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Abstract 10 

Information on soil water potential is essential to assess soil moisture state, to prevent soil 11 

compaction in weak soils, and to optimize crop management. In lack of direct measurements, the 12 

soil water potential values must be deduced from soil water content dynamics that can be 13 

monitored at plot scale or obtained at larger scale from remote sensing information. Because the 14 

relationship between water content and soil water potential in natural field soils is highly 15 

ambiguous, the prediction of soil water potential from water content data is a big challenge. The 16 

hysteretic relationship observed in nine soil profiles in the region of Solothurn (Switzerland) is 17 

not a simple function of texture or wetting and drainage cycles but depends on seasonal patterns 18 

that may be related to soil structural dynamics. Because the physical mechanisms governing 19 

seasonal hysteresis are unclear, we developed a deep neural network model that predicts water 20 

potential changes using rainfall, potential evapotranspiration, and water content time series as 21 

inputs. To adapt the model for multiple locations, we incorporated a Deep Autoencoder Neural 22 

Network as a classifier. The autoencoder compresses the water content time series into a site-23 

specific feature that is highly representative of the underlying water content dynamics of each site 24 

and quantifies the similarity of dynamic patterns. By adding the Autoencoder's output as an 25 

additional input and training the neural network model with three stations located in three major 26 

classes founded by the autoencoder, we predict matric potential for other sites. This method has 27 

the potential to deduce the dynamics of matric potential from water content data (including 28 

satellite data) despite strong seasonal effects that cannot be captured by standard methods.  29 

 30 
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1. Introduction 34 

The soil water characteristics curve SWC relates the matric potential (MP) and water content (WC) and 35 

is the key physical property to quantify soil water dynamics (Tuller & Or, 2023). The SWC (also 36 

denoted as soil water retention curve or pressure-saturation relationship) depends on both soil texture 37 

and structure and differs with soil types and soil textural classes (Rawls, et al., 2003; Shwetha & Varija, 38 

2015). The SWC contains information on the pore size distribution and allows the assessment of flow 39 

and transport properties for different hydration states (Rostami, et al., 2015; Menon, et al., 2020). To 40 

provide a complete characterization of the actual soil moisture state and flow regimes, information on 41 

both the matric potential and the water content must be specified. Information on volumetric water 42 

content is needed to assess the free storage capacity, optimize water management, and to formulate 43 

mass balance. The matric water potential is a component of the total and hydraulic soil water potential 44 

and determines the water flow in direction of decreasing water potential to achieve equilibrium with its 45 

surroundings (Ma, et al., 2022). The matric potential is also of particular interest to assess mechanical 46 

stability of a soil (Holthusen, et al., 2010; Lu, et al., 2010). The capillary and adsorptive forces expressed 47 

with the matric potential define the unsaturated soil strength mitigating soil compaction by heavy 48 

machinery in construction work, farming, and forestry (Smith, et al., 2001). For example, matric 49 

potential thresholds are defined in various regions of Switzerland to prevent mechanical damage and 50 

regulate the maximum load linked to factors like soil type, texture, and vehicle impact (Bundesamt für 51 

Energiewirtschaft, 1997). Other important potential thresholds are the wilting point and the field 52 

capacity, characterizing the plant available water (Gupta, et al., 2023).  53 

It would be optimal to determine the soil moisture status relative to these potential thresholds based on 54 

information of water content using the SWC, without direct measurement of the matric potential. In that 55 

case, matric potential dynamics could be deduced from remote sensing water content data that are 56 

available at various scales. However, the application of this procedure is limited by two effects. Firstly, 57 

under saturated conditions, the water potential can change without modifying the volumetric water 58 

content. The transition of conditions with negative water potential within the capillary fringe to positive 59 

pressures below a water table is crucial for the triggering of landslides (Gallipoli, et al., 2003). Secondly, 60 
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the SWC under field conditions is often an ambiguous relationship between potential and water content 61 

due to hysteretic and dynamic effect as will be discussed next.  62 

The SWC is typically measured in the lab as series of equilibrium states obtained during drainage, with 63 

one water content value assigned to the applied pressure. The results of such small-scale experiments 64 

are not sensitive to structural pores that can be found at the field scale (Romero-Ruiz, et al., 2018) and 65 

can thus be expressed as function of basic soil properties (texture, bulk density, content of organic 66 

material) using pedotransfer functions (PTF; Zuo & He, 2021). Because these PTFs ignore the effects 67 

of soil structures including macropores and cracks (Basile, et al., 2019) and are trained with data from 68 

small samples with artificially high initial saturation conditions, their applicability to model dynamic 69 

processes in the field is limited. Another limitation is the underlying assumption of an unambiguous 70 

relationship between water content and matric potential (and hydraulic conductivity). In all land surface 71 

models, water content is linked by an unambiguous relationship between water content and matric 72 

potential. In reality, this relationship is highly ambiguous under field conditions as was analyzed in 73 

detail by Hannes et al. (2016) and as we will show later in this paper as well.  74 

Hannes et al. (2016) analyzed long-term experiments and concluded that the high variation of matric 75 

potential values for the same water content are a result of hysteresis, dynamic effects, and structural 76 

changes during the season. Hysteresis is related to differences in wetting and drying cycles (Capparelli 77 

& Spolverino, 2020) as controlled by different pore structures controlling air- or water invasion and 78 

differences in receding or advancing wetting angles (Fomin, et al., 2023). Hysteresis is often manifested 79 

in coarse textured soils and occurs as well during slow processes. Another process resulting in an 80 

ambiguous pressure-saturation relationship is dynamic effects with water contents that are not in 81 

equilibrium with the quickly changing potential (Ross & Smettem, 2000). Finally, the size of structural 82 

pores is not constant with time but changes with season, water content, and soil formation processes 83 

(Fu, et al., 2021). The combined effect of hysteresis, non-equilibrium, and structural changes makes it 84 

extremely challenging to deduce soil matric potential from information on water content. Also, the 85 

implementation of these combined effects in physically-based models of unsaturated water flow is not 86 

straightforward. As an alternative approach to physically-based models, machine learning can be 87 
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applied to simulate the complex relationship between matric potential and water content under field 88 

conditions. In this study, we will apply a deep neural network (DNN). 89 

Deep neural networks (DNN) have demonstrated their effectiveness as a powerful numerical tool for 90 

resolving complex patterns. Their ability to learn from data and recognize intricate relationships makes 91 

them valuable in various fields, including the modeling of soil water characteristics. For example, Jain, 92 

et al. (2004) and Achieng (2019) used artificial neural network (ANN) models to predict the hysteretic 93 

water content from observed matric potential values. However, both publications simulated lab data 94 

under equilibrium conditions and cannot be applied for the more complex dynamic processes in the 95 

field. In addition, the models were site-specific and needed both water content and matric potential 96 

information for the training. Here we will apply a different DNN using an autoencoder approach. As 97 

we will explain in the theory section, the autoencoder condenses the complexity of temporal (and 98 

spatial) patterns into a single (or a few) number(s). The hypothesis of this study is that the autoencoder 99 

value is a new and unique characterization of the soil moisture dynamics and can be used to predict 100 

matric potential dynamics from observed water content data. The paper is organized as follows: in 101 

section 2, the study sites and the basics of the deep neural network with the autoencoder approach are 102 

presented. The results section compares the model performance of site-specific deep neural network 103 

(DNN) and shows the possibility to build a generalized DNN using the autoencoder analysis as model 104 

input. Limits and possible applications of the model approach are discussed in section 5. 105 

2. Material and methods 106 

In a first step, matric potential time series were simulated at nine sites in the region of Solothurn 107 

(Switzerland) using site specific ANN model, to proof that the ANN models can predict matric potential 108 

from water content dynamics with site specific training. In the next step, the autoencoder analysis of 109 

water content dynamics of all sites was conducted. Finally, the site-specific ANN model was enhanced 110 

and transformed into a multisite model by combining two deep neural networks. This transformation 111 

allowed for a more comprehensive and versatile predictive framework of matric potential as function 112 

of water content.  113 
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2.1 Study area and soil moisture data 114 

The study area covers mainly the canton of Solothurn in Switzerland (Fig.1), and thus an area of 115 

approximately 629 km2. The climate in Solothurn is classified as oceanic climate (Cfb) according to 116 

Koppen and Geiger climate classification, with an average yearly temperature of 9.5 °C and annual 117 

precipitation of around 1400 mm. Approximately half of the annual precipitation in the canton 118 

undergoes the process of evaporation (Spreafi & Weingartner, 2005). During the year, the average 119 

temperature varies by 19 °C with the highest temperature occurring in the month of July and the lowest 120 

average temperature in January. Regarding precipitation patterns, the month of June has the highest 121 

level of precipitation, while March stands out as the driest month. Soil moisture dynamics (see below) 122 

were studied for the period from 2011 to 2022. For this period, climatic data was available on the data 123 

portal of MeteoSwiss (IDAweb, 2024) . The data was gathered from the closest meteorological stations 124 

to each of the nine sites in the Solothurn region.  125 

Soil moisture data were downloaded from the ‘soil monitoring network’ (BODENMESSNETZ, 2024) 126 

collecting data from 65 stations distributed over eleven cantons of Switzerland. The network’s primary 127 

objective is to provide real-time soil moisture information for mitigating soil compaction. 128 

BODENMESSNETZ also plays a role in raising awareness among farmers and foresters about soil 129 

compaction, providing a tool to assess the current situation and adjust the use of heavy machinery based 130 

on weather conditions. As the network has been running since 2011, it now serves as a valuable resource 131 

by offering long-term diverse information, including land use, precipitation amounts, and matric 132 

potential measured at various depths (20 and 35 cm depth in most of the stations, using T8 and T32 133 

tensiometers from METER group). Only at nine sites that are located in the region of Solothurn, the 134 

water content was measured at 20 cm depth (Stevens Hydra Probe). For these nine sites, daily values in 135 

volumetric water content (20 cm), matric potential (20 cm) and precipitation values were used. The 136 

matric potential in the downloaded data was given in kPa and was transferred to matric potential head 137 

with units of cm (1 cm is 0.1 kPa), considering a water density of 1000 kg m-3 and gravity acceleration 138 

of 10 m s-2. 139 



 

6 
 

As the soil moisture decreases, water is drawn from the tensiometer, creating a negative pressure or 140 

tension. During dry periods, cavitation may occur, causing water vaporization and air bubble formation 141 

(Mendes & Buzzi, 2013), or tensiometers had to be refilled (Sadeghi, et al., 2020). To address these 142 

challenges and ensure accurate data collection, various data preprocessing and filtering techniques were 143 

implemented. These techniques involved identifying and removing outliers, systematically excluding 144 

data points with water potential values within the problematic dry ranges and filtering out data points 145 

with extremely low or high water content values. The study also flagged abrupt changes in volumetric 146 

water content (VWC) and matric potential (MP) for further investigation, as these could indicate 147 

measurement anomalies. Additionally, a thorough analysis of weekly trends in the data was conducted 148 

to identify systematic variations over time (see Appendix A). 149 

 150 

Figure 1 Overview of the study area with site locations, soil texture, and land cover. The primary focus 151 
is on the canton of Solothurn, outlined by the black border on the map, with an additional site from the 152 
canton of Basel (site 9, Zunzgen). Within this region, three sites are categorized as forests, while the 153 
remaining six sites are designated as meadows. The analyzed soil horizons (20 cm depth) of the study 154 
area encompasses five soil textural classes as shown in the soil texture triangle. 155 

The analyzed soil horizons of the selected locations can be assigned to five different soil textural classes 156 

(figure 1) and two different land covers (meadow and forest). The location denoted as Matzendorf (site 157 

#7) contains the highest clay content, whereas locations such as Aetigkofen (site #1) are predominantly 158 

sandy. Across these nine locations, different relationships between matric potential and water content 159 
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were deduced from field data as shown in Figure 2 for two sites with low and high variations in water 160 

content for similar potential values. To show the relevance of seasonal patterns, we differentiate 161 

between summer (April to September) and winter period (remaining months). 162 

 163 

 164 

Figure 2 Soil-Water characteristics curve (SWC) measured in the field at two sites classified into 165 
summer (April to September) and winter period (remaining months) from 2012 to 2023. (a) The Etziken 166 
site (site #5) shows small changes in the SWC dynamics over the years, for both the warm and cold 167 
period. (b) A contrasting scenario was found for the site in Bellach (site #2) that was characterized by 168 
a wide range of water content for similar potential values. The unit of matric potential, represented as -169 
cm, is equivalent to -0.1 kPa. 170 

2.2 Deep neural network (DNN) 171 

A basic artificial neural network (ANN) comprises one or two hidden interconnected layers, with each 172 

layer tasked with the conversion of an input vector (x) into a hidden state vector (h), as described by 173 

(Bertels & Willems, 2023). This conversion is accomplished with eq. (1):  174 

𝒉 = 𝑓(𝒙) = 𝑎𝑐𝑡(𝐖 • 𝒙 + 𝒃)                                                                                                                     (1) 175 

Where 𝑓(𝒙) represents the transformation function applied to the input vector(x), with a weight matrix 176 

(W) and a bias vector (b), integrated with an activation function (denoted as "act"). 177 

To construct a deep neural network (DNN), multiple layers (more than two hidden layers) are 178 

interconnected to form a 'multilayer perceptron.' The training process involves finding optimal values 179 

for the weights and biases in the network using suitable optimization techniques (Bertels & Willems, 180 

2023). In this study, DNN was built to predict the daily MP for the nine sites. The process involved 181 

several key steps. First, in the design of the neural network, activation functions were carefully selected 182 

(a) (b) 
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and integrated to introduce non-linearity into the model's transformations (Montesinos Lópezm, et al., 183 

2022). The Rectified Linear Unit (ReLU) activation function was employed to mitigate vanishing 184 

gradient problem and enhance the model's ability to handle noisy input. The inclusion of ReLU was 185 

motivated by considerations of computational efficiency, with some attention given to the potential 186 

issue of "dying ReLU" (Montesinos Lópezm, et al., 2022; Lu, 2020). 187 

Next, the neural network was structured with a total of six layers, including four hidden layers as 188 

suggested by Achieng (2019). All layers were densely connected, fostering strong information flow 189 

between neurons. Crucially, batch normalization was incorporated after the second hidden layer. Batch 190 

normalization is a technique that normalizes the activations within a layer during training, which can 191 

help mitigate issues like internal covariate shift and accelerate convergence (Ioffe, 2015). The choice 192 

of the optimization method was the Adam optimizer, a powerful tool for training neural networks. It 193 

adaptively adjusted learning rates, thereby optimizing the learning process, and enabling rapid 194 

convergence while employing Mean Squared Error (MSE) as the loss function (Kingma & Ba, 2014). 195 

To prevent overfitting by the Adam optimizer, an early stopping mechanism was implemented. This 196 

mechanism continuously monitored the loss function for the hold out data during training, ceasing the 197 

process if no improvement or a sudden increase was detected over a predetermined number of 198 

consecutive epochs. 199 

The initial deep neural networks (DNN) were configured with 4 input parameters and the daily 200 

logarithmic scaled matric potential (MP) value as output. The input parameters consisted of 201 

precipitation, potential evapotranspiration, measured VWC, and the weekly percentage change in 202 

VWC. As the prediction process progressed, two major issues were identified. Firstly, the influence of 203 

the VWC measurements on the training process was found to be predominant. Consequently, a decision 204 

was made to increase the weight of precipitation and potential evapotranspiration in the calculation 205 

process by incorporating three new input parameters: the weekly total precipitation and 206 

evapotranspiration (the sum of the current day and the preceding six days), along with  the difference 207 

between these two new components. Secondly, the use of logarithmic scaled MP values was found to 208 

be highly sensitive to data availability. Therefore, a decision was made to retrain the model using 209 
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absolute linear MP values (see Appendix B). In total, the final model was equipped with 7 input 210 

parameters to predict the absolute linear MP values for a given location. For each site, a site-specific 211 

DNN was built. The extent of the training data is predominantly influenced by site-specific 212 

characteristics. For instance, sites characterized by sandy soils necessitated a shorter training duration 213 

in contrast to sites with a higher clay content. Typically, the training dataset spanned a duration of 4 to 214 

7 years. During this period, 70% of the data were randomly selected for training, while the remaining 215 

30% were set aside as holdout data (Gholamy, et al., 2018). The extra years of data beyond the initial 216 

training period were reserved for validation purposes.  217 

2.3 Autoencoder neural network 218 

The autoencoder, consisting of an encoder and a decoder, is an unsupervised deep neural network that 219 

learns how to efficiently compress input data into a meaningful representation and subsequently 220 

reconstruct the original data from this compressed form (Chen & Guo, 2023). By connecting the encoder 221 

and decoder, the autoencoder effectively captures important patterns and variations present in the data, 222 

enabling comprehensive analysis and interpretation (Chen & Guo, 2023). In this study, an autoencoder 223 

neural network (figure 3) was built to analyze the measured VWC time series at 20 cm depth for the 9 224 

sites.  225 

 226 

Figure 3 Autoencoder deep neural network for volumetric water content dynamic analysis. In this 227 
illustration, a densely connected autoencoder is utilized to compress the dynamic information of 228 
Volumetric Water Content (VWC) into a singular value, AUV, highlighted in red. The process begins 229 
with the encoder, depicted in blue, extracting the AUV from the measured volumetric water content 230 
time series (left orange layer). Subsequently, the densely connected decoder, represented in green, 231 
utilizes the AUV to reconstruct the VWC (orange layer at the right). Both the encoder and decoder, 232 
characterized by dense connections, optimized the AUV value by minimizing the error between the 233 
measured VWC and the reconstructed VWC. 234 
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The process was as follows. Firstly, an encoder neural network was created for each site. Its objective 235 

was to take the VWC time series as input and gradually reduce its dimensionality through hidden layers 236 

(Chen & Guo, 2023). The encoders’ output was a single site-specific latent representation, called 237 

Autoencoder Value (AUV), and captures essential features of the VWC dynamics (Chen & Guo, 2023). 238 

Subsequently, a decoder neural network was developed to utilize the AUV value as reference to 239 

reconstruct the original VWC time series data. The success of this reconstruction depends on the 240 

training process, which aimed to optimize the AUV value by minimizing the error between the original 241 

VWC time series and its reconstructed counterpart by minimizing the mean squared error (MSE) value 242 

to less than 0.1. 243 

After the optimization process, for each site one autoencoder value (AUV) was obtained. These AUV 244 

were scaled and then used to build a combined model (Figure 4) as follows. The AUV were sorted into 245 

three categories. Subsequently, one site from each category was selected. Finally, the data from the 246 

three chosen sites, each representing one category, were used to train the combined AUC-DNN model. 247 

The final combined model was thus equipped with 8 input parameters to predict the dynamic MP for a 248 

specific location. These parameters consisted of the same 7 inputs employed in the DNN model (section 249 

2.2), complemented by the AUV. The neural network structure, as detailed in section 2.2, remained 250 

unchanged, employing the same optimization techniques.  251 
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  252 

Figure 4  Application of two different types of deep neural network for the prediction of matric potential 253 
. In this conceptual example, the water moisture dynamics of nine sites is considered. (a) The 254 
autoencoder neural network captures the characteristic features of the soil water content () dynamics, 255 
assigning an autoencoder value (AUV) to each site. These values are sorted to AUV classes (one site 256 
from each class was used for calibration, remaining sites for validation). (b) The  combined AUC-DNN 257 
model is built using the calibration sites with rainfall, potential evapotranspiration (PET), water content, 258 
and AUV as part of the 8-input parameters. The predicted matric potential () is compared to measured 259 
values for backpropagation. The calibrated DNN is then used to predict  for the remaining sites. 260 

Initially, 70% of the data from each of the training sites were randomly selected for the training dataset. 261 

Subsequently, the remaining 30% of the data were set aside as the holdout dataset, serving as a 262 

benchmark for assessing model performance. The developed AUC-DNN was then applied for the other 263 

six sites (with the same input variables including AUV) to predict the entire datasets of those unseen 264 

sites. The combined model has thus the strengths of both components—the DNN' ability to understand 265 

dynamic MP patterns and the feature extraction capabilities of the autoencoder. This shift in the model's 266 

strength extends it from being site-specific to encompassing multiple sites, enabling it to gain a broader 267 

understanding of how the dynamic MP and AUV values relate. 268 
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2.4 Statistical evaluation 269 

The evaluation of model performance is carried out by comparing the model predictions to the measured 270 

data. While there is no universal consensus on a standardized evaluation procedure, it is widely 271 

recognized that a multi-objective approach should be adopted e.g., (Boyle, et al., 2000; Willems, 2009). 272 

In this study, a combination of four evaluations tools was adopted. First, a scatter plot of observations 273 

against simulated values was utilized to visualize the degree of alignment with the identity line (often 274 

referred to as the 1:1 line). This graphical approach allowed for a qualitative assessment of model 275 

performance. A closer concentration of data points near the 1:1 line indicated higher agreement between 276 

calculated and observed values. Moreover, this graphical method includes the 95 % confidence interval 277 

area which help in scrutinizing the model's consistency across different prediction ranges and detecting 278 

potential biases within the model's performance (Ritter & Muñoz-Carpena, 2013).The second criterion 279 

evaluates the distribution of (signed) prediction errors (eq(2)). Ideally, the error distribution should be 280 

centered around zero, following a normal distribution pattern around this point with low standard 281 

deviation. Such a distribution indicates an unbiased model with errors that tend to balance out. 282 

Deviations from this pattern may suggest model bias or other unexpected characteristics in the 283 

prediction errors PE (Ouden, et al., 2012).  284 

𝑃𝐸 = 𝑂𝑖 − 𝑃𝑖                                                                                                                                            (2) 285 

with observed 𝑂𝑖 and predicted matric potential value 𝑃𝑖. The third evaluation metric was the root means 286 

squared error (RMSE; eq (3a)). RMSE with a value of zero indicates perfect fit, while higher RMSE 287 

value means worse model performance (Ritter & Muñoz-Carpena, 2013). The final criterion for model 288 

evaluation involved the use of the dimensionless goodness-of-fit indicator (eq (3b)), known as the (Nash 289 

& Sutcliffe, 1970) coefficient of efficiency (NSE). NSE, which ranges from negative infinity to 1, serves 290 

as an indicator of model performance, with a value of 1 indicating a perfect fit, while a negative NSE 291 

suggests that using the means of the observed values is a better representative for the data than the 292 

evaluated model itself (Ritter & Muñoz-Carpena, 2013; Gupta & Kling, 2011). A NSE value > 0.75 293 

indicates a very good model, while an NSE value < 0.5 signifies unsatisfactory results (Moriasi et al., 294 
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2007). In Gupta et al. (1999) a threshold NSE-value of 0.80 was used for good model performance and 295 

is applied here as well. The RMSE and NSE are defined by: 296 

𝑅𝑀𝑆𝐸 = √
∑(𝑂𝑖 −𝑃𝑖)2

𝑁
                                               (3a)  297 

𝑁𝑆𝐸 = 1 −
∑(𝑂𝑖−𝑃𝑖)2

∑(𝑂𝑖−ō)2                                               (3b)  298 

where 𝑂𝑖 represents the measured value, 𝑃𝑖 the simulation output, and ō the mean of the observed values, 299 

all within the context of a sample size N. 300 

3. Results 301 

Following the model discussion in section 2.2 and 2.3, we present first the results of the site-specific 302 

tests of predicting matric potential dynamics with a deep neural network (water content, rainfall and 303 

evapotranspiration as input data), before the role of autoencoder value is considered. 304 

3.1 Deep neural network modeling without autoencoder 305 

The site-specific DNN model was used to simulate the time series for all nine sites. In Figure 5, the 306 

results are shown for the Stüsslingen site (size #8, clay loam, meadow). The model was trained on data 307 

that had 1825 days of observations from January 2012 to January 2020. The data was split randomly 308 

into two parts: 1) a calibration dataset that had 1277 days and 2) a holdout dataset that had 548 days. 309 

The model was then validated on data from February 2018 to January 2023 (1379 days). A strong 310 

agreement between the model and the observed data was discovered in both the training and validation 311 

datasets (figure 5c) as reflected by the low RMSE value and the high NSE value (table 1). Furthermore, 312 

it was noticed that the error distribution exhibited a predominantly normal pattern with minimal bias 313 

towards higher observed values compared to the predicted values (figure 5d). These findings suggest 314 

that the site-specific DNN-model was not only able to be generalized well to unseen data but also 315 

demonstrated a reliable ability to predict MP. 316 

The statistical evaluation (Table 1) reveals a consistent performance across both the training and 317 

validation periods for the Stüsslingen site, offering compelling evidence that the model avoids 318 

overfitting. Additionally, when it comes to predicting MP values, the 95 % confidence interval indicates 319 
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that the model can capture well the overall dynamics (Figure 5b). However, the model performance 320 

exhibits higher deviations for values exceeding 400 cm and consistently underestimates values higher 321 

than 600 cm (figure 5b), which could explain the mild positive skewness observed in the distribution 322 

of prediction errors in figure 5d. 323 

 324 

Figure 5  Graphical evaluation of the performance of the site-specific deep neural network (DNN) for 325 
validation for the Stüsslingen site (site #8) for the validation period 2018 to 2022. (a) Comparison 326 
between the simulated and measured soil water characteristics curve. (b) Scatter plot comparing 327 
simulated and measured matric potential values, providing a visual representation of the level of 328 
conformity to the identity line. The two dashed lines represent the 95% confidence interval around the 329 
identity line, providing a visual assessment of the level of agreement. (c) Model validation presenting 330 
time series with the observed and predicted matric potential. (d) Analysis of the distribution of 331 
prediction errors (observed minus predicted values) with positively mild skewed distribution 332 

Comparing the performance for the ‘holdout’ period (randomly chosen days between 2012 and 2019) 333 

of the nine site-specific DNN models, the NSE index is larger than 0.55 (‘good’) for all and larger than 334 

0.80 (‘optimal) for six sites. For all sites it was thus possible to build a DNN model with good model 335 

(b) 

(c) 

(a) 

(d) 
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performance for the randomly chosen test days. However, for the validation period, only four showed 336 

optimal performance (NSE > 0.80). For two forest sites with an optimal performance for the holdout 337 

period (Dulliken, site #4, and Etziken, site #5), the NSE dropped from a range between 0.82 and 0.88 338 

to a range between 0.73 and 0.75 (table 1). Obviously, the model captured the overall short term 339 

dynamics during training (randomly chosen days) but faced problems in the precise prediction of the 340 

long validation period. An extended training period may be necessary to enhance the model's accuracy 341 

for these specific sites. Three grassland sites (Bellach, site #2, Matzendorf, #6, and Hofstetten-Flüh, #5) 342 

showed good but not optimal performance already during the holdout period. As discussed in the next 343 

section, this may be related to large variations of the pressure values for similar water contents and the 344 

corresponding large AUV. Notably, the lower performance observed in the holdout period for 345 

Hofstetten-Flüh could be also linked to data limitations, as only 1200 days were used to train the model 346 

for this specific site (compared to 1825 sites for the other sites). 347 

Table 1 Statistical assessment of calibration (1825 days, until year 2019/2020) and validation results 348 
(years 2018/2019/2020 until years 2020/2021/2022) for nine sites. The holdout dataset was part of the 349 
training period and includes 548 days (30 % of calibration).  350 

  Training (holdout) Validation 

Location AUV (-) NSE (-) RMSE (-cm) NSE (-) RMSE (-cm) 

1 Aetigkofen 1.95 0.92 48 0.89 60 

2 Bellach 7.00 0.70 98 0.62 125 

3 Breitenbacha, b 3.56 0.86 82 0.83 96 

4 Dullikena 2.19 0.82 55 0.73 103 

5 Etzikena 1.90 0.88 56 0.75 70 

6 Hofstetten-Flühb 5.59 0.76 90 0.63 123 

7 Matzendorf 6.39 0.76 83 0.59 133 

8 Stüsslingen 4.49 0.80 71 0.80 98 

9 Zunzgen 6.44 0.87 62 0.83 73 

a forest sites. 351 
b Sites with limited available data. For those sites, only 1200 days were used for training; Within this training period, a subset 352 
of 360 randomly selected days was designated as a holdout dataset; the validation period for those specific sites was from 353 
2018/2019 to 2022. 354 

3.2 Autoencoder DNN 355 

The Autoencoder values (AUV) deduced from the time series analysis of the volumetric water content 356 

for the period 2012-2022 can be classified in three main groups (figure 6). Soil water characteristics 357 

curves (SWC) with low water content at saturated conditions and a small variation of water content for 358 
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similar potential values are assigned to ‘type 1’, contrasting ‘type 2’ with large water content values 359 

and variations. These types of SWC are related to small (‘type 1’) and high (‘type 2’) autoencoder 360 

values (AUV). Sites with AUV between these two classes, are denoted in the following as ‘transitional’ 361 

type. As shown in Table 1, the AUV of forest soils are small (mainly ‘type 1’) with large NSE values. 362 

In contrast to the forest soils, there are grassland sites with high AUV (‘type 2’) but small NSE. 363 

Probably, the high variations of the SWC curve for ‘type 2’ require longer training periods to capture 364 

the high variations in the pressure-saturation relationship. 365 

 366 
Figure 6 Autoencoder value (AUV) and its relation to the soil water characteristics curve (SWC). (a) 367 
The AUV of the nine sites with three sites of small (type 1) and three sites of high (type 2) AUV. (b) 368 
The type 1 of the SWC has small water contents close to saturation and a narrower range of water 369 
contents for similar water contents compared to type 2 with high water content values and variations. 370 
Type 1 shows the data range of Aetigkofen (site #1) and Type 2 for Bellach site (#2). The site numbers 371 
are chosen in alphabetic order and as shown in Figure 1 (Aetigkofen (1), Bellach (2), Breitenbach (3), 372 
Dulliken (4), Etziken (5), Hofstetten-Flüh (6), Matzendorf (7), Stüsslingen (8), Zunzgen (9); sites with 373 
forest are marked with *). 374 

3.3 Deep neural network using the autoencoder value (AUC-DNN) 375 

As mentioned in the previous section, the nine sites could be grouped into three main types according 376 

to the scaled autoencoder value (AUV). Consequently, it was assumed that the creation of a DNN 377 

model, which incorporates AUV in conjunction with the previously built site-specific neural network, 378 

could enable predictions for unseen sites. Ideally, the model should be trained with a balanced dataset, 379 

including one site from the ‘type 1’ category, one site from the ‘type 2’ category, and a few sites from 380 

the ‘transitional’ category to capture the full transition between the ‘type 1’ and ‘type 2’. However, due 381 
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to the data limitation, the model was trained for only three sites representing the three types (Etziken, 382 

site #5, for ‘type 1’; Bellach, #2, for ‘type 2’; Stüsslingen, #8, for the ‘transitional type’) and was then 383 

used to predict the six unseen sites. The impact of the small training set (only one site for transitional 384 

type) was clear in the model results, which exhibited some instability, changing from one run to another 385 

as the model was not able to assume the same transitional function between sites consistently. Therefore, 386 

the model was run 20 times, then the average result for theses runs was taken as a representative 387 

outcome. The application of the new DNN model with AUV to predict the dynamic of matric potential 388 

is shown in Figure 7 for Breitenbach (site #3, loam, forest) as unseen site. The model was found to fell 389 

slightly behind the previously designed DNN model, but still can predict the dynamic in a good way. 390 

Notably, the NSE value for this model for Breitenbach site was 0.71 over the entire period from 2012 391 

to 2022 (Table 2).  392 

Table 2 AUC-DNN Model performance for the period 2012-2022. Three training sites were used to 393 
build the AUC-DNN model that was then applied for the other six sites. The sites are listed according 394 
to the corresponding autoencoder value (AUV). The asterisks mark the sites with forest; The AUV 395 
was scaled from 1.9 to 7.0 to simplify input. Alternatively, scaled values ranging from 0 to 1 could 396 
also be utilized. 397 

Location AUV 

(value) 

AUV (type) used as NSE (-) RMSE 

(cm) 5 Etziken* 1.90 Type 1 Training site 0.82 70 

1 Aetigkofen 1.95 Type 1 Validating site 0.76 88 

4 Dulliken* 2.19 Type 1 Validating site 0.65 100 

3 Breitenbach* 3.56 Transitional Validating site 0.71 73 

8 Stüsslingen 4.49 Transitional Training site 0.85 116 

6 Hofstetten-Flüh 5.59 Transitional Validating site 0.60 113 

7 Matzendorf 6.39 Type 2 Validating site 0.58 123 

9 Zunzgen 6.44 Type 2 Validating site 0.69 104 

2 Bellach 7.00 Type 2 Training site 0.71 104 

 398 

It was noticed that the error distribution exhibited a predominantly normal pattern with a bias towards 399 

higher observed values compared to the predicted values (figure 7d). The analysis indicates the model's 400 

proficiency in forecasting dynamic trends rather than precise values (figure 7c). The results align with 401 

the anticipated scenario as the AUV for Breitenbach (3.56) was relatively close the Stüsslingen AUV 402 

value (4.49). Therefore, the underestimation detected in Stüsslingen for the site-specific DNN (figure 403 

5b) is expected to exist in Breitenbach as well. The average model performance for all sites is presented 404 
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in Table 2. The NSE values was > 0.55 for the 6 unseen sites (validating sites) and provided strong 405 

evidence that the model can be relied upon for the dynamic MP predictions. 406 

 407 

Figure 7 Evaluation of the Deep Neural Network with Autoencoder (AUC-DNN) model performance 408 
at the Breitenbach site for the period 2012-2022. (a) Comparison between the expected Soil Water 409 
characteristics curve (SWC) and the observed SWC. (b) Scatter plot that compares observed data points 410 
with their corresponding simulated values, providing a visual representation of the level of conformity 411 
to the identity line. The two dashed lines represent the 95% confidence interval around the identity line, 412 
providing a visual assessment of the level of agreement. (c) Time series comparison showing the 413 
observed and predicted matric potential for the entire period. (d) Analysis of the distribution of 414 
prediction errors (observed minus modelled value) using positively mild skewed distribution. 415 

The NSE values for the unseen sites (validating sites) varied from 0.58 to 0.76, indicating a spectrum 416 

of model performance, ranging from acceptable to good. The low NSE values observed for Matzendorf 417 

(site #7) suggest that the model's utility is more suited for capturing overall trends and dynamics rather 418 

than precise values. This evaluation was further supported by examining a scatter plot (Figure 8) that 419 

compares the observed data points with their corresponding simulated values for the sites scored the 420 

(b) 

(c) 

(a) 

(d) 
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lowest and the highest NSE, Matzendorf (site #7) and Aetigkofen (site #1). The plot revealed a wider 421 

95% confidence interval for Matzendorf (figure 8a) in comparison to Aetigkofen (figure 8b), indicating 422 

that the lower the NSE value is, the more challenging it became for the model to predict the exact MP 423 

values. However, the model performance indicated the ability of the AUC-DNN model to predict 424 

dynamic MP without the necessity of site-specific training data, marking a transition from the DNN 425 

site-specific nature to a more versatile multi-site model.  426 

 427 

Figure 8 Comparison between observed data points and their corresponding simulated values for two 428 
sites with lowest and highest efficiency coefficient NSE. (a) Matzendorf (site #7) with NSE of 0.58. (b) 429 
Aetigkofen (site #1) with NSE of 0.76. The solid lines mark the 1:1 correspondence, the dashed lines 430 
the 95% confidence interval. 431 

4. Discussion 432 

Based on the analysis of the simulation results presented in section three, it can be asserted that the 433 

model was successfully built. However, as discussed in the next subsection, the model is expected to 434 

have certain drawbacks due to the limited number of available sites. In the other subsections, the 435 

relationship between the autoencoder value and soil properties and its application for satellite data will 436 

be discussed. 437 

4.1 Limits of the deep neural network with autoencoder value (AUC-CNN) 438 

First, the model's statistical evaluation revealed that the matric potential (MP) at a depth of 20 cm could 439 

be simulated with acceptable precision. However, a high variability in the evaluation is indicated by the 440 

NSE values for the unseen sites. This variance is attributed to the model's limited generalization 441 

  (b) (a) 
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capacity, as it was trained on just three sites. Furthermore, the model was not able to catch the whole 442 

dynamic for the training sites due to the limited length of available data. For example, Bellach (site #2), 443 

a training site that has a high AUV, had NSE value of 0.71 for the training period (table 2), which 444 

indicates that the model was able to catch the general trend for this site, but still can’t predict the exact 445 

value of the MP. The effect of this result was obvious on the sites that are closed to AUV ‘type two’ 446 

category (e.g., Hofstetten-Flüh and Matzendorf, sites #6 and #7, with NSE of 0.60 and 0.58, 447 

respectively).  448 

The stability of the AUC-DNN model was insufficient, as the model showed different prediction quality 449 

upon running the model repeatedly for the same training sites (figure 9). This variability in the outcomes 450 

indicates that the model can find different MP dynamics scenarios inside the training data. Therefore, 451 

it is recommended to train the model for more than one site in the same AUV type. 452 

 453 

Figure 9 Variation of prediction results for 20 Runs for the AUC-DNN model quantified with the 454 
efficiency coefficient NSE. The highest variation was with the unseen sites in the transitional and type 455 
2 categories. Each box represents the interquartile range, with the line inside denoting the median. The 456 
black diamond markers connect the mean values for each station, providing insight into the central 457 
tendency of the data. Notches on the boxplots offer a visual indication of the uncertainty around the 458 
median. The red dashed line represents the defined threshold for the NSE, set at 0.55 ; sites with forest 459 
are marked with *; training sites are highlighted in green. 460 
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Especially for the ‘transitional type’, choosing a site in the beginning, in between, and in the end of the 461 

category would stabilize the modeling results. However, in this study, there was no possibility to 462 

provide the model with extra data to solve the prediction instability. Therefore, a solution was 463 

implemented by 1) closely monitoring the model manually to ensure it captures the dynamic from all 464 

three sites. This involved training the model with nearly identical time periods for each site and visually 465 

confirming comprehensive coverage of the cloud of points for the retention curve of each site, avoiding 466 

concentration on specific patterns during training. The process also includes 2) running the model for 467 

20 times, then averaging the results. Additionally, the statistical evaluation plots as shown in Figure 8, 468 

were used to detect instances with very low or very high MP prediction values. 469 

For the set of sites analysed in this study, the model showed good generalization capacity and stability. 470 

However, the nine sites were similar with respect to climate and geology and the range of soil textural 471 

classes (see Figure 1) was relatively narrow. In a future study, the AUC approach will be applied for 472 

sites differing in climate and soil textural classes. We expect that the model can predict the dynamic 473 

matric potential for a new site as long as the autoencoder value falls within the range of AUV of the 474 

training sites. To predict the soil moisture dynamics for soils with autoencoder values outside of the 475 

range of training data, the model must be re-built using additional training data. 476 

 477 

4.2 Interpretation of AUV and its relationship to physical soil properties 478 

As discussed in section 3.2, the autoencoder value (AUV) is low for soil water characteristics curves 479 

(SWC) with low saturated water content and low variations of water content for a certain matric 480 

potential value (type 1) and high AUV for large values and variations of water content (type 2). To 481 

provide a more quantitative relationship between SWC and AUV, the SWC data were characterized as 482 

follows: the time average of volumetric water content (VWC) and SWP were calculated for 15 days for 483 

the period 2015 to 2022. The envelope of these data was then calculated by fitting a minimum and 484 

maximum pressure saturation relationship including the averaged data (see Figure 10a).  485 
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 486 

Figure 10 Relationship between autoencoder value (AUV) and soil water characteristics curve (SWC). 487 
(a) 15-days average of SWC data for Aetigkofen (symbols; site #1). The two lines are exponential 488 
functions building the envelope of the SWC curve. (b) Linear model for the nine sites linking the 489 
parameters of the exponential model with the ‘measured’ AUV (deduced from measured water content 490 
data). 491 

The two boundary lines of the SWC were then characterized by a ‘saturated’ and ‘residual’ water 492 

content and a shape parameter defining an exponential decrease of water content with increasing 493 

absolute matric potential values. The SWC of each site can thus be described by six parameters (three 494 

parameters per boundary line). As shown in Figure 10b, a linear model expressing the AUV as function 495 

of these six parameters can be built. Simpler models with less parameters could not reproduce the AUV 496 

of all sites. Despite the positive correlation between AUV and average water content, the average water 497 

content alone is not sufficient to explain the range of AUV for all sites. Also combining average water 498 

content with soil texture information could not reproduce the AUVs of all sites, indicating that the soil 499 

moisture dynamics represented by AUV is not only dependent on static soil textural attributes but 500 

seasonal structural features as well. 501 

Accordingly, there is no simple interpretation of AUV based on texture and average water content, but 502 

the dynamic variation of water content must be considered as well. Due to the relevance of the variation 503 

in water content for similar matric potential value, the use of a variational autoencoder (VAE) instead 504 

of the typical autoencoder could be considered. In contrast to the typical autoencoder that maps the 505 

input information into a single point (or a few points), the VAE produces a probability distribution 506 
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capturing the variability (second moment) of the data. This could be specifically of interest for clay 507 

soils with high water contents (much larger than the residual water content) for the entire range of matric 508 

potential values. By including a probabilistic approach in the compressing and decompressing step, the 509 

variability of the data could be captured more efficiently using VAR. 510 

 511 

4.3 Application for satellite data  512 

The AUC-DNN model was used to analyze satellite-based volumetric water content (VWC) satellite 513 

data, including SMAP L4 and L3, SMOS products, and Sentinel data. Subsequently, a comparison was 514 

carried out for the AUV for both site-specific measurements and earth observation (EO) measurements 515 

for the same region. The initial findings highlighted a disparity between the dynamics captured by EO 516 

products and the actual dynamics. Therefore, if the objective is to establish a robust system capable of 517 

detecting changes in water retention dynamics on a regional scale, it is considered necessary to enhance 518 

the calibration of EO in Europe. Only with EO-data that can reproduce the essential of the soil moisture 519 

dynamics as manifested in the AUV, the matric potential dynamics can be deduced from EO-data. For 520 

future EO-data with improved capacity to capture regional soil moisture dynamics, the concept 521 

presented in this study (AUC-DNN) could be used to predict matric potential dynamics at global scale 522 

(see Appendix C). 523 

5. Summary and conclusions 524 

The soil water potential (SWP) determines water flow direction, water ability for plants, and mechanical 525 

stability. Because it cannot be measured directly by remote sensing techniques at larger scales, it is 526 

often deduced from water content information, assuming an unambiguous relationship between water 527 

content and SWP. However, this relationship under dynamic field conditions is highly ambiguous due 528 

to hysteresis, dynamic effects, and soil structural changes that cannot be modeled with a physically-529 

based model. To enable prediction of SWP from soil water content, we apply a deep neural network 530 

(DNN) with an autoencoder to define unique features of the soil moisture dynamics. By inserting the 531 

autoencoder value (AUV) together with climatic data and water content measured at nine sites in the 532 
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region of Solothurn (Switzerland) in a deep neural network (AUC-DNN), the soil water potential could 533 

be predicted. The main findings of the study can be summarized as follows: 534 

• The SWC of the nine sites can be classified in three types based on the width of pressure-535 

saturation relationship and the water content close to saturation 536 

• These SWC-types are manifested in different autoencoder values (AUV) 537 

• The AUV is not a simple function of average water content or soil texture but includes structural 538 

effects as well 539 

• The AUC-DNN model could predict successfully the SWP dynamics of sites without site-540 

specific training 541 

The autoencoder value (AUV) is thus a new descriptor of the complex soil moisture dynamics that 542 

cannot be captured with physically based models. Future satellite generation may be sensitive enough 543 

to measure the AUV from remote sensing water content data. The approach presented in this paper will 544 

then enable the prediction of the soil matric potential at the global scale using remote sensing water 545 

content data. 546 

Appendix A: Data Quality Assurance and Trend Analysis 547 

As a precaution for data quality, the Absolute Matric Potential (AMP) and volumetric water content 548 

(VWC) data were scrutinized to identify potential errors the data. The process includes different steps 549 

that were necessary to discover anomalies, checking the integrity of the data, and detecting systematic 550 

changes with time. 551 

1- Flagging Abrupt Changes in VWC and MP: 552 

 553 

VWC Flagging and removing: 554 

• Differences between consecutive (daily) time steps in the water content time series were 555 

calculated. 556 

• Instances with daily differences exceeding 0.1 cm3/cm3 were flagged and denoted as sudden 557 

decreases or increases in VWC. 558 
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• Instances with VWC below 0.1 cm3/cm3 or exceeding 0.7 cm3/cm3 were identified and removed 559 

from the dataset. These extreme values were considered as measurement anomalies or outliers 560 

affecting the overall dataset's reliability. 561 

• Instances with AMP<1 cm was removed from the data to overcome limitations in the used 562 

method. The water potential can change without modifying the volumetric water content after 563 

this limit, which could make the results of the model not accurate enough. 564 

• The differences between consecutive time steps in AMP -time series was calculated; instances 565 

with daily differences exceeding 500 cm were flagged and called sudden decreases or increases 566 

in AMP (figure A1). 567 

• The threshold AMP-value of 850 cm was employed in a specific step, where instances with 568 

AMP exceeding 850 cm were removed from the dataset, addressing the physical properties of 569 

water as it starts to boil in the tensiometers under pressure after this limit. 570 

• Periods of concurrent decrease in AMP (indicator for wetting) and decrease in VWC (drying) 571 

were flagged (figure A1). 572 

• Periods with matric potential values remaining constant over a three-day rolling window were 573 

flagged (figure A1). 574 

2- Utilizing Index Windows for Data Manipulation and Data Removal 575 

To address flagged instances mentioned before, a systematic approach is employed. For each 576 

flagged instance, three additional indices are generated around it to construct an index window, 577 

spanning one day before (index_1), the flagged instance itself (index_0), and two days after 578 

(index_2 and index_3). This four-day index window was eliminated from the dataset (figure 579 

A1). The decision to eliminate this window was informed by a visual assessment of 580 

measurements as it was noticed that when a measurement error occurs, the accuracy of the 581 

preceding day is affected. Furthermore, it was assumed that the device requires two subsequent 582 

days to restore normal measurement precision. This process contributes to a refined dataset, 583 

providing a more accurate representation of the underlying trends in AMP and VWC. 584 
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 585 

Figure A1 Comparison of data before and after cleaning procedure: the blue circles depict the remaining 586 
data after applying the cleaning criteria. Each distinct marker represents eliminated points, each 587 
corresponding to a specific criterion (e.g., the square purple marker for simultaneous decrease in 588 
volumetric water content (VWC) and the absolute matric potential (AMP), the red upward-pointing 589 
triangle is the marker for sudden decreases, the lime diamond for sudden increases, and the orange 590 
downward-pointing triangle marks periods of unchanged AMP). This provides insights into the reasons 591 
for data removal and illustrates the profound impact of the data cleaning process in retaining high-592 
quality data points. In (a) the cleaning process for sandy clay loam site in Aetigkofen (site #1) is shown, 593 
in (b) the cleaning process for the Matzendorf site (site #9, clay loam soil). 594 

Appendix B: Running the model with Logarithmic MP value.  595 

The AUC-DNN showed a good performance in predicting the dynamic MP for the different 6 unseen 596 

sites. However, it was clear that the model prioritizes tends to focus on capturing significant changes in 597 

values rather than accurately representing the values themselves. This tendency is attributed to the 598 

substantial difference between the highest and lowest absolute values (approximately 850 cm), leading 599 

the model to emphasize major fluctuations while neglecting minor ones. To address this issue and 600 

enhance the model's precision in capturing the exact AMP, a suggestion has been made to train the 601 

model for the same three sites but with the logarithmic value for the AMP. This modification aims to 602 

strike a better balance, ensuring that both major and minor changes are effectively captured while 603 

maintaining accuracy in representing the specific values of MP. 604 

To qualitatively assess the model training performance under the logarithmic scale, a scatter plot (Figure 605 

B1) was generated, comparing observations against simulated values for the second training site 606 

(Stüsslingen). The reason for choosing a training site was to understand how the model captures the 607 

(a) (b) 
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dynamics when trained with logarithmic matric potential. The results suggest that using logarithmic 608 

scale, the model prioritized the prediction of the exact absolute value of matric potential (AMP), which 609 

makes the model to optimize predictions for the absolute values between 0 to 200 cm. This approach is 610 

giving the same importance to small and large changes in the AMP, which causes that the model 611 

assigned a higher weight to small changes according to their higher frequency, while neglecting less 612 

frequently occurring major dynamic shifts. Consequently, the model's accuracy went down beyond 200 613 

cm (figure B1a) when compared to the model trained on non-logarithmic AMP-values (figure B1b). To 614 

maintain a balanced consideration of changes, logarithmic MP was avoided in the main part of the 615 

paper. 616 

 617 

 618 
Figure B1 Visual comparison of model performance, comparing the observed and simulated values for 619 
the Stüsslingen training site. (a) the model trained with logarithmically scaled AMP-values, while in 620 
(b) The model trained with absolute linear matric potential (AMP) values. The solid line denotes the 621 
1:1 correspondence, and dashed lines represent the 95% confidence interval.  622 

Appendix C: SMAP data and Autoencoder for global scale analysis  623 

SMAP (Soil Moisture Active Passive) is a NASA satellite mission that was established to help in 624 

improving weather forecasts and global drought monitoring. SMAP data products are available at 625 

different levels of processing, from Level 1 (L1; instrument measurements) to Level 4 (L4; model-626 

derived value-added products). For this study, SMAP L3 and SMAP L4 products for measuring 627 

moisture content were used. The main difference between the two products is that SMAP L3 depends 628 

on the passive radiometer measurements, while SMAP L4 products are derived from a data assimilation 629 

(b) (a) 



 

28 
 

system that combines the L-band brightness temperature observations from SMAP with a land surface 630 

model and meteorological forcing data (Reichle, et al., 2019). SMAP L3 products for moisture content 631 

are primarily affected by vegetation and surface roughness, allowing them to capture surface soil 632 

moisture variations. In contrast, the incorporation of land surface models in SMAP L4 products reduces 633 

its sensitivity to vegetation covers and surface roughness, making the products more representative of 634 

the profile soil moisture conditions (Reichle, et al., 2019; Ucla, Wood, & Sadri, 2018). 635 

The autoencoder's encoded representations offer a unique opportunity to compare the spatial patterns 636 

inherent in "point measurement" with remote sensing data such as SMAP L3 and SMAP L4 data. The 637 

autoencoder method could illuminate how these diverse data streams align or diverge, providing crucial 638 

insights into the compatibility and complementarity of ground and satellite measurements. The process 639 

was applied for the data between the years 2015 to 2022. All the data (SMAP L4, SMAP L3, and on-640 

site measurements) were given to the autoencoder neural network together. Subsequently, the resulting 641 

autoencoder values were scaled. Finally, a comparison was made to show if the satellite measurements 642 

and the on-site measurements have the same measured dynamics. 643 

The autoencoder analysis of SMAP L3 (figure C1) indicates that satellite measurements struggle to 644 

capture the dynamic change of the water content, as all locations yield approximately the same 645 

Autoencoder Value (AUV). In contrast, the SMAP L4 product (figure C1) exhibits fluctuations in AUV 646 

results. For instance, Stüsslingen and Matzendorf align closely with on-site measurements in terms of 647 

AUVs. However, for Hofstetten-Flüh, the SMAP L4 product indicates a very small AUV, suggesting 648 

an expected dynamic in line with a type 1 soil water retention curve (figure 6b). In contrast, on-site 649 

measurements indicate a higher AUV for Hofstetten-Flüh, suggesting a closer association with a type 650 

2 soil water retention curve. These findings underscore the imperative for developing a new 651 

methodology to calibrate satellite data in the Switzerland area. The prevalent uniformity in SMAP L3 652 

results and the notable disparities between on-site measurements and satellite data across various 653 

products highlight the need for a more refined approach to ensure accurate and reliable dynamic soil 654 

moisture assessments. 655 
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 656 

Figure C1 Comparative analysis of Autoencoder Neural Network results for SMAP L3 and SMAP L4 657 
satellite data, alongside with profile measurements. The fluctuating AUV values indicate varying 658 
degrees of alignment with on-site measurements across different locations. Sites with forest are marked 659 
with *. 660 
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