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Abstract. Worldwide, drainage of peatlands has turned these systems from CO2 sinks into sources. In the Netherlands, 

where ~7 % of the land surface consists of peatlands, drained peat soils contribute >90 % and ~3 % to the country’s soil-15 

derived and total CO2 emission, respectively. Hence, the Dutch Climate Agreement set targets to cut these emissions. One 

potential mitigation measure is the application of subsurface water infiltration systems (WIS) consisting of subsurface pipes 

connected to ditch water. WIS aims to raise the water table depth (WTD) in dry periods to limit peat oxidation while 

maintaining current land-use practices. Here, we used automated transparent chambers in 12 peat pasture plots across the 

Netherlands to measure CO2 fluxes at high frequency and assess 1) the relationship between WTD and CO2 emissions for 20 

Dutch peatlands and 2) the effectiveness of WIS to mitigate emissions. Net ecosystem carbon balances (NECB) (up to four 

years per site, 2020–2023) averaged 3.60 and 2.69 t CO2-C ha-1 yr-1 for control and WIS sites, respectively. The magnitude 

of NECBs and slope of the WTD-NECB relationship fall within the range of observations of earlier studies in Europe, 

though they were notably lower than those based on campaign-wise, closed chamber measurements. The relationship 

between annual exposed carbon (defined as total amount of carbon within the soil above the average annual WTD) and 25 

NECB explained more variance than the WTD-NECB relationship. We found strong evidence for a reducing effect of WIS 

on CO2 emissions and no evidence for an effect of WIS on the WTD-NECB and annual exposed carbon-NECB relationships, 

meaning that relationships between either WTD or exposed carbon and NECB can be used to estimate the emission 

reduction for a given WIS-induced increase in WTD or exposed carbon. High year-to-year variation in NECBs calls for 

multi-year measurements and sufficient representative measurement years per site as demonstrated in this study with 35 site-30 

years observations. 
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1 Introduction 

Peatlands only cover 3 % of the Earth’s surface, yet they store 30 % of global soil carbon (C), and thereby function as an 

important global C sink (Friedlingstein et al., 2022; Leifeld & Menichetti, 2018; Yu et al., 2010). Peatlands consist of non- 

or partly decomposed plant material and are typically formed under wet and anoxic conditions when supply of dead plant 35 

material exceeds decomposition. However, many peatlands worldwide have been drained and claimed for human purposes—

mainly agriculture and forestry—during the last centuries (Kaat & Joosten, 2009; UNEP, 2022). Drainage immediately halts 

peat formation and increases soil aeration, which in turn accelerates aerobic microbial peat decomposition. This effectively 

reverses a peatland's function as a CO2 sink by emitting large amounts of CO2—sequestered over thousands of years—back 

into the atmosphere (Erkens et al., 2016; Evans et al., 2021; Tiemeyer et al., 2020). Worldwide, drained peatlands are 40 

responsible for 2–5 % of the total anthropogenic greenhouse gas (GHG) emission (Bonn et al., 2016; Humpenöder et al., 

2020; Leifeld & Menichetti, 2018). Given the high CO2 emissions from drained peatlands, reducing this emission would be a 

prerequisite to reach targets set by the Paris Climate Agreement to keep global warming below 1.5–2.0 °C (Leifeld & 

Menichetti, 2018). Hence, prompt measures are needed to limit CO2 emissions from peatlands. 

 45 

The Netherlands arguably has the longest history of intensive drainage and exploitation of peat soils in the world (Erkens et 

al., 2016). Currently, about 290.000 ha (ca. 7 % of the Dutch land surface) consists of peat soils of which ca. 77 % is used 

for agriculture, primarily as pastures for dairy farming (Arets et al., 2021). Cultivated, drained peat soils in the Netherlands 

emit an estimated 4 Mt CO2 per year (Arets et al., 2021), constituting ca. 3 % of the country’s total CO2 emission (CBS, 

2023). The Dutch Climate Agreement (Ministry of Economic Affairs and Climate Policy, 2019) targets a reduction of 1 Mt 50 

CO2-eq. per year from drained peat areas by 2030 and a 95 % reduction of emissions by 2050 relative to 1990. Hence, there 

is an urgency to explore, test and apply emission mitigation measures in drained peatlands. 

 

Most proposed mitigation measures rely on limiting or reversing drainage of peatlands, thereby (temporarily) decreasing 

water table depths (WTD). A shallow WTD decreases the extent of the unsaturated zone, limiting the maximum depth of 55 

oxygen intrusion into the soil (Boonman et al., 2024), thereby mitigating aerobic decomposition and CO2 emissions. There 

are indeed several studies that show a clear relationship between WTD and CO2 emission, although they differ in the type of 

relation and magnitude of emissions. Some studies suggest a linear relationship between WTD and CO2 emission (e.g. 

Couwenberg et al., 2011; Evans et al., 2021). Others, such as Tiemeyer et al. (2020) and Koch et al. (2023) found a 

relationship that fitted best with a sigmoid function, whereby changes in WTD at depths beyond 30 cm hardly affect CO2 60 

emission (meaning that raising the WTD is only useful at shallow depths). Of these studies, CO2 emissions reported in 

Tiemeyer et al. (2020) were the highest, being a factor 1.7 and 7.4 higher for a WTD between 0.2–0.4 m compared to 

Couwenberg et al. (2011) and Evans et al. (2021), respectively. 
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Several land management strategies are available to decrease peatland drainage, peat decomposition and the corresponding 65 

CO2 emissions. Options include complete peatland rewetting for nature restoration (Nugent et al., 2019) or paludiculture 

(Abel & Kallweit, 2022; Wichtmann & Joosten, 2007), which are effective to limit peat oxidation (Tannenberger et al. 2022; 

Buzacott et al., n.d.; van den Berg et al., n.d.), but also mean a change from conventional agricultural land use. To maintain 

conventional agricultural use, alternative options include raising ditch water levels or applying (sub)surface water infiltration 

systems (WIS; e.g. Boonman et al., 2022; van den Akker et al., 2008; Weideveld et al., 2021) to reduce peat oxidation, albeit 70 

to a lesser extent than complete rewetting. In the Dutch coastal peatland areas, WIS consist of regularly spaced subsurface 

drains (commonly 4–6 m drain spacing), which are connected to ditches or to a managed reservoir. These systems allow for 

a more homogeneous WTD within a field, thereby decreasing the extent of the unsaturated zone in warm and dry summers. 

As spacing between ditches in these areas commonly is large (30–100 m), raising ditchwater levels would be less efficient 

than WIS in reducing the unsaturated zone thickness further away from the ditch, as the hydraulic conductivity of peat soils 75 

is mostly low (Jansen et al., 2007; Kechavarzi et al., 2007; H. Liu et al., 2016). By reducing the unsaturated zone, application 

of WIS is expected to reduce aerobic peat decomposition and associated CO2 emissions, while allowing conventional 

agricultural activities to continue. However, the effectiveness of WIS in terms of CO2 emission reduction varies, since some 

studies found evidence for a decrease in yearly CO2 emissions from WIS systems (Boonman et al., 2022; Offermanns et al., 

2023; van den Akker et al., 2008), while other studies found insufficient evidence (Weideveld et al., 2021) or even found 80 

evidence for an increase in CO2 emissions (Tiemeyer et al., 2024). Differences in reported effectiveness may be caused by 

differences in soil properties or hydrological boundary conditions (ditch water level, seepage, summer drought or wet 

conditions) among others. 

 

This study presents the measurement results from a novel CO2 emission monitoring network for Dutch coastal peatlands 85 

under intensive agricultural use using automated transparent chambers. The aim of this network is twofold: 1) to establish a 

relationship between WTD and annual CO2 emissions, and its uncertainty, for this specific type of peatlands, and 2) to 

determine the effectivity of WIS as a measure to reduce CO2 emissions from these peatlands. We derived annual net 

ecosystem carbon balance (NECB) estimates for six locations for up to four years (2020–2023) from high-frequency CO2 

flux measurements with automated transparent chambers. We then evaluated the relations between WTD and NECB 90 

estimates and determined the WIS effectiveness in terms of annual NECB differences in relation to effective changes in 

WTD. 

2 Methods 

Six locations distributed over the coastal peat areas in the Netherlands were selected (Sect. 2.1, Fig. 1, Table 1) for this 

study. The locations were instrumented with automated transparent chambers (Sect. 2.2) and environmental sensors (Sect. 95 
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2.3). Plots were harvested and fertilised (Sect. 2.4), resulting in several C input and export terms that are considered in the 

NECB estimates (Sect. 2.5). 

2.1 Study sites and study setup 

Six locations were selected where water infiltration systems (WIS) had (recently) been installed. These locations are 

distributed over the coastal peatlands (peatlands with surface level elevation below 1 m above mean sea level) in the 100 

Netherlands taking into account the following selection criteria: (1) the peat layer (>80 % organic matter) thickness exceeds 

1 m, (2) is covered by less than 0.5 m of clay, and (3) locations are used as intensively managed grasslands which are mowed 

and/or grazed (Fig. 1). Five locations had both a control (CON; without WIS) and treatment field (with WIS); Table 1. One 

location (LAW) only consisted of a treatment field, and in one location (ZEG) we measured two different treatment fields 

which were compared with one control. 105 

 

 
Figure 1. Site locations and presence of coastal peatlands in the Netherlands (a). Photo impressions of Assendelft (b), Zegveld (c) 
and Aldeboarn (d). 
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 110 
Table 1. Overview of some characteristics of the measurement sites addressed in this paper, distinguishing the control (CON) and 
treatment (passive or active water infiltration; WIS) plots per location. Both listed WTD and ditch water table (WT) apply to 
summer values. Peat thickness applies to the total Holocene peat layer thickness, clay thickness applies to the thickness of the 
clay(ey) layer on top of the peat. All units are in m. 

Location Treatm

ent 

WIS type Chamber 

system 

WTD 

aim 

 

Ditch WT 

aim 

 

Ditch 

spacing  

Drain 

spacing 

Year of 

drain 

install-

ation 

Peat 

thick-

ness  

Clay 

thick-

ness  

Aldeboarn 

(ALB)  

CON - Eosense - 0.75–0.59x 120 - - 1.6 0.35 

WIS Passive Eosense - 0.45x 110 6.0 2016 1.7 0.4 

Assendelft 

(ASD) 

CON - VLUXpod - 0.45 185 - - 2.0 0.3z 

WIS Active VLUXpod 0.25 0.45 185 4.0 2018 2.0 0.3z 

Lange 

Weide 

(LAW) 

WIS Passive VLUXpod-L - 0.4 62 6.0 2019 7.2 0.3 

Rouveen 

(ROV) 

CON - Eosense - 0.4 36 - - 3.1 0.3 

WIS Passive Eosense - 0.4 42 8.0 2018 3.3 0.3 

Vlist 

(VLI) 

CON - VLUXpod - 0.5 32 - - >3.0y 0.4 

WIS Passive VLUXpod - 0.5 36 6.0 2011 >3.0y 0.4 

Zegveld 

(ZEG) 

CON - Eosense - 0.55 65 - - 6.8 0.3z 

WIS1 Active Eosense 0.5 0.55 65 6.0 2016 6.8 0.3z 

WIS2 Active VLUXpod-L 0.2 0.2 50 4.0 2020 6.5 0.3z 

x CON: Change in ditch WT from a ~ constant 0.75 m in 2021 to a fluctuating (range: 0.37–0.88 m) level thereafter. Range presented in 115 
table represents range in annual average ditch water table. WIS: Fluctuating ditch water level controlled by the farmer until March 2022, 

fixed at 0.45 m thereafter.  
y Alternating layers of clay and peat. Total peat thickness exceeds 3 m. 
z The top 0.3 m of the profile consists peaty clay or clayey peat. 
 120 

The control fields were drained via ditches and, in some fields, furrows. Ditches always carried water and had a (more or 

less) fixed summer and winter water level, except for one location (ALB WIS, see Table 1). The treatment fields were 

drained via the same routes as the control fields, with the addition of a WIS. The WIS primarily increases water infiltration 

during dry (summer) periods, but also promotes drainage during wet (mostly winter) periods. Various configurations of WIS 

were used: subsurface drain tubes may be connected directly to the ditch below the water level (passive water infiltration 125 
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system) or to a managed reservoir controlled by a pump (active water infiltration system). The latter system aims to actively 

maintain a target water table depth (WTD) in the field. The type of system per location is indicated in Table 1.  

 

Measurements plots of the various locations in this study were set up in a similar fashion. A measurement plot of 

approximately 200 m2 was fenced off. In the treatment plots, automated transparent flux chambers and subsurface sensors 130 

(Sect. 3.3) were installed in 3- or 4-fold (1) above or in proximity of a WIS-drain, (2) at a quarter distance between two WIS-

drains and (3) midway between two WIS-drains (Fig. S1). In the control plot the same spatial distribution of measuring 

devices was used, although not related to the presence of a drain tube. 

 

The soil C profiles across the study sites (Hefting et al., 2023) are visualized in Fig. 2. There is considerable variation in the 135 

average soil C content above the average WTD measured over the study period. In ALB this average soil C content was 

lowest (71–73 kg C m-3), while it was highest in ZEG (122–148 kg C m-3). 

 
Figure 2. Soil carbon profiles of all study sites (Hefting et al., 2023). The average water table depth (WTD) per plot is visualized by 
the grey bars in the background of each carbon profile, and the average carbon content (kg C m-3) above the WTD is given above 140 
each profile. 
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2.2 Automated transparent chamber CO2 flux measurements 

2.2.1 Chamber types 

Fluxes of CO2 between the soil-vegetation system and atmosphere were estimated from CO2 concentration changes in closed 145 

chambers. For this, we used three types of automated transparent chamber systems (Table 1, Fig. 3). These automated 

chambers allow for continuous, day and night measurements of CO2 concentrations at a high frequency. In all systems we 

used an infrared gas analyser (LI-850, LI-COR) to measure concentrations of CO2 and H2O that were logged by a Campbell 

CR1000x data logger once every two seconds.  

 150 
Figure 3. Transparent chamber systems: (a) VLUXpod, (b) Eosense eosAC-LT and (c) VLUXpod-L chambers 

 

In ALB, ROV and ZEG (CON and WIS1), CO2 fluxes on each plot were estimated using three eosAC-LT chambers 

(Eosense), connected to a multiplexer (eosMX; Eosense). Each chamber has a total height of 41.2 cm and volume of 72 L 

and consists of a transparent base (height: 15 cm; diameter: 52 cm) and transparent dome-shaped lid which was opened and 155 

closed by a linear actuator, closing in 15 to 30 seconds. Chambers were placed on permanent, serrated soil collars (15 cm 

deep). These collars offset the original chamber height by 0.5–6 cm, depending on soil swelling and shrinking; collar heights 

for ALB and ROV were measured during site maintenance to adjust the volume used for flux calculations (see below). For 

ZEG CON and WIS, an average offset of 1 cm was used as no consistent measurements were available. All three chambers 

were connected to the multiplexer, which was used to control the chambers and route gas to the analyser. Recirculation of 160 

gas was achieved using the LI-850’s built-in pump (0.75 lpm) and PTFE tubing to and from the chamber (8–10 m, one way). 

Every 30 minutes, chambers were measured sequentially with a 2.5-minute closure time and a 15–45 sec flushing period in 

between.  
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In ASD and VLI, a custom-built chamber system (referred to as ‘VLUXpod’ chambers) was used. Each system consisted of 165 

four transparent cylindrical chambers (volume ~62 L) with a base height of 50 cm, a diameter of 40 cm, and a transparent 

flat lid that was pneumatically controlled, which opened and closed within two seconds. In contrast to the Eosense chambers, 

no permanent soil collar was used, but a custom-built tool was used to make 1–5 cm deep incisions into the soil to seal the 

chamber walls to the soil surface. Chamber height relative to the soil surface was measured when chambers were relocated. 

A multiplexer with an external pump (2.5 L min-1; KNF NMP830KNDC-B 12V) was used to control the system and 170 

recirculate gas (8–10 m of polyurethane tubing, one way), from which gas was sampled by the analyser. Every 15 minutes 

chambers were measured sequentially using a 3-minute closure time and 15–45 seconds flushing in between.  

 

A third system (‘VLUXpod-L chambers’) was used in ZEG WIS2 and LAW, which consisted of a similar setup as the 

aforementioned VLUXpod chambers. The main difference between the two was a larger diameter of 50 cm rather than 40 175 

cm and the presence of a higher-flow gas circulation pump (5 L min-1; KNF NMP830KPDC-B HP 12V). 

2.2.2 Chamber operation 

Chambers were moved and cleaned approximately every two weeks to limit lasting effects of chambers on conditions such 

as grass growth, soil temperature and soil moisture. The chambers were rotated over three rows (with three or four chambers 

per row, depending on the system), such that any chamber location was occupied approximately 33 % of the time. Grass 180 

heights were measured upon every chamber movement on all chamber rows. Chamber systems (including analysers) were 

removed from the field for maintenance and analyser calibration once every year. All chamber systems were equipped with a 

low-flow fan to achieve a well-mixed headspace (Christiansen et al., 2011; Rochette & Hutchinson, 2005). 

2.2.3 Flux estimation 

The CO2 flux, hereafter named net ecosystem exchange (NEE, µmol CO2 m-2 s-1), was calculated as 185 

NEE =
𝑉𝑉𝑉𝑉�1− 𝑊𝑊

1000�𝑓𝑓

𝑅𝑅𝑅𝑅(𝑇𝑇+273.15)
,           (1) 

where V (m3) is the chamber volume, corrected for changes in collar or chamber height over time, P (Pa) is the air pressure 

measured by each location's weather station, W is the water vapor mole fraction as measured by the CO2/H2O analyser 

(mmol mol-1), f is the rate of change in water-corrected CO2 mole fraction (µmol mol-1 s-1) inside the closed chamber, R is 

the ideal gas constant (8.314 Pa m3 K-1 mol-1), S (m2) is the soil surface area and T (°C) is the air temperature measured 190 

inside the chamber (VLUXpod chambers) or measured at 2 m height by the weather station (Eosense chambers). To 

determine f, we applied linear regression and a variety of regression periods. For each individual chamber system, regression 

periods were chosen such that only the linear portion of the concentration change was selected (Maier et al., 2022). This was 

required to limit effects of chamber closure that resulted in nonlinear concentration changes, such as (1) headspace CO2 

depletion and glass clouding during daytime and (2) spikes in CO2 concentration that often occur immediately after chamber 195 
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closure during nights with atmospheric stratification (Koskinen et al., 2014). As such, daytime regression lengths were 

restricted to a maximum of 30 to 60 seconds, starting just after the deadband (i.e., start of concentration change in response 

to chamber closure) to capture the initial slope, whereas night-time regression periods could be longer (up to 160 seconds) 

and started up to 100 seconds after chamber closure. 

 200 

Data were left out from the flux calculation when analyser cell pressures or temperatures were outside of the calibrated 

operating range, gas concentrations were erroneous (e.g. due to IR-source failure) and in case of other types of system 

malfunctioning (e.g., non-functional fans or non-functioning chamber lids) or system maintenance. In some cases, a small 

correction to the measured concentrations was applied based on drift in analyser calibration. A visual inspection of the data 

together with an automated quality control was applied to filter out other poor linear regression fits. The automated filtering 205 

procedure was based on a combination of regression fit characteristics, such as r2, RMSE and actual flux slope. Thresholds 

for filtering deviated per chamber system and period considered. 

2.2.4 Flux partitioning and gap-filling 

For further processing we aggregated NEE fluxes by taking the mean of the measured fluxes of all chambers on a specific 

field over a half-hour period. Due to data quality control and system maintenance and malfunctioning, gaps were present in 210 

the aggregated flux data with extents ranging from half an hour to multiple weeks. We identified a gap as having no flux 

estimates from any of the chambers at the specific field during the half-hour period. An overview of the data availability per 

site is given in Fig. 4. To fill these gaps, as required to obtain an annual NECB estimate, we separated the measured net 

ecosystem exchange flux (NEE) into gross primary production (GPP) and ecosystem respiration (Reco).   

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅eco − 𝐺𝐺𝐺𝐺𝐺𝐺.           (2) 215 

We model daytime Reco based on night-time Reco, compensated for temperature differences only. Although it is common 

practice to model daytime Reco based on night-time Reco estimates, we acknowledge that it can lead to biased estimates due to 

divergent temperatures dependencies of day- and night-time Reco resulting from processes such as inhibited leaf respiration in 

light (Järveoja et al., 2020; Keenan et al., 2019). 

𝑅𝑅eco  =  𝑅𝑅ref  ⋅ 𝑒𝑒
𝐸𝐸0⋅�

1
�𝑇𝑇ref − 𝑇𝑇o�

− 1
(𝑇𝑇−𝑇𝑇0) �,         (3) 220 

with Rref (µmol CO2 m-2 s-1) is the reference respiration rate; E0 (K) is the long-term ecosystem sensitivity coefficient to 

temperature; Tref (K) is the reference temperature for which the reference respiration was determined, T0 (K) is the base 

temperature (set at 227.13 K, Lloyd and Taylor, 1994) and T (K) is the observed soil temperature at 5 cm depth. To obtain a 

site-specific estimate of the long-term ecosystem sensitivity coefficient, Eq. (3) was applied to all measured, daily averaged 

night-time data for the whole timeseries at one location, with a reference temperature of 10 °C.  225 
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Daytime fluxes were partitioned based on the standard procedure as described by Falge et al. (2001), Oestmann et al. (2022), 

Tiemeyer et al. (2016) and Veenendaal et al. (2007). We partitioned 30-minute averaged measured NEE in GPP and Reco, 

according to Eq. (2). Given the site-specific value of E0, daytime Reco was modelled on a half-hourly basis using Eq. (3) with 

Rref and Tref given by the daily averaged night-time respiration rate and soil temperature at 5 cm depth, respectively, and T 230 

the measured soil temperature at 5 cm depth during the half-hour intervals. With the daytime calculated Reco, an estimate of 

GPP was obtained using measured NEE and Eq. (2). GPP can be described by a rectangular hyperbolic light response curve 

(LRC) based on the Michaelis–Menten kinetic (Oestmann et al., 2022), given by 

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝑃𝑃2000×𝛼𝛼×𝑃𝑃𝑃𝑃𝑃𝑃

𝐺𝐺𝐺𝐺𝑃𝑃2000+𝛼𝛼×𝑃𝑃𝑃𝑃𝑃𝑃− 𝐺𝐺𝐺𝐺𝑃𝑃2000
2000μmol m−2s−1

×𝑃𝑃𝑃𝑃𝑃𝑃
,        (4) 

where GPP2000 (µmol CO2 m-2 s-1) is the rate of C fixation at a PAR value of 2000; α (µmol CO2 m-2 s-1 / (μmol PAR m-2 s-1)) 235 

is the light use efficiency (the initial slope of the LRC) and PAR is the measured photosynthetically active radiation (µmol 

m-2 s-1). As we determined GPP by partitioning, the (time-variant) parameters (GPP2000 and α) could be obtained on a daily 

base by fitting the LRC on the partitioned GPP. 

 

In case of data gaps (Fig. 4) in the half-hourly aggregated data, Reco and GPP were gap-filled separately where daily obtained 240 

parameters from Eq. (3) and Eq. (4) (smoothened with a moving average of five days) were linearly interpolated. In the 

event of harvest, the moving average was cut off before and after harvest and LRC parameters were set to a minimum after 

harvest, to subsequently increase linearly to the obtained parameters five days after harvest. When a gap occurred over a 

harvest period, the parameters were taken up to three days before or after (in case of Reco) harvest. If gaps were larger than 

this period, parameters were obtained from similar harvest moments from that site. 245 

 
Figure 4. Overview of CO2 flux data availability on all sites. Red in different shades indicates data availability, where the darkest 
red refers to 48 half-hour data points per day and white to no data available. Sites were set-up at different moments; therefore, the 
starting dates of the flux measurements differ per site. Note that the periods depicted here as calendar years are not necessarily 
used to calculate annual net ecosystem carbon balances (Table S1). 250 
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2.3 Environmental variables 

On each of the plots we measured soil temperature (Drill & Drop probes, Sentek Technologies) and phreatic groundwater – 

and surface water levels (ElliTrack-D, Leiderdorp Instruments). Thirty-minute averaged soil temperatures were logged at 10 

cm depth intervals from 5 to 115 cm depth. Phreatic groundwater levels were measured in monitoring wells, which were 

founded in deeper sand layers below the peat to assure a constant reference level. They were logged once every hour. 255 

Groundwater levels relative to the actual field height (i.e., WTD) were calculated from surface movement measurements 

obtained from an extensometer (Van Asselen et al., 2020) combined with spirit levelling (four times a year) to account for 

spatial differences in field height. Each of these variables were measured at least at three locations within each plot. For the 

WIS plot, these locations were next to the drain, at a quarter distance between drains and at midway between two drains. 

Meteorological measurements included air temperature and pressure (at a 30-minute logging interval), as measured in each 260 

location's control plot at 2.0 m height using a MaxiMet GMX500 (Gill instruments Limited). Precipitation was measured 

using an ARG314 tipping bucket rain gauge (Environmental Measurements Limited). PAR was measured at 1.8 m height 

(one minute logging interval) using a SKR 1840D (Skye Instruments).  

 

We determined annual and summer mean WTD per plot (WTDa and WTDs, respectively) by averaging the three 265 

measurement locations per plot, where annual refers to the total period of one year budget (Sect. 2.5), and summer refers to 

the months April up to September. The soil C profiles (Fig. 2) were used to determine the annual – and summer mean soil C 

exposure per plot (Cexpa and Cexps, respectively), taking the cumulative soil C amounts from soil surface to annual – and 

summer mean WTD. 

2.4 Harvest and fertilisation 270 

Plots were typically fertilised five times per year and mown five to nine times per year, aiming for at least once every four 

weeks during the growing season. Fertilisation was done with known quantities of mineral NPK (first two events) or N 

(remaining events) fertiliser for all sites, except for ALB, where manure was used as the latter is an organic farm. All sites 

used the same amounts and composition of mineral fertiliser (~250 kg N, 108 kg P2O5 and 195 kg K2O ha-1 yr-1). Applied 

manure and grass samples were weighed and analysed for C content. 275 

 

To determine the C exported via grass harvests, grass yield was quantified for each chamber individually by weighing wet 

and dry (oven-dried for 48 h at 70 °C) biomass. For ALB and ROV, the average harvest per chamber per mowing event was 

determined as the average of grass yields collected from the different positions upon which the chamber is rotated, weighted 

by the amount of time that the chamber spent on each position. For other sites the grass was sampled only from the current 280 

chamber position. For ASD and VLI, differences in grass height on different chamber positions proved to be of minor 
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importance. From the grass samples collected during each mowing event, the average and standard deviation (SD) of the C-

export of the different chambers per harvesting event were calculated.  

 

For ALB and ROV dried biomass samples were chopped using a cutting mill (SM 200, Retsch). Then, a homogenised 285 

subsample was ground using a mixer mill (MM 400, Retsch). Grounded biomass (4–5 mg) was weighed into tin capsules 

and analysed for C content using an NA 1500 elemental analyser (Carlo Erba). For all other locations, samples were sent to a 

commercial laboratory (Eurofins, Wageningen, the Netherlands) where they were thoroughly mixed and split into 

subsamples. The dried biomass was ground < 1 mm and C were determined using near-infrared spectroscopy (NIRS) 

performed on a Q-interline machine. The standard Eurofins Agro calibration curves for common Dutch grasslands (most 290 

common species grown is Lolium perenne) were used, which are based on calibrations against wet chemistry (Harris et al., 

2018). 

2.5 Carbon budgets 

The C budget of each site is given as the net ecosystem carbon balance (NECB) over a period of one year: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐶𝐶export − 𝐶𝐶input,         (5) 295 

with all terms are given in t C ha-1 yr-1 (Chapin et al., 2006). Positive C fluxes and budgets indicate a loss of C from the soil-

vegetation system to the atmosphere. Note that the C budget in Eq. (5) does not account for C changes via runoff, lateral 

subsurface flow and emission of CH4, CO and volatile organic C. The input term in Eq. (5) consists of applied manure and is 

only relevant in ALB as other locations were fertilised with mineral fertiliser. The export term in Eq. (5) consists of 

harvested biomass, which is assumed to be released as CO2 elsewhere during the year and factored in as loss from the 300 

system.  

 

As measure of spatial heterogeneity, we also gap-filled half-hourly fluxes of each chamber individually and obtained the SD 

between the daily mean NEE fluxes in each chamber (SDNEE). Further, if any day in the half-hourly chamber-averaged flux 

dataset consisted of less than 30 half-hour flux measurements, we added an extra gap-fill SD term (SDgap), depending on the 305 

length of the gap. The term was determined by creating artificial gaps of 1, 5, 15 and 30 days, and comparing differences 

between measured data and gap-filled data. A linear relation was found between SD and gap size, which we extrapolated to 

obtain an estimate of the SD for any gap in the data. The SD of the fertilization C-import term (for ALB only) was estimated 

at 50 % of the total C import. The SD of the NECB resulting was then obtained with Eq. (6), as 

𝑆𝑆𝐷𝐷NECB = �∑𝑆𝑆𝐷𝐷NEE2 + ∑𝑆𝑆𝐷𝐷gap2 + ∑𝑆𝑆𝐷𝐷Cexport
2 + ∑𝑆𝑆𝐷𝐷Cimport

2 ,      (6) 310 

where each term is the sum of the occurrences in each year. 
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2.6 Statistics 

All calculations and statistics were carried out in R (R Core Team, 2023). Pearson’s correlation coefficient (r) was computed 

using the cor function of the ‘stats’ package. To establish relationships between NECB and potential predictors (i.e. WTD 

and Cexp), we used simple linear models (LM) using function lm of package ’stats’. To statistically compare the NECBs of 315 

the CON and WIS treatment we used linear mixed-effects models (LMM) using the lmer function of the ‘lme4’ package 

(Bates et al., 2014) with treatment as fixed effect. The effect of treatment on the relationship of NECB with potential 

predictors (i.e., WTD and Cexp), was tested using the interaction of treatment with the predictor of interest as fixed effects. 

To deal with the non-independence in the dataset (i.e. having multiple NECBs per location and per year) we treated 

measurement year nested in location as a random effect on the model’s intercept for all LMMs mentioned above. To 320 

statistically compare the WTD-NECB relationship based on our data and those of other drained peatlands, we used NECB as 

the response variable, the interaction of WTD with the data source as fixed effect, and location as a random effect on the 

model intercept. We used type-III ANOVAs (function anova) to test the significance of the fixed effects of our various 

LMMs, with degrees of freedom and P-values calculated using the Kenward-Roger approximation (Kenward & Roger, 

1997) integrated in the ‘pbkrtest’ and ‘lmerTest’ packages (Halekoh & Højsgaard, 2014; Kuznetsova et al., 2017). Model 325 

assumptions of linearity, homoscedasticity, and normality of residuals were checked using residual plots, histograms and Q-

Q plots of residuals, and Shapiro-Wilk’s test (function Shapiro.test of package ‘stats’). When communicating our statistical 

results, we use the language of evidence as suggested by (Muff et al., 2022). 

3. Results and discussion 

3.1 Chamber CO2 flux estimates & carbon balances 330 

We collected 11,520 daily CO2 flux estimates, comprised of roughly 517,000 half-hourly means, based on ~3.1 million 

observed fluxes. We observed clear variability in the CO2 fluxes for all locations and plots on temporal scales ranging from 

minutes to seasons (Fig. 5). The daily CO2 fluxes ranged from -179 (net uptake) to 163 kg (net emission) of CO2-C ha-1 d-1. 

The median daily CO2 flux across all plots for the full study period was -5.1 kg CO2-C ha-1 d-1. Highest daily net uptake rates 

were mostly confined to spring, while highest daily net emission rates generally occurred during summer. Aggregated half-335 

hourly CO2 flux data availability for the individual annual budget periods and sites considered was 83 % on average. We 

omitted the budgets of ALB WIS, ROV WIS and ZEG CON in 2021 from further analysis due to the low data availability 

and the large consecutive periods of missing data during the growing season (Fig. 4, Table S1) for which extensive gap 

filling was required. 
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 340 
Figure 5. Temporal variability of CO2 fluxes observed at different timescales: (a) Daily means of each location and treatment (i.e., 
control [CON] and water infiltration system [WIS]) for the full study period; (b) Half-hourly means for each location and plot for 
the shaded period in (a); (c) CO2 fluxes for each individual chamber of ALB CON for the shaded period in (b). The dotted line in 
(c) denotes a mowing event. 

 345 

An overview of the annual C balances is presented in Fig. 6, distinguishing between NEE, harvest export and manure import. 

Harvest is especially high in 2020 and 2021. For most locations and years, it provides the largest C flux of the terms 

considered in this figure, with on average 6.3 t C ha-1 yr-1. This term is on the higher range of what was found on German 

peatland sites with Lolium perenne (1.3–6.4 t C ha-1 yr-1; Tiemeyer et al. (2020). Higher yields in our locations are likely due 

to high fertilization application and the frequent harvest events during growing season (~5–7 vs 1–5 cuts in Tiemeyer et al. 350 

[2020]). In ZEG WIS2, harvests are generally lower than in the WIS1 and CON plot of ZEG, likely owing to oxygen stress 

in the root zone (Bartholomeus et al., 2008) given the shallow WTDs (0.18, 0.49 and 0.66 m in WIS2, WIS1 and CON, 

respectively). The same applies for ASD WIS, where harvests are generally lower than for ASD CON (with an average 

WTDs of 0.32 and 0.56 m in WIS and CON, respectively). NEE terms are mostly negative and show quite some year-to-year 
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variation (Fig. 6). NEE was highest (i.e., close to zero) in LAW, VLI and ROV and lowest (i.e., strongest net uptake) in ALB 355 

and ASD.  

 
Figure 6. Annual CO2 emission terms (with uptake being negative) as net ecosystem exchange (NEE), harvest and manure (only in 
ALB) of the plots over the years 2020–2023. The black, horizontal lines indicate the net ecosystem carbon balance (NECB), 
including their standard deviations (indicated by whiskers). Specific values are also provided in Table S1. 360 

 

The estimated terms GPP and Reco, being the two constituents of NEE, are substantially larger than the terms displayed in 

Fig. 6, with values ranging from -18 to -29 t C ha-1 yr-1 for GPP, and 14 to 26 t C ha-1 yr-1 for Reco (Table S1). The high 

harvest export term was also reflected in the GPP: in almost all cases, the uptake of C by plants (GPP) exceeded the 

respiration (Reco), leading to negative NEEs (on average –3.1 t C ha-1 yr-1). On the contrary, in German peatland sites with 365 

Lolium perenne the average NEE was +8.1 t C ha-1 yr-1 (Tiemeyer et al., 2020), while the average NEE of boreal and 

temperate peatlands used as grassland in Evans et al. (2021) was +1.3 t C ha-1 yr-1. 

 

NECB, being the resultant of NEE, harvest export and manure import, shows a similar year-to-year variability as NEE and 

harvest export. In almost all cases the sum of NEE and harvest export led to positive NECBs. Only in ALB we estimated 370 

NECBs to be negative in 2022 (WIS) and 2023 (both WIS and CON). Especially 2023 shows substantial negative NECB 

estimates owing to a high negative NEE. This site, being the only site in the north of the Netherlands (Fig. 1), is quite 

different from the other sites in this study due to its 0.4 m thick clay cover, the lowest soil C content in the upper soil layer of 

all sites (Fig. 2), deviating peat composition, deviating land use history (having experienced more deeply drained conditions) 
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and ongoing manure application. Though these factors are likely to affect the magnitude of the NECBs, they cannot explain 375 

why the NECBs are negative, especially since positive NECBs (8.1–17.9 t C ha-1 yr-1) were found at the same site using 

campaign-wise measurements with manual chambers in 2017 and 2018 (Weideveld et al., 2021). In addition, NECBs of 2.8 

and 6.4 t C ha-1 yr-1 were estimated for the ALB WIS and CON field, respectively, using eddy covariance measurements 

(period October 2021–October 2022; unpublished data). We currently do not have an explanation for the widely varying 

results and negative NECBs for this particular site, however these could be related to unquantified C fluxes, such as lateral 380 

transport of C via groundwater or C export via geese or mice or, a change in C storage in the root zone. Also, a dependency 

on the methods used to obtain the flux estimates (e.g. measurement technique and method of data processing) may be 

responsible for the varying results.  

 

Another noticeable annual C budget is found in the CON plot of ASD in 2022. In this year we obtained an exceptionally low 385 

NECB in the CON plot compared to the other year budgets on that plot. In this specific year, chambers of the CON plot were 

moved to a different location within the plot, as the vegetation within the original chamber locations in this year was no 

longer representative for the vegetation within the plot. However, as there is no evidence of a high degree of spatial 

heterogeneity in e.g. soil parameters within the plot, we cannot appoint any concrete reasons why moving the chambers 

could have resulted in such a low NECB in the CON plot for this year. 390 

3.2 Relationships between NECB and controlling variables 

In Fig. 7 and Table 2 we show how the annual C budgets relate to WTDs (Fig. 7a, r2 = 0.18) and WTDa (Fig. 7b, r2 = 0.20) 

WTD. Because of warmer temperatures and deeper groundwater levels during summer, we expected the NECBs to relate 

substantially better to WTDs than to WTDa as proposed by Boonman et al. (2022). Our results, however, do not confirm this 

hypothesis and even show a slightly higher explained variance for the WTDa. The similar performance of the two models is 395 

likely explained by the strong correlation between WTDa and WTDs (Pearson’s r=0.92).  

 

The relation between NECB and total exposed C within the soil profile above the average annual WTD (Cexpa) was stronger 

(Fig. 7c, r2 = 0.30) than the relation with WTDa. The variance within NECBs was only slightly better explained by the 

summer exposed C (Cexps) as compared to WTDs (r2 of 0.22 and 0.18, respectively). Since Cexpa explained more variance 400 

than WTDa, we propose to use Cexpa rather than WTDa as a predictor for NECB. The use of Cexp will be particularly 

important in the coastal zone and deltaic peatlands, because in these environments, flooding-derived clastic layers are 

commonly covering the peat layers (Koster et al. 2018). 
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Table 2 – Linear model fits for NECB and explanatory variables related to water table depth (WTD) and exposed soil carbon 405 
(Cexp) presented in Fig. 7 and Table S1.  

Explanatory variable Function r2 Figure 

Summer water table depth NECB = 6.06 WTDs + 0.12 0.18 7a 

Annual water table depth NECB = 8.96 WTDa – 0.23 0.20 7b 

Summer exposed carbon NECB = 0.0684 Cexps + 0.43 0.22 - 

Annual exposed carbon NECB = 0.0115 Cexpa – 0.30 0.30 7c 

 

The low and even negative NECBs from ALB, as mentioned in the previous section, are generally much lower than 

predicted by the linear regression and are positioned just inside or even outside the prediction intervals (Fig. 7a and b). 

However, when expressed against exposed soil C rather than WTD (Fig. 7c), these datapoints better approach predicted 410 

values, owing to the relatively low C stock in the upper part of the soil (Fig. 2). While Tiemeyer et al. (2016) showed that 

NECB relates to aerated soil N stock rather than C stock, our data suggests that exposed C does relate to NECB. We found 

that the magnitude of the NECB represented 1.0 % of the annual exposed C on average, with a maximum of 2.4 %. 
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Figure 7. Mean summer (a) and annual (b) water table depth, and (c) annual exposed carbon with estimated net ecosystem carbon 415 
balances (NECB) presented in Table S1. NECB standard deviations are included as error bars. Linear models (Table 2) were fitted 
on the data and plotted with the 90 % intercept prediction intervals (grey) and 95 % confidence intervals from the linear model 
estimation (red). 
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While simple linear regression is widely applied to fit empirical relations to explain measured NECBs (e.g. Couwenberg et 

al., 2011; Evans et al., 2021) there could be arguments to choose for other methods. Therefore, we tested alternative linear 420 

models for the relation between WTDa and NECB (Table S2) and inspected the variation in slope and intercept. We included 

robust linear regression where the weights of outliers are decreased, Deming regression that accounts for observation error 

estimates, and a linear mixed effect model (LMM) that explicitly models the non-independence in the data (Harrison et al., 

2018). The best estimate of the slope of the different linear models ranged from 5.95 (LMM) to 15.13 (Deming model), with 

the best estimate of the intercept varying from -2.63 (Deming model) to 0.93 (LMM) (Table S2). The best estimate of the 425 

slope of the simple linear regression was well within the 95 % confidence intervals of the slope estimates of each of the 

alternative linear models. The same was true for the intercept that was statistically indistinguishable from zero for all models 

(Table S2). 

3.3 Effectiveness of WIS 

The average NECB over all the years for the individual plots as function of their average WTDa and Cexpa is shown in Fig. 8 430 

a and b, respectively. There is a trend of lower NECBs in the WIS plots compared to the control plots. One notable exception 

on this trend is ROV. Here, the NECB of the WIS plot exceeds that of the CON plot for the two available years. This 

location is situated in an area with upward seepage of groundwater, which results in the unintended situation where the WIS 

mostly drains, rather than infiltrates water. This, in turn, causes a deeper WTD (and higher Cexp) for the WIS plot compared 

to the CON plot. In this case, a higher NECB in the WIS plot is in line with the expectation based on the relations presented 435 

in Table 2.  

 

The question whether WIS is effective in reducing CO2 emissions can be addressed in various ways. For example, one may 

treat WIS and CON as discrete variables. When including the previously mentioned location with upward seepage (ROV), 

excluding the location that did not have both WIS and CON sites (LAW), and excluding location-years when either the WIS 440 

or CON site did not have data available (i.e. ALB, ROV and ZEG in 2021), the average NECB on WIS sites was 2.29 (16 

site-years) t CO2-C ha-1 yr-1 and on CON sites 3.67 (14 site-years) t CO2-C ha-1 yr-1. Excluding ROV, the average WIS and 

CON NECBs were 2.12 (14 site-years) and 3.98 (12 site-years) t CO2-C ha-1 yr-1, respectively. We find very strong evidence 

of a reducing effect of WIS on the NECB (LMM: F1,13=17.84, P=9.86 ⋅ 10−4) when excluding ROV, and moderate evidence 

of an effect of WIS (F1,15=7.62, P=0.014) when including ROV.  445 

 

As the primary reason for implementation of WIS is to achieve a shallower WTDs, we can also treat WIS as a continuous 

variable by considering the effect of WIS on the WTD or Cexp. To do so, we consider the difference in WTD or Cexp 

between the WIS and CON plot as explanatory variable, and the difference in NECB between the two plots as effect. This 

way, also situations where WIS results in a deeper WTD (i.e., contrary to the intended water infiltration effect, as observed 450 

in ROV) can be assessed, as based on the relations in Table 2 we expect a higher NECB when WIS deepens the WTD. This 
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comparison is visualized in Fig. 8c and d for WTDa and Cexpa, respectively. The linear relation displayed in these graphs is 

the linear relation given in Table 2 and used in Fig. 8a and 8b and seems to fit adequately to the points in the graph. A simple 

linear regression through these datapoints does not yield a significantly different slope.  

 455 
Figure 8. Averaged annual net ecosystem carbon balance (NECB) per plot as function of (a) averaged annual water table depth 
(WTD) or (b) averaged annual soil C exposure; (c) averaged annual difference in NECB between WIS and CON (as WIS – CON) 
sites per location, as function of averaged annual difference in WTD or (d) averaged annual difference in soil C exposure. Black 
solid lines are the linear model fits of Figure 7. Whiskers indicate minimum and maximum annual values per location or plot. 

 460 

To further strengthen this argument, we found no evidence for an effect of WIS on the relationship between NECB and 

WTD (LMM: F1,23=0.38 and P=0.55 for WTDa and F1,21=0.17 and P=0.68 for WTDs)—as was suggested by Boonman et al. 

(2022)—nor between NECB and Cexp (LMM: F1,19=0.28 and P=0.60 for Cexpa, and F1,18=0.34 and P=0.57 for Cexps). This 

implies that the potential impact that WIS may have on environmental factors as soil temperature, nutrient status, electron 

acceptor availability, or oxygen and dissolved organic C availability fall within the uncertainty of year-to-year and site-to-465 
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site variability when using only WTD or exposed C as explanatory variables. This suggests that the linear model fits 

presented in Table 2 (within the available data ranges) can estimate the reduction in NECB due to a change in WTD or 

exposed C owing to the implementation of WIS. Therefore, we conclude that if WIS is able to raise the groundwater table 

substantially, it has a reducing effect on the NECB, based on the paired site comparisons and statistics of fitted WTD-NECB 

models with slopes exceeding zero in all cases (Table S2). 470 

 

Previous research showed that WIS resulted in neglectable effects on the NECB (Weideveld et al., 2021), a higher NECB 

(Tiemeyer et al., 2024) or a mild (Offermanns et al., 2023) to strong (Boonman et al., 2022; van den Akker et al., 2008) 

reduction in NECB. Here we show that NECB changes in WIS sites are dependent on the actual changes in WTD or exposed 

C, and that, in some cases, a neglectable or even slightly adverse effect of WIS (as in ALB and ROV, respectively) can be 475 

expected if changes in WTD or exposed C are minimal or opposite to the aim of WIS. 

 

Apart from WIS, alternative measures could be taken to elevate WTD and reduce peat oxidation and GHG emissions (Girkin 

et al., 2023), such as paludiculture (Geurts et al., 2019; Martens et al., 2023) or a full peat growing ecosystem restoration 

(Nugent et al., 2019) where carbon accumulation could potentially be restored. When applying these alternative measures, 480 

the relation between WTD and NECB that we defined might not be directly applicable due to vegetation differences and a 

WTD range. Also, at a shallower WTD, other GHG such as CH4 and N2O might offset reductions in CO2 emissions (Evans 

et al., 2021; Tiemeyer et al., 2020). Furthermore, a broader perspective on measures (other than GHG emissions) will be 

necessary since WIS can only reduce peat oxidation to a certain extent, while overall net zero emission is aimed for in 2050. 

Although we recognize that WIS is an attractive measure to reduce CO2 emissions without changing land-use, we emphasize 485 

the need for inclusion of other aspects with respect to the future of managed peatlands. Measures to counteract peat oxidation 

should always be evaluated from different disciplines and stakeholder perspectives. 

3.4 NECB estimations and water table depth relationships in perspective 

The NECB and WTD observations presented in this study are similar to those of other empirical relations of Evans et al. 

(2021), Boonman et al. (2022) and Fritz et al. (2017) (Fig. 9, Table S3). However, several other studies found considerably 490 

higher emissions from drained peatlands for WTDa deeper than 0.2 m below surface (Couwenberg et al., 2011; Koch et al., 

2023; Tiemeyer et al., 2020). The IPCC emission factors for CO2 emissions from drained organic soils are also higher: the 

IPCC Wetland Supplement (IPCC, 2014) contains separate emissions factors (EFs) for grassland on nutrient-rich, shallow-

drained (EF1) and nutrient-rich, deep-drained (EF2) organic soils in the temperate climate zone. EF1 applies to a WTDa of 

less than 30 cm, whereas EF2 applies to WTDa of 30 cm and deeper. The NECBs presented in this study for both WTDa 495 

shallower than 30 cm (1.6 t CO2-C ha-1 yr-1) and deeper than 30 cm (3.8 t CO2-C ha-1 yr-1) are low compared to EF1 and EF2 

(3.6, [95 % CI: 1.8, 5.4] and 6.1 [95 % CI: 5.0 7.3] t CO2-C ha-1 yr-1, respectively), and fall outside their 95 % confidence 

intervals. In contrast, our NECBs compare well to those reported by Evans et al. (2021), who used a selection of NECBs 
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obtained across the temperate and boreal regions, including nutrient-poor as well as nutrient-rich sites. Also, multi-year CO2 

flux measurements using eddy covariance in the west of the Netherlands lasting from 2005–2008, on sites similar to ours, 500 

showed NECB estimations that fall within the prediction intervals of our study, considering an average annual WTD of 0.4–

0.5 m (4.2 t CO2-C ha-1 yr-1, Veenendaal et al. 2007).  

 

Our NECBs also compare well with back-of-the-envelope emissions estimated from land subsidence rates, which range 

between 2 to 15 mm yr-1 in the coastal peat soils in the Netherlands (Hoogland et al., 2012; van den Akker et al., 2008). With 505 

an average soil carbon content of 72 ± 10 kg m-3 at 80 cm depth across our locations (Fig. 2), and assuming that the carbon 

density profile from the surface up to 80 cm depth is roughly in equilibrium as decomposition due to drainage for 

agricultural use has been ongoing for at least 50 years (but at most sites over multiple centuries; e.g. Erkens et al., 2016), we 

infer emissions ranging between 1.5 and 11 t CO2-C ha-1 yr-1. These subsidence-derived estimates correspond well to our 

estimated NECBs (Fig. 9) and thus strengthen the presented approach to derive annual NECBs.  510 

 

It is notable that our NECB estimates as well as the slope of the WTDa-NECB relationship are on the lower side of those 

reported by Tiemeyer et al. (2020) and Koch et al. (2023) (Fig. 9). There are several potential explanations for differences 

between our results and those of others. First, magnitudes of estimated NECBs and different NECB-WTD relationships may 

be related to differences in landscape, peat soil characteristics, peat decomposition-state and land use history and practises 515 

(e.g. Evans et al. 2021, Tiemeyer et al. 2016). In addition, the measurements presented in this paper are exclusively 

conducted on coastal peatlands, and all measurement sites have meticulous water management, whereas the studies 

mentioned earlier are compiled from measurements in a larger variety of peatlands. The WTDa-NECB relationships of 

Tiemeyer et al. (2020), Koch et al. (2023), and Evans et al. (2021) are based on NECBs from sites that widely differ in land 

use and are based on a WTDa range that differs from the one where our relationship was fitted on, as particularly Tiemeyer et 520 

al. (2020), but also Koch et al. (2023) contain NECBs from sites where the WTDa lies far outside our measured range. These 

factors could affect the nature of the relationship as at least some aspects of land use may have effects independent of those 

of WTDa (Evans et al. 2021) and since deepening of the WTDa likely has a finite effect on the oxygen penetration depth in 

the peat soil (Boonman et al., 2024). Second, differences could be related to methodological issues, such as potential biases 

due to a changing microclimate in automated chambers (Maier et al., 2022; Oestmann et al., 2022; Yao et al., 2009), gap-525 

filling uncertainties/choices (Liu et al., 2022) and choices in data-handling (Hoffmann et al., 2015; Shi et al., 2022). 

Different methods to determine NECBs have their own pros and cons (Liu et al., 2022) and should be used complementary 

as much as possible. 

 

Although a sigmoidal function was used to model the WTDa-NECB relationship on the entire dataset of Tiemeyer et al. 530 

(2020) and Koch et al. (2023), within our measured WTDa range, a (pseudo)linear trend is evident in the subset of their data. 

To enable a fairer comparison between the WTDa-NECB relationships based on our data and those from literature, we 
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selected a subset of data from the Evans et al. (2021), Tiemeyer et al. (2020) and Koch et al. (2023) syntheses where WTDa 

was within the range of our measurements (i.e., WTDa not more than 5 cm outside of our WTDa range; Fig. 9b). In addition, 

we only selected data from sites with similar land use as our sites—i.e., only grassland sites from Evans et al. (2021), only 535 

permanent or rotational grassland sites from Koch et al. (2023), and only sites where Lolium perenne was among the 

dominant species from Tiemeyer et al. (2020). By including data source as an interaction term with WTDa in our linear 

mixed-effects model (LMM), we can isolate the WTDa effect from potential differences in the slope or intercept of the 

compared relationships. As such we can analyse whether combining our dataset with one from literature adds evidence for 

an effect of WTDa on the NECB (i.e., increase effect variance relative to error variance) and determine the evidence for a 540 

difference in slope and intercept between our WTDa-NECB relationship and that of a given dataset from literature. When 

comparing our WTDa-NECB relationship with the one based on the grassland sites (11 data points) of Evans et al. (2021), 

we found moderate evidence for an effect of WTDa on the NECB (LMM: F1,30=7.08; P=0.012) and no evidence for an effect 

of the data source (i.e., Evans et al. 2021 vs this study) on the slope (LMM: F1,30=0.95; P=0.34) and intercept (LMM: 

F1,27=1.58; P=0.22) of the WTDa-NECB relationship. On the contrary, when we did this analysis for subset of data from 545 

Tiemeyer et al. (2020) (12 data points), we found no evidence for an effect of WTDa on the NECB (LMM: F1,41=1.34; 

P=0.25) and no evidence for an effect of the data source on the slope (LMM: F1,41=0.04; P=0.85) and the intercept (LMM: 

F1,30=1.36; P=0.25) of the WTDa-NECB relationship. When comparing the WTDa-NECB relationship based on the subset of 

Koch et al. (2023) with our relationship, there also was no evidence for an effect of WTDa on the NECB (LMM: F1,21=0.32; 

P=0.58), no evidence for an effect of the data source on the slope (LMM: F1,21=2.55; P=0.13) and strong evidence for an 550 

effect of data source on the intercept LMM: F1,18=9.88; P=0.0056) of the WTDa-NECB relationship. Combining our data 

with the subset of Evans et al. (2021) in the LMM resulted in stronger evidence for an effect of WTDa (P=0.012) than when 

testing the effect of WTDa for each data set independently (LMM: F1,32=2.98; P=0.09 and LM: F1,9=5.78; P=0.040 for our 

study and the subset of Evans et al. (2021), respectively). On the contrary, combining our data with the subset of Tiemeyer et 

al. (2020) or Koch et al. (2023) weakened the evidence for an effect of WTDa as compared to only using our data in the 555 

LMM. These findings suggest that the relationship between WTDa and NECB may not be consistent across all drained 

peatlands in use as grassland or under all environmental conditions. For example, it may imply that—compared to our 

dataset and the one of Evans et al. (2021)—the German and Danish sites show greater variation in NECBs independent of 

WTDa, that may result from greater variation in land-use or peat types. Lastly, our results may imply that the various WTD-

NECB relationships as well as magnitudes of NECBs are sensitive to methodological differences, as the data of Tiemeyer et 560 

al. (2020) and Koch et al. (2023) are based on campaign-wise measurements during daytime with manual chambers, while 

our data (automated chambers) and data of Evans et al. (2021) (eddy covariance) were collected with much higher temporal 

cover, which reduces the extent (and thereby uncertainty) of gap-filling and the need to predict nighttime CO2 fluxes based 

on daytime measurements with opaque chambers. Future research should focus on comparing and validating the various 

methodologies—including effects of the extent of gap-filling—as well as causes of potential regional physical variation in 565 

NECB magnitudes. 
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Figure 9. (a) Fitted linear model of measured mean annual water table depth (WTDa) and net ecosystem carbon balance (NECB) 
of Table 2 compared to other empirical relations. NECB standard deviations are included as error bars, and the linear model is 
plotted with a 90 % prediction interval (grey shading) and a 95 % confidence interval for the linear fit (red shading). An overview 570 
of plotted models is presented in Table S3. Please note that Koch et al. (2023) found an identical fit as Tiemeyer et al. (2020), which 
therefore is not separately displayed. (b) WTDa and NECB estimates of this study and from literature. Only sites with similar land 
use (grassland) and a WTDa within the range of our measurements (i.e. WTDa not more than 5 cm outside of our WTDa range) 
were selected for fair comparison. 

4. Conclusions 575 

We presented the results of a novel and unprecedented CO2 emission monitoring network for peatlands under intensive 

agricultural use (grassland) in the Netherlands, using automated transparent chambers. High-frequent measurements of CO2 

fluxes and supporting data (e.g. water table depth [WTD] and weather) provided us with up to four years of near continuous, 

high frequency measurements for twelve sites in the Netherlands, which we used to determine the annual net ecosystem 

carbon budget (NECB). The sites consisted of plots where water infiltration systems (WIS) were implemented, combined 580 

with nearby control plots. For the ranges in WTD considered in this study, we found a linear relation between NECB and 

annual (as well as summer) WTD as was presented in literature before. However, a stronger relation was found between 

NECB and carbon exposure (Cexp), expressed as the amount of available soil carbon above the WTD. We therefore propose 

to use the carbon exposure rather than the WTD as a proxy for the NECB. Still, substantial variation in NECB could not be 

explained by these variables, which deserves attention in future analyses. The WIS studied were proven to be effective in 585 

decreasing peatland CO2 emissions in case they function as intended (i.e. raising the WTD). We found no evidence for an 

effect of WIS on the slope of the relation between NECB and WTD, nor on the slope of the relation between NECB and 

Cexp. The magnitude of our NECBs and the slope of the WTD-NECB relationship agreed well with some studies, but not 

with all. This is potentially explained by regional differences in physical geographic setting, peat type and land-use history 
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and water management, and/or by methodological differences and warrants further analysis. The large site-to-site and year-590 

to-year variation calls for continuation of near-continuous, high-frequency measurements to further improve our 

understanding of the drivers of greenhouse gas emissions from peatlands in agricultural use. 

Data availability 
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