 45 
such as sulfur dioxide (SO2), nitrogen dioxide (NO2), volatile organic compounds (VOCs), carbon 46 
monoxide (CO), and methane (CH4). Despite its outsized importance for atmospheric chemistry and 47 
climate, our knowledge on both the abundance and long-term trends of OH is limited due to its sparse 48 
observations, manifesting in large discrepancies between simulated OH among global models (e.g., Naik 49 
et al., 2013; Zhao et al., 2019; Murray et al., 2021; Fiore et al., 2024). Particularly, these discrepancies can 50 
introduce large uncertainties when it comes to precisely representing methane (Holmes et al., 2013; Nguyen 51 
et al., 2020), a potent greenhouse gas. Consequently, to understand the potential impact of this warming 52 
agent on climate shifts and extreme weather events, it is essential to accurately simulate methane 53 
concentration within a coupled climate model, such as the NASA’s Goddard Earth Observing System 54 
(GEOS) model (Molod et al., 2015; Nielsen et al., 2017), which requires reasonable representation of its 55 
major sink – reaction with OH. 56 

Despite the challenges posed by OH's short lifespan of less than two seconds, low-pressure laser-57 
induced fluorescence spectroscopy has proven invaluable in measuring OH for over twenty airborne field 58 
campaigns (Miller and Brune, 2020). These datasets have been instrumental in verifying the efficacy of 59 
chemical mechanisms involving varying reaction rate coefficients and aerosol heterogeneous chemistry 60 
(Brune et al., 2019; Miller and Brune, 2020; Brune et al., 2022), understanding urban air quality (Brune et 61 
al., 2022; Souri et al., 2023), as well as identifying potential sources of HOx (OH+HO2) that may have been 62 
hampered due to instrument detection limits and/or unmeasured compounds (e.g., Ren et al., 2008). 63 
However, while these observations offer valuable insights, they are limited in time and space and cannot 64 
provide a full picture of tropospheric OH abundance.  65 

There are several approaches that have been employed to constrain OH needed for replicating 66 
observed values of a tracer whose primary sink is OH and its sources are relatively well known. One notable 67 
method is methyl chloroform (MCF) inversion (Patra et al., 2014; Turner et al., 2017; Rigby et al., 2017; 68 
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Naus et al., 2019). However, this method only provides hemispheric-average OH and is thus insufficient to 69 
resolve the spatial distribution of OH.  70 

A more sophisticated approach to constraining OH is to incorporate well-characterized satellite 71 
observations of factors known to influence OH, such as NO2, CO, ozone, and formaldehyde (HCHO), into 72 
a chemical transport model using inverse modeling and/or chemical data assimilation methods (Sandu and 73 
Chai, 2011; Bocquet et al., 2015). This method offers a crucial advantage in that it accounts for the 74 
interconnectedness of various chemical and physical processes within model increments. For example, 75 
adjustments to NOx levels will impact nitrate and ozone concentrations, which in turn affect the HO2 uptake 76 
through aerosols, OH, and radiation, reciprocally leading to a more accurate representation of NOx. Several 77 
studies have used subsets of satellite observations to improve HOx and ozone chemistry, with Miyazaki et 78 
al. (2020) using a diverse range of observations, including CO, NO2, O3, and nitric acid (HNO3), to improve 79 
model predictions using a local ensemble Kalman filter. The incorporation of these observations led to a 80 
reduction in the asymmetric OH ratio between the northern and southern hemispheres, aligning better with 81 
MCF results (Patra et al., 2014). Similarly, Souri et al. (2020a) leveraged well-characterized observations 82 
of HCHO and NO2 to improve ozone chemistry over East Asia using non-linear analytical Bayesian 83 
inversion, observing significant changes in OH levels after adjusting biogenic VOC in southeast Asia. 84 
While incorporating these observations into atmospheric models offers a comprehensive way to gain 85 
insights into spatiotemporal OH variability, it is complicated by several layers of complexity, such as 86 
unidentified satellite biases, unresolved scales in satellite observations, and errors in models including 87 
transport, chemical mechanisms, vertical diffusion, and depositions rates. Understanding how these errors 88 
could cloud the realistic determination of OH requires running constrained models under various 89 
realizations, which is computationally prohibitive. 90 

Researchers have developed OH predictors based on a set of key parameters, offering reasonable 91 
spatial and temporal coverage without compromising computational efficiency (Spivakovsky et al., 2000; 92 
Duncan et al., 2000; Elshorbany et al., 2016; Nicely et al., 2018; Wolfe et al., 2019; Nicely et al., 2020; 93 
Anderson et al., 2022, Zhu et al., 2022; Anderson et al., 2023; Baublitz et al., 2023). These studies fall into 94 
four categories, the first of which uses box model photochemical simulations to predict OH levels under a 95 
steady-state assumption, using a blend of pre-modeled fields and various observations influencing OH 96 
(Spivakovsky et al., 2000; Nicely et al., 2018). The second group uses proxy observations (e.g., HCHO or 97 
water, H2O) of OH in remote areas (Wolfe et al., 2019; Baublitz et al., 2023). The third group employs 98 
high-order polynomials to establish an empirical relationship between OH and different parameters, 99 
avoiding the need to solve numerous differential equations in chemical mechanisms (Duncan et al., 2000; 100 
Elshorbany et al., 2016). Finally, the fourth group leverages powerful machine learning algorithms to 101 
encapsulate the complexities between OH and its key influencers to efficiently predict OH using a 102 
comprehensive dataset which is easily exchangeable between models (Nicely et al., 2020; Anderson et al., 103 
2022; Zhu et al., 2022; Anderson et al., 2023). 104 

In this work, we demonstrate the potential of a new approach to constrain simulated OH that uses 105 
satellite observations to adjust the input parameters to an improved parameterization of OH (Anderson et 106 
al., 2022), within the Efficient CH4-CO-OH (ECCOH) (pronounced “echo”) configuration (Elshorbany et 107 
al., 2016) of NASA’s GEOS model. We use the Modern-Era Retrospective analysis for Research and 108 
Applications, Version 2 (MERRA2) reanalysis data (Molod et al., 2015) to constrain meteorology and 109 
adjust two critical OH inputs using the latest Aura Ozone Monitoring Instrument (OMI) NO2 and HCHO 110 
retrievals (Lamsal et al., 2021; Nowlan et al., 2023) from 2005-2019 worldwide. Through conducting a 111 
range of experiments, we determine the extent to which leveraging OMI NO2 and HCHO observations can 112 
enhance current representations of these two species derived from a global model simulation, MERRA2-113 
GMI (hereafter M2GMI) (Strode et al., 2019), so that we can achieve more accurate portrayals of OH 114 
abundance and its long-term trends. Ultimately, we deconvolve the intricate OH trend maps into five critical 115 
parameters using various modeling experiments, including tropospheric ozone, stratospheric ozone, NO2, 116 
HCHO, and H2O.  117 

Our paper is structured into several sections. In sections 2.1 to 2.3, we discuss the model 118 
configurations, Bayesian data fusion algorithm, and satellite observations used. In section 2.4, we outline 119 
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our modeling experiments, which aim to uncover the impact of various key OH inputs on its trends and 120 
assess the effect of OMI adjustments. In section 3.1, we examine the discrepancies between our prior 121 
knowledge from M2GMI and OMI observations and demonstrate how the data fusion can mitigate these 122 
differences. In section 3.2, we delve into the effect of OMI adjustments to NO2 and HCHO on tropospheric 123 
OH (TOH) magnitudes across the globe. In section 3.3, we focus on understanding the long-term effect of 124 
a set of key inputs on OH and how well they can replicate our most dynamic representation of TOH. In 125 
Section 4, we summarize the potential of using satellite observations in conjunction with well-characterized 126 
models to identify biases and long-term trends in TOH and discuss the limitations of our current analysis 127 
and potential paths forward. 128 

2. Models, Methods, and Measurements 129 

2.1. Models 130 

2.1.1. GEOS 131 

The GEOS model (Molod et al., 2015; Nielsen et al., 2017) simulates global weather with 132 
1o longitude × 1o latitude spatial resolution. The model follows 72 hybrid sigma values ranging 133 
from the surface to 0.01 hPa. We employ a cumulus parameterization to consider deep convection 134 
(Moorthi and Suarez, 1992). Cloud microphysics is determined by a single-moment 135 
parameterization based on Bacmeister et al. (2006). We activate the "replay" option (Orbe et al., 136 
2017) to constrain several meteorological variables using the MERRA-2. Sea surface temperatures 137 
and ice content are pre-described from various observations (Nielsen et al., 2017; Reynolds et al., 138 
2007). Speciated aerosol concentrations and their optical properties are simulated by the GOCART 139 
model (Chin et al., 2002) within GEOS. The rapid radiative transfer model for GCMs (RRTMG) 140 
resolves the long- and short-wave radiation imposed by GOCART-simulated aerosols, allowing for 141 
the direct impact of aerosol on meteorology to be taken into consideration (Nielsen et al., 2017). 142 
The period of simulation starts in 2005 and ends in 2020. Ten years before 2005 are considered for 143 
the spin-up of meteorological, CO, and CH4 fields.  144 

2.1.2. ECCOH 145 

A computationally-efficient module, named ECCOH was developed to simulate the 146 
chemistry of the CH4-CO-OH cycle in the GEOS-5 model framework (Elshorbany et al., 2016). 147 
CO and CH4 tracers are explicitly simulated and their emissions are discussed in Sections 2.1.2.1 148 
and 2.1.2.2. A key component of ECCOH is the parameterization of tropospheric OH, which was 149 
developed using a gradient boosted regression tree machine learning algorithm (Anderson et al., 150 
2022) and is a function of chemical, solar irradiance, and meteorological variables. The training 151 
dataset of chemical and meteorological variables was a 40-year daily M2GMI model simulation 152 
(Strode et al. 2019), which includes tropospheric chemistry involving 120 species and 400 reactions 153 
with the GMI mechanism (Duncan et al., 2007a and the references therein) and uses MERRA-2 154 
reanalysis to constrain transport and meteorology at 0.625×0.5 degrees.  155 

We present the variables used as inputs to the parameterization of OH for this study in 156 
Table 1. The daily archived chemical inputs are from the M2GMI simulation with several variables 157 
being constrained with observations. For instance, both NO2 and HCHO fields are corrected 158 
whenever satellite observations are available as described in Section 2.2.1. We chose NO2, an 159 
observable compound from satellites and a reasonable proxy for NOx that has been shown to affect 160 
OH (e.g., Zhao et al., 2020; Anderson et al., 2022). HCHO is used as a proxy for VOC oxidation 161 
via OH in remote oceanic regions (Wolfe et al., 2019).  162 
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There are also long-term satellite data records of other OH drivers, including water vapor 163 
(e.g., Aqua AIRS) and total ozone column (e.g., Aura OMI), that we could also consider. However, 164 
the GEOS MERRA-2 system already assimilates satellite datasets of water vapor and the M2GMI 165 
simulation simulates well (i.e., <4%) the total ozone column as compared to observations (Figure 166 
S1). The integrated water vapor columns from MERRA2 and microwave-based satellite 167 
observations over-ocean also agree well (<5%), especially after 2000 when many satellite 168 
observations have been used in the reanalysis data (Figure 3 in Bosilovich et al., 2017). Therefore, 169 
the application of the "replay" mode constrains various meteorological fields, providing a more 170 
realistic reconstruction of OH studied here.  171 

Tropospheric ozone is another critical input to the parameterization of OH. Although we 172 
will compare M2GMI tropospheric ozone with satellite observations to locate any differences, 173 
reliable measurements of tropospheric ozone from satellites are lacking due to the limited 174 
sensitivity of the retrievals to ozone in low altitudes. Therefore, our study refrains from imposing 175 
any observational constraint on tropospheric ozone. 176 

2.1.2.1. Monthly CO emissions 177 

We use a modified version of EDGAR (Emissions Database for Global 178 
Atmospheric Research) v5.0 (Crippa et al., 2019), which is a comprehensive database that 179 
provides estimates of sector-based CO emissions from human activities (i.e., 180 
anthropogenic) on a global scale. Previous studies (e.g., Zheng et al., 2019) suggested a 181 
large underestimation of EDGAR CO emissions for India and China. Accordingly, we 182 
scale up the residential and transportation emissions from China by a factor of 1.6, and the 183 
residential emissions from India by a factor of 1.2 based on Zheng et al. (2019). The 184 
emissions spanned the entirety of the study period, from 2005 until 2020, and were 185 
prepared monthly at a spatial resolution of 0.1o × 0.1o. The daily biomass burning emissions 186 
are CMIP6 emissions, which derived from on the Global Fire Emissions Database version 187 
4 with small fires (GFED4s) (van Marle et al., 2017). To account for the chemical 188 
production of CO from the oxidation of non-methane VOCs, we adopt the CO yield 189 
estimates from Duncan et al. (2007b) (i.e., a molar yield of 20% from isoprene, 20% from 190 
monoterpenes, 100% from methanol, 67% from acetone, 19% from anthropogenic VOC 191 
emissions, and 11% from biomass burning VOC sources) and released these CO emissions 192 
in the first vertical level of the model. With regards to the biogenic VOC emissions used 193 
for the above CO production estimates, we use offline MEGAN calculations using a 194 
GEOS-Chem (v13.2.0) run. CO production from CH4 oxidation is calculated online for 195 
each model box. 196 

2.1.2.2. Monthly CH4 emissions 197 

In this study, several bottom-up CH4 emissions related to anthropogenic, wetland, 198 
natural, and biomass burning sources are used to simulate CH4. The monthly-basis 199 
anthropogenic sources are derived from EDGARv6 (Ferrario et al., 2021). The biomass 200 
burning emissions come from the GFED4s. Because EDGARv6 accounts for agricultural 201 
waste burning, we exclude this specific source from the GFED4. Following Strode et al. 202 
(2020), we use modified monthly-basis natural emissions from ocean, termite, and mud 203 
volcano emissions. Wetland emissions are derived from an improved dynamic wetland 204 
emission framework at 0.5o × 0.5o based on the TOPography-based hydrological model 205 
(TOPMODEL) (Zhang et al., 2016; Zhang et al., 2023). A climatological sink of CH4 from 206 
soil uptake is subtracted from the total CH4 emissions.  207 

 208 
 209 
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Table 1. The list of inputs used for the parametrization of OH. 210 
Input Group Variables (Directly 

Constrained) 
Source Temporal 

Resolution 

Offline 
Chemical 
Species 

NO2, HCHO, O3, isoprene, 
acetone, H2O2, propene, 
propane, methyl 
hydroperoxide, ethane, C4 
and C5 alkanes, and 
stratospheric O3 columns 

M2GMI (offline) (Strode et al. 2019) 
Daily-
averaged 

Online 
Chemical 
Species 

CO and CH4 GEOS (online) 
Daily-
averaged 

Meteorologic
al Fields 

T, P, Qv, and cloud fraction GEOS (online) 
Daily-
averaged 

Optical 
Properties 

Aerosol optical depth; ice 
crystal cloud optical depth; 
and water droplet cloud 
optical depth at above and 
below of a given model 
vertical layer. 

GEOS (online) 
Daily-
averaged 

Geographic 
Information 

Latitude and solar zenith 
angle (SZA) 

Calculated 

Fixed for 
latitude, but 
daily for 
SZA based 
on local 
noontime 

Surface 
Properties 

Surface UV albedo 
OMI LER climatology (Qin et al., 2019; 
Fasnacht et al., 2019) 

Monthly 
(climatolog
y) 

 211 

2.2. Methods 212 

2.2.1. Bayesian data fusion for NO2 and HCHO fields using OMI retrievals 213 

To improve the representation of M2GMI NO2 and HCHO concentrations and their long-214 
term trends, which are used as input to the parameterization of OH in ECCOH, we scale their 215 
columnar mass using Aura OMI observations of NO2 and HCHO columns (described in Sections 216 
2.3.1 and 2.3.2) using an offline version of the optimal interpolation (OI) method (Parish and 217 
Derber, 1992; Jung et al., 2019) with an appropriate regularization. If we assume that the error 218 
covariances of M2GMI columns and OMI ones follow a Gaussian distribution with zero means and 219 
their relationships are linear, we can estimate new columns using Bayes’ theorem (Rodgers, 2000): 220 
𝐗 = 𝐗 + 𝛾𝐁𝐇 (𝛾𝐇𝐁𝐇 + 𝐄) 1(𝐘 − 𝐇𝐗𝒃) (1) 
where Xb is the prior M2GMI columns (i.e., background), 𝐗  is the posterior M2GMI columns 221 
(i.e., analysis), B is the error covariance matrix of the a priori, E is the error covariance matrix of 222 
the observations, Y is the observations, and H is the observational operator which is equivalent to 223 
the identity matrix in our case. E is populated by the average sum of precision error squares the 224 
satellite product provides. We interpolate both E and Y into the M2GMI grid box using a mass-225 
conserved linear barycentric interpolation method. The National Meteorological Center's (NMC) 226 
approach is a common technique for calculating B in atmospheric models (Parish and Derber 1992; 227 
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Souri et al., 2020b); however, due to computing constraints, rerunning the M2GMI model to create 228 
the 24-hour prediction segments needed in the NMC method was not possible. Instead, we initialize 229 
B by setting it to 50% errors for NO2 and HCHO, both of which are subject to regularization. 𝛾 is 230 
the regularization factor designed for achieving the best fit (minimum residuals between Y and 231 
HXb) while minimizing the effect of the noise in the observations (minimum variance in 𝐗 ). To 232 
this end, we seek an optimal regularization factor based on finding the “knee point” in the curve of 233 
the incremental regularization factors (ranging from 0.1 to 10) and the degrees of freedom obtained 234 
from the optimization. The 𝛾 value is determined based on the average of all data points in a month 235 
and does not vary from pixel to pixel to ease the interpretation of the result. We did not account for 236 
the non-diagonal spatial correlations of B, as it requires us to carry out the NMC method. We use 237 
the ratio of Xb/Xa to uniformly scale the three-dimensional concentrations of the target gas (i.e., 238 
NO2 or HCHO). The error associated with the constrained M2GMI columns can be obtained via 239 
𝐒𝐚 = (𝐈 − 𝛾𝐁𝐇𝐓(𝛾𝐇𝐁𝐇𝐓 + 𝐄) 𝟏𝐇) × 𝛾𝐁 (2) 
The averaging kernels (AK) describe the amount of information gained from the observations are 240 
represented by  241 

AK = 𝐈 −
𝑺𝒂

𝐁
 

(3) 

where 𝐈 is the identity matrix. 242 
In our research, we have created an open-source Python package called OI-SAT-GMI 243 

(Souri, 2024), which possesses the ability to download and process OMI level 2 products, perform 244 
air mass factor (AMF) recalculation, and conduct mass-conserved interpolation, while also 245 
executing the OI algorithm. 246 

In our approach, the adjustments are implemented to the M2GMI output (i.e., a data fusion 247 
approach instead of data assimilation one), thereby restricting the full use of improved NO2 and 248 
HCHO representation for more accurate simulation of other chemical compounds impacted by NO2 249 
and HCHO, including ozone (e.g., Souri et al., 2020a, 2021). Nevertheless, as the accuracy of NO2 250 
concentrations can significantly impact OH and HCHO is strongly tied to VOC oxidation through 251 
OH in remote ocean areas (Wolfe et al., 2019), the adjustments are expected to be beneficial in 252 
achieving a more robust representation of OH. 253 

2.2.2. Trend analysis 254 

We determine a linear trend in a time series based on fitting the following equation 255 
accounting for a seasonal cycle and shorter frequencies in the observations:  256 

𝒚 = 𝑎0 + 𝑎1𝒕 + 𝑎 𝑐𝑜𝑠2𝜋𝜔 (𝒕 − 𝜑 ) (4) 

The equation comprises several variables, including 𝑎0 as the mean, 𝑎1 as the linear trend, t as time, 257 
𝑎 , 𝜔 , and 𝜑  are the amplitude, frequency, and phase, respectively. We consider three 258 
harmonics (𝜔 = 1,2,3) to account for seasonal cycle (ω=1) and higher frequencies. To assess the 259 
statistical significance of a trend, we employ the Mann-Kendall test and consider a trend to be 260 
significant if the linear trend passes the test at a 95% confidence level. 261 

In the context of trend analysis, the careful examination of errors in observations (y) is a 262 
critical aspect often overlooked. However, when the errors of observations are obtainable, such as 263 
those obtained from satellites or constrained M2GMI fields, we determine the parameters by 264 
applying a weighted estimation. This estimation is optimized using a Levenberg–Marquardt 265 
algorithm. Considering the errors in the observational data deemphasizes more uncertain data, 266 
resulting in a more realistic determination of the linear trend. 267 
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2.2.3. OH response calculations 268 

             To elucidate the response of OH to different input parametrizations, such as NO2, HCHO, 269 
and O3, we determine the semi-normalized sensitivities through a traditional finite difference 270 
method: 271 

𝑆𝑂𝐻 =
[𝑂𝐻] % − [𝑂𝐻] %

0.2
 

(5) 

where [𝑂𝐻] % and [𝑂𝐻] % are OH concentrations from perturbing input parameters (i) by 1.1 272 
and 0.9 scaling factors in the ECCOH offline framework (Anderson et al., 2022). 273 

2.3. Measurements 274 

2.3.1.  OMI MINDS tropospheric NO2 columns 275 

To improve the representation of NO2 fields used as input to the parameterization of OH, 276 
we constrain the archived monthly fields with the most updated NASA standard tropospheric NO2 277 
product (v4.0; Lamsal et al., 2021) from Aura OMI. Aura has a local equatorial overpass time of 278 
13:45 and nearly daily global coverage. This new OMI product version is improved in multiple 279 
aspects as compared to the former products, including surface reflectance and cloud retrieval 280 
(Lamsal et al., 2021).  281 

The validation of OMI tropospheric NO2 columns from the comparison to integrated 282 
aircraft spirals obtained from diverse air quality campaigns revealed a good level of correlation 283 
(r>0.7) (Choi et al., 2020). However, large mean biases, approximately 40%, were observed. These 284 
biases come from various sources, including systematic biases in prognostic data utilized in the 285 
retrieval, biases inherent in the aircraft data, spatial representation errors (Judd et al., 2020; Souri 286 
et al., 2022), and temporal representation errors. The spatial representation errors have been 287 
recognized to notoriously drift the slopes from the unity line in validation studies (Souri et al., 288 
2022). Notably, Choi et al. (2020) achieved a substantial reduction in mean biases, decreasing from 289 
40% to 16%, through the downscaling of OMI data into a finer resolution domain using a regional 290 
chemical transport model. Likewise, Pinardi et al. (2020) reduced the biases between MAX-DOAS 291 
and OMI NO2 observations by considering a radial dilution factor to account for the mismatch 292 
scales between the satellite footprint and the pointwise observations. These studies showed that the 293 
true statistics describing OMI biases are unknown, but they tended to be milder than those derived 294 
from directly comparing large pixels with pointwise measurements. It is important to highlight that 295 
discrepancies between M2GMI and OMI NO2 will surpass the reported biases, thereby 296 
underscoring the product’s reliability over diverse geographical regions.  297 

The long-term trends of tropospheric NO2 columns have undergone extensive comparative 298 
analyses with in-situ observations (Lamsal et al., 2015; Pinardi et al., 2020), regulatory inputs, and 299 
assessments of human and biomass burning activities (Duncan et al., 2016; Choi and Souri, 300 
2015a,b; Krotkov et al., 2016; Jin and Holloway, 2015; Souri et al., 2017; Rueter et al., 2014; de 301 
Foy et al., 2016; Hickman et al., 2021).  302 

We prefer level 2 over level 3 products to enable the recalculation of AMFs with time-303 
varying shape factors derived from the M2GMI simulation. We removed low-quality pixels using 304 
the main quality flag, cloud fraction >30%, terrain reflectivity >20%, and those pixels affected by 305 
the “row anomaly” complication. The data product, which has a spatial resolution ranging from 306 
~13 km × 24 km (at nadir) to ~24 km × 160 km (at extremities of the scanline), were then regridded 307 
to the M2GMI grid (0.625o×0.5o degrees) using a mass-conserved linear barycentric interpolation 308 
method. The AMF recalculation was performed via: 309 

𝑉𝐶𝐷 =
𝑉𝐶𝐷 𝐴𝑀𝐹

𝐴𝑀𝐹
 

(6) 
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where VCDold and AMFold are the default states of tropospheric vertical columns and air mass 310 
factors. AMFnew is determined by summing the product of scattering weights and the M2GMI partial 311 
columns from the surface to the tropopause level prescribed in the OMI level 2 data. 312 

2.3.2. OMI SAO total HCHO columns 313 

For the same reason as OMI NO2, we use OMI SAO total columns based on a newly-314 
developed algorithm framework by Nowlan et al. (2023). The new retrieval represents a major step 315 
forward in the surface albedo treatment including the bidirectional reflectance distribution function 316 
for land (BRDF) from the MODIS product (MCD43C1 Version 6.1) extended to the UV 317 
wavelengths using a principal component algorithm. Since there are no MODIS BRDF data 318 
available over water, the algorithm uses the Cox-Munk slope distribution to estimate the surface 319 
reflectance of water bodies (Cox and Munk, 1954). An important issue with the long-term record 320 
of OMI HCHO measurements is the artificial increasing trend brought on by sensor degradation 321 
(Choi and Souri, 2015a,b, Gonzalez Abad et al., 2015). The algorithm uses an earthshine spectrum 322 
over the Pacific Ocean with a latitudinal and solar zenith-dependent correction factor described in 323 
Nowlan et al. (2023) to mitigate this artifact.  324 

The new SAO algorithm has been validated with Ozone Mapping and Profiler Suite 325 
(OMPS) data radiance with respect to Fourier-transform Infrared Spectroscopy (FTIR) in-situ 326 
measurements in 2012-2020, showing a relative bias of 30% based on monthly-averaged data 327 
(Kwon et al., 2023). While the validation results based on the OMI radiance have not been released 328 
yet, it is likely for the biases to stay at roughly the same range of errors at monthly-gridded OMI 329 
data onto the M2GMI grid which is comparable to the OMPS footprint (50 km).  330 

Once again, we used Eq.6 to recalculate OMI HCHO total columns with dynamical shape 331 
profiles produced during the M2GMI simulation. We remove unwanted pixels using the following 332 
criteria: the main quality flag, cloud fraction >40%, and flag for pixels affected by the row anomaly. 333 
We then regridded the data to the MERRA-2 GMI grid using the same approach used for OMI 334 
NO2. 335 

2.4. Experiments 336 

We perform a series of experiments to investigate the sensitivity of OH to geophysical 337 
variables known to influence or to be tied with OH. Table 2 lists all sensitivity experiments along 338 
with their purposes and differences from an analysis (i.e., constrained) experiment. The pillar of all 339 
experiments is the analysis experiment (Sanalysis) which uses i) chemical variables from a full-340 
chemistry simulation as input to the parameterization of OH in ECCOH (Section 2.1.2; Table 1); 341 
ii) transport and metrological fields constrained by MERRA2 reanalysis data (Section 2.1.1); iii) 342 
long-term estimates of monthly CO and CH4 emissions (Section 2.1.2.1 and 2.1.2.2); iv) optical 343 
depths of clouds and aerosols along with observed climatology of OMI UV surface albedo; and v) 344 
the NO2 and HCHO fields constrained by the Bayesian data fusion method (Section 2.2.1).  345 

To examine the importance of having NO2 and HCHO fields constrained with OMI data, 346 
we design three experiments imitating Sanalysis, but withholding the OI scaling factors one at a 347 
time. We then subtract these model outputs from those of Sanalysis and name them as SOMInitro, 348 
SOMIform, and SOMInitroform.  349 

The other experiments are intended to systematically isolate the chemical effect of a 350 
specific driver/proxy of OH trends. Due to the significant impact of NO2, tropospheric ozone, 351 
stratospheric ozone column, and water vapor on the primary or secondary pathways of OH 352 
loss/production (Naik et al., 2013; Murray et al., 2013; Strode et al., 2015; Nicely et al., 2018; Zhao 353 
et al., 2020; Anderson et al., 2021), we include four experiments (SOHwv, SOHnitro, 354 
SOHtropozone, and SOHstratozone) to single out each effect on OH trends. Additionally, we 355 
include HCHO (SOHform), a robust proxy for VOC oxidation via OH in remote ocean regions 356 
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(Wolfe et al., 2019) to understand how those chemical pathways have changed over time. In these 357 
experiments, we set the target driver constant to the monthly values in the first year of simulation, 358 
and subsequently subtract these model outputs from Sanalysis. Amongst various OH 359 
drivers/proxies considered, water vapor exclusively comes from the GEOS online simulation; to 360 
isolate the water vapor effect on OH only, we provide fixed water vapor fields from MERRA2 361 
based on the monthly-varying 2005 simulations. Simultaneously, GEOS is allowed to simulate 362 
water vapor online to address meteorology.  363 

Using ambient gas concentrations in the ECCOH model poses a challenge in distinguishing 364 
the respective factors contributing to their variations. For instance, it is difficult to discern the 365 
distinct influences of lightning-produced NO2 versus anthropogenic NO2 on the abundance of OH. 366 
However, an advantageous feature of our approach is that various observational sources constrain 367 
the data fields used via the Bayesian data fusion method or MERRA2 reanalysis data.368 

https://doi.org/10.5194/egusphere-2024-410
Preprint. Discussion started: 29 February 2024
c© Author(s) 2024. CC BY 4.0 License.



11 
 T

ab
le 2. T

he experim
ents designed to assess the effect of various O

H
 drivers/proxies and O

M
I constraints on T

O
H

 trends and m
agnitudes. 

369 
 

370 

M
od

el S
cenario 

T
erm

 
D

ifference from
 th

e an
alysis run 

P
urpose 

A
nalysis (constrained) 

Sanalysis 
-- 

T
he “best effort” to sim

ulate the evolution of 
the C

H
4 -C

O
-O

H
 cycle from

 2005-2019. 
 

A
nalysis ˗ a defaulting to N

O
2  

M
2G

M
I 

SO
M

Initro 
U

ses archived M
2G

M
I m

onthly-
averaged N

O
2  concentration fields.  

Isolate the im
portance of constraining M

2G
M

I 
N

O
2  concentration fields w

ith O
M

I 
observations.  

A
nalysis ˗ defaulting to H

C
H

O
 

M
2G

M
I 

SO
M

Iform
 

U
ses archived M

2G
M

I m
onthly-

averaged H
C

H
O

 concentration fields. 
Isolate the im

portance of constraining M
2G

M
I 

H
C

H
O

 concentration fields w
ith O

M
I 

observations. 

A
nalysis ˗ defaulting to N

O
2  and 

H
C

H
O

 M
2G

M
I 

SO
M

Initroform
 

U
ses archived M

2G
M

I m
onthly-

averaged N
O

2  and H
C

H
O

 concentration 
fields. 

Isolate the im
portance of constraining M

2G
M

I 
N

O
2  and H

C
H

O
 concentration fields w

ith O
M

I 
observations. 

A
nalysis ˗ fixed H

2 O
 vapor 

SO
H

w
v 

T
he dynam

ical w
ater vapor fields fed to 

the param
eterization of O

H
 are fixed to 

the m
onthly-varying 2005. 

Isolate the im
pact of the long-term

 trend of 
w

ater vapor on O
H

. 

A
nalysis ˗ fixed tropospheric 

ozone 
SO

H
tropozone 

M
2G

M
I ozone fields are set to the 

m
onthly-varying 2005. 

Isolate the im
pact of the long-term

 trend of 
tropospheric ozone burden on O

H
. 

A
nalysis ˗ fixed N

O
2  

SO
H

nitro 
M

2G
M

I N
O

2  fields are set to the 
m

onthly-varying 2005. 
Isolate the im

pact of the long-term
 trend of 

N
O

2  on O
H

. 

A
nalysis ˗ fixed H

C
H

O
 

SO
H

form
 

M
2G

M
I H

C
H

O
 fields are set to the 

m
onthly-varying 2005. 

U
nderstand the long-term

 trend of H
C

H
O

 
strongly tied w

ith V
O

C
 oxidation via O

H
 in 

rem
ote regions. 

A
nalysis ˗ fixed stratospheric 

ozone colum
n 

SO
H

stratozone 
M

2G
M

I stratospheric ozone field fed to 
the param

eterization of O
H

 is set to the 
m

onthly-varying 2005. 

Isolate the im
pact of the long-term

 trend of 
stratospheric ozone colum

ns on O
H

. 

a “-“ denotes the subtraction operator.
371 

https://doi.org/10.5194/egusphere-2024-410
Preprint. Discussion started: 29 February 2024
c© Author(s) 2024. CC BY 4.0 License.



12 
 

3. Results and Discussion 372 

3.1. Spatial distributions and trends analysis of several inputs to the parameterization of OH 373 

We begin our analysis with an examination of the long-term trends and magnitudes of two key inputs 374 
(HCHO and NO2) to the parameterization of OH. Some other key parameters, such as total ozone columns, 375 
tropospheric ozone columns, and water vapor are also shown in Figure S1-3, Figure S7-8, and Text S1.  376 

3.1.1. Tropospheric NO2 columns 377 

We performed two sets of comparisons; the first comparison involves examining the differences in the 378 
tropospheric NO2 columns in the M2GMI relative to those of OMI before and after applying the OI correction. 379 
The second comparison focuses on the global 2-D maps of long-term linear trends of OMI, M2GMI prior to 380 
and after the Bayesian data fusion correction synched at the satellite viewing condition. 381 

Figure 1 demonstrates the absolute difference in M2GMI tropospheric NO2 columns with respect to 382 
those of OMI before (the a priori) and after (the a posteriori) the data fusion application along with AK in 383 
2005-2019. In-land regions show positive biases over several regions, including central Africa (box A), the 384 
Midwest U.S. (box B), and Europe (box C). The same tendency was observed in Anderson et al. (2021). The 385 
largest contributor to NO2 in box A and box C is biomass burning activities (Jaeglé et al., 2005; Giglio et al., 386 
2012), suggesting that either the emission factors and/or the total dry mass burnt were possibly too high in 387 
these regions. 388 

M2GMI overestimates NO2 concentrations in non-urban areas in box B which tend to be more severe 389 
during summertime. Although soil NOx emissions could be the first explanation for this phenomenon, 390 
accounting for about 30% of tropospheric NO2 columns in the region according to Vinken et al. (2014), the 391 
soil NOx parameterization used in M2GMI relies on Yienger and Levy (1995), which is known to have a low 392 
bias (Jaeglé et al., 2005; Hudman et al., 2012; Vinken et al., 2014; Souri et al., 2016). Therefore, there may be 393 
other uncertainties in the model concerning chemistry (e.g., Canty et al., 2015) or area anthropogenic NOx 394 
emissions (Hassler et al., 2016) causing the bias.  395 

A large portion of metropolitan areas in the Middle East, Europe, and the U.S. shows an 396 
underestimation of NO2 in M2GMI. Moreover, OMI observations reveal large positive biases over the North 397 
China Plain (NCP), a region exhibiting exceptionally high NO2 levels (e.g., Duncan et al., 2016; Krotkov et 398 
al., 2016; Souri et al., 2017). This is primarily because of not accounting for the recent aggressive emissions 399 
mitigation in China in the bottom-up emission inventory used in the model. We observe several regions over 400 
China and Yellow Sea underestimating NO2 with respect to OMI observations that do not improve 401 
considerably after the adjustments. This tendency is a result of the use of a fractional error for populating the 402 
error covariance matrix of the a priori, rendering the prior error too low. Although we used a regularization 403 
factor to battle this problem, it did not vary from region to region. A regionally-adaptive regularization factor 404 
could be a possible remedy for this problem but at a cost of overcomplicating the interpretation of the results.  405 

Expectedly, the Bayesian fusion greatly mitigates the regional biases, with notable reductions 406 
observed over central Africa, China, the U.S., Amazon, and Europe. The regional biases (>80%) well exceed 407 
the reported biases associated with OMI tropospheric NO2 product (<40%), suggesting that the adjustments 408 
should be considered as improvement. Nonetheless. it is important to acquire an abundance of long-term 409 
records from surface spectrometers such as MAX-DOAS and Pandora to comprehensively evaluate the degree 410 
of enhancement of M2GMI constrained by OMI within the troposphere, which is currently unavailable for the 411 
period of 2005-2019 to our best knowledge. The reduction in the biases over remote areas in the tropics is less 412 
noteworthy due to large errors in the observations. In other words, it is difficult to have high confidence in the 413 
degree of deficiency the model can have in simulating NO2 over pristine areas by comparing it to OMI. This 414 
notion mathematically manifests in low AK in remote areas showing that rich information from OMI 415 
tropospheric NO2 gravitates more towards polluted regions.  416 
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 417 
Figure 1. The global maps of M2GMI tropospheric NO2 annual difference with respect to those of OMI before 418 
applying the Bayesian data fusion correction factors (top) and after (middle) in 2005-2019; the mean of 419 
averaging kernels describing the gained information from OMI (bottom).  Grids in high latitudes are removed 420 
from the figure due to too few numbers of samples OMI provided. 421 
 422 

Figure 2 illustrates the linear trends of tropospheric NO2 between 2005 and 2019 observed by OMI 423 
and simulated by the M2GMI before and after using the OI algorithm. The errors in OMI observations and the 424 
constrained M2GMI are considered while calculating the trends. Focusing on the trends by OMI, we observe 425 
a consistent picture compared to former studies (Duncan et al., 2016; Choi and Souri, 2015a,b; Krotkov et al., 426 
2016; Jin and Holloway, 2015; Souri et al., 2017). High income countries, such as the U.S., those located in 427 
the western Europe, and major cities in Russia, undergo a significant reduction of NO2 concentrations due to 428 
the implementation of emission mitigation regulations. Additionally, low and moderate income countries, such 429 
as those in the Middle East, northern Africa, and India, have seen upward trends in NO2. Various signs of 430 
trends are observed in East Asia. Due to recent effective regulations in China (Zhang et al., 2012), we observe 431 
downward trends in the NCP region (Rueter et al., 2014; de Foy et al., 2016; Souri et al., 2017). The downward 432 
trend predominantly starting from 2011-2012 counteracts the upward trend in prior years resulting in 433 
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statistically insignificant linear trends. Both Japan and South Korea show downward trends during the period 434 
of 2005-2019 (Duncan et al., 2016; Souri et al., 2017).  435 

Encouragingly, the model prior simulation of the tropospheric NO2 trend is consistent with OMI over 436 
most of the polluted regions except for China, where the bottom-emission inventories used in the M2GMI fail 437 
to reflect recent mitigation efforts occurring in NCP region. The posterior estimation is in a higher degree of 438 
agreement compared to OMI (Text S2). An encouraging observation arising from the comparison of the 439 
M2GMI prior with the posterior NO2 trends is the achievement of a higher spatial variance (information) in 440 
low and medium income countries (e.g., India and Iran). This finding suggests that the emission inventories 441 
used in the M2GMI lacked adequate spatial information even at the model spatial resolution. 442 

 443 
Figure 2. The global maps of linear trends of annual tropospheric NO2 columns observed by OMI and 444 
simulated by M2GMI before and after using the Bayesian fusion. The model simulations are sampled at the 445 
exact time and location of OMI, and masked if OMI observations were unavailable due to data quality criteria 446 
used. The dots indicate statistically significant trends at 95% confidence interval. 447 
 448 
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3.1.2. Total HCHO columns 449 

We validate the simulated HCHO concentrations, drawing inspiration from the NO2 comparison 450 
framework. Figure 3 illustrates the absolute differences in simulated HCHO total columns with respect to OMI 451 
before and after the Bayesian data fusion application, in addition to AK. The prior model simulation has 452 
considerable skill in capturing the HCHO total columns over several areas, such as the Middle East, Europe, 453 
India, and East Asia. However, marked positive biases are discernible in regions with abundant isoprene 454 
emissions, such as the Amazon, southeast Asia, southeast U.S., and central Africa. This outcome is most likely 455 
due to an overestimation of biogenic emissions; various investigations have reported a predominantly positive 456 
bias (between a factor of 2 to 3) linked to isoprene emissions estimated by the Model of Emissions of Gases 457 
and Aerosols from Nature (MEGAN) using satellite measurements in isoprene-rich regions (e.g., Millet et al., 458 
2008; Stavrakou et al., 2009; Marais et al., 2012; Bauwens et al., 2016; Souri et al., 2020a). 459 

The simulated HCHO concentrations are relatively too low over pristine areas, such as high latitudes 460 
and over mountains. This may be attributed to an underestimation of CH4 in M2GMI because of assigning its 461 
values as background conditions (Strode et al. 2019). The integration of OMI satellite data has proven effective 462 
at reducing the biases in areas where HCHO concentrations are large because the signal-to-noise ratio tends to 463 
be large resulting in high AKs. Nonetheless, there are some adjustments over remote areas. In fact, OMI HCHO 464 
columns provide more information than OMI NO2 in remote areas because background HCHO concentrations 465 
are not extremely low due to evenly distributed methane and methanol concentrations. It is worth noting that 466 
the biases in M2GMI well exceed the expected OMI HCHO column biases, suggesting that the adjustments to 467 
HCHO improve the model. 468 
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 469 
Figure 3. Same as Figure 1 but for HCHO total columns. 470 

Figure 4 shows the global maps of HCHO total column trends derived from OMI, the prior M2GMI, 471 
and the posterior M2GMI. The widespread upward trends in HCHO over India are evident due to lack of 472 
effective efforts on cutting emissions related to volatile organic compounds (e.g., De Smedt et al., 2015; 473 
Kuttippurath et al., 2022; Bauwens et al., 2022). We observe HCHO columns going up in the northwestern US 474 
and over oil sands in Canada, possibly due to increased evergreen needleleaf forest and an increase in crude 475 
oil production (Zhu et al., 2017), respectively. The downward trends over the southeast US could be due to a 476 
decrease in drought events (Figure S5), which significantly affect isoprene emissions and the oxidation of 477 
VOCs (Duncan et al. 2009; Naimark et al., 2021; Wang et al., 2022). Alternatively, this downward trend could 478 
be partially due to the dampened HCHO production from VOC oxidation due to reduced NOx emissions 479 
(Marais et al., 2014; Wolfe et al., 2016; Souri et al., 2020c). In agreement with previous studies (Stavrakou et 480 
al. 2017, Souri et al., 2017, Shen et al., 2019, Souri et al., 2020a), HCHO columns increase over the NCP. 481 
HCHO columns tend to decrease over parts of central Africa (e.g., Democratic Republic of the Congo) and the 482 
Amazon basin potentially due to reduced deforestation rates (De Smedt et al., 2015; Jones et al., 2022). 483 
However, a large variability in the sign of HCHO trends over these regions is seen; Congo shows an opposite 484 
trend in comparison to that of Democratic Republic of the Congo; the northern portion of the Amazon basin 485 
increased. Encouragingly, the prior knowledge captures the upward trends over India and China along with 486 
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downward trends over central Africa. However, the magnitudes and spatial features of these trends are not 487 
entirely in line with respect to OMI.   488 

We do not fully understand HCHO trends over oceans. Part of these patterns might be caused by 489 
transport from nearby sources. For instance, areas around south Asia, South America, and Gulf of Mexico are 490 
affected by the trends over the land in their proximity. However, trends over several areas, such as the southern 491 
part of the Indian Ocean, Australia, and Sahara, are not fully explainable by nearby sources. It is possible that 492 
certain patterns can be linked to climate variability; for instance, there is growing evidence of more cyclonic 493 
circulation intensifying westerly trade winds from central Africa due to warming Indian Ocean (Dhame et al., 494 
2020) that may contribute to rising HCHO. An in-depth understanding of HCHO trends over oceans certainly 495 
deserves a separate follow-up study. 496 

The posterior estimates better line up with the OMI trends, especially over the Amazon, India, and 497 
Central Africa (Text S3). The correction factors, however, worsen the trends over the southeast US and 498 
Canada. This is essentially due to the use of the fractional errors in the a priori making the OMI corrections 499 
more impactful (i.e., higher Kalman gain) in summertime than in wintertime.  500 

 501 
Figure 4. Same as Figure 2 but for total HCHO columns. The linear trends in OMI SAO are smoothed by a 502 
median filter for better visualization.  503 
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 504 
In sum, we saw that M2GMI NO2 and HCHO, both inputs to the parameterization of OH, were broadly 505 

better presented through the integration of OMI observations. Consequently, the improvement is expected to 506 
elevate the level of reliability in the experimental outcomes, particular in the context of SOHnitro and 507 
SOHform simulations. As for other important compounds, such as stratospheric columns, tropospheric O3, and 508 
water vapor, the comparison of the model with OMI total ozone columns shows a strong degree of agreement 509 
(<4% biases) with no significant trend in low-mid latitudes (Figure S1 and S2). The well-documented upward 510 
trend in tropospheric ozone in the northern hemisphere is well reproduced by M2GMI (Figure S3). We did not 511 
validate GEOS water vapor simulations, because of the use of MERRA2 reanalysis, which is thoroughly 512 
validated in Bosilovich et al. (2017). Furthermore, the comparison of integrated water vapor linear trends from 513 
our GEOS-5 run (2005-2019) with satellite data presented in Borger et al. (2022) shows a remarkable 514 
agreement (Figure S7-8). 515 

3.2. Added value of OMI on simulated tropospheric OH 516 

Here, we present the results from three OMI-related experiments (SOMInitro, SOMIform, 517 
SOMInitroform) to understand the effect of OMI adjustments made to M2GMI on TOH. Throughout the paper, 518 
TOH is determined based on the methane-reaction-weighted OH suggested by Lawrence et al. (2001). 519 
Moreover, we calculate the response of TOH to NO2 and HCHO using Eq.5.  520 

Figure 5 consists of three columns, illustrating the percentage adjustments made by OMI NO2 using 521 
OI, the response of TOH to NO2 concentrations, and the simulated TOH derived from the SOMInitro 522 
experiment. The observed pattern of increments aligns with the improvements seen in Figure 1, with positive 523 
(negative) values indicating underestimation (overestimation) of M2GMI. Broadly, the overestimates 524 
dominate over underestimates resulting in the global tropospheric NO2 reduction by ~4%. Upon segregating 525 
the increments into four distinct seasons, it becomes evident that the adjustments do not uniformly apply to 526 
every season. This non-uniformity is primarily attributed to biases in M2GMI, influenced by biomass burning 527 
(box A, C) (Section 3.1.1), both of which exhibit strong seasonality. 528 

Deciphering the precise chemical processes influencing the response of OH to NO2 using a machine-529 
learning approach is challenging. However, it is widely recognized that NOx has positive feedback on OH 530 
through increased NO+HO2 and ozone (Murray et al., 2021; Zhao et al., 2020; He et al., 2021). Considering 531 
NO2 as a surrogate for NOx, similar tendencies are expected, as evident from the positive numbers from the 532 
sensitivity results obtained from offline calculations. The response of TOH to NO2 displays a pronounced 533 
seasonal cycle stemming mainly from photochemistry. 534 

The impact of adjustments made by OMI NO2 on TOH is most substantial over regions where both 535 
the adjustments and TOH responses to NO2 are significant. For instance, the large adjustments made over 536 
Europe in DJF do not substantially affect TOH because the response value is low due to reduced 537 
photochemistry.  538 

On a global scale, changes to TOH are much milder (1% reduction) than those occurring regionally. 539 
For instance, we see substantial regional impacts (up to 20%) over many areas such as Central Africa, the 540 
Midwest US, the Middle East, and Eastern Europe. In light of the global reduction in OH, we observe global 541 
column average methane mixing ratios (XCH4) to increase by 10 ppbv on average (Text S4). This 542 
augmentation happens monotonically with an increase of 0.9 ppbv per year, ultimately resulting in ~15 ppbv 543 
difference at the end of the simulation (Figure S13). This is essentially due to the long lifetime of CH4. 544 
Likewise, the TOH reduction results in column average CO mixing ratio (XCO) enhancements which transpire 545 
more locally than XCH4 does due to the shorter XCO lifetime. The XCO enhancements reach above 10 ppbv 546 
in Africa (Text S5). 547 

 548 
 549 
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 550 
Figure 5. (first column) the percentage of adjustments applied to M2GMI NO2 fields within the troposphere 551 
suggested by OMI tropospheric NO2 columns for four different seasons, (second column) the semi-normalized 552 
response of tropospheric OH to tropospheric NO2 changes based on ECCOH offline calculations, and (third 553 
column) the resulting effect of the adjustments on tropospheric OH derived from the online simulation 554 
(SOMInitro). MAM, JJA, SON, and DJF are acronyms for March-April-May, June-July-August, September-555 
October-November, and December-January-February.  556 
 557 

Figure 6 demonstrates the same scheme as Figure 5 but with a focus on the SOMIform. Marked 558 
negative increments are found in regions characterized by elevated isoprene concentrations because of the 559 
overestimations of M2GMI biogenic isoprene emissions. Positive increments are mostly confined to high 560 
latitudes and certain areas of East Asia (Section 3.1.2).  561 

The interplay between HCHO and OH is contingent on the intricate dynamics governing HCHO 562 
production from the oxidation of VOCs and methane and HCHO loss from various chemical pathways (Valin 563 
et al., 2016; Wolfe et al., 2019). In remote areas where HOx is low, the prevailing sink of HCHO is through 564 
photolysis. Conversely, in more polluted areas, the reaction of HCHO+OH emerges as a competing loss 565 
pathway. Assuming a steady-state approximation, which is a reasonable assumption for pristine areas, the 566 
photolysis loss of HCHO dominates over the reaction with OH, resulting in a linear relationship between 567 
HCHO and OH. In other words, high (low) HCHO concentrations are indicative of high (low) TOH. It is 568 
because of this that we use HCHO as a proxy of TOH in remote oceans regions. In regions characterized by 569 
heightened HOx levels, OH and HCHO become decoupled. Encouragingly, our implicit parametrization of OH 570 
has considerable skill at elucidating these intricate chemical tendencies; specifically, it reveals muted 571 
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responses in regions with relatively tangible pollution levels, whereas positive responses are evident in oceanic 572 
regions. Like results obtained for NO2, the response map has a seasonal cycle due to photochemistry. 573 

Because of the muted response of TOH to HCHO over land, a substantial portion of geographical 574 
regions undergoing significant adjustments made by OMI becomes less important. TOH primarily changes 575 
over oceanic areas in a way that it decreases in low latitudes but increases in high latitudes. The largest 576 
reduction occurs in Amazon downwind where both increments and responses display large magnitudes. As a 577 
result of these changes, we see a marginal increase in XCH4 over tropics where OMI increments reduced TOH. 578 
The HCHO adjustment did not noticeably affect XCO either (Text S5). 579 

Modifications on HCHO by OMI do not signal substantial changes in background VOC oxidation 580 
through OH. In fact, TOH changes by this proxy are of an order of magnitude less than those by OMI NO2. 581 
This tendency is a result of two key factors: i) the adjustments wield their major influence over oceans where 582 
M2GMI has a fair performance, and ii) the amount of information obtained from OMI HCHO (i.e., AK) 583 
remains somewhat limited in remote areas due to low signal-to-noise ratios. 584 

Due to the rather independent nature of the TOH responses to NO2 and HCHO, where the former 585 
prevails over land and the latter over ocean, the concurrent adjustments of HCHO and NO2 using OMI (i.e., 586 
SOMInitroform) results in a rather linear combination of outcomes derived from SOMIform and SOMInitro 587 
(Figure S21). This linear outcome is characterized by a large decrease in TOH in low latitudes and a moderate 588 
increase in high latitudes resulting in a decrease of global TOH by ~1%.  589 

 590 
Figure 6. Same as Figure 5 but for HCHO. 591 
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3.3. Synergy of the model and satellite observations to explain TOH long-term trends 592 

3.3.1. The dominant contributor to TOH trends 593 

Here, we take advantage of the wealth of information from satellites and our well-characterized model 594 
used for the inputs to the parameterization of OH to rank the dominant contributor to TOH linear trends. By 595 
assuming that TOH follows a linear combination of each individual experiment designed to isolate OH 596 
driver/proxy (i.e., SOHnitro, SOHform, SOHtropozone, SOHstratozone, and SOHwv), wherein second (or 597 
higher) chemical feedback is disregarded, we can determine the biggest contributor to the TOH trend for each 598 
model grid box by finding which driver/proxy holds the largest absolute amount. We only label a grid if the 599 
absolute linear trend of the dominant driver/proxy surpasses the second most dominant one by 30%.  600 

Figure 7 illustrates the dominant factor explaining TOH trends. Several patterns can be found from 601 
this result: i) NO2 plays a significant role in TOH trends in various polluted areas, such as Asia and the Middle 602 
East; ii) the upward trend of TOH over the western Pacific Ocean is primarily attributed to increased 603 
tropospheric ozone from Asia (e.g., Lin et al., 2017); also, we observe a significant fraction of TOH over the 604 
tropical Atlantic Ocean increasing because of rising tropospheric ozone from Africa and Central/South 605 
America (Edwards et al., 2003); iii) HCHO is convolved with TOH trends over tropical oceans); iv) water 606 
vapor plays a pivotal role in shaping TOH trends over oceans across the globe; iv) stratospheric ozone columns 607 
are mostly significant over the South Pole due to the ozone healing process (Figure S2). The next sections will 608 
focus on the magnitude of these trends and the degree to which they can collectively explain the variance in 609 
TOH trends compared to Sanalysis.  610 

It is important to recognize that the analysis presented here should be interpreted as a relative 611 
assessment of a limited number of TOH drivers/proxies, rather than an exhaustive evaluation of all the physical 612 
and chemical processes that are tied to TOH. Nonetheless, the data presented offers valuable insights into the 613 
TOH trends and can be used as a basis for further research. 614 

 615 

 616 
Figure 7. The major contributor to TOH trends based on the largest absolute trends of TOH drivers/proxies 617 
above 30% of the second most dominant factor. 618 

3.3.2. Magnitudes of linear trends of TOH key inputs 619 

Figure 8 shows the linear TOH trends influenced by NO2 (SOHnitro), HCHO (SOHform), water 620 
vapor (SOHwv), tropospheric ozone (SOHtropozone), and stratospheric ozone (SOHstratozone). A 621 
discussion on each parameter will follow: 622 
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SOHnitro – The trends in TOH driven by NO2 show a strong correlation with the a posteriori trend 623 
discussed in Section 3.1.1, with low- and medium-income countries experiencing an increase in TOH due to 624 
rising NO2 levels, while high-income countries see a reduction in TOH due to the opposite trend. The most 625 
significant increase in TOH is observed over India, where both the NO2 trend and TOH sensitivity to NO2 are 626 
prominent. The most rapid regional decline in TOH seems to be over the NCP, because of NOx reductions that 627 
began after 2011. This finding is particularly noteworthy since M2GMI did not reproduce this trend without 628 
OMI as a constraint. The trend in TOH resulting from NO2 is predominantly anthropogenic in nature. This 629 
aligns with the findings of Chua et al. (2023), who observed that the impact of lightning NOx emissions on 630 
TOH trends was relatively minor. The global trend in TOH driven by NO2 is positive, but with considerable 631 
variation due to the significant disparities in how anthropogenic NOx emissions have changed. 632 

SOHform – We saw that HCHO was a reasonable proxy for TOH over oceans. Accordingly, the TOH 633 
trends primarily are observed over oceans, especially over the Pacific and the Indian Oceans. This lines up 634 
with the information gathered from the analysis of M2GMI and OMI HCHO observations (Figure 4). These 635 
upward HCHO trends, as discussed in Section 3.1.2, may be influenced by transport and dynamics. It is worth 636 
noting that the increase in TOH tied to this proxy (HCHO) is a global tendency, attributable to the relatively 637 
uniform rise in HCHO levels across oceans. 638 

SOHwv –Water vapor is a primary source of OH. The offline sensitivity of ECCOH captures this 639 
tendency (Figure S22). Accordingly, the TOH linear trends mirror those of IWV (Figure S8) with major 640 
increases over oceans. Similar to other experiments, the global TOH increases because of rising water vapor 641 
in the atmosphere. We acknowledge that understanding the reasons for changes in water vapor, which our 642 
model shows to agree with Broger et al. (2022), is a complex subject that goes beyond the scope of our research. 643 
It requires an in-depth understanding of the water cycle, evapotranspiration and precipitation rates, and the 644 
effect of temperature on the air's capacity to hold moisture, known as the Clausius Clapeyron relationship. 645 
However, a great deal of effort has been made to demonstrate that global water vapor levels have increased 646 
significantly in recent decades. This is based on reanalysis data, microwave satellites, and in-situ 647 
measurements (Trenberth et al., 2005; Chen and Liu, 2016; Wang and Liu, 2020; Allan et al., 2023), which is 648 
consistent with what our model shows, as it is well-constrained by MERRA2 reanalysis data. 649 

SOHtropozone – The impact of tropospheric ozone on OH formation is widely acknowledged 650 
(Lelieveld et al., 2016). Likewise, our ECCOH offline sensitivity tests have revealed a largely positive 651 
correlation between tropospheric ozone and OH (Figure S23). Consequently, the linear trends observed in 652 
TOH closely mirror those of tropospheric ozone in M2GMI (Figure S3). This tendency is especially noticeable 653 
in the Atlantic Ocean, East and Southeast Asia, as well as the northern region of the Pacific Ocean, where 654 
rising ozone levels have increased TOH. M2GMI suggests that tropospheric ozone levels in the southern 655 
hemisphere have decreased, potentially leading to a downward trend in TOH, an observation that has yet to be 656 
fully confirmed (e.g., Thompson et al., 2021). This finding is especially important given past research 657 
indicating that models tend to exaggerate TOH asymmetry between the northern-southern hemispheres (Strode 658 
et al., 2015; Naik et al., 2013). The decrease in the simulated tropospheric ozone may offer a plausible 659 
explanation for this tendency, but further verification is deemed necessary. Like the previous experiments, 660 
tropospheric ozone on average leads to a global increase in TOH in 2005-2019. 661 

SOHstratozone –Stratospheric ozone columns reduce UV actinic fluxes leading to a reduction in 662 
tropospheric JO1D and thus OH, a tendency well reproduced by ECCOH (Figure S24). Nonetheless, 663 
stratospheric columns did not change noticeably in the tropics and mid-latitudes where OH production is 664 
important; consequently, the linear trends are close to zero or faintly negative due to a slight upward trend in 665 
the column. This tendency results in a rather uniform decrease of TOH globally. 666 
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 667 
Figure 8. The contribution of each TOH key input (addressed in this study) to TOH in 2005-2019. HCHO, 668 
NO2, and water vapor results are observationally constrained. Stratospheric ozone columns yielded comparable 669 
results compared to total ozone columns observed by OMI, however a large portion of tropospheric ozone 670 
trend has remained unverified in the southern hemisphere. ENSO affects the variability of TOH (Anderson et 671 
al., 2021), so we add a linear term to Eq.4 that is a function of the Niño 3.4 Index. This helps prevent ENSO 672 
from affecting the subsequent results.  673 

3.3.3. OMI contributions to TOH trends 674 

It is attractive to gauge the additional information gained from OMI on better representing the linear 675 
trends of TOH. To achieve this, we need to analyze three sets of model output: one with OMI scaling factors, 676 
one without OMI scaling factors, and one with the NO2 and HCHO drivers (i.e., SOHnitro and SOHform). The 677 
linear trends from these sets of model results are shown in Figure 9. The trends in the first column illustrate 678 
the overall effect of NO2 and HCHO on TOH trends, while the two other subplots isolate the effect of OMI 679 
from the prior information based on M2GMI. It is immediately apparent that the trends in the driver can be 680 
well approximated as the linear combination of the other two experiments, suggesting that the second (or 681 
higher) order chemical feedback does not heavily affect the results. M2GMI plays a significant role in shaping 682 
the trends in SOHnitro, possibly due to the small discrepancy between the trends in OMI and M2GMI columns 683 
over regions where TOH is responsive to the driver. The most significant impact of OMI on NO2 is visible 684 
over NCP. Concerning HCHO, OMI slows down the upward trends in TOH over oceans which was suggested 685 
by M2GMI. In general, M2GMI largely dictates the overall shape of TOH trends driven by NO2 and HCHO 686 
possibly due to small difference between the model and OMI observations and/or limited informational content 687 
in OMI. 688 
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689 
Figure 9. The resulting effect of tropospheric NO2 and HCHO on TOH linear trends during 2005-2019 (first 690 
column); the contributions of OMI information added on top of the prior knowledge (M2GMI) (middle 691 
column); the effect of the prior knowledge on shaping TOH linear trends (last column). 692 

3.3.4. How well can these experiments explain the simulated trends collectively? 693 

We find that there is a good degree of correlation between the sum of the linear trends and those of 694 
Sanalysis (R2=0.65) indicating that a good portion of variability in TOH trend can be well explained by these 695 
experiments (Figure S25). Figure 10a shows the linear trend of TOH from Sanalysis in 2005-2019, and Figure 696 
10b shows the sum of the linear trends of the five OH key inputs. These maps are one of the most recent and 697 
detailed TOH trends available, relative to newer studies (Nicely et al., 2018; Zhao et al., 2020; Chua et al., 698 
2023). The TOH trend from Sanalysis varies greatly, where positive values are prevalent over northern parts 699 
of the Pacific Ocean, the Middle East, central Africa, and several regions over East Asia. Negative trends are 700 
found over the US, southeast Asia, and the southern part of the Pacific Ocean. The linear sum of the 701 
experiments strongly aligns with Sanalysis, particularly over the northern hemisphere, reinforcing that the 702 
selected parameters are sensible choices to reproduce a large portion of variance in TOH trend. 703 
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 704 
Figure 10. (a) The linear trends derived from Sanalysis experiment, the “best effort” to simulate the evolution 705 
of the CH4-CO-OH cycle, from 2005-2019. The statistically significant trends are superimposed by dots. (b) 706 
The linear summation of the five selected TOH influencers including water vapor, NO2, HCHO, stratospheric 707 
and tropospheric ozone, showing a strong degree of correspondence to the top panel, particularly in the 708 
northern hemisphere. (c) The unexplained portion of the TOH trends, which was not explainable by five 709 
experiments addressed in this research. 710 

 711 
Revealing the unexplained portion of TOH trends, which cannot be attributed to the selected TOH 712 

experiments, is necessary. Within the model, various physiochemical factors such as CO, CH4, dynamics, 713 
aerosols, and clouds can impact the TOH trends. Although we will not delve into these drivers in this study, 714 
we can identify unexplained parts of TOH trends by subtracting the sum of trends derived from the five primary 715 
TOH key inputs from those of Sanalysis, which discounts second (or higher) chemical feedback. Figure 10c 716 
displays the unexplained TOH trends between 2005 and 2019. It is readily apparent that there are uniform and 717 
significant downward trends in TOH in the tropics and subtropics where photochemistry is strong. This is most 718 
likely triggered by increasing concentrations of CH4, which is demonstrated in Figure S10, causing OH levels 719 
to decrease over time. It is very probable that the extent of these downward trends in TOH has been exaggerated 720 
in our model because of the simulated CH4 increasing too rapidly compared to in-situ observations. 721 
Consequently, the globally-averaged TOH trend derived from Sanalysis may be slower than it should be. 722 
Lastly, an unexplained strong upward trend in TOH over central Africa lingers. 723 
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4. Conclusion 724 

While a comprehensive multi-sensor/multi-species data assimilation and inverse modeling approach, 725 
such as Souri et al. (2020a), Miyazaki et al. (2020), and Souri et al. (2021), would be ideal for fully harnessing 726 
the potential of satellite information on improving multiple aspects of a model representing OH, it will be 727 
prohibitively expensive. Therefore, our simplified approach serves the purpose of understanding the first-order 728 
effects of observational adjustments to TOH drivers/proxies before committing substantial resources to the 729 
implementation/execution of an observationally-constrained, full-chemistry model. Here, we implemented the 730 
newest version of the parameterization of OH, following Anderson et al. (2022), within NASA’s GEOS model, 731 
presenting an opportunity to understand and mitigate TOH biases caused by misrepresentation of HCHO and 732 
NO2 concentrations with respect to the state-of-the-art OMI NO2 and HCHO retrievals using Bayesian data 733 
fusion, as well as to unravel the intricacies of TOH to its key inputs such as tropospheric and stratospheric 734 
ozone and water vapor.   735 

We found large positive biases in tropospheric NO2 columns in M2GMI, the archived model used as 736 
an input to the parameterization of OH, compared to OMI over Africa, Eastern Europe, and the Midwest US. 737 
Because of a large positive effect of NO2 (a surrogate for NOx) on TOH, a tendency well captured by our 738 
implicit parameterization, these overestimations introduced significant regional biases in TOH up to 20%, and 739 
a global overestimation of TOH by 1%. Consistent with former work, we saw distinct disparities in the sign 740 
of linear trends of tropospheric NO2 over high- and medium-income countries (i.e., negative) and low-income 741 
countries (i.e., positive). While M2GMI generally replicated these trends, notable deviations were identified 742 
over China leading to an erroneous trend of TOH.  743 

Pronounced inaccuracies with regards to both the simulated HCHO magnitude and trend in M2GMI 744 
were revealed by OMI over land. However, this proxy for OH was loosely connected to TOH in areas where 745 
photolysis was not the major sink of HCHO (Wolfe et al., 2019), especially over land. Over oceans, where 746 
HCHO and TOH were highly correlated, adjustments to M2GMI by OMI HCHO were relatively mild resulting 747 
in small alterations to TOH which was by an order of magnitude lower than those of NO2. These mild 748 
alterations speak to either an insufficient amount of information in OMI or the reasonable accuracy of M2GMI 749 
over pristine areas.  750 

In general, five variables including NO2, HCHO, water vapor, tropospheric ozone, and stratospheric 751 
ozone, could collectively account for 65% of the variance in TOH trends globally. To estimate this, we 752 
executed various modeling experiments to isolate the effect of NO2, HCHO, water vapor, tropospheric ozone, 753 
and stratospheric ozone on long-term trends of TOH in 2005-2019 at 1o×1o resolution. Except for tropospheric 754 
ozone, these variables were either constrained by observations or aligned with independent observations, 755 
boosting confidence in our trend results. Given the robust positive correlation between OH and NO2, HCHO, 756 
water vapor, and tropospheric ozone over regions where photochemistry was active, TOH trends influenced 757 
by these variables closely mirrored the trends in their respective drivers/proxies. For instance, high- and 758 
medium-income countries exhibited negative TOH trends driven by NO2. Rising tropospheric ozone over east 759 
and south Asia, heavily vetted by various observations (Guadel et al., 2018), led to an upswing in TOH over 760 
the Pacific Ocean. The trend of water vapor, greatly in agreement with independent observation (Broger et al., 761 
2022), was dominantly positive over oceans leading to further enhancement of TOH. Rising HCHO over 762 
Pacific and Indian Ocean suggested by constrained M2GMI was associated with increased TOH. The effect 763 
of stratospheric ozone on TOH was marginal in low and mid latitudes due to negligible changes in stratospheric 764 
ozone columns in M2GMI reconfirmed by OMI total ozone column observations.  765 

A large offset between our analysis experiment with varying CO and CH4 concentrations was observed 766 
after removing the sum of the linear trends derived from these five key experiments from the analysis 767 
experiment, indicating that our future research using ECCOH should include new experiments isolating the 768 
effects of CO, CH4, and transport (e.g., Gaubert et al., 2017; Zhao et al., 2020). Those experiments will refine 769 
the investigation of the unexplained portion of the TOH trend.  770 

The development of an effective parameterization of OH, that is capable of integrating advanced 771 
satellite-based gas retrievals and improved weather forecast models enabled us to unravel the convoluted 772 
response of TOH to various parameters. Nonetheless, it is important to recognize some of the limitations 773 
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associated with our work: the offline nature of the Bayesian data fusion algorithm makes the entire experiment 774 
blind to the interconnected responses of various compounds, such as ozone or aerosols, to adjustments to NO2 775 
and HCHO. Despite this limitation, our work has provided valuable insights into the first-order effects of 776 
adjustments on TOH key inputs. This can help quickly identify areas where our prior knowledge is least 777 
reliable to simulate TOH. 778 

The longevity and stability of Aura's record of observations have played a significant role in 779 
constraining/assessing several important variables pertaining to TOH on a global scale. This is exemplified by 780 
the wealth of information obtained from OMI NO2, HCHO, water vapor, total ozone columns, and Microwave 781 
Limb Sounding (MLS) temperature and ozone, that are used directly or indirectly in our analysis.  However, 782 
as Aura's mission comes to an end, there will be a gap in the monitoring of these variables. TROPOMI, OMI's 783 
successor, can help fill this gap, but its record of observation is still short; therefore, it is important to invest 784 
in research to harmonize data from multiple satellite observations such as OMI and TROPOMI (e.g., Hilboll 785 
et al., 2013). This is because each sensor can have different biases and spatial representativity, which can lead 786 
to inconsistencies and potentially conflicting values if they are used together.  787 
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