
Hydroxyl radical (OH) is the most important oxidant in the troposphere that governs the 

oxidation power, while its spatial-temporal patterns are yet to be clear at present. The authors of 

this study developed an integrated data- and model-driven approach to predict the convoluted 

response of TOH to its five proxies, which include NO2, HCHO, H2O, Trop O3, and Strat O3. 

They investigated the trends and drivers of global, hemispheric, and regional OH from 2005 to 

2019. Overall, this study has provided interesting results, which will help deepen our 

understanding of the changes in global tropospheric OH over the past decades. I have several 

concerns about the method that could impact the robustness of the results. 

1) Is there any method to evaluate the response of OH to different input parametrizations that 

were calculated by Eq. (5)? These semi-normalized sensitivities laid the foundation for 

understanding the impacts from different proxies/drivers on tropospheric OH. I would like to see 

some aspects of “evaluation” or at least a comparison with previous other studies. 

Response 

We thank the reviewer for their constructive comments and the major point they raised about the 

evaluation of the response of OH to several parameters. We would like to address this comment 

in three ways: the nature of this statistical approach vs. an explicit full chemistry model, qualitative 

agreement of the tendency of the sensitivity with theoretical expectations, and providing evidence of 

the capability of the framework at picking up non-linearities. 

 

The nature of this statistical approach vs. an explicit full chemistry model: 

 

The limitation of statistical approaches in fully resolving “cause and effect” has been widely 

recognized in literature. Similarly, in the case of the ECCOH, we cannot entirely disentangle 

causation from correlation based solely on establishing a relationship between the distribution of 

OH and its influencers. As discussed in the paper and related references, the aim of the ECCOH 

framework is not to replicate all physical capabilities of a physics-based model, but rather to 

provide a first-order sensitivity experiment capable of qualitatively studying the effect of the 

biases in the input data on OH. This allows for more systematic strategies for full chemistry runs. 

 

Robust evaluation of the sensitivities are mainly limited by the implicit nature of statistical 

methods. The implicit nature of statistical methods makes it difficult to identify a specific 

physiochemical process in a full chemistry model that is representative of the perturbation made 

to the OH parameterization. For example, perturbation of NO2 in ECCOH represents the 

empirical relationship between OH and NO, which involves multiple processes, including 

NO+HO2 (RO2), NO2+OH, the formation of ozone, aerosol HOx update, and radiation; thus, it is 

not restricted to specific chemical reaction. However, we do not know to what extent these 

processes are implicitly included in the perturbations. Similarly, the perturbation of HCHO does 

not necessarily represent the HCHO+OH reaction but rather where this compound can be used 

as a proxy for OH (discussed later).  

 

Despite these challenges, it is important to recognize that the aim of ECCOH was not uniquely to 

improve the estimation of OH. Instead, the parameterization includes various input parameters 

(~ 27 inputs) so that the machine-learning algorithm could better understand the relationship 

between OH and its drivers for a wide range of atmospheric conditions. Because of this reason 

ECCOH has been able to represent OH distributions for extreme events (such as El Nino) that 

were not used during the training (Anderson et al., 2022, 2023, 2024). Without a proper 



establishment of the sensitivities (i.e., right OH prediction for a wrong reason), we would not 

have been able to reproduce OH distributions for such events.  

 

ECCOH exhibits greater flexibility than some statistical approaches that use simpler assumptions 

(Valin et al., 2016; Murray et al., 2021; Wolfe et al., 2019; Pimlot et al., 2022), which may not 

fully capture complexities associated with the real atmosphere such as the effect of clouds and 

surface albedo or be applicable over high HOx conditions. For example, the global 

approximation of OH as function of reactive nitrogen formulated in Murray et al. (2021) may not 

be applicable for a wide range of atmospheric conditions. Anderson et al. (2022) carefully selected 

a vast number of OH-related parameters allowing us to better represent the response of OH to its 

drivers over both land and ocean and should be considered an improvement towards enhancing 

statistical-based OH studies.  

 

The sensitivities qualitatively agree with our  theoretical expectations: 

 

NO2 – It is believed to have positive feedback of reactive nitrogen on tropospheric OH based on 

both physics-based and statistical studies (Zhao et al., 2019, 2020, He et al. 2021, Chau et al., 

2023; Naik et al., 2013; Murray et al., 2013; Strode et al., 2015; Nicely et al., 2018). Likewise, our 

perturbations in NO2, as a surrogate for reactive nitrogen, causes TOH to increase. This increase 

happens in the tropospheric region. We will show in this response letter that non-linearities occur 

when we do the perturbations only at the surface layer where NOx is elevated because of different 

reactions such as ozone titration and NO2+OH which can reduce OH.  

 

HCHO –We used this compound as a proxy (and not a driver) of OH following the studies of 

Valin et al. (2016) and Wolfe et al. (2019). The equation provided by Wolfe et al. (2019) follows: 

 

 
where the numerator is the production of HCHO from the oxidation of background VOCs, and 

the denominator is the sink of HCHO through both photolysis and the reaction with OH. In 

remote regions where jHCHO>>kHCHO+OH[OH], we can safely ignore the reaction of HCHO+OH, 

and assuming the minor source (Po) to be zero, [HCHO] and [OH] become linearly correlated 

suggesting that if see a higher amount of HCHO, there has been more OH to oxidize background 

VOCs, assuming the slope stays constant (varies only by 5% based on Wolfe et al. (2016)). In high 

HOx regions, [HCHO] and [OH] becomes decoupled. This is what we essentially see from the 

perturbations in HCHO meaning the ECCOH response coincides with the theoretical 

expectation.  

 

Stratospheric ozone – More stratospheric ozone hampers actinic flux leading to less production 

of jO1D resulting in a negative relationship between this quantity and OH. 

 

Tropospheric ozone and water vapor – Both are primary source of OH and show positive 

feedback on OH. The magnitude of the positive sign can be influenced by the underlying surface 

albedo, clouds, or other implicit processes. 

 

Now, the pivotal question is can we quantitatively assess these numbers? Since the perturbation 

of OH drivers in ECCOH are a snapshot of perturbing one variable without considering the 

response of unperturbed ones, we think it is challenging to replicate the identical experiments in 

a full chemistry model. Besides, the implicit nature of ECCOH makes it difficult to know exactly 



which physiochemical processes we should collectively pick from a full chemistry model to 

compare with. Therefore, our confidence in perturbation has been mostly achieved through the 

“weight of evidence”. As a result, all experiments done in our draft should be seen from a 

statistical and somewhat qualitative perspective. 

 

Providing evidence of the capability of the framework at picking up non-linearities 

 

This first reviewer raised a valid concern about the perturbation of NO2. They pointed out that 

we did not have any negative values, but it is expected to see negative tendencies over extremely 

polluted regions where NOx can hamper OH levels. There are two reasons behind this. First, we 

focused on the tropospheric region where the majority of vertical grid boxes do not experience 

elevated NOx levels. Second, the M2GMI grid resolution is not spatially fine enough to fully 

resolve non-linear chemistry. However, this is not a major concern for the methane-CO-OH 

studies, as we intend to use ECCOH for climate studies at coarse resolution and not urban air 

quality applications. To demonstrate the capability of ECCOH at capturing negative sensitivities 

for more polluted regions, we applied the perturbation at the surface and calculated the changes 

in the surface OH mixing ratio. We indeed saw large negative values over polluted regions 

(shown later), which would be expected from a combined effect of ozone titration and NO2+OH 

in a full chemistry model. 

 

The capability of XGBoost at solving non-linear tendencies has been proven extensively (e.g., 

Johnson and Zhang, 2014: https://arxiv.org/pdf/1109.0887). 

 

Modifications 

 

To account for the reviewer’s comment, we added more caveats throughout the paper and also 

included the perturbation experiments related to surface NO2. 

 

In the abstract, the description of the results is already qualitative. But to clarify, we added: “This 

innovative module helps efficiently predict the convoluted response of TOH to its drivers/proxies in a 

statistical way.” 

 

In section 2.2.3, right after introducing the method to get the perturbations: 

 

“It is crucial to acknowledge that ECCOH has established an implicit relationship between OH and 

various input parameters statistically. These perturbations could involve a range of physiochemical 

processes that are challenging to fully decipher. For example, the perturbation of NO2, acting as a 

surrogate of reactive nitrogen, involves chemical reactions that include reactive nitrogen like NO+HO2 

and NO2+OH, ozone formation, aerosol HOx uptake, and radiation. Nonetheless, it may not be feasible 

to understand to what extent these processes have been represented by ECCOH. Therefore, the presented 

perturbations in this work should be viewed qualitatively.” 

 

In the results and discussion: 

 

“Deciphering the precise chemical processes influencing the response of OH to NO2 using a 

machine-learning approach is challenging. However, it is widely recognized that reactive nitrogen has 

positive feedback on tropospheric OH through increased NO+HO2 and ozone (Murray et al., 2021; Zhao 

et al., 2020; He et al., 2021). Considering NO2 as a surrogate for reactive nitrogen, similar tendencies are 

expected, as evident from the positive numbers from the sensitivity results obtained from offline 

calculations. The response of TOH to NO2 displays a pronounced seasonal cycle stemming mainly from 

https://arxiv.org/pdf/1109.0887


photochemistry. It is believed to have some negative values for the sensitivity of OH to NO2 for 

extremely polluted regions due to radical termination through NO2+OH or ozone titration (Nicely et al., 

2018). While we have not identified any negative values in the tropospheric domain, we have observed 

significant negative values of OH when perturbing NO2 at the model surface layer (Figure S*). This 

tendency highlights the ECCOH's ability to account for non-linearities.” 

 

 
Figure S*. The sensitivity of surface OH to NO2 perturbations in offline ECCOH in four different 

seasons.  

 

To emphasize the relationship between HCHO and OH, we copy our discussion regarding 

HCHO response map here: “The interplay between HCHO and OH is contingent on the intricate 

dynamics governing HCHO production from the oxidation of VOCs and methane and HCHO loss from 

various chemical pathways (Valin et al., 2016; Wolfe et al., 2019). In remote areas where HOx is low, the 

prevailing sink of HCHO is through photolysis. Conversely, in more polluted areas, the reaction of 

HCHO+OH emerges as a competing loss pathway. Assuming a steady-state approximation, which is a 

reasonable assumption for pristine areas, the photolysis loss of HCHO dominates over the reaction with 

OH, resulting in a linear relationship between HCHO and OH. In other words, high (low) HCHO 

concentrations are indicative of high (low) TOH. It is because of this that we use HCHO as a proxy of 

TOH in remote oceans regions. In regions characterized by heightened HOx levels, OH and HCHO 

become decoupled. Encouragingly, our implicit parametrization of OH has considerable skill at 

elucidating these intricate chemical tendencies; specifically, it reveals muted responses in regions with 

relatively tangible pollution levels, whereas positive responses are evident in oceanic regions. Like 

results obtained for NO2, the response map has a seasonal cycle due to photochemistry.” The qualitative 

description of the response map for other factors had been provided in section 3.3.2.  

 

In the conclusion section: 

 

“The development of an effective parameterization of OH, that is capable of integrating 

advanced satellite-based gas retrievals and improved weather forecast models enabled us to unravel the 

convoluted response of TOH to various parameters. Nonetheless, it is important to recognize some of the 

limitations associated with our work: first, the offline nature of the Bayesian data fusion algorithm makes 

the entire experiment blind to the interconnected responses of various compounds, such as ozone or 

aerosols, to adjustments to NO2 and HCHO. Despite this limitation, our work has provided valuable 



insights into the first-order effects of adjustments on TOH key inputs. This can help quickly identify 

areas where our prior knowledge is least reliable to simulate TOH. Second, the machine learning 

algorithm employed for parameterizing OH is implicit and its response to drivers/proxies is complex, 

making it difficult to quantitatively verify against full chemistry models. However, by including a vast 

number of parameters in the parameterization, Anderson et al. (2022) boosted its ability to understand 

the convoluted chemistry of OH. This has allowed for reproducing OH for events not included in the 

training dataset (Anderson et al., 2022, 2023, 2024).“ 

 

2) The input parameters were perturbed by the scaling factors of 1.1 and 0.9 in the ECCOH 

offline framework. What about the impacts of these assumed scaling factors? NOx and VOCs 

emissions might change by over 10% between 2005 and 2019, in both developed countries with 

advanced air pollution control and developing countries with rapid economic growth. 

Response 

Thank you for your comment. All the results in the paper are derived from the online ECCOH 

framework, where various variables are dynamically changing over time (beyond 10%). The 

purpose of the offline perturbation was to approximate the response of OH to each driver/proxy 

in order to facilitate the interpretation of our results. The perturbation maps do not drive the 

results, but they can be used for sanity check. By using the first-order Taylor expansion, one can 

estimate the change of OH resulting from the changes in driver/proxy. 

 

ΔOH = Sdriver*(ΔX/X), 

 

where Sdriver is the first-order perturbation and X is a driver concentration. This means that we 

could approximate the third column in Figure 5 by multiplying the sensitivity map by the relative 

changes of NO2. The sensitivity is independent of how the driver changes as it tries to 

approximate the first-order derivative. As mentioned, the ultimate results are driven by multiple 

variables changing in the CH4-CO-OH system. Even though in the model framework, higher-

order changes across all variables are affecting the results, having a first-order approximation is 

enough to understand how ECCOH works. When we applied the above equation to values in 

Figure 5, we noticed that the differences in ΔOHs are very close to what we get from the online 

model, indicating that it is a reasonable approximation for sanity check. 

 
 

Modifications 

To clarify that we do not rely on these perturbations to generate the modeling results, we added: 

 

 “To elucidate the response of OH to different input parametrizations, such as NO2, HCHO, and O3, we 

determine the semi-normalized sensitivities through a traditional finite difference method: 



𝑆𝑂𝐻𝑖 =
[𝑂𝐻]𝑖

110% − [𝑂𝐻]𝑖
90%

0.2
 

(5) 

where [𝑂𝐻]𝑖
110% and [𝑂𝐻]𝑖

90% are OH concentrations from perturbing input parameters (i) by 1.1 and 

0.9 scaling factors in the ECCOH offline framework (Anderson et al., 2022). These calculations are 

solely used to better understand why OH changes in a particular way relative to the changes in its 

drivers. In our online modeling framework, OH is simultaneously affected by the dynamic changes of 

various variables considered in the parametrization of OH.” 

 

3) I feel that the trends in OH present in this study are substantially impacted by the trends of 

NO2 and HCHO, which were constrained by OMI. What about the impacts of uncertainties in 

the trends of OMI observations on the OH estimates? Especially for HCHO, I have seen some 

papers showing that there were systematic errors in the global and latitudinal trends. 

Response 

The main purpose of using Bayesian data fusion is to make sure that only reliable satellite 

observations are used to make adjustments to the OH input parameterization. Additionally, the 

algorithm takes into account the differences between the MERRA2GMI fields and the data from 

the satellites. The initial concept is defined by the Kalman gain: 

𝐁𝐇T(𝛾𝐇𝐁𝐇T + 𝐄)−1 

And the second part by: 

(𝐘 − 𝐇𝐗𝒃) 
Their definitions can be found in Section 2.2.1. The multiplication of these two terms determines 

the adjustments applied to the ECCOH inputs. If the satellite observations are uncertain (low 

Kalman gain) and/or the difference between the satellite observations and the a priori (here 

M2GMI) is small, the results won’t depend on the satellite information. In our draft, we observe 

both scenarios: OMI NO2 provides reasonable information over cities, however the M2GMI NO2 

trends are not substantially different from the OMI (except for China). So, the linear trend 

results are largely influenced by the M2GMI information. We exclusively investigated this 

pattern in section 3.3.3, OMI contributions to TOH trends. For instance, we cannot gain a high 

amount of information from OMI HCHO over oceans, so regardless of the difference between 

M2GMI and OMI, the Bayesian algorithm does not suggest large adjustments. 

 

However, we did not analyze the accuracy of the linear trends of OMI NO2 and HCHO on a 

global scale. This is because we do not have a large number of long-term records of sky-radiance 

spectrometers that cover the period from 2005 to 2019. This limitation will not be an issue for 

future research, as many surface networks are expanding (e.g., FTIR, MAX-DOAS, Pandora). 

Nevertheless, we qualitatively compared the sign of our trends with several reputable studies. 

 

To our best knowledge, our paper is one of the first attempts to leverage the newest version of 

OMI HCHO (v4) that has shown tremendous improvements with respect to in-situ measurements 

(Ayazpour et al., (2023): 

https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1407690). In particular, the radiance 

information has become more stable over time in V4, and the latitudinal biases have been 

removed based on Nowlan et al. (2023). The first author has closely worked with that team prior 

to joining GSFC and is fully aware of the new improvements. 

 

 

https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1407690


4) Lines 498-500, the authors said “The correction factors, however, worsen the trends over the 

southeast US and Canada. This is essentially due to the use of the fractional errors in the a priori 

making the OMI corrections more impactful (i.e., higher Kalman gain) in summertime than in 

wintertime.” I did not understand what these sentences meant. Why did more impactful OMI 

corrections worsen the trends over the southeast US and Canada? 

Response 

Due to the incorporation of data point errors in our trend analysis calculation, the data fusion 

algorithm works to reduce the errors of data points during periods of strong OMI HCHO signals 

(warmer seasons). This means that instead of assuming a constant 50% error, we now have 

varying errors with lower values during summertime and higher values (close to 50%) during 

wintertime (due to low SNR from OMI). As a result, we believe that this has caused some 

disagreements between OMI and the posterior estimates, particularly in statistically insignificant 

areas such as the southeast US, which experience large interannual and interdecadal variabilities. 

These variable errors can lead to different outcomes from the linear trend equation. When we 

don't take errors into account, the posterior results are similar to the prior ones, but we believe 

it's crucial to consider the errors. 

 

Modifications 

To better clarify and tone down this tendency we rewrote: 

 

“The posterior estimates better line up with the OMI trends, especially over the Amazon, India, 

and Central Africa (Text S3). The correction factors, however, worsen the trends over the southeast US 

and Canada. One possible explanation for this may be the varying errors from the data fusion algorithm, 

which tend to be reduced more in summertime than in wintertime due to the larger OMI HCHO signal. 

This results in some degree of inconsistencies of the linear trend over these regions with larger 

interannual and interdecadal variabilities.”.   

 

 

 


