
1 
 

 1 

Enhancing Long-Term Trend Simulation of Global 2 

Tropospheric OH and Its Drivers from 2005-2019: A 3 

Synergistic Integration of Model Simulations and Satellite 4 

Observations 5 

 6 

Amir H. Souri1,2*, Bryan N. Duncan1, Sarah A. Strode1,2, Daniel C. Anderson1,3, Michael E. Manyin1,4, 7 
Junhua Liu1,2, Luke D. Oman1, Zhen Zhang5,6, and Brad Weir2,7 8 
 9 
1Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center (GSFC), 10 
Greenbelt, MD, USA 11 
2GESTAR II, Morgan State University, Baltimore, MD, USA 12 
3GESTAR II, University of Maryland Baltimore County, Baltimore, MD, USA 13 
4Science Systems and Applications, Inc., Lanham, MD, USA 14 
5National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan Plateau Earth System, 15 
Environment and Resource (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of 16 
Sciences, Beijing, China 17 
6Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA 18 
7NASA Global Modeling and Assimilation Office (GMAO), Goddard Space Flight Center, Greenbelt, 19 
MD, USA 20 
 21 
* Corresponding author: a.souri@nasa.gov 22 
 23 

mailto:a.souri@nasa.gov


2 
 

Abstract 24 

The tropospheric hydroxyl radical (TOH) is a key player in regulating oxidation of various compounds in 25 
Earth’s atmosphere. Despite its pivotal role, the spatiotemporal distributions of OH are poorly constrained. 26 
Past modeling studies suggest that the main drivers of OH, including NO2, tropospheric ozone (TO3), and 27 
H2O(v), have increased TOH globally. However, these findings often offer a global average and may not 28 
include more recent changes in diverse compounds emitted on various spatiotemporal scales. Here, we aim 29 
to deepen our understanding of global TOH trends for more recent years (2005-2019) at 1×1 degrees. To 30 
achieve this, we use satellite observations of HCHO and NO2 to constrain simulated TOH using a technique 31 
based on a Bayesian data fusion method, alongside a machine learning module named ECCOH, which is 32 
integrated into NASA’s GEOS global model. This innovative module helps efficiently predict the 33 
convoluted response of TOH to its drivers/proxies in a statistical way. Aura Ozone Monitoring Instrument 34 
(OMI) NO2 observations suggest that the simulation has high biases over biomass burning activities in 35 
Africa and Eastern Europe, resulting in overestimation of up to 20% in TOH, regionally. OMI HCHO 36 
primarily impacts oceans where TOH linearly correlates with this proxy. Five key parameters including 37 
TO3, H2O(v), NO2, HCHO, and stratospheric ozone can collectively explain 65% of variance in TOH trends. 38 
The overall trend of TOH influenced by NO2 remains positive, but it varies greatly because of the 39 
differences in the signs of anthropogenic emissions. Over oceans, TOH trends are primarily positive in the 40 
northern hemisphere, resulting from the upward trends in HCHO, TO3, and H2O(v). Using the present 41 
framework, we can tap the power of satellites to quickly gain a deeper understanding of simulated TOH 42 
trends and biases. 43 

1. Introduction 44 

The hydroxyl radical (OH) regulates the lifetimes of a vast number of key atmospheric compounds, 45 
such as sulfur dioxide (SO2), nitrogen dioxide (NO2), volatile organic compounds (VOCs), carbon 46 
monoxide (CO), and methane (CH4). Despite its outsized importance for atmospheric chemistry and 47 
climate, our knowledge on both the abundance and long-term trends of OH is limited due to its sparse 48 
observations, manifesting in large discrepancies between simulated OH among global models (e.g., Naik 49 
et al., 2013; Zhao et al., 2019; Murray et al., 2021; Fiore et al., 2024). Particularly, these discrepancies can 50 
introduce large uncertainties when it comes to precisely representing methane (Holmes et al., 2013; Nguyen 51 
et al., 2020), a potent greenhouse gas. Consequently, to understand the potential impact of this warming 52 
agent on climate shifts and extreme weather events, it is essential to accurately simulate methane 53 
concentration within a coupled climate model, such as the NASA’s Goddard Earth Observing System 54 
(GEOS) model (Molod et al., 2015; Nielsen et al., 2017), which requires reasonable representation of its 55 
major sink – reaction with OH. 56 

Despite the challenges posed by OH's short lifespan of less than two seconds, low-pressure laser-57 
induced fluorescence spectroscopy has proven invaluable in measuring OH for over twenty airborne field 58 
campaigns (Miller and Brune, 2020). These datasets have been instrumental in verifying the efficacy of 59 
chemical mechanisms involving varying reaction rate coefficients and aerosol heterogeneous chemistry 60 
(Brune et al., 2019; Miller and Brune, 2020; Brune et al., 2022), understanding urban air quality (Brune et 61 
al., 2022; Souri et al., 2023), as well as identifying potential sources of HOx (OH+HO2) that may have been 62 
hampered due to instrument detection limits and/or unmeasured compounds (e.g., Ren et al., 2008). 63 
However, while these observations offer valuable insights, they are limited in time and space and cannot 64 
provide a full picture of tropospheric OH abundance.  65 

There are several approaches that have been employed to constrain OH needed for replicating 66 
observed values of a tracer whose primary sink is OH and its sources are relatively well known. One notable 67 
method is methyl chloroform (MCF) inversion (Patra et al., 2014; Turner et al., 2017; Rigby et al., 2017; 68 
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Naus et al., 2019). However, this method only provides hemispheric-average OH and is thus insufficient to 69 
resolve the spatial distribution of OH.  70 

A more sophisticated approach to constraining OH is to incorporate well-characterized satellite 71 
observations of factors known to influence OH, such as NO2, CO, ozone, and formaldehyde (HCHO), into 72 
a chemical transport model using inverse modeling and/or chemical data assimilation methods (Sandu and 73 
Chai, 2011; Bocquet et al., 2015). This method offers a crucial advantage in that it accounts for the 74 
interconnectedness of various chemical and physical processes within model increments. For example, 75 
adjustments to NOx levels will impact nitrate and ozone concentrations, which in turn affect the HO2 uptake 76 
through aerosols, OH, and radiation, reciprocally leading to a more accurate representation of NOx. Several 77 
studies have used subsets of satellite observations to improve HOx and ozone chemistry, with Miyazaki et 78 
al. (2020) using a diverse range of observations, including CO, NO2, O3, and nitric acid (HNO3), to improve 79 
model predictions using a local ensemble Kalman filter. The incorporation of these observations led to a 80 
reduction in the asymmetric OH ratio between the northern and southern hemispheres, aligning better with 81 
MCF results (Patra et al., 2014). Similarly, Souri et al. (2020a) leveraged well-characterized observations 82 
of HCHO and NO2 to improve ozone chemistry over East Asia using non-linear analytical Bayesian 83 
inversion, observing significant changes in OH levels after adjusting biogenic VOC in southeast Asia. 84 
While incorporating these observations into atmospheric models offers a comprehensive way to gain 85 
insights into spatiotemporal OH variability, it is complicated by several layers of complexity, such as 86 
unidentified satellite biases, unresolved scales in satellite observations, and errors in models including 87 
transport, chemical mechanisms, vertical diffusion, and depositions rates. Understanding how these errors 88 
could cloud the realistic determination of OH requires running constrained models under various 89 
realizations, which is computationally prohibitive. 90 

Researchers have developed OH predictors based on a set of key parameters, offering reasonable 91 
spatial and temporal coverage without compromising computational efficiency (Spivakovsky et al., 2000; 92 
Duncan et al., 2000; Elshorbany et al., 2016; Nicely et al., 2018; Wolfe et al., 2019; Nicely et al., 2020; 93 
Anderson et al., 2022, Zhu et al., 2022; Anderson et al., 2023; Baublitz et al., 2023). These studies fall into 94 
four categories, the first of which uses box model photochemical simulations to predict OH levels under a 95 
steady-state assumption, using a blend of pre-modeled fields and various observations influencing OH 96 
(Spivakovsky et al., 2000; Nicely et al., 2018). The second group uses proxy observations (e.g., HCHO or 97 
water, H2O) of OH in remote areas (Wolfe et al., 2019; Baublitz et al., 2023). The third group employs 98 
high-order polynomials to establish an empirical relationship between OH and different parameters, 99 
avoiding the need to solve numerous differential equations in chemical mechanisms (Duncan et al., 2000; 100 
Elshorbany et al., 2016). Finally, the fourth group leverages powerful machine learning algorithms to 101 
encapsulate the complexities between OH and its key influencers to efficiently predict OH using a 102 
comprehensive dataset which is easily exchangeable between models (Nicely et al., 2020; Anderson et al., 103 
2022; Zhu et al., 2022; Anderson et al., 2023). 104 

In this work, we demonstrate the potential of a new approach to constrain simulated OH that uses 105 
satellite observations to adjust the input parameters to an improved parameterization of OH (Anderson et 106 
al., 2022), within the Efficient CH4-CO-OH (ECCOH) (pronounced “echo”) configuration (Elshorbany et 107 
al., 2016) of NASA’s GEOS model. We use the Modern-Era Retrospective analysis for Research and 108 
Applications, Version 2 (MERRA2) reanalysis data (Molod et al., 2015) to constrain meteorology and 109 
adjust two critical OH inputs using the latest Aura Ozone Monitoring Instrument (OMI) NO2 and HCHO 110 
retrievals (Lamsal et al., 2021; Nowlan et al., 2023) from 2005-2019 worldwide. Through conducting a 111 
range of experiments, we determine the extent to which leveraging OMI NO2 and HCHO observations can 112 
enhance current representations of these two species derived from a global model simulation, MERRA2-113 
GMI (hereafter M2GMI) (Strode et al., 2019), so that we can achieve more accurate portrayals of OH 114 
abundance and its long-term trends. Ultimately, we deconvolve the intricate OH trend maps into five critical 115 
parameters using various modeling experiments, including tropospheric ozone, stratospheric ozone, NO2, 116 
HCHO, and H2O.  117 

Our paper is structured into several sections. In sections 2.1 to 2.3, we discuss the model 118 
configurations, Bayesian data fusion algorithm, and satellite observations used. In section 2.4, we outline 119 
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our modeling experiments, which aim to uncover the impact of various key OH inputs on its trends and 120 
assess the effect of OMI adjustments. In section 3.1, we examine the discrepancies between our prior 121 
knowledge from M2GMI and OMI observations and demonstrate how the data fusion can mitigate these 122 
differences. In section 3.2, we delve into the effect of OMI adjustments to NO2 and HCHO on tropospheric 123 
OH (TOH) magnitudes across the globe. In section 3.3, we focus on understanding the long-term effect of 124 
a set of key inputs on OH and how well they can replicate our most dynamic representation of TOH. In 125 
Section 4, we summarize the potential of using satellite observations in conjunction with well-characterized 126 
models to identify biases and long-term trends in TOH and discuss the limitations of our current analysis 127 
and potential paths forward. 128 

2. Models, Methods, and Measurements 129 

2.1. Models 130 

2.1.1. GEOS 131 

The GEOS model (Molod et al., 2015; Nielsen et al., 2017) simulates global weather with 132 
1o longitude × 1o latitude spatial resolution. The model follows 72 hybrid sigma values ranging 133 
from the surface to 0.01 hPa. We employ a cumulus parameterization to consider deep convection 134 
(Moorthi and Suarez, 1992). Cloud microphysics is determined by a single-moment 135 
parameterization based on Bacmeister et al. (2006). We activate the "replay" option (Orbe et al., 136 
2017) to constrain several meteorological variables using the MERRA-2. Sea surface temperatures 137 
and ice content are pre-described from various observations (Nielsen et al., 2017; Reynolds et al., 138 
2007). Speciated aerosol concentrations and their optical properties are simulated by the GOCART 139 
model (Chin et al., 2002) within GEOS. The rapid radiative transfer model for GCMs (RRTMG) 140 
resolves the long- and short-wave radiation imposed by GOCART-simulated aerosols, allowing for 141 
the direct impact of aerosol on meteorology to be taken into consideration (Nielsen et al., 2017). 142 
The period of simulation starts in 2005 and ends in 2020. Ten years before 2005 are considered for 143 
the spin-up of meteorological, CO, and CH4 fields.  144 

2.1.2. ECCOH 145 

A computationally-efficient module, named ECCOH was developed to simulate the 146 
chemistry of the CH4-CO-OH cycle in the GEOS-5 model framework (Elshorbany et al., 2016). 147 
CO and CH4 tracers are explicitly simulated and their emissions are discussed in Sections 2.1.2.1 148 
and 2.1.2.2. A key component of ECCOH is the parameterization of tropospheric OH, which was 149 
developed using a gradient boosted regression tree machine learning algorithm (Anderson et al., 150 
2022) and is a function of chemical, solar irradiance, and meteorological variables. The training 151 
dataset of chemical and meteorological variables was a 40-year daily M2GMI model simulation 152 
(Strode et al. 2019), which includes tropospheric chemistry involving 120 species and 400 reactions 153 
with the GMI mechanism (Duncan et al., 2007a and the references therein) and uses MERRA-2 154 
reanalysis to constrain transport and meteorology at 0.625×0.5 degrees.  155 

We present the variables used as inputs to the parameterization of OH for this study in 156 
Table 1. The daily archived chemical inputs are from the M2GMI simulation with several variables 157 
being constrained with observations. For instance, both NO2 and HCHO fields are corrected 158 
whenever satellite observations are available as described in Section 2.2.1. We chose NO2, an 159 
observable compound from satellites and a reasonable proxy for NOx that has been shown to affect 160 
OH (e.g., Zhao et al., 2020; Anderson et al., 2022). HCHO is used as a proxy for VOC oxidation 161 
via OH in remote oceanic regions (Wolfe et al., 2019).  162 
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There are also long-term satellite data records of other OH drivers, including water vapor 163 
(e.g., Aqua AIRS) and total ozone column (e.g., Aura OMI), that we could also consider. However, 164 
the GEOS MERRA-2 system already assimilates satellite datasets of water vapor and the M2GMI 165 
simulation simulates well (i.e., <4%) the total ozone column as compared to observations (Figure 166 
S1). The integrated water vapor columns from MERRA2 and microwave-based satellite 167 
observations over-ocean also agree well (<5%), especially after 2000 when many satellite 168 
observations have been used in the reanalysis data (Figure 3 in Bosilovich et al., 2017). Therefore, 169 
the application of the "replay" mode constrains various meteorological fields, providing a more 170 
realistic reconstruction of OH studied here.  171 

Tropospheric ozone is another critical input to the parameterization of OH. Although we 172 
will compare M2GMI tropospheric ozone with satellite observations to locate any differences, 173 
reliable measurements of tropospheric ozone from satellites are lacking due to the limited 174 
sensitivity of the retrievals to ozone in low altitudes. Therefore, our study refrains from imposing 175 
any observational constraint on tropospheric ozone. 176 

Throughout the paper, TOH is determined based on the methane-reaction-weighted OH 177 
suggested by Lawrence et al. (2001). 178 

2.1.2.1. Monthly CO emissions 179 

We use a modified version of EDGAR (Emissions Database for Global 180 
Atmospheric Research) v5.0 (Crippa et al., 2019), which is a comprehensive database that 181 
provides estimates of sector-based CO emissions from human activities (i.e., 182 
anthropogenic) on a global scale. Previous studies (e.g., Zheng et al., 2019) suggested a 183 
large underestimation of EDGAR CO emissions for India and China. Accordingly, we 184 
scale up the residential and transportation emissions from China by a factor of 1.6, and the 185 
residential emissions from India by a factor of 1.2 based on Zheng et al. (2019). The 186 
emissions spanned the entirety of the study period, from 2005 until 2020, and were 187 
prepared monthly at a spatial resolution of 0.1o × 0.1o. The daily biomass burning emissions 188 
are CMIP6 emissions, which derived from on the Global Fire Emissions Database version 189 
4 with small fires (GFED4s) (van Marle et al., 2017). To account for the chemical 190 
production of CO from the oxidation of non-methane VOCs, we adopt the CO yield 191 
estimates from Duncan et al. (2007b) (i.e., a molar yield of 20% from isoprene, 20% from 192 
monoterpenes, 100% from methanol, 67% from acetone, 19% from anthropogenic VOC 193 
emissions, and 11% from biomass burning VOC sources) and released these CO emissions 194 
in the first vertical level of the model. With regards to the biogenic VOC emissions used 195 
for the above CO production estimates, we use offline MEGAN calculations using a 196 
GEOS-Chem (v13.2.0) run. CO production from CH4 oxidation is calculated online for 197 
each model box. 198 

2.1.2.2. Monthly CH4 emissions 199 

In this study, several bottom-up CH4 emissions related to anthropogenic, wetland, 200 
natural, and biomass burning sources are used to simulate CH4. The monthly-basis 201 
anthropogenic sources are derived from EDGARv6 (Ferrario et al., 2021). The biomass 202 
burning emissions come from the GFED4s. Because EDGARv6 accounts for agricultural 203 
waste burning, we exclude this specific source from the GFED4. Following Strode et al. 204 
(2020), we use modified monthly-basis natural emissions from ocean, termite, and mud 205 
volcano emissions. Wetland emissions are derived from an improved dynamic wetland 206 
emission framework at 0.5o × 0.5o based on the TOPography-based hydrological model 207 
(TOPMODEL) (Zhang et al., 2016; Zhang et al., 2023). A climatological sink of CH4 from 208 
soil uptake is subtracted from the total CH4 emissions.  209 
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 210 
 211 
Table 1. The list of inputs used for the parametrization of OH. 212 

Input Group Variables (Directly 

Constrained) 

Source Temporal 

Resolution 

Offline 

Chemical 

Species 

NO2, HCHO, O3, isoprene, 

acetone, H2O2, propene, 

propane, methyl 

hydroperoxide, ethane, C4 

and C5 alkanes, and 

stratospheric O3 columns 

M2GMI (offline) (Strode et al. 2019) 
Daily-

averaged 

Online 

Chemical 

Species 

CO and CH4 GEOS (online) 
Daily-

averaged 

Meteorologic

al Fields 
T, P, Qv, and cloud fraction GEOS (online) 

Daily-

averaged 

Optical 

Properties 

Aerosol optical depth; ice 

crystal cloud optical depth; 

and water droplet cloud 

optical depth at above and 

below of a given model 

vertical layer. 

GEOS (online) 
Daily-

averaged 

Geographic 

Information 

Latitude and solar zenith 

angle (SZA) 
Calculated 

Fixed for 

latitude, but 

daily for 

SZA based 

on local 

noontime 

Surface 

Properties 
Surface UV albedo 

OMI LER climatology (Qin et al., 2019; 

Fasnacht et al., 2019) 

Monthly 

(climatolog

y) 

 213 

2.2. Methods 214 

2.2.1. Bayesian data fusion for NO2 and HCHO fields using OMI retrievals 215 

To improve the representation of M2GMI NO2 and HCHO concentrations and their long-216 
term trends, which are used as input to the parameterization of OH in ECCOH, we scale their 217 
columnar mass using Aura OMI observations of NO2 and HCHO columns (described in Sections 218 
2.3.1 and 2.3.2) using an offline version of the optimal interpolation (OI) method (Parish and 219 
Derber, 1992; Jung et al., 2019) with an appropriate regularization. If we assume that the error 220 
covariances of M2GMI columns and OMI ones follow a Gaussian distribution with zero means and 221 
their relationships are linear, we can estimate new columns using Bayes’ theorem (Rodgers, 2000): 222 

𝐗𝑎 = 𝐗𝑏 + 𝛾𝐁𝐇T(𝛾𝐇𝐁𝐇T + 𝐄)−1(𝐘 − 𝐇𝐗𝒃) (1) 
where Xb is the prior M2GMI columns (i.e., background), 𝐗𝑎 is the posterior M2GMI columns 223 
(i.e., analysis), B is the error covariance matrix of the a priori, E is the sum squares of error 224 
covariance matrix of the observations and the representation errors, Y is the observations, and H is 225 
the observational operator which is equivalent to the identity matrix in our case. The instrument 226 
error part of E is populated by the average sum of precision error squares the satellite product 227 
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provides. We interpolate both E and Y into the M2GMI grid box using a mass-conserved linear 228 
barycentric interpolation method. In this method, both OMI observations and errors in the L2 229 
granules provided at their irregular grid have been projected into a common grid of 0.25×0.25 230 
degrees using Delaunay triangulation bi-linear interpolation. Subsequently, we convolve these re-231 
gridded maps with a box filter whose kernel size is equivalent to the rounded fraction of M2GMI 232 
grid box size to the re-grided OMI pixel size based on Souri et al. (2022). This interpolation method 233 
removes the spatial representation error resulting from the unresolved scales in M2GMI columns. 234 
Nonetheless, we did not take into account the errors of unresolved processes in M2GMI to augment 235 
to E. The National Meteorological Center's (NMC) approach is a common technique for calculating 236 
B in atmospheric models (Parish and Derber 1992; Souri et al., 2020b); however, due to computing 237 
constraints, rerunning the M2GMI model to create the 24-hour prediction segments needed in the 238 
NMC method was not possible. Instead, we initialize B by setting it to 50% errors for NO2 and 239 

HCHO, both of which are subject to regularization. 𝛾 is the regularization factor designed for 240 
achieving the best fit (minimum residuals between Y and HXb) while minimizing the effect of the 241 

noise in the observations (minimum variance in 𝐗𝑎). To this end, we seek an optimal regularization 242 
factor based on finding the “knee point” in the curve of the incremental regularization factors 243 

(ranging from 0.1 to 10) and the degrees of freedom obtained from the optimization. The 𝛾 value 244 
is determined based on the average of all data points in a month and does not vary from pixel to 245 
pixel to ease the interpretation of the result. We did not account for the non-diagonal spatial 246 
correlations of B, as it requires us to carry out the NMC method. We use the ratio of Xb/Xa to 247 
uniformly scale the three-dimensional concentrations of the target gas (i.e., NO2 or HCHO). The 248 
error associated with the constrained M2GMI columns can be obtained via 249 

𝐒𝐚 = (𝐈 − 𝛾𝐁𝐇𝐓(𝛾𝐇𝐁𝐇𝐓 + 𝐄)−𝟏𝐇) × 𝛾𝐁 (2) 
The averaging kernels (AK) describe the amount of information gained from the observations are 250 
represented by  251 

AK = 𝐈 −
𝑺𝒂
𝐁

 
(3) 

where 𝐈 is the identity matrix. 252 
In our research, we have created an open-source Python package called OI-SAT-GMI 253 

(Souri, 2024), which possesses the ability to download and process OMI level 2 products, perform 254 
air mass factor (AMF) recalculation, and conduct mass-conserved interpolation, while also 255 
executing the OI algorithm. 256 

In our approach, the adjustments are implemented to the M2GMI output (i.e., a data fusion 257 
approach instead of data assimilation one), thereby restricting the full use of improved NO2 and 258 
HCHO representation for more accurate simulation of other chemical compounds impacted by NO2 259 
and HCHO, including ozone (e.g., Souri et al., 2020a, 2021). Nevertheless, as the accuracy of NO2 260 
concentrations can significantly impact OH and HCHO is strongly tied to VOC oxidation through 261 
OH in remote ocean areas (Wolfe et al., 2019), the adjustments are expected to be beneficial in 262 
achieving a more robust representation of OH. 263 

2.2.2. Trend analysis 264 

We determine a linear trend in a time series based on fitting the following equation 265 
accounting for a seasonal cycle and shorter frequencies in the observations:  266 

𝒚 = 𝑎0 + 𝑎1𝒕 +∑𝑎𝑖+1𝑐𝑜𝑠2𝜋𝜔𝑖(𝒕 − 𝜑𝑖)

3

𝑖=1

 (4) 

The equation comprises several variables, including 𝒚 (data points) on monthly-basis, 𝑎0 as the 267 

mean, 𝑎1 as the linear trend, t as time (fractional year), 𝑎𝑖+1, 𝜔𝑖, and 𝜑𝑖 are the amplitude, 268 
frequency, and phase, respectively. We consider three harmonics (𝜔𝑖 = 1,2,3) to account for 269 
seasonal cycle (ω=1) and higher frequencies. To assess the statistical significance of a trend, we 270 
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employ the Mann-Kendall test and consider a trend to be significant if the linear trend passes the 271 
test at a 95% confidence level. 272 

In the context of trend analysis, the careful examination of errors in observations (y) is a 273 
critical aspect often overlooked. However, when the errors of observations are obtainable, such as 274 
those obtained from satellites or constrained M2GMI fields, we determine the parameters by 275 
applying a weighted estimation. This estimation is optimized using the Levenberg–Marquardt 276 
algorithm (Marquardt et al., 1996) using SciPy open-source package. Considering the errors in the 277 
observational data deemphasizes more uncertain data, resulting in a more realistic determination of 278 
the linear trend. 279 

2.2.3. OH response calculations 280 

             To elucidate the response of OH to different input parametrizations, such as NO2, HCHO, 281 
and O3, we determine the semi-normalized sensitivities through a traditional finite difference 282 
method: 283 

𝑆𝑂𝐻𝑖 =
[𝑂𝐻]𝑖

110% − [𝑂𝐻]𝑖
90%

0.2
 

(5) 

where [𝑂𝐻]𝑖
110% and [𝑂𝐻]𝑖

90% are OH concentrations from perturbing input parameters (i) by 1.1 284 

and 0.9 scaling factors in the ECCOH offline framework (Anderson et al., 2022). These calculations 285 
are solely used to better understand why OH changes in a particular way relative to the changes in 286 
its drivers. In our online modeling framework, OH is simultaneously affected by the dynamic 287 
changes of various variables considered in the parametrization of OH. 288 

It is crucial to acknowledge that ECCOH has established an implicit relationship between 289 
OH and various input parameters statistically. These perturbations could involve a range of 290 
physiochemical processes that are challenging to fully decipher. For example, the perturbation of 291 
NO2, acting as a surrogate of reactive nitrogen, involves chemical reactions that include reactive 292 
nitrogen like NO+HO2 and NO2+OH, ozone formation, aerosol HOx uptake, and radiation. 293 
Nonetheless, it may not be feasible to understand the extent to which ECCOH has been considered. 294 
Therefore, the presented perturbations in this work should be viewed qualitatively. 295 

2.3. Measurements 296 

2.3.1.  OMI MINDS tropospheric NO2 columns 297 

To improve the representation of NO2 fields used as input to the parameterization of OH, 298 
we constrain the archived monthly fields with the most updated NASA standard tropospheric NO2 299 
product (v4.0; Lamsal et al., 2021) from Aura OMI. Aura has a local equatorial overpass time of 300 
13:45 and nearly daily global coverage. This new OMI product version is improved in multiple 301 
aspects as compared to the former products, including surface reflectance and cloud retrieval 302 
(Lamsal et al., 2021).  303 

The validation of OMI tropospheric NO2 columns from the comparison to integrated 304 
aircraft spirals obtained from diverse air quality campaigns revealed a good level of correlation 305 
(r>0.7) (Choi et al., 2020). However, large mean biases, approximately 40%, were observed. These 306 
biases come from various sources, including systematic biases in prognostic data utilized in the 307 
retrieval, biases inherent in the aircraft data, spatial representation errors (Judd et al., 2020; Souri 308 
et al., 2022), and temporal representation errors. The spatial representation errors have been 309 
recognized to notoriously drift the slopes from the unity line in validation studies (Souri et al., 310 
2022). Notably, Choi et al. (2020) achieved a substantial reduction in mean biases, decreasing from 311 
40% to 16%, through the downscaling of OMI data into a finer resolution domain using a regional 312 
chemical transport model. Likewise, Pinardi et al. (2020) reduced the biases between MAX-DOAS 313 
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and OMI NO2 observations by considering a radial dilution factor to account for the mismatch 314 
scales between the satellite footprint and the pointwise observations. These studies showed that the 315 
true statistics describing OMI biases are unknown, but they tended to be milder than those derived 316 
from directly comparing large pixels with pointwise measurements. It is important to highlight that 317 
discrepancies between M2GMI and OMI NO2 will surpass the reported biases, thereby 318 
underscoring the product’s reliability over diverse geographical regions.  319 

The long-term trends of tropospheric NO2 columns have undergone extensive comparative 320 
analyses with in-situ observations (Lamsal et al., 2015; Pinardi et al., 2020), regulatory inputs, and 321 
assessments of human and biomass burning activities (Duncan et al., 2016; Choi and Souri, 322 
2015a,b; Krotkov et al., 2016; Jin and Holloway, 2015; Souri et al., 2017; Rueter et al., 2014; de 323 
Foy et al., 2016; Hickman et al., 2021).  324 

We prefer level 2 over level 3 products to enable the recalculation of AMFs with time-325 
varying shape factors derived from the M2GMI simulation. We removed low-quality pixels using 326 
the main quality flag, cloud fraction >30%, terrain reflectivity >20%, and those pixels affected by 327 
the “row anomaly” complication. The data product, which has a spatial resolution ranging from 328 
~13 km × 24 km (at nadir) to ~24 km × 160 km (at extremities of the scanline), were then regridded 329 
to the M2GMI grid (0.625o×0.5o degrees) using a mass-conserved linear barycentric interpolation 330 
method. The AMF recalculation was performed via: 331 

𝑉𝐶𝐷𝑛𝑒𝑤
⬚ =

𝑉𝐶𝐷𝑜𝑙𝑑
⬚ 𝐴𝑀𝐹𝑜𝑙𝑑

⬚

𝐴𝑀𝐹𝑛𝑒𝑤⬚
 

(6) 

where VCDold and AMFold are the default states of tropospheric vertical columns and air mass 332 
factors. AMFnew is determined by summing the product of scattering weights and the M2GMI partial 333 
columns from the surface to the tropopause level prescribed in the OMI level 2 data. 334 

2.3.2. OMI SAO total HCHO columns 335 

For the same reason as OMI NO2, we use OMI SAO total columns based on a newly-336 
developed algorithm framework by Nowlan et al. (2023). The new retrieval represents a major step 337 
forward in the surface albedo treatment including the bidirectional reflectance distribution function 338 
for land (BRDF) from the MODIS product (MCD43C1 Version 6.1) extended to the UV 339 
wavelengths using a principal component algorithm. Since there are no MODIS BRDF data 340 
available over water, the algorithm uses the Cox-Munk slope distribution to estimate the surface 341 
reflectance of water bodies (Cox and Munk, 1954). An important issue with the long-term record 342 
of OMI HCHO measurements is the artificial increasing trend brought on by sensor degradation 343 
(Choi and Souri, 2015a,b, Gonzalez Abad et al., 2015). The algorithm uses an earthshine spectrum 344 
over the Pacific Ocean with a latitudinal and solar zenith-dependent correction factor described in 345 
Nowlan et al. (2023) to mitigate this artifact.  346 

The new SAO algorithm has been validated with Ozone Mapping and Profiler Suite 347 
(OMPS) data radiance with respect to Fourier-transform Infrared Spectroscopy (FTIR) in-situ 348 
measurements in 2012-2020, showing a relative bias of 30% based on monthly-averaged data 349 
(Kwon et al., 2023). While the validation results based on the OMI radiance have not been released 350 
yet, it is likely for the biases to stay at roughly the same range of errors at monthly-gridded OMI 351 
data onto the M2GMI grid which is comparable to the OMPS footprint (50 km).  352 

Once again, we used Eq.6 to recalculate OMI HCHO total columns with dynamical shape 353 
profiles produced during the M2GMI simulation. We remove unwanted pixels using the following 354 
criteria: the main quality flag, cloud fraction >40%, and flag for pixels affected by the row anomaly. 355 
We then regridded the data to the MERRA-2 GMI grid using the same approach used for OMI 356 
NO2. 357 
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2.4. Experiments 358 

We perform a series of experiments to investigate the sensitivity of OH to geophysical 359 
variables known to influence or to be tied with OH. Table 2 lists all sensitivity experiments along 360 
with their purposes and differences from an analysis (i.e., constrained) experiment. The pillar of all 361 
experiments is the analysis experiment (Sanalysis) which uses i) chemical variables from a full-362 
chemistry simulation as input to the parameterization of OH in ECCOH (Section 2.1.2; Table 1); 363 
ii) transport and metrological fields constrained by MERRA2 reanalysis data (Section 2.1.1); iii) 364 
long-term estimates of monthly CO and CH4 emissions (Section 2.1.2.1 and 2.1.2.2); iv) optical 365 
depths of clouds and aerosols along with observed climatology of OMI UV surface albedo; and v) 366 
the NO2 and HCHO fields constrained by the Bayesian data fusion method (Section 2.2.1).  367 

To examine the importance of having NO2 and HCHO fields constrained with OMI data, 368 
we design three experiments imitating Sanalysis, but withholding the OI scaling factors one at a 369 
time. We then subtract these model outputs from those of Sanalysis and name them as SOMInitro, 370 
SOMIform, and SOMInitroform.  371 

The other experiments are intended to systematically isolate the chemical effect of a 372 
specific driver/proxy of OH trends. Due to the significant impact of NO2, tropospheric ozone, 373 
stratospheric ozone column, and water vapor on the primary or secondary pathways of OH 374 
loss/production (Naik et al., 2013; Murray et al., 2013; Strode et al., 2015; Nicely et al., 2018; Zhao 375 
et al., 2020; Anderson et al., 2021), we include four experiments (SOHwv, SOHnitro, 376 
SOHtropozone, and SOHstratozone) to single out each effect on OH trends. Additionally, we 377 
include HCHO (SOHform), a robust proxy for VOC oxidation via OH in remote ocean regions 378 
(Wolfe et al., 2019) to understand how those chemical pathways have changed over time. In these 379 
experiments, we set the target driver constant to the monthly values in the first year of simulation, 380 
and subsequently subtract these model outputs from Sanalysis. Amongst various OH 381 
drivers/proxies studied here, water vapor is simulated online based on the GEOS simulation; to 382 
conduct SOHwv which aims at isolating the water vapor effect on OH without affecting 383 
meteorology, we set water vapor fields fed to the parametrization of OH to the offline MERRA2 384 
based on the monthly-varying 2005 simulations. Simultaneously, GEOS is allowed to simulate 385 
water vapor online to address meteorology. This ensures that the meteorology remains consistent 386 
across both SOHwv and Sanalysis. 387 

Using ambient gas concentrations in the ECCOH model poses a challenge in distinguishing 388 
the respective factors contributing to their variations. For instance, it is difficult to discern the 389 
distinct influences of lightning-produced NO2 versus anthropogenic NO2 on the abundance of OH. 390 
However, an advantageous feature of our approach is that various observational sources constrain 391 
the data fields used via the Bayesian data fusion method or MERRA2 reanalysis data.392 
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Table 2. The experiments designed to assess the effect of various OH drivers/proxies and OMI constraints on TOH trends and magnitudes. 393 

 394 

Model Scenario Term Difference from the analysis run Purpose 

Analysis (constrained) Sanalysis -- The “best effort” to simulate the evolution of 

the CH4-CO-OH cycle from 2005-2019. 

 

Analysis ˗a defaulting to NO2 

M2GMI 

SOMInitro Uses archived M2GMI monthly-

averaged NO2 concentration fields.  

Isolate the importance of constraining M2GMI 

NO2 concentration fields with OMI 

observations.  

Analysis ˗ defaulting to HCHO 

M2GMI 

SOMIform Uses archived M2GMI monthly-

averaged HCHO concentration fields. 

Isolate the importance of constraining M2GMI 

HCHO concentration fields with OMI 

observations. 

Analysis ˗ defaulting to NO2 and 

HCHO M2GMI 

SOMInitroform Uses archived M2GMI monthly-

averaged NO2 and HCHO concentration 

fields. 

Isolate the importance of constraining M2GMI 

NO2 and HCHO concentration fields with OMI 

observations. 

Analysis ˗ fixed H2O vapor 

SOHwv 

The dynamical water vapor fields fed to 

the parameterization of OH are fixed to 

the monthly-varying 2005. 

Isolate the impact of the long-term trend of 

water vapor on OH. 

Analysis ˗ fixed tropospheric 

ozone 

SOHtropozone M2GMI ozone fields are set to the 

monthly-varying 2005. 

Isolate the impact of the long-term trend of 

tropospheric ozone burden on OH. 

Analysis ˗ fixed NO2 SOHnitro M2GMI NO2 fields are set to the 

monthly-varying 2005. 

Isolate the impact of the long-term trend of 

NO2 on OH. 

Analysis ˗ fixed HCHO SOHform M2GMI HCHO fields are set to the 

monthly-varying 2005. 

Understand the long-term trend of HCHO 

strongly tied with VOC oxidation via OH in 

remote regions. 

Analysis ˗ fixed stratospheric 

ozone column 

SOHstratozone M2GMI stratospheric ozone field fed to 

the parameterization of OH is set to the 

monthly-varying 2005. 

Isolate the impact of the long-term trend of 

stratospheric ozone columns on OH. 

a “-“ denotes the subtraction operator.395 
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3. Results and Discussion 396 

3.1. Spatial distributions and trends analysis of several inputs to the parameterization of OH 397 

We begin our analysis with an examination of the long-term trends and magnitudes of two key inputs 398 
(HCHO and NO2) to the parameterization of OH. Some other key parameters, such as total ozone columns, 399 
tropospheric ozone columns, and water vapor are also shown in Figure S1-3, Figure S7-8, and Text S1.  400 

3.1.1. Tropospheric NO2 columns 401 

We performed two sets of comparisons; the first comparison involves examining the differences in the 402 
tropospheric NO2 columns in the M2GMI relative to those of OMI before and after applying the OI correction. 403 
The second comparison focuses on the global 2-D maps of long-term linear trends of OMI, M2GMI prior to 404 
and after the Bayesian data fusion correction synched at the satellite viewing condition. 405 

Figure 1 demonstrates the absolute difference in M2GMI tropospheric NO2 columns with respect to 406 
those of OMI before (the a priori) and after (the a posteriori) the data fusion application along with AK in 407 
2005-2019. In-land regions show positive biases over several regions, including central Africa (box A), the 408 
Midwest U.S. (box B), and Europe (box C). The same tendency was observed in Anderson et al. (2021). The 409 
largest contributor to NO2 in box A and box C is biomass burning activities (Jaeglé et al., 2005; Giglio et al., 410 
2012), suggesting that either the emission factors and/or the total dry mass burnt were possibly too high in 411 
these regions. 412 

M2GMI overestimates NO2 concentrations in non-urban areas in box B which tend to be more severe 413 
during summertime. Although soil NOx emissions could be the first explanation for this phenomenon, 414 
accounting for about 30% of tropospheric NO2 columns in the region according to Vinken et al. (2014), the 415 
soil NOx parameterization used in M2GMI relies on Yienger and Levy (1995), which is known to have a low 416 
bias (Jaeglé et al., 2005; Hudman et al., 2012; Vinken et al., 2014; Souri et al., 2016). Therefore, there may be 417 
other uncertainties in the model concerning chemistry (e.g., Canty et al., 2015) or area anthropogenic NOx 418 
emissions (Hassler et al., 2016) causing the bias.  419 

A large portion of metropolitan areas in the Middle East, Europe, and the U.S. shows an 420 
underestimation of NO2 in M2GMI. Moreover, OMI observations reveal large positive biases over the North 421 
China Plain (NCP), a region exhibiting exceptionally high NO2 levels (e.g., Duncan et al., 2016; Krotkov et 422 
al., 2016; Souri et al., 2017). This is primarily because of not accounting for the recent aggressive emissions 423 
mitigation in China in the bottom-up emission inventory used in the model. We observe several regions over 424 
China and Yellow Sea underestimating NO2 with respect to OMI observations that do not improve 425 
considerably after the adjustments. This tendency is a result of the use of a fractional error for populating the 426 
error covariance matrix of the a priori, rendering the prior error too low. Although we used a regularization 427 
factor to battle this problem, it did not vary from region to region. A regionally-adaptive regularization factor 428 
could be a possible remedy for this problem but at a cost of overcomplicating the interpretation of the results.  429 

Expectedly, the Bayesian fusion greatly mitigates the regional biases, with notable reductions 430 
observed over central Africa, China, the U.S., Amazon, and Europe. The regional biases (>80%) well exceed 431 
the reported biases associated with OMI tropospheric NO2 product (<40%), suggesting that the adjustments 432 
should be considered as improvement. Nonetheless. it is important to acquire an abundance of long-term 433 
records from surface spectrometers such as MAX-DOAS and Pandora to comprehensively evaluate the degree 434 
of enhancement of M2GMI constrained by OMI within the troposphere, which is currently unavailable for the 435 
period of 2005-2019 to our best knowledge. The reduction in the biases over remote areas in the tropics is less 436 
noteworthy due to large errors in the observations. In other words, it is difficult to have high confidence in the 437 
degree of deficiency the model can have in simulating NO2 over pristine areas by comparing it to OMI. This 438 
notion mathematically manifests in low AK in remote areas showing that rich information from OMI 439 
tropospheric NO2 gravitates more towards polluted regions. This finding assumes that the regularized 440 
covariance matrix of the prior error does not substantially vary between land and ocean and is isotropic.  441 
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 442 
Figure 1. The global maps of M2GMI tropospheric NO2 annual difference with respect to those of OMI before 443 
applying the Bayesian data fusion correction factors (top) and after (middle) in 2005-2019; the mean of 444 
averaging kernels describing the gained information from OMI (bottom).  Grids in high latitudes are removed 445 
from the figure due to too few numbers of samples OMI provided. 446 
 447 

Figure 2 illustrates the linear trends of tropospheric NO2 between 2005 and 2019 observed by OMI 448 
and simulated by the M2GMI before and after using the OI algorithm. The errors in OMI observations and the 449 
constrained M2GMI are considered while calculating the trends. Focusing on the trends by OMI, we observe 450 
a consistent picture compared to former studies (Duncan et al., 2016; Choi and Souri, 2015a,b; Krotkov et al., 451 
2016; Jin and Holloway, 2015; Souri et al., 2017). High income countries, such as the U.S., those located in 452 
the western Europe, and major cities in Russia, undergo a significant reduction of NO2 concentrations due to 453 
the implementation of emission mitigation regulations. Additionally, low and moderate income countries, such 454 
as those in the Middle East, northern Africa, and India, have seen upward trends in NO2. Various signs of 455 
trends are observed in East Asia. Due to recent effective regulations in China (Zhang et al., 2012), we observe 456 
downward trends in the NCP region (Rueter et al., 2014; de Foy et al., 2016; Souri et al., 2017). The downward 457 
trend predominantly starting from 2011-2012 counteracts the upward trend in prior years resulting in 458 
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statistically insignificant linear trends. Both Japan and South Korea show downward trends during the period 459 
of 2005-2019 (Duncan et al., 2016; Souri et al., 2017).  460 

Encouragingly, the model prior simulation of the tropospheric NO2 trend is consistent with OMI over 461 
most of the polluted regions except for China, where the bottom-emission inventories used in the M2GMI fail 462 
to reflect recent mitigation efforts occurring in NCP region. The posterior estimation is in a higher degree of 463 
agreement compared to OMI (Text S2). An encouraging observation arising from the comparison of the 464 
M2GMI prior with the posterior NO2 trends is the achievement of a higher spatial variance (information) in 465 
low and medium income countries (e.g., India and Iran). This finding suggests that the emission inventories 466 
used in the M2GMI lacked adequate spatial information even at the model spatial resolution. 467 

 468 
Figure 2. The global maps of linear trends of annual tropospheric NO2 columns observed by OMI and 469 
simulated by M2GMI before and after using the Bayesian fusion. The model simulations are sampled at the 470 
exact time and location of OMI, and masked if OMI observations were unavailable due to data quality criteria 471 
used. The dots indicate statistically significant trends at 95% confidence interval. 472 
 473 
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3.1.2. Total HCHO columns 474 

We validate the simulated HCHO concentrations, drawing inspiration from the NO2 comparison 475 
framework. Figure 3 illustrates the absolute differences in simulated HCHO total columns with respect to OMI 476 
before and after the Bayesian data fusion application, in addition to AK. The prior model simulation has 477 
considerable skill in capturing the HCHO total columns over several areas, such as the Middle East, Europe, 478 
India, and East Asia. However, marked positive biases are discernible in regions with abundant isoprene 479 
emissions, such as the Amazon, southeast Asia, southeast U.S., and central Africa. This outcome is most likely 480 
due to an overestimation of biogenic emissions; various investigations have reported a predominantly positive 481 
bias (between a factor of 2 to 3) linked to isoprene emissions estimated by the Model of Emissions of Gases 482 
and Aerosols from Nature (MEGAN) using satellite measurements in isoprene-rich regions (e.g., Millet et al., 483 
2008; Stavrakou et al., 2009; Marais et al., 2012; Bauwens et al., 2016; Souri et al., 2020a). 484 

The simulated HCHO concentrations are relatively too low over pristine areas, such as high latitudes 485 
and over mountains. This may be attributed to an underestimation of CH4 in M2GMI because of assigning its 486 
values as background conditions (Strode et al. 2019). The integration of OMI satellite data has proven effective 487 
at reducing the biases in areas where HCHO concentrations are large because the signal-to-noise ratio tends to 488 
be large resulting in high AKs. Nonetheless, there are some adjustments over remote areas. In fact, OMI HCHO 489 
columns provide more information than OMI NO2 in remote areas because background HCHO concentrations 490 
are not extremely low due to evenly distributed methane and methanol concentrations. It is worth noting that 491 
the biases in M2GMI well exceed the expected OMI HCHO column biases, suggesting that the adjustments to 492 
HCHO improve the model. 493 
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 494 
Figure 3. Same as Figure 1 but for HCHO total columns. 495 

Figure 4 shows the global maps of HCHO total column trends derived from OMI, the prior M2GMI, 496 
and the posterior M2GMI. The widespread upward trends in HCHO over India are evident due to lack of 497 
effective efforts on cutting emissions related to volatile organic compounds (e.g., De Smedt et al., 2015; 498 
Kuttippurath et al., 2022; Bauwens et al., 2022). We observe HCHO columns going up in the northwestern US 499 
and over oil sands in Canada, possibly due to increased evergreen needleleaf forest and an increase in crude 500 
oil production (Zhu et al., 2017), respectively. The downward trends over the southeast US could be due to a 501 
decrease in drought events (Figure S5), which significantly affect isoprene emissions and the oxidation of 502 
VOCs (Duncan et al. 2009; Naimark et al., 2021; Wang et al., 2022). Alternatively, this downward trend could 503 
be partially due to the dampened HCHO production from VOC oxidation due to reduced NOx emissions 504 
(Marais et al., 2014; Wolfe et al., 2016; Souri et al., 2020c). In agreement with previous studies (Stavrakou et 505 
al. 2017, Souri et al., 2017, Shen et al., 2019, Souri et al., 2020a), HCHO columns increase over the NCP. 506 
HCHO columns tend to decrease over parts of central Africa (e.g., Democratic Republic of the Congo) and the 507 
Amazon basin potentially due to reduced deforestation rates (De Smedt et al., 2015; Jones et al., 2022). 508 
However, a large variability in the sign of HCHO trends over these regions is seen; Congo shows an opposite 509 
trend in comparison to that of Democratic Republic of the Congo; the northern portion of the Amazon basin 510 
increased. Encouragingly, the prior knowledge captures the upward trends over India and China along with 511 
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downward trends over central Africa. However, the magnitudes and spatial features of these trends are not 512 
entirely in line with respect to OMI.   513 

We do not fully understand HCHO trends over oceans. Part of these patterns might be caused by 514 
transport from nearby sources. For instance, areas around south Asia, South America, and Gulf of Mexico can 515 
be affected by the trends over the land in their proximity. However, trends over several areas, such as the 516 
southern part of the Indian Ocean, Australia, and Sahara, are not fully explainable by nearby sources. It is 517 
possible that certain patterns can be linked to climate variability or OH (Wolfe et al., 2019) affecting the 518 
oxidation of background VOCs; an in-depth understanding of HCHO trends over oceans certainly deserves a 519 
separate follow-up study. 520 

The posterior estimates better line up with the OMI trends, especially over the Amazon, India, and 521 
Central Africa (Text S3). The correction factors, however, worsen the trends over the southeast US and 522 
Canada. One possible explanation for this may be the varying errors from the data fusion algorithm, which 523 
tend to be reduced more in summertime than in wintertime due to the larger OMI HCHO signal. This results 524 
in some degree of inconsistencies of the linear trend over these regions with larger interannual and interdecadal 525 
variabilities.   526 

 527 
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Figure 4. Same as Figure 2 but for total HCHO columns. The linear trends in OMI SAO are smoothed by a 528 

median filter for better visualization.  529 

 530 

In sum, we saw that M2GMI NO2 and HCHO, both inputs to the parameterization of OH, were broadly 531 
better presented through the integration of OMI observations. Consequently, the improvement is expected to 532 
elevate the level of reliability in the experimental outcomes, particular in the context of SOHnitro and 533 
SOHform simulations. As for other important compounds, such as stratospheric columns, tropospheric O3, and 534 
water vapor, the comparison of the model with OMI total ozone columns shows a strong degree of agreement 535 
(<4% biases) with no significant trend in low-mid latitudes (Figure S1 and S2). The well-documented upward 536 
trend in tropospheric ozone in the northern hemisphere is well reproduced by M2GMI (Figure S3). We did not 537 
validate GEOS water vapor simulations, because of the use of MERRA2 reanalysis, which is thoroughly 538 
validated in Bosilovich et al. (2017). Furthermore, the comparison of integrated water vapor linear trends from 539 
our GEOS-5 run (2005-2019) with satellite data presented in Borger et al. (2022) shows a remarkable 540 
agreement (Figure S7-8). 541 

3.2. Added value of OMI on simulated tropospheric OH 542 

Here, we present the results from three OMI-related experiments (SOMInitro, SOMIform, 543 
SOMInitroform) to understand the effect of OMI adjustments made to M2GMI on TOH. Moreover, we 544 
calculate the response of TOH to NO2 and HCHO using Eq.5.  545 

Figure 5 consists of three columns, illustrating the percentage adjustments made by OMI NO2 using 546 
OI, the response of TOH to NO2 concentrations, and the simulated TOH derived from the SOMInitro 547 
experiment. The observed pattern of increments aligns with the improvements seen in Figure 1, with positive 548 
(negative) values indicating underestimation (overestimation) of M2GMI. Broadly, the overestimates 549 
dominate over underestimates resulting in the global tropospheric NO2 reduction by ~4%. Upon segregating 550 
the increments into four distinct seasons, it becomes evident that the adjustments do not uniformly apply to 551 
every season. This non-uniformity is primarily attributed to biases in M2GMI, influenced by biomass burning 552 
(box A, C) (Section 3.1.1), both of which exhibit strong seasonality. 553 

Deciphering the precise chemical processes influencing the response of OH to NO2 using a machine-554 
learning approach is challenging. However, it is widely recognized that reactive nitrogen has positive feedback 555 
on tropospheric OH through increased NO+HO2 and ozone (Murray et al., 2021; Zhao et al., 2020; He et al., 556 
2021). Considering NO2 as a surrogate for reactive nitrogen, similar tendencies are expected, as evident from 557 
the positive numbers from the sensitivity results obtained from offline calculations. The response of TOH to 558 
NO2 displays a pronounced seasonal cycle stemming mainly from photochemistry. It is believed to have some 559 
negative values for the sensitivity of OH to NO2 for extremely polluted regions due to radical termination 560 
through NO2+OH or ozone titration (Nicely et al., 2018). While we have not identified any negative values in 561 
the tropospheric domain, we have observed significant negative values of OH when perturbing NO2 at the 562 
model surface layer (Figure S26). This tendency highlights the ECCOH's ability to account for non-linearities.  563 

The impact of adjustments made by OMI NO2 on TOH is most substantial over regions where both 564 
the adjustments and TOH responses to NO2 are significant. For instance, the large adjustments made over 565 
Europe in DJF do not substantially affect TOH because the response value is low due to reduced 566 
photochemistry.  567 

On a global scale, changes to TOH are much milder (1% reduction) than those occurring regionally. 568 
For instance, we see substantial regional impacts (up to 20%) over many areas such as Central Africa, the 569 
Midwest US, the Middle East, and Eastern Europe. In light of the global reduction in OH, we observe global 570 
column average methane mixing ratios (XCH4) to increase by 10 ppbv on average (Text S4). This 571 
augmentation happens monotonically with an increase of 0.9 ppbv per year, ultimately resulting in ~15 ppbv 572 
difference at the end of the simulation (Figure S13). This is essentially due to the long lifetime of CH4. 573 
Likewise, the TOH reduction results in column average CO mixing ratio (XCO) enhancements which transpire 574 
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more locally than XCH4 does due to the shorter XCO lifetime. The XCO enhancements reach above 10 ppbv 575 
in Africa (Text S5). 576 

 577 
 578 

 579 
Figure 5. (first column) the percentage of adjustments applied to M2GMI NO2 fields within the troposphere 580 
suggested by OMI tropospheric NO2 columns for four different seasons, (second column) the semi-normalized 581 
response of tropospheric OH to tropospheric NO2 changes based on ECCOH offline calculations, and (third 582 
column) the resulting effect of the adjustments on tropospheric OH derived from the online simulation 583 
(SOMInitro). MAM, JJA, SON, and DJF are acronyms for March-April-May, June-July-August, September-584 
October-November, and December-January-February.  585 
 586 

Figure 6 demonstrates the same scheme as Figure 5 but with a focus on the SOMIform. Marked 587 
negative increments are found in regions characterized by elevated isoprene concentrations because of the 588 
overestimations of M2GMI biogenic isoprene emissions. Positive increments are mostly confined to high 589 
latitudes and certain areas of East Asia (Section 3.1.2).  590 

The interplay between HCHO and OH is contingent on the intricate dynamics governing HCHO 591 
production from the oxidation of VOCs and methane and HCHO loss from various chemical pathways (Valin 592 
et al., 2016; Wolfe et al., 2019). In remote areas where HOx is low, the prevailing sink of HCHO is through 593 
photolysis. Conversely, in more polluted areas, the reaction of HCHO+OH emerges as a competing loss 594 
pathway. Assuming a steady-state approximation, which is a reasonable assumption for pristine areas, the 595 
photolysis loss of HCHO dominates over the reaction with OH, resulting in a linear relationship between 596 
HCHO and OH. In other words, high (low) HCHO concentrations are indicative of high (low) TOH. It is 597 
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because of this that we use HCHO as a proxy of TOH in remote oceans regions. In regions characterized by 598 
heightened HOx levels, OH and HCHO become decoupled. Encouragingly, our implicit parametrization of OH 599 
has considerable skill at elucidating these intricate chemical tendencies; specifically, it reveals muted 600 
responses in regions with relatively tangible pollution levels, whereas positive responses are evident in oceanic 601 
regions. Like results obtained for NO2, the response map has a seasonal cycle due to photochemistry. 602 

Because of the muted response of TOH to HCHO over land, a substantial portion of geographical 603 
regions undergoing significant adjustments made by OMI becomes less important. TOH primarily changes 604 
over oceanic areas in a way that it decreases in low latitudes but increases in high latitudes. The largest 605 
reduction occurs in Amazon downwind where both increments and responses display large magnitudes. As a 606 
result of these changes, we see a marginal increase in XCH4 over tropics where OMI increments reduced TOH. 607 
The HCHO adjustment did not noticeably affect XCO either (Text S5). 608 

Modifications on HCHO by OMI do not signal substantial changes in background VOC oxidation 609 
through OH. In fact, TOH changes by this proxy are of an order of magnitude less than those by OMI NO2. 610 
This tendency is a result of two key factors: i) the adjustments wield their major influence over oceans where 611 
M2GMI has a fair performance, and ii) the amount of information obtained from OMI HCHO (i.e., AK) 612 
remains somewhat limited in remote areas due to low signal-to-noise ratios. 613 

Due to the rather independent nature of the TOH responses to NO2 and HCHO, where the former 614 
prevails over land and the latter over ocean, the concurrent adjustments of HCHO and NO2 using OMI (i.e., 615 
SOMInitroform) results in a rather linear combination of outcomes derived from SOMIform and SOMInitro 616 
(Figure S21). This linear outcome is characterized by a large decrease in TOH in low latitudes and a moderate 617 
increase in high latitudes resulting in a decrease of global TOH by ~1%.  618 

 619 
Figure 6. Same as Figure 5 but for HCHO. 620 
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3.3. Synergy of the model and satellite observations to explain TOH long-term trends 621 

3.3.1. The dominant contributor to TOH trends 622 

Here, we take advantage of the wealth of information from satellites and our well-characterized model 623 
used for the inputs to the parameterization of OH to rank the dominant contributor to TOH linear trends. By 624 
assuming that TOH follows a linear combination of each individual experiment designed to isolate OH 625 
driver/proxy (i.e., SOHnitro, SOHform, SOHtropozone, SOHstratozone, and SOHwv), wherein second (or 626 
higher) chemical feedback is disregarded, we can determine the biggest contributor to the TOH trend for each 627 
model grid box by finding which driver/proxy holds the largest absolute amount. We only label a grid if the 628 
absolute linear trend of the dominant driver/proxy surpasses the second most dominant one by 30%.  629 

Figure 7 illustrates the dominant factor explaining TOH trends. Several patterns can be found from 630 
this result: i) NO2 plays a significant role in TOH trends in various polluted areas, such as Asia and the Middle 631 
East; ii) the upward trend of TOH over the western Pacific Ocean is primarily attributed to increased 632 
tropospheric ozone from Asia (e.g., Lin et al., 2017); also, we observe a significant fraction of TOH over the 633 
tropical Atlantic Ocean increasing because of rising tropospheric ozone from Africa and Central/South 634 
America (Edwards et al., 2003); iii) HCHO is convolved with TOH trends over tropical oceans); iv) water 635 
vapor plays a pivotal role in shaping TOH trends over oceans across the globe; iv) stratospheric ozone columns 636 
are mostly significant over the South Pole due to the ozone healing process (Figure S2). The next sections will 637 
focus on the magnitude of these trends and the degree to which they can collectively explain the variance in 638 
TOH trends compared to Sanalysis.  639 

It is important to recognize that the analysis presented here should be interpreted as a relative 640 
assessment of a limited number of TOH drivers/proxies, rather than an exhaustive evaluation of all the physical 641 
and chemical processes that are tied to TOH. Nonetheless, the data presented offers valuable insights into the 642 
TOH trends and can be used as a basis for further research. 643 

 644 

 645 
Figure 7. The major contributor to TOH trends based on the largest absolute trends of TOH drivers/proxies 646 
above 30% of the second most dominant factor. 647 

3.3.2. Magnitudes of linear trends of TOH key inputs 648 

Figure 8 shows the linear TOH trends influenced by NO2 (SOHnitro), HCHO (SOHform), water 649 
vapor (SOHwv), tropospheric ozone (SOHtropozone), and stratospheric ozone (SOHstratozone). A 650 
discussion on each parameter will follow: 651 
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SOHnitro – The trends in TOH driven by NO2 show a strong correlation with the a posteriori trend 652 
discussed in Section 3.1.1, with low- and medium-income countries experiencing an increase in TOH due to 653 
rising NO2 levels, while high-income countries see a reduction in TOH due to the opposite trend. The most 654 
significant increase in TOH is observed over India, where both the NO2 trend and TOH sensitivity to NO2 are 655 
prominent. The most rapid regional decline in TOH seems to be over the NCP, because of NOx reductions that 656 
began after 2011. This finding is particularly noteworthy since M2GMI did not reproduce this trend without 657 
OMI as a constraint. The trend in TOH resulting from NO2 is predominantly anthropogenic in nature. This 658 
aligns with the findings of Chua et al. (2023), who observed that the impact of lightning NOx emissions on 659 
TOH trends was relatively minor. The global trend in TOH driven by NO2 is positive, but with considerable 660 
variation due to the significant disparities in how anthropogenic NOx emissions have changed. 661 

SOHform – We saw that HCHO was a reasonable proxy for TOH over oceans. Accordingly, the TOH 662 
trends primarily are observed over oceans, especially over the Pacific and the Indian Oceans. This lines up 663 
with the information gathered from the analysis of M2GMI and OMI HCHO observations (Figure 4). These 664 
upward HCHO trends, as discussed in Section 3.1.2, may be influenced by transport and dynamics. It is worth 665 
noting that the increase in TOH tied to this proxy (HCHO) is a global tendency, attributable to the relatively 666 
uniform rise in HCHO levels across oceans. 667 

SOHwv –Water vapor is a primary source of OH. The offline sensitivity of ECCOH captures this 668 
tendency (Figure S22). Accordingly, the TOH linear trends mirror those of IWV (Figure S8) with major 669 
increases over oceans. Similar to other experiments, the global TOH increases because of rising water vapor 670 
in the atmosphere. We acknowledge that understanding the reasons for changes in water vapor, which our 671 
model shows to agree with Broger et al. (2022), is a complex subject that goes beyond the scope of our research. 672 
It requires an in-depth understanding of the water cycle, evapotranspiration and precipitation rates, and the 673 
effect of temperature on the air's capacity to hold moisture, known as the Clausius Clapeyron relationship. 674 
However, a great deal of effort has been made to demonstrate that global water vapor levels have increased 675 
significantly in recent decades. This is based on reanalysis data, microwave satellites, and in-situ 676 
measurements (Trenberth et al., 2005; Chen and Liu, 2016; Wang and Liu, 2020; Allan et al., 2023), which is 677 
consistent with what our model shows, as it is well-constrained by MERRA2 reanalysis data. 678 

SOHtropozone – The impact of tropospheric ozone on OH formation is widely acknowledged 679 
(Lelieveld et al., 2016). Likewise, our ECCOH offline sensitivity tests have revealed a largely positive 680 
correlation between tropospheric ozone and OH (Figure S23). Consequently, the linear trends observed in 681 
TOH closely mirror those of tropospheric ozone in M2GMI (Figure S3). This tendency is especially noticeable 682 
in the Atlantic Ocean, East and Southeast Asia, as well as the northern region of the Pacific Ocean, where 683 
rising ozone levels have increased TOH. M2GMI suggests that tropospheric ozone levels in the southern 684 
hemisphere have decreased (Text S1), potentially leading to a downward trend in TOH, an observation that 685 
has yet to be fully confirmed (e.g., Thompson et al., 2021). This finding is especially important given past 686 
research indicating that models tend to exaggerate TOH asymmetry between the northern-southern 687 
hemispheres (Strode et al., 2015; Naik et al., 2013). The decrease in the simulated tropospheric ozone may 688 
offer a plausible explanation for this tendency, but further verification is deemed necessary. Like the previous 689 
experiments, tropospheric ozone on average leads to a global increase in TOH in 2005-2019. 690 

SOHstratozone –Stratospheric ozone columns reduce UV actinic fluxes leading to a reduction in 691 
tropospheric JO1D and thus OH, a tendency well reproduced by ECCOH (Figure S24). Nonetheless, 692 
stratospheric columns did not change noticeably in the tropics and mid-latitudes where OH production is 693 
important; consequently, the linear trends are close to zero or faintly negative due to a slight upward trend in 694 
the column. This tendency results in a rather uniform decrease of TOH globally. 695 
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 696 
Figure 8. The contribution of each TOH key input (addressed in this study) to TOH in 2005-2019. HCHO, 697 
NO2, and water vapor results are observationally constrained. Stratospheric ozone columns yielded comparable 698 
results compared to total ozone columns observed by OMI, however a large portion of tropospheric ozone 699 
trend has remained unverified in the southern hemisphere. ENSO affects the variability of TOH (Anderson et 700 
al., 2021), so we add a linear term to Eq.4 that is a function of the Niño 3.4 Index. This helps prevent ENSO 701 
from affecting the subsequent results.  702 

3.3.3. OMI contributions to TOH trends 703 

It is attractive to gauge the additional information gained from OMI on better representing the linear 704 
trends of TOH. To achieve this, we need to analyze three sets of model output: one with OMI scaling factors, 705 
one without OMI scaling factors, and one with the NO2 and HCHO drivers (i.e., SOHnitro and SOHform). The 706 
linear trends from these sets of model results are shown in Figure 9. The trends in the first column illustrate 707 
the overall effect of NO2 and HCHO on TOH trends, while the two other subplots isolate the effect of OMI 708 
from the prior information based on M2GMI. M2GMI plays a significant role in shaping the trends in 709 
SOHnitro, possibly due to the small discrepancy between the trends in OMI and M2GMI columns over regions 710 
where TOH is responsive to the driver. The most significant impact of OMI on NO2 is visible over NCP. 711 
Concerning HCHO, OMI slows down the upward trends in TOH over oceans which was suggested by M2GMI. 712 
In general, M2GMI largely dictates the overall shape of TOH trends driven by NO2 and HCHO possibly due 713 
to small difference between the model and OMI observations and/or limited informational content in OMI. 714 
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715 
Figure 9. The resulting effect of tropospheric NO2 and HCHO on TOH linear trends during 2005-2019 (first 716 
column); the contributions of OMI information added on top of the prior knowledge (M2GMI) (middle 717 
column); the effect of the prior knowledge on shaping TOH linear trends (last column). 718 

3.3.4. How well can these experiments explain the simulated trends collectively? 719 

We find that there is a good degree of correlation between the sum of the linear trends and those of 720 
Sanalysis (R2=0.65) indicating that a good portion of variability in TOH trend can be well explained by these 721 
experiments (Figure S25). Figure 10a shows the linear trend of TOH from Sanalysis in 2005-2019, and Figure 722 
10b shows the sum of the linear trends of the five OH key inputs. These maps are one of the most recent and 723 
detailed TOH trends available, relative to newer studies (Nicely et al., 2018; Zhao et al., 2020; Chua et al., 724 
2023). The TOH trend from Sanalysis varies greatly, where positive values are prevalent over northern parts 725 
of the Pacific Ocean, the Middle East, central Africa, and several regions over East Asia. Negative trends are 726 
found over the US, southeast Asia, and the southern part of the Pacific Ocean. The linear sum of the 727 
experiments strongly aligns with Sanalysis, particularly over the northern hemisphere, reinforcing that the 728 
selected parameters are sensible choices to reproduce a large portion of variance in TOH trend. 729 
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 730 
Figure 10. (a) The linear trends derived from Sanalysis experiment, the “best effort” to simulate the evolution 731 
of the CH4-CO-OH cycle, from 2005-2019. The statistically significant trends are superimposed by dots. (b) 732 
The linear summation of the five selected TOH influencers including water vapor, NO2, HCHO, stratospheric 733 
and tropospheric ozone, showing a strong degree of correspondence to the top panel, particularly in the 734 
northern hemisphere. (c) The unexplained portion of the TOH trends, which was not explainable by five 735 
experiments addressed in this research. 736 

 737 
Revealing the unexplained portion of TOH trends, which cannot be attributed to the selected TOH 738 

experiments, is necessary. Within the model, various physiochemical factors such as CO, CH4, dynamics, 739 
aerosols, and clouds can impact the TOH trends. Although we will not delve into these drivers in this study, 740 
we can identify unexplained parts of TOH trends by subtracting the sum of trends derived from the five primary 741 
TOH key inputs from those of Sanalysis, which discounts second (or higher) chemical feedback. Figure 10c 742 
displays the unexplained TOH trends between 2005 and 2019. It is readily apparent that there are uniform and 743 
significant downward trends in TOH in the tropics and subtropics where photochemistry is strong. This is most 744 
likely triggered by increasing concentrations of CH4, which is demonstrated in Figure S10, causing OH levels 745 
to decrease over time. It is very probable that the extent of these downward trends in TOH has been exaggerated 746 
in our model because of the simulated CH4 increasing too rapidly compared to in-situ observations. The 747 
overestimation of the upward trend in CH4 in our model compared to in-situ observations could be caused by 748 
the biases (~3%) in sources minus sinks and/or the initial condition. Consequently, the globally-averaged TOH 749 
trend derived from Sanalysis may be slower than it should be. Lastly, an unexplained strong upward trend in 750 
TOH over central Africa lingers. 751 
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4. Conclusion 752 

While a comprehensive multi-sensor/multi-species data assimilation and inverse modeling approach, 753 
such as Souri et al. (2020a), Miyazaki et al. (2020), and Souri et al. (2021), would be ideal for fully harnessing 754 
the potential of satellite information on improving multiple aspects of a model representing OH, it will be 755 
prohibitively expensive. Therefore, our simplified approach serves the purpose of understanding the first-order 756 
effects of observational adjustments to TOH drivers/proxies before committing substantial resources to the 757 
implementation/execution of an observationally-constrained, full-chemistry model. Here, we implemented the 758 
newest version of the parameterization of OH, following Anderson et al. (2022), within NASA’s GEOS model, 759 
presenting an opportunity to understand and mitigate TOH biases caused by misrepresentation of HCHO and 760 
NO2 concentrations with respect to the state-of-the-art OMI NO2 and HCHO retrievals using Bayesian data 761 
fusion, as well as to unravel the intricacies of TOH to its key inputs such as tropospheric and stratospheric 762 
ozone and water vapor.   763 

We found large positive biases in tropospheric NO2 columns in M2GMI, the archived model used as 764 
an input to the parameterization of OH, compared to OMI over Africa, Eastern Europe, and the Midwest US. 765 
Because of a large positive effect of NO2 (a surrogate for NOx) on TOH, a tendency well captured by our 766 
implicit parameterization, these overestimations introduced significant regional biases in TOH up to 20%, and 767 
a global overestimation of TOH by 1%. Consistent with former work, we saw distinct disparities in the sign 768 
of linear trends of tropospheric NO2 over high- and medium-income countries (i.e., negative) and low-income 769 
countries (i.e., positive). While M2GMI generally replicated these trends, notable deviations were identified 770 
over China leading to an erroneous trend of TOH.  771 

Pronounced inaccuracies with regards to both the simulated HCHO magnitude and trend in M2GMI 772 
were revealed by OMI over land. However, this proxy for OH was loosely connected to TOH in areas where 773 
photolysis was not the major sink of HCHO (Wolfe et al., 2019), especially over land. Over oceans, where 774 
HCHO and TOH were highly correlated, adjustments to M2GMI by OMI HCHO were relatively mild resulting 775 
in small alterations to TOH which was by an order of magnitude lower than those of NO2. These mild 776 
alterations speak to either an insufficient amount of information in OMI or the reasonable accuracy of M2GMI 777 
over pristine areas.  778 

In general, five variables including NO2, HCHO, water vapor, tropospheric ozone, and stratospheric 779 
ozone, could collectively account for 65% of the variance in TOH trends globally. To estimate this, we 780 
executed various modeling experiments to isolate the effect of NO2, HCHO, water vapor, tropospheric ozone, 781 
and stratospheric ozone on long-term trends of TOH in 2005-2019 at 1o×1o resolution. Except for tropospheric 782 
ozone, these variables were either constrained by observations or aligned with independent observations, 783 
boosting confidence in our trend results. Given the robust positive correlation between OH and NO2, HCHO, 784 
water vapor, and tropospheric ozone over regions where photochemistry was active, TOH trends influenced 785 
by these variables closely mirrored the trends in their respective drivers/proxies. For instance, high- and 786 
medium-income countries exhibited negative TOH trends driven by NO2. Rising tropospheric ozone over east 787 
and south Asia, heavily vetted by various observations (Guadel et al., 2018), led to an upswing in TOH over 788 
the Pacific Ocean. The trend of water vapor, greatly in agreement with independent observation (Broger et al., 789 
2022), was dominantly positive over oceans leading to further enhancement of TOH. Rising HCHO over 790 
Pacific and Indian Ocean suggested by constrained M2GMI was associated with increased TOH. The effect 791 
of stratospheric ozone on TOH was marginal in low and mid latitudes due to negligible changes in stratospheric 792 
ozone columns in M2GMI reconfirmed by OMI total ozone column observations.  793 

A large offset between our analysis experiment with varying CO and CH4 concentrations was observed 794 
after removing the sum of the linear trends derived from these five key experiments from the analysis 795 
experiment, indicating that our future research using ECCOH should include new experiments isolating the 796 
effects of CO, CH4, and transport (e.g., Gaubert et al., 2017; Zhao et al., 2020). Those experiments will refine 797 
the investigation of the unexplained portion of the TOH trend.  798 

The development of an effective parameterization of OH, that is capable of integrating advanced 799 
satellite-based gas retrievals and improved weather forecast models enabled us to unravel the convoluted 800 
response of TOH to various parameters. Nonetheless, it is important to recognize some of the limitations 801 
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associated with our work: first, the offline nature of the Bayesian data fusion algorithm makes the entire 802 
experiment blind to the interconnected responses of various compounds, such as ozone or aerosols, to 803 
adjustments to NO2 and HCHO. Despite this limitation, our work has provided valuable insights into the first-804 
order effects of adjustments on TOH key inputs. This can help quickly identify areas where our prior 805 
knowledge is least reliable to simulate TOH. Second, the machine learning algorithm employed for 806 
parameterizing OH is implicit and its response to drivers/proxies is complex, making it difficult to 807 
quantitatively verify against full chemistry models. However, by including a vast number of parameters in the 808 
parameterization, Anderson et al. (2022) boosted its ability to understand the convoluted chemistry of OH. 809 
This has allowed for reproducing OH for events not included in the training dataset (Anderson et al., 2022, 810 
2023, 2024).  811 

The longevity and stability of Aura's record of observations have played a significant role in 812 
constraining/assessing several important variables pertaining to TOH on a global scale. This is exemplified by 813 
the wealth of information obtained from OMI NO2, HCHO, water vapor, total ozone columns, and Microwave 814 
Limb Sounding (MLS) temperature and ozone, that are used directly or indirectly in our analysis.  However, 815 
as Aura's mission comes to an end, there will be a gap in the monitoring of these variables. TROPOMI, OMI's 816 
successor, can help fill this gap, but its record of observation is still short; therefore, it is important to invest 817 
in research to harmonize data from multiple satellite observations such as OMI and TROPOMI (e.g., Hilboll 818 
et al., 2013). This is because each sensor can have different biases and spatial representativity, which can lead 819 
to inconsistencies and potentially conflicting values if they are used together.  820 

Acknowledgements 821 

This research was supported by the National Aeronautics and Space Administration (NASA) Aura Mission 822 
project science funds. We thank Gonzalo Gonzalez Abad for sharing OMI HCHO v4 data. 823 

Data availability 824 

Satellite data can be accessed for Level 2 OMI tropospheric NO2 at 825 
https://doi.org/10.5067/MEASURES/MINDS/DATA204 (Lamsal et al., 2022), Level 2 OMI total ozone 826 
columns at https://disc.gsfc.nasa.gov/datasets/OMTO3_003/summary (Bhartia, 2005), OMI SAO HCHO at 827 
https://waps.cfa.harvard.edu/sao_atmos/data/omi_hcho/OMI-HCHO-L2/ (Gonzalez Abad, 2023), MOPITT 828 
CO (https://doi.org/10.5067/TERRA/MOPITT/MOP03JM_L3.008) (NASA LARC, 2000), OMI/MLS TO3 829 
at https://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/data/tco_omimls.nc (Ziemke, 2023). 830 
In-situ CO and CH4 observations can be obtained from 831 
https://gml.noaa.gov/dv/data/index.php?category=Greenhouse%2BGases (Helmig et al., 2021; Lan et 832 
al.,2021). 833 
MERRA2-GMI model outputs can be downloaded from https://acd-834 
ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/ (NASA Goddard Space Flight Center, 2023). 835 

Code availability 836 

OI-SAT-GMI python package developed for this research can be found from  837 
https://doi.org/10.5281/zenodo.10520136 (Souri, 2024).  838 
GEOS-Quickchem used to run the modeling experiments encompassing ECCOH can be found from 839 
https://github.com/GEOS-ESM/QuickChem.git. 840 
GEOS model can be obtained from https://github.com/GEOS-ESM/GEOSgcm.git. 841 
Offline ECCOH calculations to derive the sensitivity of TOH to different drivers/proxies can be obtained 842 
from https://doi.org/10.5281/zenodo.10685100 843 

Authors contributions 844 

A.H.S and B.N.D designed the research. A.H.S analyzed the data, conducted the simulations, made all the 845 
figures, and wrote the original manuscript. B.N.D helped with conceptualization, fund raising, and writing. 846 
S.A.S helped configuring the model and interpreting the results. M.E.M and D.C.A implemented the improved 847 
ECCOH module into GEOS-5 Quickchem. J.L. thoroughly validated the model with respect to CO and CH4 848 
observations. B.W. provided an improved CO emission inventory. L.D.O provided M2GMI and helped 849 

https://doi.org/10.5067/MEASURES/MINDS/DATA204
https://disc.gsfc.nasa.gov/datasets/OMTO3_003/summary
https://waps.cfa.harvard.edu/sao_atmos/data/omi_hcho/OMI-HCHO-L2/
https://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/data/tco_omimls.nc
https://gml.noaa.gov/dv/data/index.php?category=Greenhouse%2BGases
https://doi.org/10.5281/zenodo.10520136
https://github.com/GEOS-ESM/QuickChem.git
https://github.com/GEOS-ESM/GEOSgcm.git
https://doi.org/10.5281/zenodo.10685100


28 
 

interpret it. Z.Z. provided improved wetland CH4 emissions. All the authors contributed to the discussion and 850 
edited the paper. 851 

Competing interests 852 

B.N.D is a member of the editorial board of Atmospheric Chemistry and Physics. 853 

  854 



29 
 

References 855 

 856 
Allan, R. P., Willett, K. M., John, V. O., and Trent, T.: Global Changes in Water Vapor 1979–2020, J. 857 

Geophys. Res. Atmos., 127, e2022JD036728, https://doi.org/10.1029/2022JD036728, 2022. 858 
Anderson, D. C., Duncan, B. N., Fiore, A. M., Baublitz, C. B., Follette-Cook, M. B., Nicely, J. M., and Wolfe, 859 

G. M.: Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-860 
scale climate features and their influence on OH through its dynamical and photochemical drivers, 861 
Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, 2021. 862 

Anderson, D. C., Duncan, B. N., Nicely, J. M., Liu, J., Strode, S. A., and Follette-Cook, M. B.: Technical note: 863 
Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first 864 
steps toward assessing the feasibility of a global observation strategy, Atmos. Chem. Phys., 23, 6319–865 
6338, https://doi.org/10.5194/acp-23-6319-2023, 2023. 866 

Anderson, D. C., Follette-Cook, M. B., Strode, S. A., Nicely, J. M., Liu, J., Ivatt, P. D., and Duncan, B. N.: A 867 
machine learning methodology for the generation of a parameterization of the hydroxyl radical, 868 
Geosci. Model Dev., 15, 6341–6358, https://doi.org/10.5194/gmd-15-6341-2022, 2022. 869 

Bacmeister, J. T., Suarez, M. J., and Robertson, F. R.: Rain Reevaporation, Boundary Layer–Convection 870 
Interactions, and Pacific Rainfall Patterns in an AGCM, J. Atmos. Sci., 63, 3383–3403, 871 
https://doi.org/10.1175/JAS3791.1, 2006. 872 

Baublitz, C. B., Fiore, A. M., Ludwig, S. M., Nicely, J. M., Wolfe, G. M., Murray, L. T., Commane, R., Prather, 873 
M. J., Anderson, D. C., Correa, G., Duncan, B. N., Follette-Cook, M., Westervelt, D. M., Bourgeois, 874 
I., Brune, W. H., Bui, T. P., DiGangi, J. P., Diskin, G. S., Hall, S. R., McKain, K., Miller, D. O., 875 
Peischl, J., Thames, A. B., Thompson, C. R., Ullmann, K., and Wofsy, S. C.: An observation-based, 876 
reduced-form model for oxidation in the remote marine troposphere,  Proc. Natl. Acad. Sci., 120, 877 
e2209735120, https://doi.org/10.1073/pnas.2209735120, 2023. 878 

Bauwens, M., Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., 879 
Wiedinmyer, C., Kaiser, J. W., Sindelarova, K., and Guenther, A.: Nine years of global hydrocarbon 880 
emissions based on source inversion of OMI formaldehyde observations, Atmos. Chem. Phys., 16, 881 
10133–10158, https://doi.org/10.5194/acp-16-10133-2016, 2016. 882 

Bauwens, M., Verreyken, B., Stavrakou, T., Müller, J.-F., and Smedt, I. D.: Spaceborne evidence for 883 
significant anthropogenic VOC trends in Asian cities over 2005–2019, Environ. Res. Lett., 17, 884 
015008, https://doi.org/10.1088/1748-9326/ac46eb, 2022. 885 

Bhartia, Pawan K., (2005), OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003, 886 
Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), 887 
Accessed: June 2023, 10.5067/Aura/OMI/DATA2024 888 

Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., 889 
Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., 890 
Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current 891 
status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 892 
5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015. 893 

Borger, C., Beirle, S., and Wagner, T.: Analysis of global trends of total column water vapour from multiple 894 
years of OMI observations, Atmos. Chem. Phys., 22, 10603–10621, https://doi.org/10.5194/acp-22-895 
10603-2022, 2022. 896 

Bosilovich, M. G., Robertson, F. R., Takacs, L., Molod, A., and Mocko, D.: Atmospheric Water Balance and 897 
Variability in the MERRA-2 Reanalysis, J. Clim., 30, 1177–1196, https://doi.org/10.1175/JCLI-D-16-898 
0338.1, 2017. 899 

Bousquet, P., Hauglustaine, D. A., Peylin, P., Carouge, C., and Ciais, P.: Two decades of OH variability as 900 
inferred by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. 901 
Phys., 5, 2635–2656, https://doi.org/10.5194/acp-5-2635-2005, 2005. 902 

Brune, W. H., Miller, D. O., Thames, A. B., Allen, H. M., Apel, E. C., Blake, D. R., Bui, T. P., Commane, R., 903 
Crounse, J. D., Daube, B. C., Diskin, G. S., DiGangi, J. P., Elkins, J. W., Hall, S. R., Hanisco, T. F., 904 



30 
 

Hannun, R. A., Hintsa, E. J., Hornbrook, R. S., Kim, M. J., McKain, K., Moore, F. L., Neuman, J. A., 905 
Nicely, J. M., Peischl, J., Ryerson, T. B., St. Clair, J. M., Sweeney, C., Teng, A. P., Thompson, C., 906 
Ullmann, K., Veres, P. R., Wennberg, P. O., and Wolfe, G. M.: Exploring Oxidation in the Remote 907 
Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res. Atmos., 125, 908 
e2019JD031685, https://doi.org/10.1029/2019JD031685, 2020. 909 

Brune, W. H., Miller, D. O., Thames, A. B., Brosius, A. L., Barletta, B., Blake, D. R., Blake, N. J., Chen, G., 910 
Choi, Y., Crawford, J. H., Digangi, J. P., Diskin, G., Fried, A., Hall, S. R., Hanisco, T. F., Huey, G. 911 
L., Hughes, S. C., Kim, M., Meinardi, S., Montzka, D. D., Pusede, S. E., Schroeder, J. R., Teng, A., 912 
Tanner, D. J., Ullmann, K., Walega, J., Weinheimer, A., Wisthaler, A., and Wennberg, P. O.: 913 
Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 914 
118854, https://doi.org/10.1016/j.atmosenv.2021.118854, 2022. 915 

Canty, T. P., Hembeck, L., Vinciguerra, T. P., Anderson, D. C., Goldberg, D. L., Carpenter, S. F., Allen, D. 916 
J., Loughner, C. P., Salawitch, R. J., and Dickerson, R. R.: Ozone and NOx chemistry in the eastern 917 
US: evaluation of CMAQ/CB05 with satellite (OMI) data, Atmos. Chem. Phys., 15, 10965–10982, 918 
https://doi.org/10.5194/acp-15-10965-2015, 2015. 919 

Chen, B. and Liu, Z.: Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of 920 
ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite, J. Geophys. Res. Atmos., 921 
121, 11,442-11,462, https://doi.org/10.1002/2016JD024917, 2016. 922 

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., 923 
Higurashi, A., and Nakajima, T.: Tropospheric Aerosol Optical Thickness from the GOCART Model 924 
and Comparisons with Satellite and Sun Photometer Measurements, J. Atmos. Sci., 59, 461–483, 925 
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002. 926 

Choi, S., Lamsal, L. N., Follette-Cook, M., Joiner, J., Krotkov, N. A., Swartz, W. H., Pickering, K. E., 927 
Loughner, C. P., Appel, W., Pfister, G., Saide, P. E., Cohen, R. C., Weinheimer, A. J., and Herman, J. 928 
R.: Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns, 929 
Atmos. Meas. Tech., 13, 2523–2546, https://doi.org/10.5194/amt-13-2523-2020, 2020. 930 

Choi, Y. and Souri, A. H.: Chemical condition and surface ozone in large cities of Texas during the last decade: 931 
Observational evidence from OMI, CAMS, and model analysis, Remote Sens. Environ., 168, 90–101, 932 
https://doi.org/10.1016/j.rse.2015.06.026, 2015a. 933 

Choi, Y. and Souri, A. H.: Seasonal behavior and long-term trends of tropospheric ozone, its precursors and 934 
chemical conditions over Iran: A view from space, Atmos. Environ., 106, 232–240, 935 
https://doi.org/10.1016/j.atmosenv.2015.02.012, 2015b. 936 

Chua, G., Naik, V., and Horowitz, L. W.: Exploring the drivers of tropospheric hydroxyl radical trends in the 937 
Geophysical Fluid Dynamics Laboratory AM4.1 atmospheric chemistry–climate model, Atmos. 938 
Chem. Phys., 23, 4955–4975, https://doi.org/10.5194/acp-23-4955-2023, 2023. 939 

Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s 940 
Glitter, J. Opt. Soc. Am., JOSA, 44, 838–850, https://doi.org/10.1364/JOSA.44.000838, 1954. 941 

Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Vullo, E. L., Solazzo, E., Monforti-Ferrario, F., Olivier, 942 
J., and Vignati, E.: EDGAR v5.0 Greenhouse Gas Emissions, 2019. 943 

de Foy, B., Lu, Z., and Streets, D. G.: Satellite NO2 retrievals suggest China has exceeded its NOx reduction 944 
goals from the twelfth Five-Year Plan, Sci. Rep., 6, 35912, https://doi.org/10.1038/srep35912, 2016. 945 

De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N., Lerot, C., 946 
Gielen, C., Vigouroux, C., Hermans, C., Fayt, C., Veefkind, P., Müller, J.-F., and Van Roozendael, 947 
M.: Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from 948 
combined OMI and GOME-2 observations, Atmos. Chem. Phys., 15, 12519–12545, 949 
https://doi.org/10.5194/acp-15-12519-2015, 2015. 950 

Dhame, S., Taschetto, A. S., Santoso, A., and Meissner, K. J.: Indian Ocean warming modulates global 951 
atmospheric circulation trends, Clim. Dyn., 55, 2053–2073, https://doi.org/10.1007/s00382-020-952 
05369-1, 2020. 953 

Duncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G., Hurwitz, M. M., and 954 
Pickering, K. E.: A space-based, high-resolution view of notable changes in urban NOx pollution 955 



31 
 

around the world (2005–2014), J. Geophys. Res. Atmos., 121, 976–996, 956 
https://doi.org/10.1002/2015JD024121, 2016. 957 

Duncan, B. N., Logan, J. A., Bey, I., Megretskaia, I. A., Yantosca, R. M., Novelli, P. C., Jones, N. B., and 958 
Rinsland, C. P.: Global budget of CO, 1988–1997: Source estimates and validation with a global 959 
model, J. Geophys. Res. Atmos., 112, https://doi.org/10.1029/2007JD008459, 2007b. 960 

Duncan, B. N., Strahan, S. E., Yoshida, Y., Steenrod, S. D., and Livesey, N.: Model study of the cross-961 
tropopause transport of biomass burning pollution, Atmos. Chem. Phys., 7, 3713–3736, 962 
https://doi.org/10.5194/acp-7-3713-2007, 2007a. 963 

Duncan, B. N., Yoshida, Y., Damon, M. R., Douglass, A. R., and Witte, J. C.: Temperature dependence of 964 
factors controlling isoprene emissions, Geophys. Res. Lett., 36, 965 
https://doi.org/10.1029/2008GL037090, 2009. 966 

Duncan, B., Portman, D., Bey, I., and Spivakovsky, C.: Parameterization of OH for efficient computation in 967 
chemical tracer models, J. Geophys. Res. Atmos, 105, 12259–12262, 968 
https://doi.org/10.1029/1999JD901141, 2000. 969 

Edwards, D. P., Lamarque, J.-F., Attié, J.-L., Emmons, L. K., Richter, A., Cammas, J.-P., Gille, J. C., Francis, 970 
G. L., Deeter, M. N., Warner, J., Ziskin, D. C., Lyjak, L. V., Drummond, J. R., and Burrows, J. P.: 971 
Tropospheric ozone over the tropical Atlantic: A satellite perspective, J. Geophys. Res. Atmos., 108, 972 
https://doi.org/10.1029/2002JD002927, 2003. 973 

Elshorbany, Y. F., Duncan, B. N., Strode, S. A., Wang, J. S., and Kouatchou, J.: The description and validation 974 
of the computationally Efficient CH4–CO–OH (ECCOHv1.01) chemistry module for 3-D model 975 
applications, Geosci. Model Dev., 9, 799–822, https://doi.org/10.5194/gmd-9-799-2016, 2016. 976 

Fasnacht, Z., Vasilkov, A., Haffner, D., Qin, W., Joiner, J., Krotkov, N., Sayer, A. M., and Spurr, R.: A 977 
geometry-dependent surface Lambertian-equivalent reflectivity product for UV–Vis retrievals – Part 978 
2: Evaluation over open ocean, Atmos. Meas. Tech., 12, 6749–6769, https://doi.org/10.5194/amt-12-979 
6749-2019, 2019. 980 

Ferrario, F. M., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Vullo, E. L., Solazzo, E., Olivier, J., and 981 
Vignati, E.: EDGAR v6.0 Greenhouse Gas Emissions, 2021. 982 

Fiore, A. M., Mickley, L. J., Zhu, Q., and Baublitz, C. B.: Climate and Tropospheric Oxidizing Capacity, 983 
Annu. Rev. Earth. Planet. Sci. , 52, null, https://doi.org/10.1146/annurev-earth-032320-090307, 2024. 984 

Gaubert, B., Worden, H. M., Arellano, A. F. J., Emmons, L. K., Tilmes, S., Barré, J., Martinez Alonso, S., 985 
Vitt, F., Anderson, J. L., Alkemade, F., Houweling, S., and Edwards, D. P.: Chemical Feedback From 986 
Decreasing Carbon Monoxide Emissions, Geophys. Res. Lett., 44, 9985–9995, 987 
https://doi.org/10.1002/2017GL074987, 2017. 988 

Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C., Coheur, P.-F., 989 
Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., Ebojie, F., Foret, G., Garcia, O., Granados-Muñoz, M. 990 
J., Hannigan, J. W., Hase, F., Hassler, B., Huang, G., Hurtmans, D., Jaffe, D., Jones, N., Kalabokas, 991 
P., Kerridge, B., Kulawik, S., Latter, B., Leblanc, T., Le Flochmoën, E., Lin, W., Liu, J., Liu, X., 992 
Mahieu, E., McClure-Begley, A., Neu, J. L., Osman, M., Palm, M., Petetin, H., Petropavlovskikh, I., 993 
Querel, R., Rahpoe, N., Rozanov, A., Schultz, M. G., Schwab, J., Siddans, R., Smale, D., Steinbacher, 994 
M., Tanimoto, H., Tarasick, D. W., Thouret, V., Thompson, A. M., Trickl, T., Weatherhead, E., 995 
Wespes, C., Worden, H. M., Vigouroux, C., Xu, X., Zeng, G., and Ziemke, J.: Tropospheric Ozone 996 
Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and 997 
global atmospheric chemistry model evaluation, Elem. Sci. Anth., 6, 39, 998 
https://doi.org/10.1525/elementa.291, 2018. 999 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., 1000 
Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, 1001 
V., Conaty, A., Silva, A. M. da, Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, 1002 
J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, 1003 
B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), 1004 
J. Clim., 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. 1005 



32 
 

Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using 1006 
the fourth-generation global fire emissions database (GFED4), J. Geophys. Res. Biogeosci., 118, 317–1007 
328, https://doi.org/10.1002/jgrg.20042, 2013. 1008 

Gonzalez Abad, (2003), OMI SAO HCHO Total Column L2 Swath V4, Cambridge, MA, USA, Accessed: 1009 
May 2023, https://waps.cfa.harvard.edu/sao_atmos/data/omi_hcho/OMI-HCHO-L2/ 1010 

González Abad, G., Liu, X., Chance, K., Wang, H., Kurosu, T. P., and Suleiman, R.: Updated Smithsonian 1011 
Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval, Atmos. 1012 
Meas. Tech., 8, 19–32, https://doi.org/10.5194/amt-8-19-2015, 2015. 1013 

Hassler, B., McDonald, B. C., Frost, G. J., Borbon, A., Carslaw, D. C., Civerolo, K., Granier, C., Monks, P. 1014 
S., Monks, S., Parrish, D. D., Pollack, I. B., Rosenlof, K. H., Ryerson, T. B., von Schneidemesser, E., 1015 
and Trainer, M.: Analysis of long-term observations of NOx and CO in megacities and application to 1016 
constraining emissions inventories, Geophys. Res. Lett., 43, 9920–9930, 1017 
https://doi.org/10.1002/2016GL069894, 2016. 1018 

He, J., Naik, V., and Horowitz, L. W.: Hydroxyl Radical (OH) Response to Meteorological Forcing and 1019 
Implication for the Methane Budget, Geophys. Res. Lett., 48, e2021GL094140, 1020 
https://doi.org/10.1029/2021GL094140, 2021. 1021 

Helmig, D., Hueber, J., Tans, P., University Of Colorado Institute Of Arctic And Alpine Research 1022 
(INSTAAR), & NOAA GML CCGG Group. (2021). University of Colorado Institute of Arctic and 1023 
Alpine Research (INSTAAR) Flask-Air Sample Measurements of Atmospheric Non Methane 1024 
Hydrocarbons Mole Fractions from the NOAA GML Carbon Cycle Surface Network at Global and 1025 
Regional Background Sites, 2004-2016 (Version 2021.05.04) [Data set]. NOAA Global Monitoring 1026 
Laboratory. https://doi.org/10.15138/6AV8-GS57 1027 

Hickman, J. E., Andela, N., Tsigaridis, K., Galy-Lacaux, C., Ossohou, M., and Bauer, S. E.: Reductions in 1028 
NO2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil 1029 
fuel use, 2005 to 2017, Proc. Natl. Acad. Sci., 118, e2002579118, 1030 
https://doi.org/10.1073/pnas.2002579118, 2021. 1031 

Hilboll, A., Richter, A., and Burrows, J. P.: Long-term changes of tropospheric NO2 over megacities derived 1032 
from multiple satellite instruments, Atmos. Chem. Phys., 13, 4145–4169, https://doi.org/10.5194/acp-1033 
13-4145-2013, 2013. 1034 

Holmes, C. D., Prather, M. J., Søvde, O. A., and Myhre, G.: Future methane, hydroxyl, and their uncertainties: 1035 
key climate and emission parameters for future predictions, Atmos. Chem. Phys., 13, 285–302, 1036 
https://doi.org/10.5194/acp-13-285-2013, 2013. 1037 

Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R. C.: 1038 
Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space 1039 
based-constraints, Atmos. Chem. Phys., 12, 7779–7795, https://doi.org/10.5194/acp-12-7779-2012, 1040 
2012. 1041 

Jaeglé, L., Steinberger, L., V. Martin, R., and Chance, K.: Global partitioning of NO x sources using satellite 1042 
observations: Relative roles of fossil fuel combustion , biomass burning and soil emissions, Faraday 1043 
Discuss., 130, 407–423, https://doi.org/10.1039/B502128F, 2005. 1044 

Jin, X. and Holloway, T.: Spatial and temporal variability of ozone sensitivity over China observed from the 1045 
Ozone Monitoring Instrument, J. Geophys. Res. Atmos., 120, 7229–7246, 1046 
https://doi.org/10.1002/2015JD023250, 2015. 1047 

Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, 1048 
C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., 1049 
and Le Quéré, C.: Global and Regional Trends and Drivers of Fire Under Climate Change, Rev. 1050 
Geophys., 60, e2020RG000726, https://doi.org/10.1029/2020RG000726, 2022. 1051 

Jung, J., Souri, A. H., Wong, D. C., Lee, S., Jeon, W., Kim, J., and Choi, Y.: The Impact of the Direct Effect 1052 
of Aerosols on Meteorology and Air Quality Using Aerosol Optical Depth Assimilation During the 1053 
KORUS-AQ Campaign, J. Geophys. Res. Atmos, 124, 8303–8319, 1054 
https://doi.org/10.1029/2019JD030641, 2019. 1055 



33 
 

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., 1056 
Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., 1057 
Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO2 and NO2 1058 
pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, 1059 
https://doi.org/10.5194/acp-16-4605-2016, 2016. 1060 

Kuttippurath, J., Abbhishek, K., Gopikrishnan, G. S., and Pathak, M.: Investigation of long–term trends and 1061 
major sources of atmospheric HCHO over India, Environ. Chall., 7, 100477, 1062 
https://doi.org/10.1016/j.envc.2022.100477, 2022. 1063 

Kwon, H.-A., Abad, G. G., Nowlan, C. R., Chong, H., Souri, A. H., Vigouroux, C., Röhling, A., Kivi, R., 1064 
Makarova, M., Notholt, J., Palm, M., Winkler, H., Té, Y., Sussmann, R., Rettinger, M., Mahieu, E., 1065 
Strong, K., Lutsch, E., Yamanouchi, S., Nagahama, T., Hannigan, J. W., Zhou, M., Murata, I., Grutter, 1066 
M., Stremme, W., De Mazière, M., Jones, N., Smale, D., and Morino, I.: Validation of OMPS Suomi 1067 
NPP and OMPS NOAA-20 Formaldehyde Total Columns With NDACC FTIR Observations, Earth 1068 
Space Sci., 10, e2022EA002778, https://doi.org/10.1029/2022EA002778, 2023. 1069 

Lamsal, L. N., Duncan, B. N., Yoshida, Y., Krotkov, N. A., Pickering, K. E., Streets, D. G., and Lu, Z.: U.S. 1070 
NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from 1071 
the Ozone Monitoring Instrument (OMI), Atmos. Environ., 110, 130–143, 1072 
https://doi.org/10.1016/j.atmosenv.2015.03.055, 2015. 1073 

Lamsal, L. N., Krotkov, N. A., Vasilkov, A., Marchenko, S., Qin, W., Yang, E.-S., Fasnacht, Z., Joiner, J., 1074 
Choi, S., Haffner, D., Swartz, W. H., Fisher, B., and Bucsela, E.: Ozone Monitoring Instrument (OMI) 1075 
Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments, 1076 
Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, 2021. 1077 

Lamsal, Lok N., Nickolay A. Krotkov, Sergey V. Marchenko, Joanna Joiner, Luke Oman, Alexander Vasilkov, 1078 
Bradford Fisher, Wenhan Qin, Eun-Su Yang, Zachary Fasnacht, Sungyeon Choi, Peter Leonard, and 1079 
David Haffner (2022), OMI/Aura NO2 Tropospheric, Stratospheric & Total Columns MINDS 1-Orbit 1080 
L2 Swath 13 kmx24 km, NASA Goddard Space Flight Center, Goddard Earth Sciences Data and 1081 
Information Services Center (GES DISC), Accessed: May 2023, 1082 
10.5067/MEASURES/MINDS/DATA204 1083 

Lan, X., J.W. Mund, A.M. Crotwell, M.J. Crotwell, E. Moglia, M. Madronich, D. Neff and K.W. Thoning 1084 
(2023), Atmospheric Methane Dry Air Mole Fractions from the NOAA GML Carbon Cycle 1085 
Cooperative Global Air Sampling Network, 1983-2022, Version: 2023-08-28, 1086 
https://doi.org/10.15138/VNCZ-M766 1087 

Lawrence, M. G., Jöckel, P., and von Kuhlmann, R.: What does the global mean OH concentration tell us?, 1088 
Atmos. Chem. Phys., 1, 37–49, https://doi.org/10.5194/acp-1-37-2001, 2001. 1089 

Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget 1090 
and reactivity, Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, 1091 
2016. 1092 

Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M., and Tonnesen, G.: US surface ozone trends and extremes 1093 
from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and 1094 
climate, Atmos. Chem. Phys., 17, 2943–2970, https://doi.org/10.5194/acp-17-2943-2017, 2017. 1095 

Marais, E. A., Jacob, D. J., Kurosu, T. P., Chance, K., Murphy, J. G., Reeves, C., Mills, G., Casadio, S., Millet, 1096 
D. B., Barkley, M. P., Paulot, F., and Mao, J.: Isoprene emissions in Africa inferred from OMI 1097 
observations of formaldehyde columns, Atmos. Chem. Phys., 12, 6219–6235, 1098 
https://doi.org/10.5194/acp-12-6219-2012, 2012. 1099 

Marquardt, D. W.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc. Indust. Appl. 1100 
Math., 11, 431–441, https://doi.org/10.1137/0111030, 1963. 1101 

Miller, D. O. and Brune, W. H.: Investigating the Understanding of Oxidation Chemistry Using 20 Years of 1102 
Airborne OH and HO2 Observations, J. Geophys. Res. Atmos., 127, e2021JD035368, 1103 
https://doi.org/10.1029/2021JD035368, 2022. 1104 

Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, T.-M., Kurosu, T. P., Chance, K., Heald, C. L., and Guenther, 1105 
A.: Spatial distribution of isoprene emissions from North America derived from formaldehyde column 1106 



34 
 

measurements by the OMI satellite sensor, J. Geophys. Res. Atmos., 113, 1107 
https://doi.org/10.1029/2007JD008950, 2008. 1108 

Miyazaki, K., Bowman, K. W., Yumimoto, K., Walker, T., and Sudo, K.: Evaluation of a multi-model, multi-1109 
constituent assimilation framework for tropospheric chemical reanalysis, Atmos. Chem. Phys., 20, 1110 
931–967, https://doi.org/10.5194/acp-20-931-2020, 2020. 1111 

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general 1112 
circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, 1113 
https://doi.org/10.5194/gmd-8-1339-2015, 2015. 1114 

Moorthi, S. and Suarez, M. J.: Relaxed Arakawa-Schubert. A Parameterization of Moist Convection for 1115 
General Circulation Models, Mon. Weather Rev., 120, 978–1002, https://doi.org/10.1175/1520-1116 
0493(1992)120<0978:RASAPO>2.0.CO;2, 1992. 1117 

Murray, L. T., Fiore, A. M., Shindell, D. T., Naik, V., and Horowitz, L. W.: Large uncertainties in global 1118 
hydroxyl projections tied to fate of reactive nitrogen and carbon,  Proc. Natl. Acad. Sci., 118, 1119 
e2115204118, https://doi.org/10.1073/pnas.2115204118, 2021. 1120 

Murray, L. T., Logan, J. A., and Jacob, D. J.: Interannual variability in tropical tropospheric ozone and OH: 1121 
The role of lightning, J. Geophys. Res. Atmos., 118, 11,468-11,480, 1122 
https://doi.org/10.1002/jgrd.50857, 2013. 1123 

Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather, M. J., Young, P. 1124 
J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R., Eyring, 1125 
V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., van Noije, 1126 
T. P. C., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R., Shindell, D. T., Stevenson, D. S., 1127 
Strode, S., Sudo, K., Szopa, S., and Zeng, G.: Preindustrial to present-day changes in tropospheric 1128 
hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model 1129 
Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 5277–5298, 1130 
https://doi.org/10.5194/acp-13-5277-2013, 2013. 1131 

Naimark, J. G., Fiore, A. M., Jin, X., Wang, Y., Klovenski, E., and Braneon, C.: Evaluating Drought Responses 1132 
of Surface Ozone Precursor Proxies: Variations With Land Cover Type, Precipitation, and 1133 
Temperature, Geophys. Res. Lett., 48, e2020GL091520, https://doi.org/10.1029/2020GL091520, 1134 
2021. 1135 

NASA Goddard Space Flight Center: MERRA2 GMI, NASA, https://acd-445 1136 
ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/, last access: 12 Feb. 2023. 1137 

NASA LARC. (2000) MOPITT CO gridded monthly means (Near and Thermal Infrared Radiances) V008, 1138 
NASA Langley Atmospheric Science Data Center DAAC, 1139 
https://doi.org/10.5067/TERRA/MOPITT/MOP03JM_L3.008 1140 

Naus, S., Montzka, S. A., Pandey, S., Basu, S., Dlugokencky, E. J., and Krol, M.: Constraints and biases in a 1141 
tropospheric two-box model of OH, Atmos. Chem. Phys., 19, 407–424, https://doi.org/10.5194/acp-1142 
19-407-2019, 2019. 1143 

Nguyen, N. H., Turner, A. J., Yin, Y., Prather, M. J., and Frankenberg, C.: Effects of Chemical Feedbacks on 1144 
Decadal Methane Emissions Estimates, Geophys. Res. Lett., 47, e2019GL085706, 1145 
https://doi.org/10.1029/2019GL085706, 2020. 1146 

Nicely, J. M., Canty, T. P., Manyin, M., Oman, L. D., Salawitch, R. J., Steenrod, S. D., Strahan, S. E., and 1147 
Strode, S. A.: Changes in Global Tropospheric OH Expected as a Result of Climate Change Over the 1148 
Last Several Decades, J. Geophys. Res. Atmos, 123, 10,774-10,795, 1149 
https://doi.org/10.1029/2018JD028388, 2018. 1150 

Nicely, J. M., Duncan, B. N., Hanisco, T. F., Wolfe, G. M., Salawitch, R. J., Deushi, M., Haslerud, A. S., 1151 
Jöckel, P., Josse, B., Kinnison, D. E., Klekociuk, A., Manyin, M. E., Marécal, V., Morgenstern, O., 1152 
Murray, L. T., Myhre, G., Oman, L. D., Pitari, G., Pozzer, A., Quaglia, I., Revell, L. E., Rozanov, E., 1153 
Stenke, A., Stone, K., Strahan, S., Tilmes, S., Tost, H., Westervelt, D. M., and Zeng, G.: A machine 1154 
learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. 1155 
Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, 2020. 1156 



35 
 

Nielsen, J. E., Pawson, S., Molod, A., Auer, B., da Silva, A. M., Douglass, A. R., Duncan, B., Liang, Q., 1157 
Manyin, M., Oman, L. D., Putman, W., Strahan, S. E., and Wargan, K.: Chemical Mechanisms and 1158 
Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model, J. Adv. 1159 
Model. Earth Syst., 9, 3019–3044, https://doi.org/10.1002/2017MS001011, 2017. 1160 

Nowlan, C. R., González Abad, G., Kwon, H.-A., Ayazpour, Z., Chan Miller, C., Chance, K., Chong, H., Liu, 1161 
X., O’Sullivan, E., Wang, H., Zhu, L., De Smedt, I., Jaross, G., Seftor, C., and Sun, K.: Global 1162 
Formaldehyde Products From the Ozone Mapping and Profiler Suite (OMPS) Nadir Mappers on 1163 
Suomi NPP and NOAA-20, Earth Space Sci., 10, e2022EA002643, 1164 
https://doi.org/10.1029/2022EA002643, 2023. 1165 

Orbe, C., Oman, L. D., Strahan, S. E., Waugh, D. W., Pawson, S., Takacs, L. L., and Molod, A. M.: Large-1166 
Scale Atmospheric Transport in GEOS Replay Simulations, J. Adv. Model. Earth Syst., 9, 2545–2560, 1167 
https://doi.org/10.1002/2017MS001053, 2017. 1168 

Parrish, D. F. and Derber, J. C.: The National Meteorological Center’s Spectral Statistical-Interpolation 1169 
Analysis System, Mon. Weather Rev., 120, 1747–1763, https://doi.org/10.1175/1520-1170 
0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992. 1171 

Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas, E. L., Lintner, B. R., Stephens, B. B., Xiang, B., 1172 
Elkins, J. W., Fraser, P. J., Ghosh, A., Hintsa, E. J., Hurst, D. F., Ishijima, K., Krummel, P. B., Miller, 1173 
B. R., Miyazaki, K., Moore, F. L., Mühle, J., O’Doherty, S., Prinn, R. G., Steele, L. P., Takigawa, M., 1174 
Wang, H. J., Weiss, R. F., Wofsy, S. C., and Young, D.: Observational evidence for interhemispheric 1175 
hydroxyl-radical parity, Nature, 513, 219–223, https://doi.org/10.1038/nature13721, 2014. 1176 

Pinardi, G., Van Roozendael, M., Hendrick, F., Theys, N., Abuhassan, N., Bais, A., Boersma, F., Cede, A., 1177 
Chong, J., Donner, S., Drosoglou, T., Dzhola, A., Eskes, H., Frieß, U., Granville, J., Herman, J. R., 1178 
Holla, R., Hovila, J., Irie, H., Kanaya, Y., Karagkiozidis, D., Kouremeti, N., Lambert, J.-C., Ma, J., 1179 
Peters, E., Piters, A., Postylyakov, O., Richter, A., Remmers, J., Takashima, H., Tiefengraber, M., 1180 
Valks, P., Vlemmix, T., Wagner, T., and Wittrock, F.: Validation of tropospheric NO2 column 1181 
measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations, 1182 
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, 2020. 1183 

Qin, W., Fasnacht, Z., Haffner, D., Vasilkov, A., Joiner, J., Krotkov, N., Fisher, B., and Spurr, R.: A geometry-1184 
dependent surface Lambertian-equivalent reflectivity product for UV–Vis retrievals – Part 1: 1185 
Evaluation over land surfaces using measurements from OMI at 466 nm, Atmos. Meas. Tech., 12, 1186 
3997–4017, https://doi.org/10.5194/amt-12-3997-2019, 2019. 1187 

Ren, X., Olson, J. R., Crawford, J. H., Brune, W. H., Mao, J., Long, R. B., Chen, Z., Chen, G., Avery, M. A., 1188 
Sachse, G. W., Barrick, J. D., Diskin, G. S., Huey, L. G., Fried, A., Cohen, R. C., Heikes, B., 1189 
Wennberg, P. O., Singh, H. B., Blake, D. R., and Shetter, R. E.: HOx chemistry during INTEX-A 1190 
2004: Observation, model calculation, and comparison with previous studies, J. Geophys. Res. Atmos, 1191 
113, https://doi.org/10.1029/2007JD009166, 2008. 1192 

Reuter, M., Buchwitz, M., Hilboll, A., Richter, A., Schneising, O., Hilker, M., Heymann, J., Bovensmann, H., 1193 
and Burrows, J. P.: Decreasing emissions of NOx relative to CO2 in East Asia inferred from satellite 1194 
observations, Nature Geosci., 7, 792–795, https://doi.org/10.1038/ngeo2257, 2014. 1195 

Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D., O’Doherty, S., Lunt, M. F., Ganesan, A. 1196 
L., Manning, A. J., Simmonds, P. G., Salameh, P. K., Harth, C. M., Mühle, J., Weiss, R. F., Fraser, P. 1197 
J., Steele, L. P., Krummel, P. B., McCulloch, A., and Park, S.: Role of atmospheric oxidation in recent 1198 
methane growth,  Proc. Natl. Acad. Sci., 114, 5373–5377, https://doi.org/10.1073/pnas.1616426114, 1199 
2017. 1200 

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, WORLD SCIENTIFIC, 1201 
Oxford, 2000.  1202 

Sandu, A. and Chai, T.: Chemical Data Assimilation—An Overview, Atm., 2, 426–463, 1203 
https://doi.org/10.3390/atmos2030426, 2011. 1204 

Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., 1205 
Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, 1206 
P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., 1207 



36 
 

Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, 1208 
M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. 1209 
M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., 1210 
Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., 1211 
Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O’Doherty, S., Parker, R. J., Peng, C., Peng, S., 1212 
Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, 1213 
A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, 1214 
F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., 1215 
Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, 1216 
B., Zhu, Q., Zhu, Q., and Zhuang, Q.: The Global Methane Budget 2000–2017, Earth Syst. Sci. Data., 1217 
12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020. 1218 

Shen, L., Jacob, D. J., Zhu, L., Zhang, Q., Zheng, B., Sulprizio, M. P., Li, K., De Smedt, I., González Abad, 1219 
G., Cao, H., Fu, T.-M., and Liao, H.: The 2005–2016 Trends of Formaldehyde Columns Over China 1220 
Observed by Satellites: Increasing Anthropogenic Emissions of Volatile Organic Compounds and 1221 
Decreasing Agricultural Fire Emissions, Geophys. Res. Lett., 46, 4468–4475, 1222 
https://doi.org/10.1029/2019GL082172, 2019. 1223 

Souri, A. H., Chance, K., Bak, J., Nowlan, C. R., González Abad, G., Jung, Y., Wong, D. C., Mao, J., and Liu, 1224 
X.: Unraveling pathways of elevated ozone induced by the 2020 lockdown in Europe by an 1225 
observationally constrained regional model using TROPOMI, Atmos. Chem. Phys., 21, 18227–18245, 1226 
https://doi.org/10.5194/acp-21-18227-2021, 2021. 1227 

Souri, A. H., Choi, Y., Jeon, W., Li, X., Pan, S., Diao, L., and Westenbarger, D. A.: Constraining NOx 1228 
emissions using satellite NO2 measurements during 2013 DISCOVER-AQ Texas campaign, Atmos. 1229 
Environ., 131, 371–381, https://doi.org/10.1016/j.atmosenv.2016.02.020, 2016. 1230 

Souri, A. H., Choi, Y., Jeon, W., Woo, J.-H., Zhang, Q., and Kurokawa, J.: Remote sensing evidence of decadal 1231 
changes in major tropospheric ozone precursors over East Asia, J. Geophys. Res. Atmos., 122, 2474–1232 
2492, https://doi.org/10.1002/2016JD025663, 2017. 1233 

Souri, A. H., Choi, Y., Kodros, J. K., Jung, J., Shpund, J., Pierce, J. R., Lynn, B. H., Khain, A., and Chance, 1234 
K.: Response of Hurricane Harvey’s rainfall to anthropogenic aerosols: A sensitivity study based on 1235 
spectral bin microphysics with simulated aerosols, Atmos. Res., 242, 104965, 1236 
https://doi.org/10.1016/j.atmosres.2020.104965, 2020b. 1237 

Souri, A. H., Johnson, M. S., Wolfe, G. M., Crawford, J. H., Fried, A., Wisthaler, A., Brune, W. H., Blake, D. 1238 
R., Weinheimer, A. J., Verhoelst, T., Compernolle, S., Pinardi, G., Vigouroux, C., Langerock, B., 1239 
Choi, S., Lamsal, L., Zhu, L., Sun, S., Cohen, R. C., Min, K.-E., Cho, C., Philip, S., Liu, X., and 1240 
Chance, K.: Characterization of errors in satellite-based HCHO&thinsp;∕&thinsp;NO2 tropospheric 1241 
column ratios with respect to chemistry, column-to-PBL translation, spatial representation, and 1242 
retrieval uncertainties, Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-1243 
2023, 2023. 1244 

Souri, A. H., Nowlan, C. R., González Abad, G., Zhu, L., Blake, D. R., Fried, A., Weinheimer, A. J., Wisthaler, 1245 
A., Woo, J.-H., Zhang, Q., Chan Miller, C. E., Liu, X., and Chance, K.: An inversion of NOx and non-1246 
methane volatile organic compound (NMVOC) emissions using satellite observations during the 1247 
KORUS-AQ campaign and implications for surface ozone over East Asia, Atmos. Chem. Phys., 20, 1248 
9837–9854, https://doi.org/10.5194/acp-20-9837-2020, 2020a. 1249 

Souri, A. H., Nowlan, C. R., Wolfe, G. M., Lamsal, L. N., Chan Miller, C. E., Abad, G. G., Janz, S. J., Fried, 1250 
A., Blake, D. R., Weinheimer, A. J., Diskin, G. S., Liu, X., and Chance, K.: Revisiting the effectiveness 1251 
of HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high resolution airborne 1252 
remote sensing observations in a high ozone episode during the KORUS-AQ campaign, Atmos. 1253 
Environ., 224, 117341, https://doi.org/10.1016/j.atmosenv.2020.117341, 2020c. 1254 

Souri, A. H., OI-SAT-GMI (0.1.0). Zenodo. https://doi.org/10.5281/zenodo.10520136, 2024 1255 
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones, D. B. A., 1256 

Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. a. M., Prather, M. J., Wofsy, S. C., and McElroy, 1257 



37 
 

M. B.: Three-dimensional climatological distribution of tropospheric OH: Update and evaluation, J. 1258 
Geophys. Res. Atmos., 105, 8931–8980, https://doi.org/10.1029/1999JD901006, 2000. 1259 

Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L., and Guenther, 1260 
A.: Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde 1261 
columns through 2003–2006, Atmos. Chem. Phys., 9, 3663–3679, https://doi.org/10.5194/acp-9-1262 
3663-2009, 2009. 1263 

Strode, S. A., Duncan, B. N., Yegorova, E. A., Kouatchou, J., Ziemke, J. R., and Douglass, A. R.: Implications 1264 
of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate 1265 
models, Atmos. Chem. Phys., 15, 11789–11805, https://doi.org/10.5194/acp-15-11789-2015, 2015. 1266 

Strode, S. A., Wang, J. S., Manyin, M., Duncan, B., Hossaini, R., Keller, C. A., Michel, S. E., and White, J. 1267 
W. C.: Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric 1268 
chlorine, Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020, 2020. 1269 

Strode, S. A., Ziemke, J. R., Oman, L. D., Lamsal, L. N., Olsen, M. A., and Liu, J.: Global changes in the 1270 
diurnal cycle of surface ozone, Atmos. Environ., 199, 323–333, 1271 
https://doi.org/10.1016/j.atmosenv.2018.11.028, 2019. 1272 

Thompson, A. M., Stauffer, R. M., Wargan, K., Witte, J. C., Kollonige, D. E., and Ziemke, J. R.: Regional and 1273 
Seasonal Trends in Tropical Ozone From SHADOZ Profiles: Reference for Models and Satellite 1274 
Products, J. Geophys. Res. Atmos., 126, e2021JD034691, https://doi.org/10.1029/2021JD034691, 1275 
2021. 1276 

Trenberth, K. E., Fasullo, J., and Smith, L.: Trends and variability in column-integrated atmospheric water 1277 
vapor, Clim. Dyn., 24, 741–758, https://doi.org/10.1007/s00382-005-0017-4, 2005. 1278 

Turner, A. J., Frankenberg, C., Wennberg, P. O., and Jacob, D. J.: Ambiguity in the causes for decadal trends 1279 
in atmospheric methane and hydroxyl, Proc. Natl. Acad. Sci., 114, 5367–5372, 1280 
https://doi.org/10.1073/pnas.1616020114, 2017. 1281 

Valin, L. C., Fiore, A. M., Chance, K., and González Abad, G.: The role of OH production in interpreting the 1282 
variability of CH2O columns in the southeast U.S., J. Geophys. Res. Atmos, 121, 478–493, 1283 
https://doi.org/10.1002/2015JD024012, 2016. 1284 

van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., 1285 
Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., 1286 
and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on 1287 
merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 1288 
3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017. 1289 

Vinken, G. C. M., Boersma, K. F., Maasakkers, J. D., Adon, M., and Martin, R. V.: Worldwide biogenic soil 1290 
NOx emissions inferred from OMI NO2 observations, Atmos. Chem. Phys., 14, 10363–10381, 1291 
https://doi.org/10.5194/acp-14-10363-2014, 2014. 1292 

Wang, R. and Liu, Y.: Recent declines in global water vapor from MODIS products: Artifact or real trend?, 1293 
Remote Sens. Environ., 247, 111896, https://doi.org/10.1016/j.rse.2020.111896, 2020. 1294 

Wang, Y., Lin, N., Li, W., Guenther, A., Lam, J. C. Y., Tai, A. P. K., Potosnak, M. J., and Seco, R.: Satellite-1295 
derived constraints on the effect of drought stress on biogenic isoprene emissions in the southeastern 1296 
US, Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, 2022. 1297 

Wolfe, G. M., Nicely, J. M., St. Clair, J. M., Hanisco, T. F., Liao, J., Oman, L. D., Brune, W. B., Miller, D., 1298 
Thames, A., González Abad, G., Ryerson, T. B., Thompson, C. R., Peischl, J., McKain, K., Sweeney, 1299 
C., Wennberg, P. O., Kim, M., Crounse, J. D., Hall, S. R., Ullmann, K., Diskin, G., Bui, P., Chang, 1300 
C., and Dean-Day, J.: Mapping hydroxyl variability throughout the global remote troposphere via 1301 
synthesis of airborne and satellite formaldehyde observations,  Proc. Natl. Acad. Sci., 116, 11171–1302 
11180, https://doi.org/10.1073/pnas.1821661116, 2019. 1303 

Yienger, J. J. and Levy II, H.: Empirical model of global soil-biogenic NOχ emissions, J. Geophys. Res. 1304 
Atmos, 100, 11447–11464, https://doi.org/10.1029/95JD00370, 1995. 1305 

Zhang, Q., He, K., and Huo, H.: Cleaning China’s air, Nature, 484, 161–162, https://doi.org/10.1038/484161a, 1306 
2012. 1307 



38 
 

Zhang, Z., Poulter, B., Feldman, A. F., Ying, Q., Ciais, P., Peng, S., and Li, X.: Recent intensification of 1308 
wetland methane feedback, Nat. Clim. Chang., 13, 430–433, https://doi.org/10.1038/s41558-023-1309 
01629-0, 2023. 1310 

Zhang, Z., Zimmermann, N. E., Kaplan, J. O., and Poulter, B.: Modeling spatiotemporal dynamics of global 1311 
wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and 1312 
uncertainties, Biogeosciences, 13, 1387–1408, https://doi.org/10.5194/bg-13-1387-2016, 2016. 1313 

Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., Canadell, J. G., Jackson, R. B., 1314 
Hauglustaine, D. A., Szopa, S., Stavert, A. R., Abraham, N. L., Archibald, A. T., Bekki, S., Deushi, 1315 
M., Jöckel, P., Josse, B., Kinnison, D., Kirner, O., Marécal, V., O’Connor, F. M., Plummer, D. A., 1316 
Revell, L. E., Rozanov, E., Stenke, A., Strode, S., Tilmes, S., Dlugokencky, E. J., and Zheng, B.: Inter-1317 
model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric 1318 
methane over the 2000–2016 period, Atmos. Chem. Phys., 19, 13701–13723, 1319 
https://doi.org/10.5194/acp-19-13701-2019, 2019. 1320 

Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin, M. I., Canadell, J. G., Jackson, R. B., 1321 
Deushi, M., Jöckel, P., Kinnison, D., Kirner, O., Strode, S., Tilmes, S., Dlugokencky, E. J., and Zheng, 1322 
B.: On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget, 1323 
Atmos. Chem. Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-2020, 2020. 1324 

Zheng, B., Chevallier, F., Yin, Y., Ciais, P., Fortems-Cheiney, A., Deeter, M. N., Parker, R. J., Wang, Y., 1325 
Worden, H. M., and Zhao, Y.: Global atmospheric carbon monoxide budget 2000–2017 inferred from 1326 
multi-species atmospheric inversions, Earth Syst. Sci. Data., 11, 1411–1436, 1327 
https://doi.org/10.5194/essd-11-1411-2019, 2019. 1328 

Zhu, L., Mickley, L. J., Jacob, D. J., Marais, E. A., Sheng, J., Hu, L., Abad, G. G., and Chance, K.: Long-term 1329 
(2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI 1330 
satellite instrument: Evidence of changing emissions of volatile organic compounds, Geophys. Res. 1331 
Lett., 44, 7079–7086, https://doi.org/10.1002/2017GL073859, 2017. 1332 

Zhu, Q., Laughner, J. L., and Cohen, R. C.: Combining Machine Learning and Satellite Observations to Predict 1333 
Spatial and Temporal Variation of near Surface OH in North American Cities, Environ. Sci. Technol., 1334 
56, 7362–7371, https://doi.org/10.1021/acs.est.1c05636, 2022. 1335 

Ziemke, J. R., OMI/MLS tropospheric ozone columns, Greenbelt, MD, USA, Accessed: May 2023, 1336 
https://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/data/tco_omimls.nc 1337 


