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REVIEW 1 (our reply in blue, the relevant changes made in the manuscript in red) 1 

Summary 2 

Aqel et al. present a neural network (NN) based approach to predict matric potential from soil water 3 

content observations. Using an autoencoder, they extract the most relevant features of the soil water 4 

retention dynamics. They input their results into a deep neural network (DNN), which increases 5 

the transferability of the DNN. 6 

Assessment 7 

The approach presented in this paper is convincing. The manuscript is well-written. Prediction of 8 

hysteresis in soil water retention is of interest to the soil hydrology and soil physics community. 9 

I don't have major comments. Thus, I recommend accepting the manuscript after minor revisions. 10 

I have some minor comments below. 11 

We thank the reviewer for the positive feed-back and the specific comments (they are addressed 12 

below). 13 

Nash-Sutcliffe efficiency 14 

The Nash-Sutcliffe coefficient tends to emphasise maxima in a time series, which might bias the 15 

results. An additional interesting metric would be the Kling-Gupta efficiency (Knoben et al., 2019; 16 

doi: 10.5194/hess-23-4323-2019). 17 

Thank you for the input. We computed the Kling-Gupta Efficiency (KGE) for the nine sites (see Table 18 

1 on the next page). 19 

KGE was developed to address some limitations of the Nash-Sutcliffe Efficiency (NSE) by 20 

incorporating three components: correlation, bias, and variability (Liu, 2020; 21 

https://doi.org/10.1016/j.jhydrol.2020.125488 ). The KGE provides a more comprehensive assessment 22 

of model performance by balancing these aspects. The value of KGE ranges from negative infinity to 23 

1, with a value of 1 indicating perfect agreement between observed and modeled data. 24 

In a study by Gupta et al. (2009; https://doi.org/10.1016/j.jhydrol.2009.08.003), a KGE of 0.6 was 25 

considered acceptable for streamflow simulations. In our analysis, we follow Towner et al. (2019, 26 

https://hess.copernicus.org/articles/23/3057/2019/) that used KGE > 0.75 as threshold for "good" model 27 

https://doi.org/10.1016/j.jhydrol.2020.125488
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://hess.copernicus.org/articles/23/3057/2019/
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performance. This threshold suggests that the model accurately captures the dynamics of the observed 28 

data, including the mean, variability, and correlation structure. 29 

KGE values for deep neural network modeling without autoencoder 30 

After running the deep neural network model (section 3.1), the KGE values were as shown in Table 1. 31 

Only two sites, Matzendorf (site #7) and Etziken (site #5), from the nine sites had a KGE value of less 32 

than 0.75 in the validation (KGE > 0.75 for training). These two sites were mentioned in section 3.1 as 33 

sites needing more training data, which follows the expected scenario by NSE. 34 

In conclusion, the KGE-analysis defines good model performance for seven out of nine sites (four sites 35 

according to NSE-criterion of NSE ≥ 0.80).  36 

Table 1: Statistical assessment of calibration (1825 days, until year 2019/2020) and validation results (years 2018/2019/2020 37 

until years 2020/2021/2022) for nine sites. The holdout dataset was part of the training period and includes 548 days (30 % 38 

of calibration).  39 

  Training (holdout) Validation 

Location AUV (-) NSE (-) RMSE (cm) KGE (-) NSE (-) RMSE (cm) KGE (-) 

1 Aetigkofen 1.95 0.92 48 0.91 0.89 60 0.87 

2 Bellach 7.00 0.70 98 0.84 0.62 125 0.77 

3 Breitenbacha, b 3.56 0.86 82 0.78 0.83 96 0.84 

4 Dullikena 2.19 0.82 55 0.86 0.73 103 0.76 

5 Etzikena 1.90 0.88 56 0.90 0.75 70 0.65 

6 Hofstetten -Flühb 5.59 0.76 90 0.79 0.63 123 0.81 

7 Matzendorf 6.39 0.76 83 0.79 0.59 133 0.63 

8 Stüsslingen 4.49 0.80 71 0.84 0.80 98 0.85 

9 Zunzgen 6.44 0.87 62 0.82 0.83 73 0.77 

a forest sites. 40 
b Sites with limited available data. For those sites, only 1200 days were used for training; Within this training period, a subset 41 

of 360 randomly selected days was designated as a holdout dataset; the validation period for those specific sites was from 42 

2018/2019 to 2022. 43 

KGE values for deep neural network using the autoencoder value (AUC-DNN) 44 

The results of the Kling-Gupta Efficiency (KGE) for the Deep Neural Network Autoencoder (AUC-45 

DNN) model in section 3.3 show that three out of the six validation sites have a KGE value less than 46 

0.75 (Table 2, next page). The two sites Hofstetten-Flüh (site #6) and Matzendorf (site #7) have the 47 

lowest NSE values, indicating that the model captures the general dynamics of these site rather than the 48 

exact values. This is consistent with our conclusion in section 3.3. The third site, Breitenbach (site #3), 49 

was identified in section 3.3 as a site where underestimation is expected (see Figure 7 in manuscript), 50 

which explains why its KGE value is below the threshold of 0.75.  51 
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Table 2: AUC-DNN Model performance for the period 2012-2022. Three training sites were used to build the AUC-DNN 52 

model that was then applied for the other six sites. The sites are listed according to the corresponding autoencoder value 53 

(AUV). The asterisks mark the sites with forest; The AUV was scaled from 1.9 to 7.0 to simplify input. Alternatively, scaled 54 

values ranging from 0 to 1 could also be utilized. 55 

Location AUV 

(value) 

AUV (type) used as NSE (-) RMSE (cm) KGE (-) 

5 Etziken* 1.90 Type 1 Training site 0.82 70 0.81 

1 Aetigkofen 1.95 Type 1 Validating 

site 

0.76 88 0.76 

4 Dulliken* 2.19 Type 1 Validating 

site 

0.65 100 0.77 

3 Breitenbach* 3.56 Transitional Validating 

site 

0.71 73 0.68 

8 Stüsslingen 4.49 Transitional Training site 0.85 116 0.91 

6 Hofstetten-Flüh 5.59 Transitional Validating 

site 

0.60 113 0.72 

7 Matzendorf 6.39 Type 2 Validating 

site 

0.58 123 0.56 

9 Zunzgen 6.44 Type 2 Validating 

site 

0.69 104 0.81 

2 Bellach 7.00 Type 2 Training site 0.71 104 0.80 

 56 

Similar to the analysis without autoencoder discussed in the previous paragraph, the KGE-analysis 57 

defines good model performance for more sites than according to the NSE. Accordingly, the NSE-58 

thresholds for good model performance are more challenging compared to KGE and we focus on NSE 59 

(and not KGE) in the paper and no relevant changes were made in the manuscript related to this 60 

comment. 61 

Local nature of the model 62 

The results obtained are from sites that share similar climate and topography. I wonder if this 63 

workflow would work as well in different regions of the world, or if further adjustments must be 64 

made. 65 

To show what is needed to apply the workflow for other regions, we used the Deep Neural Network 66 

Autoencoder (AUV-DNN) model described in section 3.3 to predict the matric potential for a site called 67 

‘Wasen’ in the hilly region around the Napf mountain in Switzerland. Compared to the canton of 68 

Solothurn (the sites presented in the paper), the Napf region has a different geology and is known to be 69 

colder in winter and having more rainfall.  70 

The AUV value for Wasen was 2.54 and falls within the range of the training sites (1.90 to 7.00). 71 

Accordingly, we could expect that the soil moisture dynamics was similar to the sites in the canton of 72 

Solothurn. The model was thus able to predict the matric potential with high quality, as shown in the 73 

figure on the next page. The NSE for the model was 0.81, and the KGE was 0.89, indicating that the 74 

model performs well in predicting unseen sites in other locations. 75 
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However, Wasen is still in Switzerland, with soil texture similar to the training sites. It is expected that 76 

the model may not perform well for sites with AUV values outside the training range.  77 

We commented on this in section 4.1 in the revised manuscript as shown below:  78 

“For the set of sites analysed in this study, the model showed good generalization capacity and stability. 79 

However, the nine sites were similar with respect to climate and geology and the range of soil textural 80 

classes (see Figure 1) was relatively narrow. In a future study, the AUC approach will be applied for 81 

sites differing in climate and soil textural classes. We expect that the model can predict the dynamic 82 

matric potential for a new site as long as the autoencoder value falls within the range of AUV of the 83 

training sites. To predict the soil moisture dynamics for soils with autoencoder values outside of the 84 

range of training data, the model must be re-built using additional training data.” 85 

 86 

Figure 1. Evaluation of the Deep Neural Network with Autoencoder (AUC-DNN) model performance at the Wasen site for the 87 

period 2019-2023. (a) Comparison between the expected Soil Water characteristics curve (SWC) and the observed SWC. (b) 88 
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Scatter plot that compares observed data points with their corresponding simulated values, providing a visual representation 89 

of the level of conformity to the identity line. The two dashed lines represent the 95% confidence interval around the identity 90 

line, providing a visual assessment of the level of agreement. (c) Time series comparison showing the observed and predicted 91 

matric potential for the entire period. (d) Analysis of the distribution of prediction errors (observed minus modelled value) 92 

using positively mild skewed distribution. 93 

Physically-based modelling 94 

I partially agree that the reductionist mechanistic models might be unable to account for the full 95 

complexity inherent in the soil water retention process. Input-agnostic approaches such as neural 96 

networks surely have an advantage when it comes to predicting matric potential. However, 97 

physically-based modelling is also a tool for process understanding that could potentially help us 98 

disentangling the effects of all the interacting processes that control soil water retention. I know 99 

that there are efforts to make machine learning a tool for process understanding as well. Perhaps 100 

the authors could comment briefly on this and place their work in this discussion? 101 

We agree with the reviewer that we need physically-based modelling for process understanding. Due 102 

to the complexity of the involved physical processes at the field scale (hysteresis, non-equilibrium, 103 

seasonal dynamics of soil structure), we don’t have a yet a physical model to predict these processes. 104 

Machine learning could help to disentangle these effects, for example by classifying periods that are 105 

affected by structural changes and periods that are dominated by non-equilibrium effects. For the 106 

different periods, specific amendments in the description of the physical process and properties could 107 

be developed (i.e., the application of season-dependent and rate-dependent soil hydraulic properties).  108 

Alternatively, physically-induced machine learning (PIML) should be applied in the future, to link the 109 

knowledge we have on the physical processes with the data-driven machine learning approaches. There 110 

are recent applications of PIML in hydrology: Degen et al. (2023; 111 

https://gmd.copernicus.org/articles/16/7375/2023/) replaced the complex numerical simulations of the 112 

Richards equation with a surrogate model using a set of physically-based basis functions; Bhasme et al. 113 

(2022; https://doi.org/10.1016/j.jhydrol.2022.128618) combined a set of simple physically-based mass 114 

balance equations with machine-learning to predict successfully evapotranspiration and streamflow 115 

from a catchment. A similar approach is possible for the problem addressed in our paper: we could 116 

combine the physically-based description of the Richards equation with machine-learning based 117 

hydraulic functions that change continuously with season or with the drainage rate. Such an approach 118 

would provide insight in the changing hydraulic functions and test the validity of the Richards equation 119 

(to see if other processes like macropore flow must be included). We will test this in the future but did 120 

not address it in the revised manuscript. 121 

 122 

https://gmd.copernicus.org/articles/16/7375/2023/
https://doi.org/10.1016/j.jhydrol.2022.128618
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REVIEW 2 (our reply in blue, the relevant changes made in the manuscript in red) 123 

General Comments 124 

This manuscript presents an approach for predicting soil water potential and its hysteresis under natural 125 

field conditions by combining deep neural networks (DNN) with autoencoder neural networks. This 126 

integration leverages the strengths of both methods, with the autoencoder effectively compressing and 127 

capturing site-specific features of soil moisture dynamics, and the DNN utilizing these features to 128 

enhance prediction accuracy. 129 

Overall, the method is promising and convincing, and the manuscript is well-organized and clearly 130 

written. I have only a few concerns and suggestions, primarily regarding the model's generalization 131 

capability to clay soils and regions with significantly different climatic conditions, and the model's 132 

interpretability. 133 

We acknowledge the detailed comments of the reviewer. The suggestions and concerns are addressed 134 

below. 135 

Specific Comments 136 

Lines 106-109: Generalization Capability: Autoencoders are highly dependent on the quality and 137 

diversity of the training data. As shown in Figure 1, the selected region has relatively similar climatic 138 

conditions and soil types, mainly loams with a clay fraction less than 50%. I am curious about the 139 

model's generalization capability to different regions with varying climatic conditions and soil types, 140 

especially for clayey soils. Suggest expanding Section 4.1 to discuss this point and potential approaches 141 

to address this issue. Additionally, suggest discussing the possibility of using other autoencoders, such 142 

as variational autoencoder (VAE). 143 

We agree with the reviewer that the sites presented in the paper are very similar with respect to climate 144 

but also with respect to geology due to their vicinity to the Jura. The “transfer” of the model to sites 145 

with different climate or soil properties will be tested in a following study. But motivated by the 146 

comment of the reviewer, we checked the application of the model for a site called ‘Wasen’ in the hilly 147 

region of the Napf mountain in the Prealps of Switzerland. In that region the geology is different, and 148 

the climate is wetter and temperatures in winter are lower compared to the sites of the paper. The model 149 

was able to predict the matric potential with high quality, as shown in the figure below. The NSE for 150 

the model was 0.81 indicating that the model performs well in predicting unseen sites in other locations. 151 

We relate the good model performance to the Autoencoder value (AUV=2.54) that was within the range 152 

of the sites presented in the paper (1.9 to 7.0) and we hypothesize that if the autoencoder value deduced 153 

from the water content time series is within the range of the training data, the model performs well.  154 
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A paragraph (between quotation below) has been added to Section 4.1 to clarify the model limitations 155 

described here: 156 

“For the set of sites analysed in this study, the model showed good generalization capacity and stability. 157 

However, the nine sites were similar with respect to climate and geology and the range of soil textural 158 

classes (see Figure 1) was relatively narrow. In a future study, the AUC approach will be applied for 159 

sites differing in climate and soil textural classes. We expect that the model can predict the dynamic 160 

matric potential for a new site as long as the autoencoder value falls within the range of AUV of the 161 

training sites. To predict the soil moisture dynamics for soils with autoencoder values outside of the 162 

range of training data, the model must be re-built using additional training data.” 163 

 164 

Figure 1. Evaluation of the Deep Neural Network with Autoencoder (AUC-DNN) model performance 165 

at the Wasen site for the period 2019-2023. (a) Comparison between the expected Soil Water 166 

characteristics curve (SWC) and the observed SWC. (b) Scatter plot that compares observed data points 167 
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with their corresponding simulated values, providing a visual representation of the level of conformity 168 

to the identity line. The two dashed lines represent the 95% confidence interval around the identity line, 169 

providing a visual assessment of the level of agreement. (c) Time series comparison showing the 170 

observed and predicted matric potential for the entire period. (d) Analysis of the distribution of 171 

prediction errors (observed minus modelled value) using positively mild skewed distribution. 172 

 173 

We are grateful for the comment on the variational autoencoder. This could be especially helpful for 174 

soils with high variations in water content for the same matric potential value as can be expected for 175 

clay soils (the autoencoder values were higher for the four sites with clay content ≥ 30%). We expect 176 

that using a variational autoencoder instead of a deterministic autoencoder would improve the 177 

prediction of matric potential because it leverages regularization in the latent space that explicitly 178 

considers the variance (second moment) of the data distribution, leading to a more robust and accurate 179 

representation of the water content timeseries (Xu & Liang, 2021; https://doi.org/10.1002/wat2.1533). 180 

A paragraph has been added to Section 4.2 to explain why it is recommended to use the variational 181 

autoencoder in case of clay soil (shown below). 182 

“Accordingly, there is no simple interpretation of AUV based on texture and average water content, but 183 

the dynamic variation of water content must be considered as well. Due to the relevance of the variation 184 

in water content for similar matric potential value, the use of a variational autoencoder (VAE) instead 185 

of the typical autoencoder could be considered. In contrast to the typical autoencoder that maps the 186 

input information into a single point (or a few points), the VAE produces a probability distribution 187 

capturing the variability (second moment) of the data. This could be specifically of interest for clay 188 

soils with high water contents (much larger than the residual water content) for the entire range of matric 189 

potential values. By including a probabilistic approach in the compressing and decompressing step, the 190 

variability of the data could be captured more efficiently using VAR.” 191 

 192 

 193 

Lines 218: Model Interpretability: The interpretability of the autoencoder's hidden layer 194 

representations is typically challenging. Suggest Including a discussion in the results analysis or 195 

discussion section on potential techniques to visualize the features learned by the autoencoder's hidden 196 

layers, which can help readers understand the model's internal workings 197 

The interpretation of the autoencoder representation was shortly discussed in section 4.2 and is now 198 

expanded to clarify the link between the autoencoder value and the water. The analysis indicates that 199 

the value of AUC in the model is not equal to the average water content but is highly affected by it (the 200 
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higher the average water content, the higher the autoencoder value). Deterministic autoencoders, which 201 

map inputs deterministically to a lower-dimensional space, tend to capture prominent statistical 202 

properties of the input data. The first moment, or the average, is a primary statistical property. Therefore, 203 

the hidden layer representations (AUV) in a deterministic autoencoder will indeed be influenced by the 204 

average (first moment) of the water content. 205 

However, the average water content alone cannot explain the distribution of autoencoder values found 206 

for the nine sites, but the variations of water content must be included as well. This was shown in section 207 

4.2, revealing that the shape of the envelope embracing all variations in water content must be included 208 

to explain the autoencoder value of the nine sites. To confirm that the average water content is not 209 

sufficient to classify the dynamics at different sites. First, we run the autoencoder model to analyze the 210 

yearly changes. Second, we scale the values from 0 to 1, assigning a value of 0 to the lowest yearly 211 

AUV across all sites and a value of 1 to the highest. Finally, we calculate the average yearly water 212 

content and scale it similarly to AUV.  To highlight the results here, we quantified the annual changes 213 

of AUV and average water content for two sites that have Type 2 category (see type description in 214 

Figure 6 in the manuscript). AUV tracked changes in average water content but exhibited a different 215 

magnitude of variation. The site with higher sand content (Bellach) showed a higher variation of AUV 216 

compared to the other site (Zunzgen). This observation supports our conclusion in section 4.2 that the 217 

hidden layer is capturing more than just the average water content.  218 

 219 

Figure 2: Annual Variations in Autoencoder Values and Average Water Content for two Sites. The 220 

x-axis represents the years, while the y-axis shows the ratio of the scaled AUV to the scaled average 221 

water content for the same year. The plot demonstrates how the autoencoder's hidden layer 222 

representations track changes in average water content, reflecting variations and additional properties 223 

derived from the water content time series. 224 
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To conclude, we consider average water content as a central parameter for visualizing AUV. However, 225 

the variability and other higher-order statistical moments (e.g., variance, skewness) significantly 226 

influence the precise value of these hidden representations. These additional properties could include: 227 

• Variability (second moment): Reflecting how much the water content fluctuates around the 228 

mean. 229 

• Trend: Long-term increase or decrease in water content over time. 230 

• Periodic Components: Seasonal or cyclical patterns in water content. 231 

Therefore, AUV primarily reflects the average water content, combined with other properties derived 232 

from the variation in the water content time series. This is discussed in section 4.2. 233 

The text in section 4.2 was edited in multiple locations to address this and the final response was as 234 

shown below: 235 

“Simpler models with less parameters could not reproduce the AUV of all sites. Despite the positive 236 

correlation between AUV and average water content, the average water content alone is not sufficient 237 

to explain the range of AUV for all sites. Also combining average water content with soil texture 238 

information could not reproduce the AUVs of all sites, indicating that the soil moisture dynamics 239 

represented by AUV is not only dependent on static soil textural attributes but seasonal structural 240 

features as well. 241 

Accordingly, there is no simple interpretation of AUV based on texture and average water content, but 242 

the dynamic variation of water content must be considered as well.” 243 

  244 

Lines 289-290: Why adopt an NSE value > 0.80 as the criterion for an optimal model? Please provide 245 

the rationale for selecting this value. 246 

Several studies have shown that the performance of hydrological modeling is good when NSE values 247 

are around 0.75 or higher (Lin et al., 2017; https://doi.org/10.1061/(asce)he.1943-5584.0001580). Other 248 

studies suggest categorizing NSE results into levels to evaluate model simulation outcomes, where an 249 

NSE > 0.75 indicates a very good model, while an NSE value < 0.5 signifies unsatisfactory results 250 

(Moriasi et al., 2007; https://doi.org/10.13031/2013.23153). In Gupta et al. (1999; 251 

https://ascelibrary.org/doi/abs/10.1061/(ASCE)1084-0699(1999)4:2(135)), an NSE value of > 0.80 was 252 

considered as good (‘efficient’) and NSE < 0.50 as poor. These references are now added in the paper. 253 

Here we use NSE > 0.80 as well as criterion for good model performance. For this study, the chosen 254 

sites are mainly part of a network designed to provide real-time matric potential information for 255 

mitigating soil compaction. We found that when the NSE value is over 0.80, the confidence intervals 256 

for matric potential predictions are as follows: around 70 cm for 68% confidence interval, around 120 257 

https://doi.org/10.1061/(asce)he.1943-5584.0001580
https://doi.org/10.13031/2013.23153
https://ascelibrary.org/doi/abs/10.1061/(ASCE)1084-0699(1999)4:2(135)
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cm for 90% confidence interval, and around 150 cm for 95% confidence interval. This indicates that 258 

despite high predictive accuracy, different confidence intervals provide varying levels of precision and 259 

certainty, which can be strategically used for effective soil compaction management: 260 

• 68% Confidence Interval (around ±70 cm): This high precision interval is useful for routine 261 

monitoring and precise irrigation adjustments, ensuring that matric potential levels are optimal 262 

to prevent over-compaction or drying. 263 

• 90% Confidence Interval (around ±120 cm): This balanced interval offers a reliable estimate 264 

for planning soil management practices and designing traffic patterns to minimize soil 265 

compaction, providing a good compromise between precision and confidence. 266 

• 95% Confidence Interval (around ±180 cm): This interval, offering the highest confidence, is 267 

essential for high-risk scenarios and long-term planning. It ensures that comprehensive 268 

measures are in place to prevent severe compaction and maintain soil stability, considering the 269 

widest range of potential matric potential variations. 270 

By linking these confidence intervals with high NSE values, we can optimize soil compaction 271 

mitigation strategies, tailoring interventions to match the precision and risk tolerance required for 272 

various applications, from routine monitoring to high-stakes infrastructure planning. 273 

 274 

Two references were added to section 2.4 in the manuscript to address why we use this value. 275 

“A NSE value > 0.75 indicates a very good model, while an NSE value < 0.5 signifies unsatisfactory 276 

results (Moriasi et al., 2007). In Gupta et al. (1999) a threshold NSE-value of 0.80 was used for good 277 

model performance and is applied here as well.” 278 

Figure 2: The common unit for matric potential is -kPa. Please explain the relationship between the -279 

kPa and -cm used in this manuscript. 280 

The data downloaded from the soil moisture network were given in centibars (cbar) with 1 cbar = 1 kPa 281 

units of pressure, i.e., energy per volume). In the paper we expressed it as a head (length; energy per 282 

weight) considering water density of 1000 kg m3 and gravity acceleration of 10 m s-2, resulting in units 283 

of cm that are 1/10 of kPa.  284 

This is now stated in section 2.1 as shown below: 285 

“The matric potential in the downloaded data was given in kPa and was transferred to matric potential 286 

head with units of cm (1 cm is 0.1 kPa), considering a water density of 1000 kg m-3 and gravity 287 

acceleration of 10 m s-2.” 288 

Also, a sentence was added to figure 2:  289 
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“The unit of matric potential, represented as -cm, is equivalent to -0.1 kPa.” 290 

Equation 1: Please ensure that all parameters are clearly defined after the equation, and that their 291 

mathematical notation (bold, italic) is consistent throughout the manuscript. 292 

We rearranged the text to define the parameters after the equations and checked the notation throughout 293 

the manuscript. 294 

 295 


