
General comments: 

The manuscript “Enhancing Long-Term Trend Simulation of Global Tropospheric OH and Its Drivers 
from 2005-2019: A Synergistic Integration of Model Simulations and Satellite Observations” estimates 
the tropospheric OH trend lead by NO2, tropospheric ozone, H2O, and HCHO on 1x1 model resolution. 
Quantifying the drivers of the global OH changes is essential for better understanding recent changes in 
the global CH4 mixing ratio. The manuscript is generally well organized and clearly written. In this study, 
the ECCOH model estimates OH by machine learning method. Machine learning predicts OH by finding 
the correlation patterns between OH and the input factors. The cause-and-effect relationship is not 
necessarily captured by the machine learning method. The authors estimated the drivers of the OH trend 
based on the sensitivity of OH to different factors as given by machine learning parameterized OH. My 
main concern is whether the sensitivity of OH to different factors estimated by machine learning 
parameterization is consistent with that simulated by the M2GMI model. Is there any possibility of 
evaluating the sensitivity? Besides this, I only have a few minor comments. I recommend the paper be 
published on ACP after addressing these comments. 

 

Response 
We thank the reviewer for their constructive comments and the major point they raised about the 
evaluation of the response of OH to several parameters. We would like to address this comment 
in three ways: the nature of this statistical approach vs. an explicit full chemistry model, qualitative 
agreement of the tendency of the sensitivity with theoretical expectations, and providing evidence of 
the capability of the framework at picking up non-linearities. 
 
The nature of this statistical approach vs. an explicit full chemistry model: 
 
The limitation of statistical approaches in fully resolving “cause and effect” has been widely 
recognized in literature. Similarly, in the case of the ECCOH, we cannot entirely disentangle 
causation from correlation based solely on establishing a relationship between the distribution of 
OH and its influencers. As discussed in the paper and related references, the aim of the ECCOH 
framework is not to replicate all physical capabilities of a physics-based model, but rather to 
provide a first-order sensitivity experiment capable of qualitatively studying the effect of the 
biases in the input data on OH. This allows for more systematic strategies for full chemistry runs. 
 
Robust evaluation of the sensitivities are mainly limited by the implicit nature of statistical 
methods. The implicit nature of statistical methods makes it difficult to identify a specific 
physiochemical process in a full chemistry model that is representative of the perturbation made 
to the OH parameterization. For example, perturbation of NO2 in ECCOH represents the 
empirical relationship between OH and NO, which involves multiple processes, including 
NO+HO2 (RO2), NO2+OH, the formation of ozone, aerosol HOx update, and radiation; thus, it is 
not restricted to specific chemical reaction. However, we do not know to what extent these 
processes are implicitly included in the perturbations. Similarly, the perturbation of HCHO does 
not necessarily represent the HCHO+OH reaction but rather where this compound can be used 
as a proxy for OH (discussed later).  
 
Despite these challenges, it is important to recognize that the aim of ECCOH was not uniquely to 
improve the estimation of OH. Instead, the parameterization includes various input parameters 
(~ 27 inputs) so that the machine-learning algorithm could better understand the relationship 
between OH and its drivers for a wide range of atmospheric conditions. Because of this reason 
ECCOH has been able to represent OH distributions for extreme events (such as El Nino) that 
were not used during the training (Anderson et al., 2022, 2023, 2024). Without a proper 



establishment of the sensitivities (i.e., right OH prediction for a wrong reason), we would not 
have been able to reproduce OH distributions for such events.  
 
ECCOH exhibits greater flexibility than some statistical approaches that use simpler assumptions 
(Valin et al., 2016; Murray et al., 2021; Wolfe et al., 2019; Pimlot et al., 2022), which may not 
fully capture complexities associated with the real atmosphere such as the effect of clouds and 
surface albedo or be applicable over high HOx conditions. For example, the global 
approximation of OH as function of reactive nitrogen formulated in Murray et al. (2021) may not 
be applicable for a wide range of atmospheric conditions. Anderson et al. (2022) carefully selected 
a vast number of OH-related parameters allowing us to better represent the response of OH to its 
drivers over both land and ocean and should be considered an improvement towards enhancing 
statistical-based OH studies.  
 
The sensitivities qualitatively agree with our  theoretical expectations: 
 
NO2 – It is believed to have positive feedback of reactive nitrogen on tropospheric OH based on 
both physics-based and statistical studies (Zhao et al., 2019, 2020, He et al. 2021, Chau et al., 
2023; Naik et al., 2013; Murray et al., 2013; Strode et al., 2015; Nicely et al., 2018). Likewise, our 
perturbations in NO2, as a surrogate for reactive nitrogen, causes TOH to increase. This increase 
happens in the tropospheric region. We will show in this response letter that non-linearities occur 
when we do the perturbations only at the surface layer where NOx is elevated because of different 
reactions such as ozone titration and NO2+OH which can reduce OH.  
 
HCHO –We used this compound as a proxy (and not a driver) of OH following the studies of 
Valin et al. (2016) and Wolfe et al. (2019). The equation provided by Wolfe et al. (2019) follows: 
 

 
where the numerator is the production of HCHO from the oxidation of background VOCs, and 
the denominator is the sink of HCHO through both photolysis and the reaction with OH. In 
remote regions where jHCHO>>kHCHO+OH[OH], we can safely ignore the reaction of HCHO+OH, 
and assuming the minor source (Po) to be zero, [HCHO] and [OH] become linearly correlated 
suggesting that if see a higher amount of HCHO, there has been more OH to oxidize background 
VOCs, assuming the slope stays constant (varies only by 5% based on Wolfe et al. (2016)). In high 
HOx regions, [HCHO] and [OH] becomes decoupled. This is what we essentially see from the 
perturbations in HCHO meaning the ECCOH response coincides with the theoretical 
expectation.  
 
Stratospheric ozone – More stratospheric ozone hampers actinic flux leading to less production 
of jO1D resulting in a negative relationship between this quantity and OH. 
 
Tropospheric ozone and water vapor – Both are primary source of OH and show positive 
feedback on OH. The magnitude of the positive sign can be influenced by the underlying surface 
albedo, clouds, or other implicit processes. 
 
Now, the pivotal question is can we quantitatively assess these numbers? Since the perturbation 
of OH drivers in ECCOH are a snapshot of perturbing one variable without considering the 
response of unperturbed ones, we think it is challenging to replicate the identical experiments in 
a full chemistry model. Besides, the implicit nature of ECCOH makes it difficult to know exactly 



which physiochemical processes we should collectively pick from a full chemistry model to 
compare with. Therefore, our confidence in perturbation has been mostly achieved through the 
“weight of evidence”. As a result, all experiments done in our draft should be seen from a 
statistical and somewhat qualitative perspective. 
 
Providing evidence of the capability of the framework at picking up non-linearities 
 
This reviewer raised a valid concern about the perturbation of NO2. They pointed out that we did 
not have any negative values, but it is expected to see negative tendencies over extremely polluted 
regions where NOx can hamper OH levels. There are two reasons behind this. First, we focused 
on the tropospheric region where the majority of vertical grid boxes do not experience elevated 
NOx levels. Second, the M2GMI grid resolution is not spatially fine enough to fully resolve non-
linear chemistry. However, this is not a major concern for the methane-CO-OH studies, as we 
intend to use ECCOH for climate studies at coarse resolution and not urban air quality 
applications. To demonstrate the capability of ECCOH at capturing negative sensitivities for 
more polluted regions, we applied the perturbation at the surface and calculated the changes in 
the surface OH mixing ratio. We indeed saw large negative values over polluted regions (shown 
later), which would be expected from a combined effect of ozone titration and NO2+OH in a full 
chemistry model. 
 
The capability of XGBoost at solving non-linear tendencies has been proven extensively (e.g., 
Johnson and Zhang, 2014: https://arxiv.org/pdf/1109.0887). 
 
Modifications 
 
To account for the reviewer’s comment, we added more caveats throughout the paper and also 
included the perturbation experiments related to surface NO2. 
 
In the abstract, the description of the results is already qualitative. But to clarify, we added: “This 
innovative module helps efficiently predict the convoluted response of TOH to its drivers/proxies in a 
statistical way.” 
 
In section 2.2.3, right after introducing the method to get the perturbations: 
 
“It is crucial to acknowledge that ECCOH has established an implicit relationship between OH and 
various input parameters statistically. These perturbations could involve a range of physiochemical 
processes that are challenging to fully decipher. For example, the perturbation of NO2, acting as a 
surrogate of reactive nitrogen, involves chemical reactions that include reactive nitrogen like NO+HO2 
and NO2+OH, ozone formation, aerosol HOx uptake, and radiation. Nonetheless, it may not be feasible 
to understand to what extent these processes have been represented by ECCOH. Therefore, the presented 
perturbations in this work should be viewed qualitatively.” 

 
In the results and discussion: 
 

“Deciphering the precise chemical processes influencing the response of OH to NO2 using a 
machine-learning approach is challenging. However, it is widely recognized that reactive nitrogen has 
positive feedback on tropospheric OH through increased NO+HO2 and ozone (Murray et al., 2021; Zhao 
et al., 2020; He et al., 2021). Considering NO2 as a surrogate for reactive nitrogen, similar tendencies are 
expected, as evident from the positive numbers from the sensitivity results obtained from offline 
calculations. The response of TOH to NO2 displays a pronounced seasonal cycle stemming mainly from 



photochemistry. It is believed to have some negative values for the sensitivity of OH to NO2 for 
extremely polluted regions due to radical termination through NO2+OH or ozone titration (Nicely et al., 
2018). While we have not identified any negative values in the tropospheric domain, we have observed 
significant negative values of OH when perturbing NO2 at the model surface layer (Figure S*). This 
tendency highlights the ECCOH's ability to account for non-linearities.” 
 

 
Figure S*. The sensitivity of surface OH to NO2 perturbations in offline ECCOH in four different 
seasons.  

 
To emphasize the relationship between HCHO and OH, we copy our discussion regarding 

HCHO response map here: “The interplay between HCHO and OH is contingent on the intricate 
dynamics governing HCHO production from the oxidation of VOCs and methane and HCHO loss from 
various chemical pathways (Valin et al., 2016; Wolfe et al., 2019). In remote areas where HOx is low, the 
prevailing sink of HCHO is through photolysis. Conversely, in more polluted areas, the reaction of 
HCHO+OH emerges as a competing loss pathway. Assuming a steady-state approximation, which is a 
reasonable assumption for pristine areas, the photolysis loss of HCHO dominates over the reaction with 
OH, resulting in a linear relationship between HCHO and OH. In other words, high (low) HCHO 
concentrations are indicative of high (low) TOH. It is because of this that we use HCHO as a proxy of 
TOH in remote oceans regions. In regions characterized by heightened HOx levels, OH and HCHO 
become decoupled. Encouragingly, our implicit parametrization of OH has considerable skill at 
elucidating these intricate chemical tendencies; specifically, it reveals muted responses in regions with 
relatively tangible pollution levels, whereas positive responses are evident in oceanic regions. Like 
results obtained for NO2, the response map has a seasonal cycle due to photochemistry.” The qualitative 
description of the response map for other factors had been provided in section 3.3.2.  

 
In the conclusion section: 
 

“The development of an effective parameterization of OH, that is capable of integrating 
advanced satellite-based gas retrievals and improved weather forecast models enabled us to unravel the 
convoluted response of TOH to various parameters. Nonetheless, it is important to recognize some of the 
limitations associated with our work: first, the offline nature of the Bayesian data fusion algorithm makes 
the entire experiment blind to the interconnected responses of various compounds, such as ozone or 
aerosols, to adjustments to NO2 and HCHO. Despite this limitation, our work has provided valuable 



insights into the first-order effects of adjustments on TOH key inputs. This can help quickly identify 
areas where our prior knowledge is least reliable to simulate TOH. Second, the machine learning 
algorithm employed for parameterizing OH is implicit and its response to drivers/proxies is complex, 
making it difficult to quantitatively verify against full chemistry models. However, by including a vast 
number of parameters in the parameterization, Anderson et al. (2022) boosted its ability to understand 
the convoluted chemistry of OH. This has allowed for reproducing OH for events not included in the 
training dataset (Anderson et al., 2022, 2023, 2024).“ 
 

Specific Comments： 

L25: How is the TOH estimated? Is it weighted by air mass, volume, or CH4 reaction? 

Response 
Throughout the paper, TOH is weighted by the CH4 reaction following Lawrence et al. (2001). 
 
Modifications 
To better highlight this, we have moved the sentence describing this way of estimation to the 
ECCOH description part (Section 2.1.2): 
“Throughout the paper, TOH is determined based on the methane-reaction-weighted OH suggested by 
Lawrence et al. (2001).” 

 

L191-193: Are the VOCs simulated by M2GMI distributed only in the first layer of the model? Why was 
the CO produced by VOCs released to the first vertical level of the model? 

Response 
No, M2GMI simulates the 3D distribution of VOCs. Because ECCOH is not a full chemistry 
mechanism (O3-NOx-VOC-Halogen-Aerosol) and a non-negligible fraction of CO is produced 
through VOC oxidation, we needed to “approximate” these secondary-formed contributions 
based on yield estimations from Duncan et al. (2007). These effective yields are co-emitted at the 
same location where CO is emitted, which is primarily at the surface. Our model evaluation 
against MOPITT CO profiles, columns, and NOAA’s measurements showed reasonable results 
despite this simplified approximation. (Figures S*). 
 
We had tested an alternative approach (https://github.com/ahsouri/OI-SAT-
GMI/blob/main/tools/create_ind_CO_emiss.py) by which we generate CO production rates based 
on summing important reactions rates yielding CO from M2GMI in “4D”, so that we would 
avoid placing secondary-produced CO emissions at the surface. Although this method in theory is 
more realistic, we noticed large biases in our model compared to observations such as MOPITT. 
These unwanted biases were caused by large negative biases of M2GMI CO simulations. So, we 
resort to taking the more simplified approach.  
 

 

L224 “E is populated by the average sum of precision error squares the satellite product provides” . “E” 
should include instrument, representation, and forward model errors. However, here only the instrument 
error is included. 

Response 
We agree with the reviewer that in a fully-cycled data assimilation or an inversion framework, 
this term should encompass both the forward model and the representation errors. Nonetheless, 
our approach, although adopted from Bayesian framework, is a data fusion algorithm and the 



forward model operator is not necessary (= 1.0). Moreover, because we upscaled OMI grids to 
M2GMI to have both at the coarsest resolution grid, the spatial representation errors related to 
unresolved scales in M2GMI relative to OMI footprint have been considered using the mass-
conserved barycentric interpolation method. Admittedly, the unresolved processes in M2GMI 
have been overlooked. So we added a caveat.  
 
Modifications 
We added: 
“E is the sum squares of error covariance matrix of the observations and the representation errors, Y is 
the observations, and H is the observational operator which is equivalent to the identity matrix in our 
case. The instrument error part of E is populated by the average sum of precision error squares the 
satellite product provides. We interpolate both E and Y into the M2GMI grid box using a mass-conserved 
linear barycentric interpolation method. This interpolation method removes the spatial representation 
error resulting from the unresolved scales in M2GMI columns. Nonetheless, we did not take into account 
the errors of unresolved processes in M2GMI to augment to E.” 

 

L225-226: The “mass-conserved linear barycentric interpolation method” should be described here. 

Response 
Sure, we elaborated on this method, publicly available at https://github.com/ahsouri/OI-SAT-
GMI/blob/main/oisatgmi/interpolator.py  
 
Modifications 
We added: 
“We interpolate both E and Y into the M2GMI grid box using a mass-conserved linear barycentric 
interpolation method. In this method, both OMI’s observations and errors in the L2 granules provided at 
their irregular grid have been projected into a common grid of 0.25×0.25 degrees using Delaunay 
triangulation bi-linear interpolation. Subsequently, we convolve these re-gridded maps with a box filter 
whose kernel size is equivalent to the rounded fraction of M2GMI grid box size to the re-grided OMI 
pixel size based on formulation in Souri et al. (2022).” 

 

 L248: In my understanding, the chemical compounds including tropospheric ozone are prescribed in the 
ECCOH model. How do the improved NO2 and HCHO represent for more accurate simulation of other 
chemical compounds? 

Response 
That is the major drawback of a data fusion algorithm (a post-processor) over doing an actual 
inversion+data assimilation (e.g., Souri et al., 2020: 
https://acp.copernicus.org/articles/20/9837/2020/). Since the goal of ECCOH is to efficiently 
reproduce CH4-OH-CO only and not full-chemistry, the data fusion algorithm still has the 
capability to enhance the representation of OH.  We have mentioned the limitation in the 
conclusion and the method description. We are highlighting them here: 
 
“In our approach, the adjustments are implemented to the M2GMI output (i.e., a data fusion approach 
instead of data assimilation one), thereby restricting the full use of improved NO2 and HCHO 
representation for more accurate simulation of other chemical compounds impacted by NO2 and 
HCHO, including ozone (e.g., Souri et al., 2020a, 2021).” 
 
In the conclusion section: 
 



“Nonetheless, it is important to recognize some of the limitations associated with our work: the offline 
nature of the Bayesian data fusion algorithm makes the entire experiment blind to the interconnected 
responses of various compounds, such as ozone or aerosols, to adjustments to NO2 and HCHO. 
Despite this limitation, our work has provided valuable insights into the first-order effects of 
adjustments on TOH key inputs. This can help quickly identify areas where our prior knowledge is least 
reliable to simulate TOH.” 

 

Equation 4 what is the temporal resolution of y? When 𝜔 = 1, the cosine function has a period of 1, how 
does it account for the seasonal cycle? 

Response 
The temporal resolution of y is monthly. “t” is in the fractional year minus the first year of data. 
So, it starts from 0 (=2005) and ends at 15 (=2020). When the cosine function has a period of 1, its 
maximum is at each year and its minimum is in the middle. Of course, the phase parameter can 
shift the seasonal cycle phase. The equation (including the phase) is equivalent to summing sin 
and cosine functions (e.g., 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010GL044245). 
 
Modifications 
We added: 
 
“The equation comprises several variables, including 𝒚 (data points) on monthly-basis, 𝑎଴ as the mean, 
𝑎ଵ as the linear trend, t as time (fractional year), 𝑎௜ାଵ, 𝜔௜, and 𝜑௜ are the amplitude, frequency, and phase, 
respectively.” 

 

L265: How to use the Levenberg–Marquardt algorithm to optimize the estimation? 

Response 
This is a common optimizer that combines both Gauss-Newton and gradient descent algorithm 
for fitting non-linear curves without having to worry about the bounds. It has been widely used 
in various fields. We have added a reference. We used 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html. 
 
Modifications 
We added: 
 
“This estimation is optimized using the Levenberg–Marquardt algorithm (Marquardt et al., 1996) using 
SciPy open-source package.” 
 

 

L359-L363: It is confusing here, do you mean the water vapor in the “Sanalysis” experiment the water 
vapor is from the GOES online simulation while in the SOHvv simulation, the water vapor is from the 
MERRA2 reanalysis? 

Response 
Yes, in SOHwv, the water vapor fields fed to OH paramterization is fixed to MERRA2 monthly-
varying 2005 fields. We reworded it. 
 
Modifications 



“Amongst various OH drivers/proxies studied here, water vapor is simulated online based on the 
GEOS simulation; to conduct SOHwv which aims at isolating the water vapor effect on OH without 
affecting meteorology, we set water vapor fields fed to the parametrization of OH to the offline MERRA2 
based on the monthly-varying 2005 simulations. Simultaneously, GEOS is allowed to simulate water 
vapor online to address meteorology. This ensures that the meteorology remains consistent across both 
SOHwv and Sanalysis.” 
 

 

L412-416: The Bayesian system gives low AK over the remote areas because the satellite observations 
give higher relative error over the regions with low NO2 values while the B is arbitrarily set to 50% for 
all the model grid. Considering the NO2 simulated by M2GMI may also have larger relative uncertainties 
over the remote areas, “low AK in remote areas shows rich information from OMI tropospheric NO2 
gravitates more polluted regions. “ is not a robust conclusion. 

Response 
We understand the reviewer’s concern. We first want to clarify that we only initialized “B” to 
50% but it is regularized (inflated) based on all observed pixels. Since most of the pixels covering 
the globe are in less polluted regions (i.e., 70% of our planet is covered by oceans which tend to 
have low NOx), the regularization factor (>>1) is dictated by observations in those regions. So, 
despite inflating B, we can’t gain much information from OMI. We observed the same tendency 
using OMI for inverting NOx in East Asia (Souri et al., 2020). For that study, we set biogenic and 
biomass burning emissions errors up to 300% and still saw low AK in non-polluted regions (see 
Figure 3 in https://acp.copernicus.org/articles/20/9837/2020/). However, we agree that these 
errors should be tackled in a more systematic way using the NMC method so we can have more 
confident in this conclusion.  
 
Modifications 
We decided to add a caveat: 
 
“In other words, it is difficult to have high confidence in the degree of deficiency the model can have in 
simulating NO2 over pristine areas by comparing it to OMI. This notion mathematically manifests in low 
AK in remote areas showing that rich information from OMI tropospheric NO2 gravitates more towards 
polluted regions. This finding assumes that the regularized covariance matrix of the prior error does not 
substantially vary between land and ocean and is isotropic.” 

 

Figures S1 and S2, Are the grey regions in the figures indicating a non-significant trend? It seems that the 
M2GMI failed to capture the positive trend over most of the positive trends in tropospheric ozone over 
the Northern hemisphere, and over the tropical ocean, the M2GMI simulated a significant negative trend, 
which is not observed by the OMI/MLS data. 

Response 
Yes, we added in the caption what the gray areas are. The discrepancy between M2GMI and 
OMI/MLS data in the southern hemisphere has been a topic for debate for several years. 
Tropospheric ozone trends from various satellites/retrievals do not have consensus on whether 
the upward trend in the southern hemisphere is realistic or not. We have mentioned that in Text 
S1: 

“The trends observed in the southern hemisphere by OMI/MLS do not align with those simulated 
by MERRA2-GMI (Ziemke et al., 2019). Lu et al. (2019) indirectly supports the upward trends detected 
by OMI/MLS by compiling long-term records (1990-2015) of several surface observations and 
ozonesonde measurements at high latitudes in the southern hemisphere. Using a global model, they 



hypothesized that the upward trends may resulted from the expansion of Hadley circulation, particularly 
in austral autumn (March until May), leading to greater stratospheric contributions to the surface and a 
more effective mixing of ozone precursors from heavily polluted tropical regions to the free troposphere. 
However, it remains unverified whether this expansion occurs throughout the year, resulting in 
widespread upward trends observed by OMI/MLS. A more recent study, Thompson et al. (2021), utilized 
Southern Hemisphere Additional Ozonesondes (SHADOZ) data and suggested that the free-tropospheric 
ozone trends in 1998-2019 were fainter than those detected by satellite observations and varied greatly 
from season to season due to atmospheric dynamics (i.e., expansion or shrink in the tropopause height). 
An important caveat to consider is that satellite-based tropospheric ozone concentration can be largely 
uncertain due to limited sensitivity of the observed radiance to the optical path of ozone in the lower 
tropospheric region. Gaudel et al. (2018) have compiled the tropospheric ozone trends observed by 
different satellites and retrieval algorithms and observed that most of them support the upward trends in 
Asia. However, there is vast disagreement when it comes to the southern hemisphere. Therefore, there is 
rather insufficient evidence to support the strong upward trends detected by OMI/MLS in the southern 
hemisphere, nor can it be claimed that MERRA2-GMI has reproduced reasonable trends in that region.” 

 
And in the discussion: 

“M2GMI suggests that tropospheric ozone levels in the southern hemisphere have decreased, 
potentially leading to a downward trend in TOH, an observation that has yet to be fully confirmed (e.g., 
Thompson et al., 2021). This finding is especially important given past research indicating that models 
tend to exaggerate TOH asymmetry between the northern-southern hemispheres (Strode et al., 2015; 
Naik et al., 2013). The decrease in the simulated tropospheric ozone may offer a plausible explanation 
for this tendency, but further verification is deemed necessary.” 
 

 

L529-543: Here is my main concern for this paper. Although the machine learning approach can 
reproduce the OH distribution, how well the machine learning method can reproduce the sensitivity of 
OH to NO2, HCHO, tropospheric O3, etc. is not evaluated in Anderson et al. (2022; 2023). Nice et al. 
(2018) estimated that the NOx increase can lead to a decrease in OH concentrations over the high NOx 
regions. The negative sensitivity accounts for 10% of all the cases tested by the chemical box model. As 
shown in Figure 5, machine learning gives overall positive sensitivity. Also, for HCHO, which acts as 
both OH sink and HO2 source, machine learning gives overall positive sensitivity. The sensitivity 
calculated by machine learning can have a large impact on the conclusion of this study. Is there any 
possibility to evaluate the sensitivity estimated by machine learning? 

Response 
Thanks for raising this important aspect. We have addressed this major point at the top. 

 

L543-543; L731: Are the increase in CH4 means that the model is not fully-spin-up? Usually, 3 times of 
lifetime is required to reach a steady state. 

Response 
Although we cannot completely disregard the impact of initial conditions on our results, we 
started the model ten years prior with initial conditions that were spun up for another decade 
based on another study from our group. Upon examining Figure S10, we observed that the initial 
state of our simulations followed closely the observations for the most part but began to deviate 
afterwards. Despite the large discrepancies between the trends of observations and simulations, 
they differ only by 3%. Since our methane emissions rely on bottom-up emission inventories 
whose magnitudes can differ by more than 20% from the top-down estimates (Saunois et al., 
2020), it is not difficult to introduce a 3% bias into our simulations. As methane is a long-lived 



species, even a small deviation between the source and sink can be enough to cause our model to 
diverge from the actual values over time. 
 
Modifications 
We added: 
“It is very probable that the extent of these downward trends in TOH has been exaggerated in our model 
because of the simulated CH4 increasing too rapidly compared to in-situ observations. The 
overestimation of the upward trend in CH4 in our model compared to in-situ observations could be caused 
by the biases (~3%) in sources minus sinks and/or the initial condition.” 
 

 

L717-723: Does the global reduction of CO emissions contribute to the unexplained TOH trend? 

Response 
It can have an impact, but it is most likely overshadowed by methane too-rapidly rising in our 
model. We did not see a large negative trend in CO over central Africa (see Figure S15) to explain 
the positive trend in TOH.  
 

 


