Global modeling of aerosol nucleation with a <u>semi-explicit</u> chemical mechanism for highly oxygenated organic molecules (HOMs)

Xinyue Shao^{1,2}, Minghuai Wang^{1,2}, Xinyi Dong^{1,2}, Yaman Liu^{1,4}, Wenxiang Shen^{1,2}, Stephen R. Arnold⁵, Leighton A. Regayre^{5,6,7}, Meinrat O. Andreae^{8,9}, Mira L. Pöhlker^{8,10,11}, Duseong S. Jo¹², Yue Man^{1,4}, and Ken S. Carslaw⁵

- ¹School of Atmospheric Science, Nanjing University, Nanjing, 210023, China
 ²Joint International Research Laboratory of Atmospheric and Earth System Sciences & Institute for Climate and Global Change Research, Nanjing University, Nanjing, 210023, China
 ³Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
 ⁴Zhejiang Institute of Meteorological Sciences, Hangzhou, 310008, China
 - ⁵Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK ⁶Met Office Hadley Centre, Exeter, Fitzroy Road, Exeter, Devon, EX1 3PB, UK
- ⁷Centre for Environmental Modelling and Computation, School of Earth and Environment, University of Leeds, Leeds, LS2
 9JT, UK
 - ⁸Max Planck Institute for Chemistry, Mainz, 55020, Germany

5

20

- ⁹Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- ¹⁰Leipzig Institute for Meteorology, Universität Leipzig, 04103 Leipzig, Germany
- ¹¹Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany
- ¹²Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80103, USA

Correspondence to: Minghuai Wang (minghuai.wang@nju.edu.cn), Xinyi Dong (dongxy@nju.edu.cn)

- 25 Abstract. New particle formation (NPF) involving organic compounds has been identified as an important process affecting aerosol particle number concentrations in the global atmosphere. Laboratory studies have shown that highly oxygenated organic molecules (HOMs) can make a substantial contribution to NPF, but there is a lack of global model studies of NPF with detailed HOMs chemistry. Here, we add a state-of-art biogenic HOMs chemistry scheme with 96 chemical reactions to a global chemistry-climate model and quantify the contribution to global aerosols through HOMs-driven NPF. The updated model
- 30 captures the frequency of NPF events observed at continental surface sites (normalized mean bias changes from -96% to -15%) and shows reasonable agreement with measured rates of NPF and sub-20nm particle growth. Sensitivity simulations show that compared to turning off the organic nucleation rate, turning off organic initial growth results in a more substantial decrease in aerosol number concentrations. Globally, organics contribute around 45% of the annual mean vertically-integrated nucleation rate (at 1nm) and 25% of the vertically-averaged growth rate. The inclusion of HOMs-related processes leads to a
- 35 39% increase in the global annual mean aerosol number burden and a 33% increase in cloud condensation nuclei (CCN) burden at 0.5% supersaturation compared to a simulation with only inorganic nucleation. Our work predicts a greater contribution of organic nucleation to NPF than previous studies due to the <u>semi-explicit</u> HOMs mechanism and an updated inorganic NPF

scheme. The large contribution of biogenic HOMs to NPF on a global scale could make global aerosol sensitive to changes in biogenic emissions.

40 1 Introduction

Aerosol particles exert multifaceted impacts on both climate and human health across a range of environments (Wang and Penner, 2009; Rosenfeld et al., 2014; Shiraiwa et al., 2017; Bellouin et al., 2020; Carslaw, 2022; Rosenfeld et al., 2008). Atmospheric new particle formation (NPF), a significant contributor to aerosol number concentration, involves the formation of stable molecular clusters and their subsequent growth through the condensation of precursor vapours (Merikanto et al.,

- 45 2009; Spracklen et al., 2010; Kerminen et al., 2018; Kulmala, 2003). While both the nucleation and growth of new particles are commonly linked to sulfuric acid (H₂SO₄) owing to its low volatility, H₂SO₄ and its inorganic clusters (e.g. H₂SO₄-NH₃ clusters) alone are insufficient to explain the rapid nucleation rates observed in forested regions minimally affected by anthropogenic pollution (Kuang et al., 2008; Sihto et al., 2006; Kerminen et al., 2018; Stolzenburg et al., 2020; Weber et al., 1997; Boy et al., 2008; Paasonen et al., 2010; Andreae et al., 2022). Furthermore, while H₂SO₄ frequently initiates cluster formation,
- 50 its concentration does not account for the high growth rates of particles larger than 3 nm diameter (Ehn et al., 2014; Deng et al., 2020).

Laboratory studies and ambient measurements have shown that highly oxygenated organic molecules (HOMs) largely account for the particle nucleation and growth rate in forested areas owing to their extremely low volatility. Riccobono et al. (2014)

- 55 revealed a nucleation mechanism involving both H₂SO₄ and oxidized organic molecules from the very first step, and including this mechanism in a global aerosol model yielded a seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations. Jokinen et al. (2015) found monoterpene-derived HOMs promote NPF under continental conditions using chamber experiments. Kirkby et al. (2016) showed that the rate of formation of particles from biogenic HOMs, in the absence of H₂SO₄, can be enhanced by 1–2 orders of magnitude by ions based on CERN CLOUD (Organisation Eu-
- 60 ropéene pour la Recherche Nucléaire Cosmics Leaving Outdoor Droplets) experiments. In addition to contributing to the formation of 1-2 nm clusters, Ehn et al. (2014) showed HOMs made important contributions to the particle growth with diameters between 5 and 50 nm in northern forests, which was recently explained by Mohr et al. (2019) at the molecular level. Bianchi et al. (2016) also showed observational evidence that NPF occurs mainly through condensation of HOMs at high altitude.

Although HOMs are necessary for NPF in the absence of H₂SO₄ (Kirkby et al., 2016), the molecular structures and formation pathways of HOMs remain uncertain and are treated in a variety of ways in models. Gordon et al. (2016) simulated monoterpene-derived HOMs formation using an empirical or semiempirical fixed yield of HOMs from first stage monoterpene oxidation products, although with a highly simplified HOMs chemistry. Zhu et al. (2019) added some explicit chemical mechanisms

⁶⁵

- 70 for HOMs, but they did not consider autoxidation and used a less stringent definition of HOMs than recommended in Bianchi et al. (2019). Roldin et al. (2019) used a more explicit reaction mechanism to treat the generation of HOMs through autoxidation and cross-reactions of α-pinene oxidation products in a 1-D column model. Weber et al. (2020) used a similarly explicit mechanism over the boreal forest in Finland and the southeast USA, although not on a global scale.
- 75 There is thus a lack of global-scale simulations of NPF with explicit HOMs chemistry and quantification of the contribution of organics to aerosol and CCN number concentrations. Recently, Xu et al. (2022) summarized the various chemical mechanisms of HOMs, including monoterpene-derived peroxy radical (MT-RO₂) unimolecular autoxidation and self- and cross-reactions with other RO₂ species, and evaluated them in the GEOS-Chem global model. However, they did not quantify the effects of HOMs participating in NPF. Here, we incorporate the representation of HOMs from Xu et al. (2022) within a global
- 80 chemistry-climate model and then quantify the contribution of HOMs to aerosol number concentration globally. Inorganic nucleation rates involving H₂SO₄ and NH₃ as well as ion-induced pathways based on the CLOUD chamber experiments are also included (Dunne et al., 2016), replacing a simpler scheme based on H₂SO₄ and NH₃ (Vehkamaki et al., 2002; Merikanto et al., 2007).
- 85 The model and field measurements used in this study are documented in Section 2. Section 3 evaluates outputs of the updated model, including nucleation and growth rates, frequencies of NPF events, and aerosol number concentrations. Additionally, four sensitivity experiments aimed at investigating uncertainties in concentrations of organic nucleating species and disentangling the roles of nucleation and growth processes are conducted. Section 4 quantifies the contributions of organic-related processes to nucleation rate, growth rate, aerosol and CCN number concentrations globally. Section 5 compares the proportion 90 of organic nucleation rate with previous studies. Results are summarized and discussed in Section 6.

2 Data and methods

2.1 Model configuration

We use the atmospheric component of the Community Earth System Model (CESM) version 2.1.0, the Community Atmosphere Model version 6, augmented with comprehensive tropospheric and stratospheric chemistry (CAM6-Chem) (Emmons et

al., 2020). Biogenic emissions are dynamically simulated using the Model of Emissions of Gases and Aerosol from Nature version 2.1 (MEGAN2.1) (Guenther et al., 2012). We use the historical anthropogenic emissions developed by the Community Emission Data System (CEDS v2017-05-18) in support of CMIP6 (Hoesly et al., 2018). Monthly biomass burning emissions are from the historical global biomass burning emissions inventory for CMIP6 (van Marle et al., 2017). Emissions for the 1997 to 2015 period in this inventory have been derived from satellite-based emissions from the Global
 Fire Emissions Database (van der Werf et al., 2017). The vertical distribution of biomass burning emissions is taken

from Dentener et al. (2006). All the emission can be downloaded from: https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/cam/chem/emis/. Comparisons between the CMIP6 and multi-resolution emission inventory for China (MEIC) emission inventories over China suggest that the model bias in this region can be largely attributed to an underestimate of the reduction of SO₂ emissions after 2007 in CMIP6. Therefore, emissions in China were replaced by the

- 105 MEIC (http://www.meicmodel.org) (Li et al., 2017; Yue et al., 2023) which considerably improves Chinese emission inventories compared to the earlier large-scale studies (Zheng et al., 2009; Zhou et al., 2017). Anthropogenic and biomass burning emissions derive from the standard Coupled Model Intercomparison Project round 6 (CMIP6) (Eyring et al., 2016), with emissions in China replaced by the multi-resolution emission inventory for China (MEIC, http://www.meiemodel.org) (Li et al., 2017; Yue et al., 2023) which considerably improves Chinese emission inventories compared to the earlier large-
- 110 scale studies (Zheng et al., 2009; Zhou et al., 2017). CAM6-Chem utilizes a four-mode version of the Modal Aerosol Module (MAM4) (Liu et al., 2016), coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2021) to explicitly represent the heterogeneous uptake of isoprene-epoxydiols (IEPOX) onto sulfate aerosols and subsequent production of isoprene-epoxydiols (Jo et al., 2019; 2021). Following Liu et al. (2023), we adopt a modest photolysis rate for monoterpene-derived secondary organic aerosols, constituting 2.0% of the NO₂ photolysis frequency (Bianchi et al., 2019;
- 115 Krapf et al., 2016; Zawadowicz et al., 2020). All simulations were run at a horizontal resolution of 0.95° latitude and 1.25° longitude, with a vertical resolution extending up to approximately 40 km across 32 layers (Emmons et al., 2020). To follow the observed meteorological conditions and initialize realistic meteorological conditions, meteorological fields (temperature and wind profiles, surface pressure, surface stress, surface heat and moisture fluxes) are nudged toward Modern-Era Retrospective analysis for Research and Applications (MERRA2) reanalysis (Kooperman et al., 2012), which allows model-obser-
- 120 vation comparisons that are unaffected by variability in synoptic-scale model dynamics. We evaluate model performance against observations from multiple years (Section 3), where in each case the anthropogenic emissions and model meteorology correspond to values associated with the observation year.

We incorporate advanced chemical reactions involving the formation of HOMs, since in the default configuration of CAM6-Chem, organics are not involved in either the nucleation or the initial growth processes of aerosols (sub-20nm). These include
MT-RO₂ unimolecular H shifts (i.e., "autoxidation") and self- and cross-reactions with other RO₂ species, guided by laboratory-derived mechanistic parameters from Xu et al. (2022). In total, 24 reactions in CAM6-Chem were modified and 96 reactions were added. Descriptions of chemical mechanisms are shown in <u>Text S1</u>, and the final products, including HOMs and accretion products (ACC, C15 and C20), are summarized in Table 1.

Table 1. The molecular formula, saturated vapor concentration (C*)<u>at 300K</u>, enthalpy of vaporization (ΔH_{vap}) and corresponding volatility class of newly-added organics.

Species	Short Name	Molecular formula	log(C*) (μg m ⁻³)	ΔH_{vap} (kJ mol ⁻¹)	Volatility Bin ^a
HOMs	C10-NON ^b	$C_{10}H_{14}O_9$	-3.22	164.0	LVOC
HOMS -	C10-ON ^c	$C_{10}H_{14}O_9N$	-3.31	164.0	LVOC
ACCd	C15	$C_{15}H_{18}O_9$	-5.20	186.0	ELVOC
ACC -	C20	$C_{20}H_{32}O_8$	-9.53	230.0	ULVOC

^a LVOC, ELVOC and ULVOC represent low/ extreme-low/ ultra-low volatility organic compounds, respectively. ^b NON represents non-organonitrates.

^c ON represents organonitrates.

135 ^d ACC represents accretion products.

2.2 Nucleation and growth scheme in CAM6-Chem

2.2.1 Nucleation scheme in default CAM6-Chem

The default configuration of CAM6-Chem (Default, Table 2) includes binary homogeneous nucleation of H₂SO₄-H₂O (Vehkamaki et al., 2002) and ternary homogeneous nucleation of H₂SO₄-NH₃-H₂O (Merikanto et al., 2007). Additionally, within the boundary layer the model includes the empirical mechanism of Kulmala et al. (2006) and Sihto et al. (2006) as first used in a global model by Spracklen et al. (2006):

$$j_{1nm} = A \left[H_2 SO_4 \right] \tag{1}$$

where A $(1.0^{-6} \text{ s}^{-1})$ is the rate constant chosen from the median values derived in case studies (Sihto et al., 2006).

145 2.2.1 Updated inorganic nucleation scheme

150

Most existing models tend to overestimate the sensitivity of the nucleation rate to sulfuric acid concentrations when relying solely on classical nucleation theories of sulfuric acid (Ehn et al., 2014; Mann et al., 2014; Scott et al., 2014). Therefore our study updates the inorganic nucleation parameterizations in CAM6-Chem, drawing upon data from the CLOUD chamber experiments_(Kirkby et al., 2016; Dunne et al., 2016). The updated schemes incorporate H₂SO₄, NH₃ and ions. The inorganic NPF rates at a mobility equivalent diameter of 1.7 nm are calculated by summing the following rates (Dunne et al., 2016):

1. Binary neutral (indicated by $b_{,n}$, J_{SA}) and ion-induced ($b_{,i}$, $J_{SA,i}$) NPF involving sulfuric acid and water:

$$J_{SA} = K_{b,n}(T) [H_2 SO_4]^{P_{b,n}}$$
(2)

$$J_{\text{SA},i} = K_{b,i}(T)[\text{H}_2\text{SO}_4]^{P_{b,i}}[n-]$$
(3)

155 K(T) are temperature-dependent prefactors, P_i are constant parameters, and [n-] is the concentration of negative ions produced from galactic cosmic rays (equal to $[n\pm]$ in Eq. (8), which is parameterized in the Text S2). 2. Ternary neutral (indicated by t,n, JSA-NH3) and ion-induced (t,i, JSA-NH3,i) NPF involving sulfuric acid, ammonia and water:

$$J_{\text{SA-NH3}} = K_{t,n}(T) f_n([\text{NH}_3], [\text{H}_2\text{SO}_4]) [\text{H}_2\text{SO}_4]^{P_{t,n}}$$
(4)

160

$$J_{\text{SA-NH3,i}} = K_{t,i}(T) f_i([\text{NH}_3], [\text{H}_2\text{SO}_4]) [\text{H}_2\text{SO}_4]^{P_{t,i}} [n-]$$
(5)

where the $f([NH_3], [H_2SO_4])$ are functions of the ammonia and sulfuric acid gas phase concentrations, also involving freefitting parameters.

2.2.2 New organic nucleation scheme

There is no organic nucleation scheme in the Default (Table 2) so organic NPF rates at 1.7 nm mobility equivalent diameter were included as the sum of the following parameterizations:

1. The rate of heteromolecular nucleation of sulfuric acid and organics (HET, *J*_{SA-Org}) is parameterized following Riccobono et al. (2014) depending on both H₂SO₄ and organic nucleating species concentration:

$$J_{\text{SA-Org}} = K_m \left[\text{H}_2 \text{SO}_4 \right]^2 \left[\text{HOM} + \text{ACC} \right]$$
(6)

- 170 where ACC are accretion products (Table 1) and K_m is the multicomponent prefactor, which equals to 3.27×10^{-21} cm⁶ s⁻¹ (Riccobono et al., 2014).
 - 2. The rate of neutral pure organic nucleation (NON, $J_{\text{Org,n}}$) and ion-induced pure organic nucleation (ION, $J_{\text{Org,i}}$) are parameterized based on Kirkby et al. (2016):

175

$$J_{\rm Org,n} = a_1 \, [\rm ACC]^{a_2 + \frac{a_5}{|\rm ACC|}} \tag{7}$$

$$J_{\text{Org,i}} = [n \pm] a_3 [\text{ACC}]^{a_4 + \frac{a_5}{[\text{ACC}]}}$$
 (8)

where ACC are in units of 10^7 molecules cm⁻³, parameters a_n are determined from fits to experimental data (Dunne et al., 2016), and $[n\pm]$ is the ion concentration produced from galactic cosmic rays (Text S2). A temperature dependence for the organic nucleation rates was introduced by multiplying by exp (-(T-278)/10) as suggested in Dunne et al. (2016).

180 **2.2.3 Updated particle growth scheme**

The growth rate of nuclei is important for the survival probability up to larger sizes and eventually contribution to CCN (Pierce and Adams, 2009; McMurry et al., 2005). The effective production rate of 20 nm diameter particles (the smallest size simulated by the model) is calculated from the Kerminen and Kulmala (2002) formula:

$$j_{20nm} = j_{1.7 nm} \exp\left[-\left(\frac{1}{1.7} - \frac{1}{20}\right)\frac{\gamma \text{CS'CS}}{\text{GR}}\right]$$
(9)

185 where CS'CS is the reduced (simplified) condensation sink, γ is a proportionality factor and GR is the growth rate. <u>Reduced</u> (simplified) condensation sink (CS') is calculated as CS/(4π Di) (Kerminen and Kulmala, 2002). Where CS is the condensation sink and Di is the vapor diffusion coefficient. CS' is largely depended on CS and it represents the surface area of preexisting aerosols.

190 In the Default simulation, sub-20nm particle growth is solely caused by condensation of H₂SO₄ and is approximated as Kerminen and Kulmala (2002):

$$GR = \frac{3.0 \times 10^{-9}}{\rho} v_{H2SO4} M_{H2SO4} c_{H2SO4}$$
(10)

where v_{H2SO4} is the mean molecular speed of H₂SO₄, M_{H2SO4} is the molecular weight of H₂SO₄, c_{H2SO4} is the gas phase concentration of H₂SO₄, and ρ is the density of the nuclei. 3.0 ×10⁻⁹ is approximation of the product of many parameters (Kerminen and Kulmala, 2002).

Neglecting organic vapor condensation on sub-20nm particles will lead to insufficient growth rates and potentially reduced survival of newly formed particles (Pierce and Adams, 2009). Therefore, the condensation of monoterpene-derived condensable organic compounds (COC) (including HOMs and ACC) to newly formed particles is added in our updated model. The enhanced growth rate of particles from 1 nm to 20 nm is then parameterized as follows:

$$GR = \frac{3.0 \times 10^{-9}}{\rho} \left(v_{H2SO4} \times M_{H2SO4} \times c_{H2SO4} + v_{COC} \times M_{COC} \times [c_{COC} - c_{COC}^*] \right)$$
(11)

where v_{COC} is the mean molecular speed of COC (ACC and HOMs), M_{COC} is the molecular weight of COC, c_{COC} is the gas phase concentration of COC, and c_{COC}^* is saturated vapor concentration of COC which is parameterized in Text S3.

205 Simulations with the updated inorganic nucleation scheme (i.e. Eq. (2)-(5)) are named "Inorg" and simulations including also the new organic mechanisms (i.e. Eq. (6)-(8) and (11)) are named "Inorg_Org" (Table 2).

2.3 Method of evaluating NPF-related variables

195

200

In addition to evaluating aerosol concentrations, we also evaluate NPF event properties in terms of the nucleation rate, growth rate and frequency of occurrence of NPF events. CAM6-Chem does not incorporate a nucleation mode, so we employ a threshold of j_{20nm} (Eq. (9)) to define the occurrence of NPF events (i.e., when j_{20nm} > threshold). Then we could evaluate the NPF

frequency (fraction of days) by defining an "NPF day" as a day during which j_{20nm} is higher than a threshold value. Also, the method to evaluate these NPF properties during "NPF day" is described in Text S<u>4</u>.

CAM6-Chem utilizes a four-mode version of the Modal Aerosol Module (MAM4) (Liu et al., 2016), including Aitken mode (with diameter 9~52nm), accumulation mode (54~480 nm), coarse mode (400~40000 nm) and primary mode (10~100nm).

215 The integral concentration from 0 to r_p is computed using the error function (erf):

$$N_{>r_{p}} = N_{mode} \left(\frac{1}{2} + \frac{1}{2} \operatorname{erf} \left(\frac{x}{\sqrt{2}} \right) \right)$$
(12)

where $x=\ln(r_p/r_m)/\ln\sigma$. σ is the geometric standard deviation (the width) of the lognormal distribution r_m is the median radius of the mode. The integral concentration above r_p is therefore $N_{>r_p}=N_{mode}-N_{<r_p}$.

- The temporal frequency of the nucleation rate, growth rate, and condensation sink written out of the model are hourly, and the time periods of the model simulation are consistent with the observation period (with an additional month for spin-up). For aerosol number concentrations (including over oceans and land), the model outputs data on a monthly basis, and we compare these monthly averages with observations. When comparing the aerosol and CCN number concentrations with the field campaign in the Amazon basin, the output frequency from model is hourly. Then, we slice the aircraft measurements of aerosol and CCN number concentrations vertical profiles according to the model output dimensions (4 dimensions including time,
- 225 <u>height, latitude and longitude</u>). We average all measurements data within each slice and compare it with the corresponding <u>model output data.</u>

2.4 Sensitivity experiments

We performed two simulations to quantify the relative contribution of the nucleation rate (Only_NR) and growth rate (Only_GR) to aerosol concentrations in order to separate the contribution of the organic compounds to each of these processes. The Only_NR and Only_GR simulations employ the same settings as Inorg_Org (Table 2), but in Only_NR the organicinvolved particle growth is disabled (i.e., Eq. (10) is used instead) and in Only_GR the organic-involved nucleation rates (i.e., Eq. (6)-(8)) are disabled.

We also conducted two sensitivity simulations to examine uncertainties in concentrations of HOMs (Table 2): sensitivity to 235 the branching ratio from the first generation of monoterpene (MT) reactions with O₃/OH that can be auto-oxidized (Low_Br) and sensitivity to the rate of termination reaction involving NO (Slow_NO). sensitivity to the autoxidation temperature dependence (High_temp and Low_temp), sensitivity to the autoxidation rate (Fast_auto and Slow_auto) and sensitivity to the self-/cross-reaction rate (Slow_accr) (Table 2). In Inorg_Org, the branching ratios for the MT-derived peroxyl radicals (MT-RO₂) which could be further auto-oxidized are set at 80% for MT+O₃ and 97% for MT+OH reactions, corresponding to the high values reported in Xu et al. (2022). In the Low_Br simulation (Table 2), the branching ratio for MT-RO₂ is set as 25% for MT + O₃ and 92% and MT + OH. Both the high and low branching ratios fall within the range of previous studies (Lee et

al., 2023; Pye et al., 2019; Weber et al., 2020; Xu et al., 2018; Jokinen et al., 2015; Roldin et al., 2019). In Slow_NO, the reaction rate of MT-HOM-RO₂+NO (MT-HOM-RO₂, the second-generation product of autoxidation (<u>Text S1</u>) is set as one-fifth of that in Inorg_Org, given that the simulated NO concentration is fourfold higher than the measured values in the boreal
forest in Finland and in the southeast USA (Fig. S3 and S2 in Liu et al. (2024)). In High temp and Low temp, the temperature

dependence of autoxidation rate are set to lower and upper limits (i.e. representing possible higher and lower bound of activation energy, Table S7) based on chamber experiments (Roldin et al., 2019; Weber et al., 2020). In Fast_auto and Slow_auto, the autoxidation reaction rates are multiplied by 10 and 0.1 respectively. In Slow_accr, the rate of self-/cross- reactions are set as the lower value (Table S8) based on chamber experiments (Weber et al., 2020; Berndt et al., 2018).

250

Test Name	Updated inor- ganic nuclea- tion	HOMs chemistry	Organic Nucleation	Organic Growth	Other Changes
Default	×	×	×	×	/
Inorg	\checkmark	\checkmark	×	×	/
Inorg_Org	\checkmark	\checkmark	\checkmark	\checkmark	/
Only_NR	\checkmark	\checkmark	\checkmark	×	/
Only_GR	\checkmark	\checkmark	×	\checkmark	/
Low_Br	\checkmark	\checkmark	\checkmark	\checkmark	Lower branch ratio of the first generation prod- uct (MT-RO ₂) from MT + O ₃ and MT + OH, which could be further auto-oxidized
Slow_NO	\checkmark	\checkmark	\checkmark	\checkmark	Rate of MT-HOM-RO ₂ + NO generating HOMs, multiplied by 0.2
High_temp	√	\checkmark	⊻	\checkmark	<u>Autoxidation rate with high temperature depend</u> <u>ence (Roldin et al., 2019) (Table S7)</u>
Low_temp	\checkmark	\checkmark	\checkmark	<u>√</u>	<u>Autoxidation rate with low temperature depend-</u> <u>ence (Weber et al., 2020) (Table S7)</u>
<u>Fast_auto</u>	√	\checkmark	\checkmark	\checkmark	Autoxidation rate multiplied by 10
Slow_auto	\checkmark	\checkmark	<u>√</u>	\checkmark	Autoxidation rate multiplied by 0.1
<u>Slow_accr</u>	√_	<u>√</u>	<u>√</u>	\checkmark	Using slower self-/cross reaction rate derived from Weber et al. (2020) and Berndt et al. (2018) (Table S8)

Table 2. Configurations of CESM2.1.0 Experiments

2.5 Observation data

Observational data used in this study are from ships, stations, and aircraft (see Table 3). Measurements from the Canadian Aerosol Baseline Measurement Program (CABM), the Reactive Halogens in the Marine Boundary Layer (RHaMBLe), and Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) are compared with simulated N10 or N20 (number concentrations for particles with diameters larger than 10 nm or 20 nm), since these two variables are most sensitive to aerosol nucleation and initial growth. European Aerosol Cloud Climate and Air Quality Interactions projects (EUSAAR-EU-CAARI) (Asmi et al., 2011; Kulmala et al., 2009) provides measured N30 and N50 (number concentrations for particles with

260 diameters larger than 30 nm and 50 nm respectively) and these larger particles are more important for the condensation sink (CS) of HOMs and other precursor vapors during NPF. All above mentioned data were processed in the Global Aerosol Synthesis and Science Project (GASSP) (Reddington et al., 2017). Measured N20 and CCN concentrations at 0.5% supersaturation from the aircraft campaign Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON–CHUVA) (Wendisch et al., 2016) are used to examine the effect of the inclusion of organic NPF on the profile of CCN concentrations in an organic-dominated tropical environment. We also use ground station measurements of nucleation rates, growth rates, CS and NPF frequencies during specific time periods that correspond to the simulations. Full information of stations is listed in Tables S1 and S2.

270

Campaign	Platform	Dates	Region	Variables
RHaMBLe (http://www.cas.manchester.ac.uk/re- sprojects/rhamble/cruise/)	Ship	17 May – 9 June 2007	North Atlantic Ocean (-25.05° W – 8.35° W; 16.32 – 46.14° N)	N10
ACCACIA (http://arcticaccacia.wordpress.com)	Ship	12 July – 13 August 2013	Arctic between Norway and Svalbard (20.70 – 34.84° E; 55.73 – 83.32° N)	N10
CABM (https://ec.gc.ca/air-sc-r)	Station	23 October 2012 – 1 January 2013	Ellesmere Island, Canada (62.34° W, 82.49° N) Egbert, Canada (79.78° W, 44.23° N)	N20
EUSAAR-EUCAARI (Asmi et al., 2011)	Station	1 January 2008 – 1 January 2010	Europe	N30, N50
ACRIDICON–CHUVA (Andreae et al., 2018)	Aircraft	September 2014	Amazon Basin	N20 CCN (0.5%ss

Table 3. Field measurements used in this study

3 Evaluation of the updated NPF scheme

In this section, we evaluate the results derived from the updated model (Inorg_Org) and focus on the comparison between Inorg_Org and Inorg (definitions in Table 2). Specifically, we compare nucleation rate, sub-20nm particle growth rate, NPF event frequency, and condensation sink (CS) (Fig. 1) between simulations and measurements. Results from sensitivity tests

275 (Low_Br and Slow_NO) are used to evaluate the effect of uncertainties in HOMs chemistry on aerosol (Fig. 2 and 3) and CCN concentrations (Fig. 4).

3.1 Evaluation of NPF-related variables

The properties of the nucleation events themselves (formation rates, growth rates, and event frequencies) provide the best test of NPF schemes, while state variables like particle concentration have many other sources of error in a model.

280

As shown in Fig. 1a, at most grounds stations, the nucleation rate in Inorg_Org agrees better with measurements than Inorg (normalized mean bias, NMB changes from -97% in Inorg to -64% in Inorg_Org). The improvement is particularly clear in non-urban areas where biogenic organic nucleation plays a substantial role, such as Hyytiälä, Ozark Forest, Po Valley and Leicester (NMB changes from -92% in Inorg to -34% in Inorg_Org, Fig. 1a). In these regions, the nucleation rate increases by

- at least a factor of 8 when the organic nucleation mechanisms are included (Inorg_Org compared to Inorg). In Toronto and Gadanki, the nucleation rate becomes detectable following the incorporation of organic nucleation mechanisms, in good agreement with observations (9.2 cm⁻³ s⁻¹ in Inorg_Org compared to 12.9 cm⁻³ s⁻¹ measurement of Toronto; 1.6cm⁻³ s⁻¹ in Inorg_Org compared to 1.2 cm⁻³ s⁻¹ in measurement of Gadanki, Table S<u>3</u>). However, in multiple urban regions of China, the nucleation rate remains underestimated (NMB>-50%). This is likely because the effects of anthropogenic-derived HOMs and amines are
- 290 not accounted for in this study, and these effects will be strongest in urban regions. Hong Kong serves as a stark example, where the nucleation rate shows minimal change when the biogenic-organic nucleation scheme is implemented, rising slightly from 0.3 cm⁻³ s⁻¹ (Inorg) to 0.31 cm⁻³ s⁻¹ (Inorg_Org). Several other Chinese megacities, including Beijing and Nanjing, show similar behaviour.
- 295 Figure 1b shows that the growth rate in Inorg is underestimated (NMB = -54%) but is overestimated at most sites in Inorg_Org (NMB = 39%). The underestimation of the sub-20nm growth rate in Inorg is due to an almost zero nucleation rate at around 1nm. Consequently, the absence of a nucleation rate results in the absence of NPF events and, thus, a zero growth rate. In contrast, in Inorg_Org, the NPF frequency is simulated accurately compared to that in Inorg (Fig, 1c). One contributing factor to the overestimation of the growth rate in Inorg_Org is the overestimation of the H₂SO₄ concentration, a feature of CAM6, as
- 300 evidenced by comparisons with previous model simulations (Table S5) and measurements (Table S6). This discrepancy is particularly noticeable in China, where H₂SO₄ dominates the growth rate (will be further discussed in Fig. 7, Section 4). This is also supported by overestimated growth rates in Beijing, Qingdao, and Hongkong in Inorg, which considers only H₂SO₄ contribution to sub-20nm growth. This suggests excessive H₂SO₄ is a feature of the default model. The growth rate of new particles in Hong Kong is zero (Fig. 1b) since there are almost no newly formed particles (nucleation rate ~ 0 cm⁻³ s⁻¹, Fig. 1a).

305

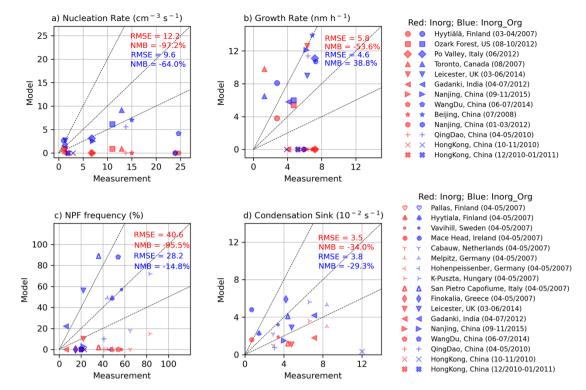


Figure 14: Comparison of simulated (choosing median value of measured smallest nucleation rates as threshold, see Text S4) and measured (a) nucleation rate, (b) growth rate, (c) NPF frequency, and (d) condensation sink in Inorg_Org (blue symbols) and Inorg (red symbols). Information regarding the measurement sites is summarized in Tables S1. Root mean square error (RMSE) and normalized mean bias (NMB) values are shown. (a) and (b) use the same dataset. (c) and (d) use the same dataset.

NPF events are far more frequent in Inorg_Org than in Inorg (NMB in NPF frequency changes from -96% to -15%) (Fig. 1c). Simulated NPF frequencies in Inorg_Org agree better with measurements in Europe (Hyytiälä, Vavihill, Cabauw, Melpitz and K-Puszta) – see Table S4. Inorg_Org tends to overestimate NPF frequencies (by a factor 2) in some rural and forested areas such as the San Pietro Capofiume, Leicester, and Wangdu and significantly underestimates frequencies in Chinese urban areas like Nanjing and Hong Kong (more than 3 times, Fig. 1a). These discrepancies are consistent with the nucleation rates discussed earlier (Table S3). In some locations (Melpitz, San Pietro Capofiume, Leicaster and Gadanki) the overestimation of NPF frequency in Inorg_Org is consistent with an underestimation of CS and, vice versa, the underestimation of NPF frequency in Finokalia is consistent with an overestimation of CS (Figs. 1c and 1d).

320 **3.2** Evaluation of aerosol and CCN number concentrations

To better understand the influence of implementing the new nucleation schemes, model-simulated particle number concentrations are evaluated against shipborne measurements over the ocean and CCN concentrations are evaluated using measurements from Amazonia. We also discuss the influence of uncertainties in HOMs chemistry. Unlike in Spracklen et al. (2010), the lack of a nucleation mode in CAM means that we cannot use extensive measurements from condensation particle counters.

325

The values of number concentrations for particles with diameters larger than 10 nm (N10) in Inorg Org agree better with measurements over ocean (Figs. 2 and 3) but number concentrations for particles with diameters larger than 20 nm (N20) are overestimated in continental regions at surface level (Fig. 4). From Figs. 2 and 3, N10 in Inorg Org are the closest to measurements in both the North Atlantic and the Arctic when considering both normalized mean bias (NMB) and root mean square error (RMSE). The Inorg Org (Figs. 2e, f and 3e, f) alleviates both overestimation of N10 in Default resulting from their high 330 sensitivity to H₂SO₄ concentrations (see Fig. 2a, b and 3a, b), and underestimation at some sites in Inorg caused by the lack of organics participating NPF (Fig. 2c, d and 3c, d). The influence of HOMs chemistry to N10 will be discussed in Section 3.3. In boreal Canada (Fig. 4), N20 are overestimated in Inorg Org during the summer when NPF is particularly active. The overestimation is more significant at Egbert, located just 80 km north of Toronto, where Inorg shows better agreements with measurements. This discrepancy is likely due to an about 30% overestimation of growth rates (in Toronto, Table S3) and the 335 underestimation of the N50 during Northern hemisphere summer (as relevant to CS) at many stations in Inorg Org (N50 in Fig. S9). The underestimation of the N50 also explains the overestimation of N20 observed at the surface level in Amazonia in September 2014 (Fig. 4c) where insufficient large aerosols (N50, Fig. 89) result in a low CS, which in turn leads to an excessive number of aerosols merging into the Aitken mode (N30, Fig. <u>\$8</u>).

340

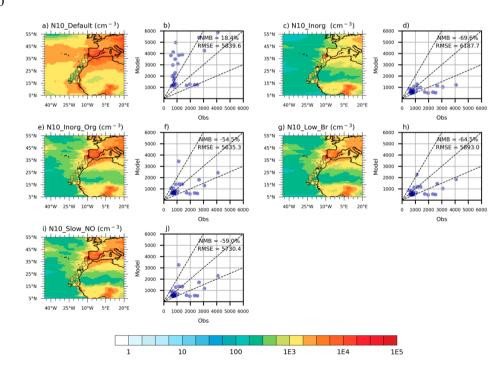


Figure 2: N10 concentration in the North Atlantic from (a, b) Default, (c, d) Inorg, (e, f) Inorg_Org, (g, h) Low_Br, and (i, j) Slow_NO (Unit: cm⁻³). N10 from RHaMBLe measurements are represented by filled circles. Model experiments are described in Table 2 and model data come from mean value of May 2007 outputs. Numbers at the upper right (Fig. 2b, d, f, h and j) indicate normalized mean bias (NMB) and root mean square error (RMSE).

350

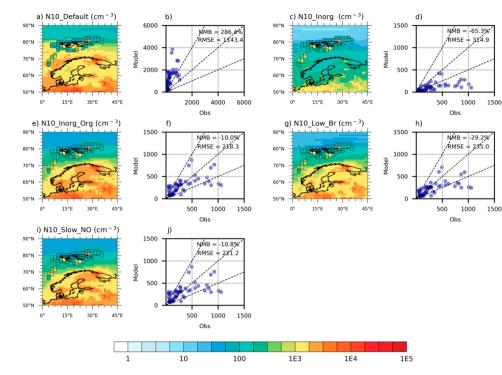
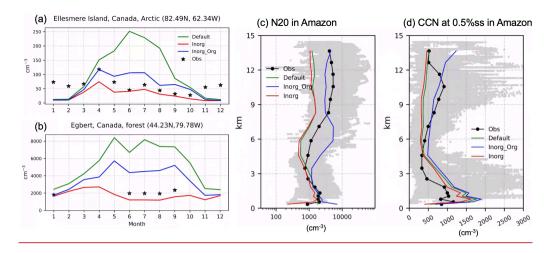



Figure 3: N10 concentration in the Arctic from (a, b) Default, (c, d) Inorg, (e, f) Inorg_Org, (g, h) Low_Br and (i, j) Slow_NO (Unit: cm⁻³). N10 from ACCACIA measurements are represented by filled circles. Model experiments are described in Table 2 and model data come from mean value of July 2013 outputs. Numbers at the upper right (Fig. 3b, d, f, h and j) indicate normalized mean bias (NMB) and root mean square error (RMSE).

After incorporating organic-related process, CCN at high altitude of Amazonia perform better compared with measurements. While all simulations considerably overestimate CCN concentrations at 0.5% supersaturation (0.5% ss) at surface level, CCN in the upper troposphere (5-12 km) in Inorg_Org (blue line, Fig. 4d) are the closest to measurements compared with both
Default and Inorg. The more than 100% increase in CCN number at 8-12 km is mainly attributed to effective vertical transport of accretion products (ACC), which have longer atmospheric lifetime compared to HOMs (Xu et al., 2022) and then participate in *J*_{Org,n} and *J*_{Org,i} (Figs. 6c and 6e), thereby increasing N20 and CCN concentrations at high levels. N20 shows the highest value at about 6km altitude since nucleating species are abundant there and the condensation sink is relatively low (see CCN profile in Fig. 4d) compared to higher altitude. Since we did not consider the suppression of C15 generated from isoprene and

360 monoterpene derived RO₂ (MT-RO₂) radicals cross-reactions on nucleation rates (Heinritzi et al., 2020), the ion-induced pure organic nucleation rate is overestimated in Amazon, and hence, cloud condensation nuclei (CCN) at surface level are overestimated in Inorg_Org.

365 Figure 4: Seasonal variation in 2013 at two Canadian sites (a) Ellesmere Island, and (b) Egbert. Vertical profiles of (c) N20 and (d) CCN at a supersaturation of 0.5% in the Amazon basin, measured at standard temperature and pressure (STP) (unit: cm⁻³), in September 2014.

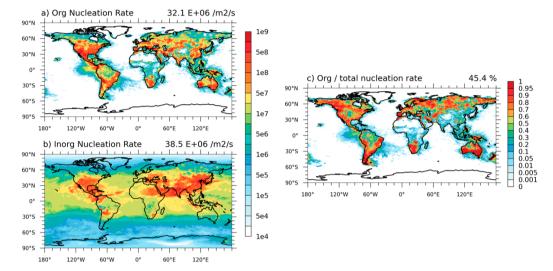
3.3 Evaluation of uncertainty in HOMs chemistry

Uncertainties from HOMs chemistry (Low_Br and Slow_NO) do not affect N10, N20 and CCN number significantly. Com pared to Inorg_Org, relative differences of RMSE from N10 over oceans in Low_Br (Figs. 2g, h and 3g, h) and Slow_NO (Figs. 2i, j and 3i, j) are within 10%. Similarly, in Low_Br and Slow_NO, CCN number do not show significant change over Amazonia compared to Inorg_Org (within 5%). This is because Jorg, and Jorg, contribute a lot in Amazonia but HOMs only participate in J_{SA-Org} (Figs. 6d and 6f). Therefore, Inorg_Org can serve as a basis for further quantification of organic contributions in Section 4.

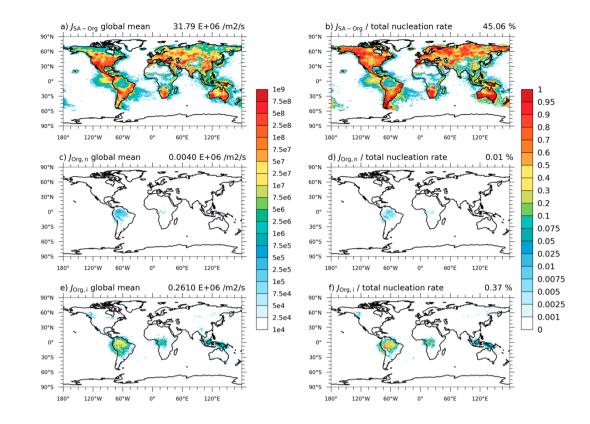
375 4 Quantifying the effect of organics-NPF on global aerosol

In this section, we use simulation results to quantify how HOMs affect the nucleation rate (Figs. 5 and 6), growth rate (Fig. 7), particle number (Fig. 8), and CCN number (Fig. 10) on a global scale. Additionally, results from sensitivity tests (Table 2) are also analyzed to reveal the influence of uncertainty from chemical mechanisms of HOMs and the relative importance of organic nucleation and initial growth process to particle number (Fig. 9).

385


Globally, the vertically-integrated (below 15 km) annual mean organic nucleation rate $(J_{\text{org.n}}+J_{\text{Org.i}}+J_{\text{SA-Org}})$ in Inorg_Org is 32 ×10⁶ cm⁻² s⁻¹ (Fig. 5a), closely matching the inorganic nucleation rate of 39 ×10⁶ cm⁻² s⁻¹ (Table 4). J_{SA-Org} contributes most to the total nucleation rate (45%), average value of 31.8×10⁶ cm⁻² s⁻¹ (Table 4), and its spatial distribution (Fig. 6a) is influenced by both H₂SO₄ and HOMs concentrations. In regions abundant in HOMs (like boreal forest, North America and Australia in Fig. S⁵), the rate surges to 10⁸ cm⁻² s⁻¹ (Fig. 5a) and the organic contribution exceeds 80% (Fig. 5c). High concentrations of

15


³⁸⁰

ACC are simulated in Amazonia (Fig. S⁶), where ACC are transported to high altitudes through strong convection (Section 3), thereby resulting in high rates of $J_{\text{Org,i}}$ (over 40%, Fig. 6f). H₂SO₄-NH₃ neutral nucleation comprises the largest proportion of inorganic nucleation rate (>80% of inorganic and 40.5% of total nucleation rate, Table 4), particularly in China and India due to high anthropogenic SO₂ emission. This is also consistent with the spatial distribution of H₂SO₄ (Fig. S⁴). The contribution of H₂SO₄-NH₃ neutral nucleation makes up more than 50% of the nucleation rate over coastal regions where HOMs and accretion products (ACC) are less abundant (Fig. S⁵ and S⁶) and the large proportion in Africa is due to high NH₃ column concentration (Luo et al., 2022).

395 Figure 5: Spatial distribution of the 2013 annual mean nucleation rate (*j*_{1nm}, vertically-integrated below 15 km) attributed to (a) organics and (b) H₂SO₄. (unit: m⁻² s⁻¹) (c) is the proportion of organic nucleation proportion. Global mean values are shown on the top right of each figure.

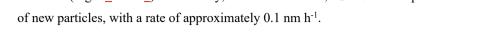

400 Figure 6: The 2013 annual average vertically-integrated organic nucleation rate (*j*_{1nm}) within the troposphere (a, c, e) (unit: m⁻² s⁻¹) and their respective contributions (b, d, f) for *J*_{SA-Org} (a, b), *J*_{Org,n} (c, d), and *J*_{Org,i} (e, f) in the Inorg_Org. Global mean values are shown on the top right of each figure.

Table 4. The 2013 annual average vertically-integrated organic nucleation rate (<i>j</i> _{1nm}) within the troposphere and its contributions
to total nucleation rates in the Inorg_Org.

Pathways	Nucleation Rate (Unit: $10^6 \text{ m}^{-2} \cdot \text{s}^{-1}$)	Proportion
$J_{ m SA}$	3.09	4.38%
$J_{ m SA,i}$	2.62	3.71%
$J_{ m SA-NH3}$	3.09	40.48%
$J_{ m SA-NH3,i}$	4.22	5.99%
$J_{\mathrm{Org},\mathrm{n}}$	0.40	0.01%
$J_{ m Org,i}$	0.30	0.37%
$J_{ m SA-Org}$	31.80	45.06%

Globally, the vertically-average (below 15 km) annual mean organic growth rate is 0.0048 nm h⁻¹ (summation of ACC and HOMs contribution). The organic growth rate contributes to 25% of the total growth rate for sub-20nm particles. In regions such as Canada, the boreal forest, Amazonia, and Australia, where biogenic volatile organic compounds (BVOC) emissions dominate, organic growth accounts for over 60% of the total rate (Fig. 7c), consistent with the spatial distribution of HOMs and ACC (Fig. S5 and S6). Conversely, in China and India, H_2SO_4 exerts a predominant influence (>90%) on the initial growth

410

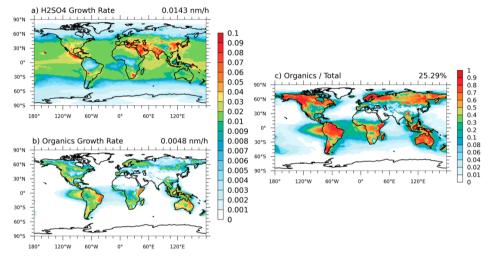


Figure 7: Spatial distribution of the 2013 annual mean vertically averaged growth rate attributed to (a) H₂SO₄, and (b) organics, along with the percentage of organics contributions (c). Global mean values are shown on the top right of each figure.

The global mean aerosol number burden increases by 39% (Fig. 8) in Inorg_Org compared to Inorg. The enhancement reaches a maximum of 60% in Amazonia due to high *J*_{Org,i} (Fig. 6f) driven by high ACC concentrations (Fig. S<u>6</u>). Results from the Low_Br and Slow_NO simulations reveal that the uncertainties from HOMs chemistry have a negligible effect on the total aerosol number concentrations. Relative to Inorg_Org, Low_Br leads to an 12% reduction in number concentrations (Fig. 9f), although the branching ratio of MT-RO₂ shifts significantly (from 80 to 25% for the MT+O₃ reaction and from 97% to 92% for the MT+OH reaction). The impact of slowing down reaction rate of MT-HOM-RO₂+NO (Slow_NO) is negligible globally (< 1%, Fig. 9h).

To evaluate the relative importance of organic contributions to nucleation and growth, we compare the Only_NR (no organic contribution to sub-20nm particle growth rate) and Only_GR (no organic contribution to 1nm particle nucleation rate) simulations. The global mean relative difference of aerosol number concentration between Only_GR (Fig. 9d) and Inorg_Org is 28% in a one-month simulation. Switching off growth alone (Only_NR) results in a 34% decrease in aerosol number relative

to Inorg_Org (Fig. 9b). This illustrates that organic initial growth of new particles (sub-20nm) is slightly more important than organic nucleation for the production of particles larger than 20 nm diameter.

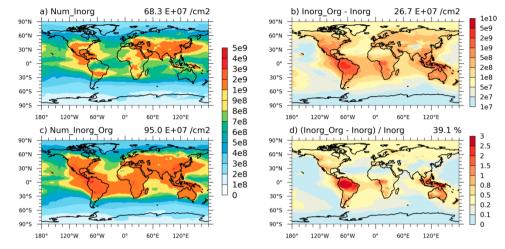


Figure 8: Spatial distribution of annual mean total vertically-integrated particle number concentrations from (a) Inorg and (c) Inorg_Org (unit: cm⁻²). Also, (b) change and (d) relative change are shown. Global mean values are shown on the top right of each figure.

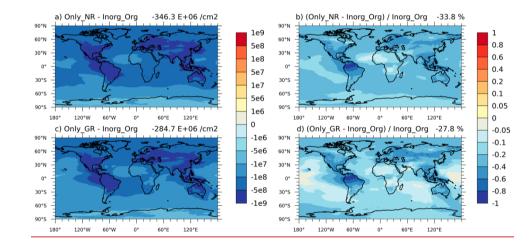


Figure 9: Absolute differences (Units: cm⁻²) and relative differences (Units: unitless) of in total vertically-integrated aerosol numbers in July 2013 between Inorg Org and other sensitivity tests. Global mean values are shown on the top right of each figure. Model experiments are described in Table 2.

440

435

The global annual average CCN burden at 0.5% supersaturation increases by 33% upon adding organic NPF (Fig. 10). The spatial pattern of changes in CCN concentrations compared to Inorg is consistent with changes in aerosol number concentrations (Fig. 8), with increases predominantly occurring in regions abundant in HOMs and ACC (Fig. S⁵ and S⁶). Amazonia is

the region most sensitive to organic-related processes due to high ACC concentrations (Fig. S $\underline{6}$), where the total burden increases more than 100% (Fig. 10d).

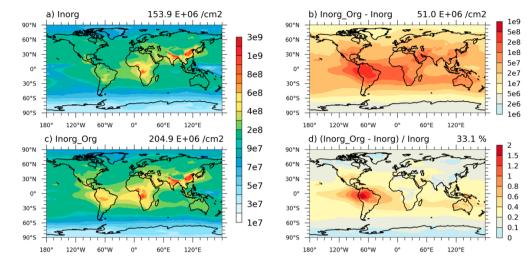


Figure 10: Spatial distribution of annual mean total vertically-integrated CCN concentrations at 0.5% supersaturation for (a) Inorg and (c) Inorg_Org (unit: cm⁻²). Also, (b) change and (d) relative change are shown. Global mean values are shown on the top right of each figure.

5 Uncertainties from HOMs chemistry

450

465

This section aims to test the effect of using different autoxidation and self-/cross reaction rates as well as branching ratios during HOMs and ACC formation on the 1 nm nucleation rate, sub-20nm growth rate, total aerosol number concentration and CCN number concentration.

- 455 The change of the autoxidation rate (Fast_auto and Slow_auto) affects both the nucleation and growth rates, particularly within the HOMs source regions. A higher autoxidation rate leads to higher intermediate radical concentrations and thus more HOMs. Multiplying the autoxidation rate by 10 (Fast_auto) leads to a 6% increase in the nucleation rate and a 3% increase in the sub-20nm growth rate on a global average (Fig. S11). The largest increases occur in regions such as the Amazon, Australia and boreal forests (>10%) where HOMs is most abundant. In these regions, the aerosol number concentration increased by more
- 460 than 30% compared to the baseline Inorg_Org. Conversely, in Slow_auto, the nucleation and growth rates decline by 17% and 5%, respectively, resulting in a 15% reduction in aerosol number and a 6% reduction in CCN number globally. In the Amazon and boreal forests, the reductions exceed 20% (Table 5).

Adjusting the autoxidation temperature dependence to upper and lower limits (High_temp and Low_temp) causes changes in HOMs concentration (Fig. S10). However, its impact on nucleation (-7% and -4% in High_temp and Low_temp), growth rate (-4% and ~0% in High temp and Low temp), aerosol (-12% and 3% in High temp and Low temp) and CCN (-4% and ~0%

20

in High_temp and Low_temp) number concentrations are small (Fig. S11 and S12). This is because most of these changes occur over ocean, where H₂SO₄ has low concentrations. Consequently, the rate of heteromolecular nucleation of sulfuric acid and organics (HET), which is the greatest contributor to the organic-involving nucleation rate, does not show significant change in both experiments.

- 470 <u>A lower dimerization reaction rate leads to decreased concentrations of accretion products (ACC), with a 71% decrease in the Slow_accr. Lower consumption of MT-derived peroxyl radicals (MT-RO₂) during self-/cross- reaction means more of them can participate in autoxidation. This explains the higher HOMs concentration over source regions in Slow_accr compared to Inorg_Org (Fig. S10). However, the impact of slowing down the dimerization rate on aerosol and CCN number concentrations is negligible, remaining within 1% on a global average. In the Slow_accr experiment, the nucleation rate in the Amazon, where</u>
- 475 the concentration of ACC is highest, decreases by more than 50%, subsequently leading to a reduction of more than 20% in aerosol and CCN numbers (Table 5). This implies that both aerosol and CCN number concentration in the Amazon basin are sensitive to the ACC concentration.

The change of HOMs and ACC concentration in Slow_NO is almost negligible (-6% and 5%) hence its impact on aerosol and CCN number can be ignored (~0%). When the rate of NO termination is reduced, less MT-HOM-RO₂ was consumed when

- 480 generating HOMs, and thus more MT-HOM-RO₂ participates in self-/cross-reactions. This explains the higher concentration of ACC and lower concentration of HOMs in the Slow_NO compared to Inorg_Org. In contrast, in the Low_Br, there is a significant decrease in HOMs concentration (-51%) (Fig. S10) since the mass yield of MT-bRO₂ is decreased, which subsequently leads to a 17% reduction in the nucleation rate (Fig. S11). Combining with approximately a 5% reduction in the growth rate of sub-20nm particles, the concentrations of aerosol and CCN decrease by -12% and -5% respectively (Table 5). In regions
- 485 <u>most sensitive to biogenic HOMs chemistry, such as the Amazon, Australia, and boreal forests, the reduction in particle concentrations exceeds 20%.</u>

490

Table 5. Relative differences (Units: unitless) of vertically-integrated HOMs concentrations (HOMs), accretion products concentrations (ACC), nucleation (NR), growth rate (GR), aerosol number (Aerosol), and CCN number (CCN) in July 2013 between Inorg Org and other sensitivity tests. Values in the table are global mean values. Model experiments are described in Table 2.

	HOMs	ACC	NR	<u>GR</u>	Aerosol	<u>CCN</u>
<u>Slow_NO</u>	<u>-6%</u>	<u>5%</u>	<u>-2%</u>	<u>~0</u>	<u>~0</u>	<u>~0</u>
Low_br	<u>-51%</u>	<u>-12%</u>	<u>-17%</u>	<u>-5%</u>	<u>-12%</u>	<u>-5%</u>
High_temp	<u>-42%</u>	<u>-6%</u>	<u>-7%</u>	<u>-4%</u>	<u>-12%</u>	<u>-4%</u>
Low_temp	<u>9%</u>	<u>~0</u>	<u>-4%</u>	<u>~0</u>	<u>3%</u>	<u>~0</u>
Fast_auto	<u>75%</u>	<u>8%</u>	<u>6%</u>	<u>3%</u>	<u>18%</u>	<u>4%</u>
<u>Slow_auto</u>	<u>-57%</u>	<u>-5%</u>	<u>-17%</u>	<u>-5%</u>	<u>-15%</u>	<u>-6%</u>

6 Comparison with previous studies

510

Our results show that vertically-integrated organic nucleation contributes 84% of the total nucleation rate within the lower 5.8 km of the atmosphere, which is much higher than that in previous studies (51% in Gordon et al. (2017) and 42% in Zhu and
Penner (2019), Table 6). The HOMs concentrations in our simulations are about 10 times greater than in Gordon et al. (2017), as depicted in Fig. S7 and Fig. S2 in Gordon et al. (2016). Here we used a chemical mechanism of HOMs derived from chamber experiments (including both <u>autoxidation</u> and self-/cross-reactions of isoprene/monoterpene-derived radicals) while Gordon et al. (2016) estimated HOMs concentrations using an empirical fixed yield from monoterpene+O₃/OH. Higher HOMs concentrations in our simulation are much closer to measurements in Finland and the southeast USA (Fig. S4 and S5 in Liu et al. (2024)), and lead to higher *J*_{SA-Org}.

Updates to the inorganic nucleation scheme based on CLOUD chamber experiment data (Dunne et al., 2016) are the main reason we have higher contributions of vertically-integrated organic nucleation than Zhu and Penner (2019). The updated scheme decreases the inorganic nucleation rate by reducing its sensitivity to H₂SO₄ concentration. Thus, we simulate a higher organic nucleation proportion despite much lower *J*_{Org,i} and *J*_{Org,n} (Table 7). The lower values of *J*_{Org,i} and *J*_{Org,n} are caused by our use of a more stringent definition of organic participation (only ACC due to their extreme/ultra-low volatility) in neutral and ion-induced pure organic nucleation (NON and ION, Eq. (7) and (8)).

Pathways	Below	5.8 km vertical integration	
1 aurways	Gordon et al. (2017)	Zhu and Penner (2019)	This study
$J_{ m SA}$	~0	58.40%	0.03 %
$J_{ m SA,i}$	7.50 %	w/o ^a	1.96 %
$J_{ m SA-NH3}$	17.00 %	w/o	6.18 %
$J_{\mathrm{SA-NH3,i}}$	24.00 %	w/o	8.28 %
$J_{\mathrm{Org},\mathrm{n}}$	~0	0.60%	~0
$J_{ m Org,i}$	4.10 %	23.20%	0.11 %
$J_{\mathrm{SA-Org},\mathrm{i}}^{\mathrm{b}}$	14.00 %	w/o	w/o
$J_{\mathrm{SA-Org}}$	33.00 %	17.80%	83.44 %

 Table 6. Fractions of NPF from organic and inorganic pathways are derived from Inorg_Org (annual average in 2013 below 5.8 km altitude). Results from Gordon et al. (2017) and Zhu and Penner (2019) are in present-day experiments.

^a w/o represents that there is no consideration of that nucleation scheme in publications

22

^b J_{SA-Org,i} represents that ion-induced heteromolecular nucleation of sulfuric acid and organics (HET).

Pathways	Zhu and Penner (2019) ^a	This study ^b
$J_{ m SA-Org}$	34.4	33.0
$J_{\mathrm{Org},\mathrm{n}}$	1.0	4.5 E-03
$J_{ m Org,i}$	52.9	0.3
Total	88.2	33.2

Table 7. Annually averaged NPF from three organic pathways: vertically-integrated results across the whole atmosphere.

515 ^{a,b} Results are compared between present-day atmospheres (Zhu and Penner, 2019) and 2013 annual mean in this study.

7 Summary and discussion

This study updates the inorganic nucleation scheme in CAM6-Chem according to chamber experimental measurements and adds organic nucleation and initial growth scheme based on a state-of-art chemical mechanism for biogenic highly oxygenated molecules (HOMs) including <u>autoxidation</u> and self-/cross-reactions of isoprene/monoterpene-derived radicals. The organic nucleation scheme includes heteromolecular nucleation of sulfuric acid and organics (HET), neutral pure organic nucleation (NON), and ion-induced pure organic nucleation (ION). Organic condensation on sub-20nm particles is also taken into account. The model was evaluated against new particle formation (NPF) events (occurrence frequency and nucleation and growth rates) as well as aerosol and cloud condensation nuclei (CCN) number concentrations. Finally, we quantified the contribution of organics to nucleation rate, growth rate, aerosol and CCN number at 0.5% supersaturation globally.

525

Compared to the model with updated inorganic nucleation mechanisms (Inorg), the revised model with HOMs chemistry (Inorg_Org) agrees better with measurements of the nucleation rate and sub-20nm particle growth rates at numerous sites globally (the normalized mean bias (NMB) of nucleation rate changes from -97% to -64% and the NMB of growth rate changes from -96% to -15%, Fig. 1). Inorg_Org also simulates NPF event frequency in better agreement with measurements at 17 sites
compared to Inorg (NMB changes from -96% to -15%, Fig. 1), thereby accurately reproducing N10 (number concentrations for particles with diameters larger than 10 nm) ship-borne measurements over the Arctic and North Atlantic (Fig. 2 and 3). Both N20 (number concentrations for particles with diameters larger than 20 nm) and CCN concentration increase more than 100% between 8-12 km altitude (Fig. 4) over Amazonia after incorporating organic-related process and show better performance compared to aircraft measurements due to organic nucleating species (accretion productions) convection lifting to high level and then amplifying *J*_{org,i} (ION rate).

On a global scale, organics contribute 45% to the annual average vertically-integrated nucleation rate and 25% to the vertically averaged initial growth rate from Inorg_Org (global mean). Compared to Inorg, Inorg_Org increases the annual average vertically-integrated aerosol number concentration by 39%. The simulation shows that the organic-related growth process exerts

- 540 a more substantial influence on aerosol number than nucleation. These newly-formed particles result in a 33% increase in annual average vertically-integrated CCN concentrations at 0.5% supersaturation compared to Inorg. Both aerosol and CCN concentrations display the most significant increase in Amazonia, exceeding 60% and 100%, respectively, attributable to its low aerosol concentration in Inorg in the background rainforest. More CCN produced through natural processes implies higher
 - 545

550

We also test the sensitivity of aerosol number concentrations to uncertainties from HOMs chemistry. Compared to Inorg_Org, decreasing the branch ratio of the first-generation product from Monoterpene+O₃/OH, which could further undergo <u>autoxida-tion</u> (Low_Br), leads to only a 12% reduction in global average vertically integrated aerosol number concentrations. Slowing down NO involved chemical reactions due to NO concentration overestimation at two stations (Slow_NO) does not change the global average aerosol number concentrations (within ~1%) (Fig. 10). These results suggest including the processes in our

background aerosol abundance, thus weaker (less negative) historical aerosol forcing (Carslaw et al., 2013).

model is more important than tuning these aspects of the parametrisations.

We also test the sensitivity of aerosol number concentrations to uncertainties from HOMs chemistry. Results show that including organic NPF processes in our model is more important than tuning these aspects of the parametrizations during HOMs formation. Compared to the baseline Inorg_Org model, decreasing the branching ratio of the first-generation product from

- Monoterpene+O₃/OH, which could further undergo autoxidation (Low_Br), leads to only a 12% reduction in global average vertically-integrated aerosol number concentrations. Slowing down NO-involved chemical reactions due to NO concentration overestimation at two stations (Slow_NO) has very little effect on the global average aerosol number concentration (within ~1%) (Fig. 10). When altering the temperature dependence of autoxidation rate into higher or lower value (High_temp and Low_temp), HOMs concentrations change a lot (-42% and 9% respectively) but aerosol number concentrations only change a small amount (-12% and 3%). Factor of 10 changes of autoxidation rate (multiplying the autoxidation rate by 10 in Fast_auto
- and 0.1 in Slow_auto) results in a relatively significant changes in the simulated aerosol number concentration (18% and -15% in global mean). When adjusting the dimerization rate coefficient of ACC formation to lower value (Slow_accr), the aerosol number change is negligible (within 2% on global average). Except for Amazon, the aerosol number concentrations are highly sensitive to ACC concentration and decrease by about more than 20%.
- 565

570

The contribution of organic-involved nucleation to the vertically-integrated rate within the lower 5.8 km in our work (~83%) is significantly higher than previous studies. Compared to Gordon et al. (2017) (~51%), we use a more advanced HOMs chemistry that simulates higher HOMs concentrations in closer to measurements, thereby presenting higher J_{SA-Org} (HET rate) and organics contribution. Compared to Zhu and Penner (2019) (~ 42%), we update the inorganic nucleation scheme based on CLOUD chamber experiments. Therefore, the inorganic nucleation rate and its proportion is reduced in our simulations and

this provides a more reasonable baseline for the quantifying organic contribution. The greater contribution of biogenic organic nucleation to NPF implies that global aerosol may be more sensitive to changes in biogenic emissions. This finding should be tested with different representative concentration pathways (RCP) in the future, when human-induced global warming causes higher temperature and biogenic HOMs emissions, while emission reduction policies reduce anthropogenic emissions.

575

Although we only consider two-step autoxidation reactions which is not the most advanced (Heinritzi et al., 2020; Simon et al., 2020), its impact on organic nucleation rate is almost negligible. The number of autoxidation steps has almost no effect on the rate of heteromolecular nucleation of sulfuric acid and organics (HET), which is the most significant contributors to organic nucleation rate (Fig. 6 in the main text). This is mainly because the number of autoxidation steps affects neither the yield nor

580 the concentration of C10-HOMs, only their molecular formulas and volatility. In our simulation, the lower volatility of C10-HOMs does not affect their participation in HET (i.e. LVOC, ELVOC and ULVOC can all contribute to HET), so the rate of HET is not influenced by the number of autoxidation step.

 $\frac{\text{C10-HOMs might become less volatile when undergoing one additional autoxidation step, transitioning from LVOC (3 \times 10^{-5})}{\leq C^*(T) < 0.3 \ \mu\text{g m}^{-3}, \text{ where } C^*(T) \text{ is the effective saturation concentration) to ELVOC (3 \times 10^{-9} < C^*(T) < 3 \times 10^{-5} \ \mu\text{g m}^{-3}), \\ \frac{1}{2016} \text{ but this is unlikely to affect the pure organic nucleation rate. The is because previous studies (Kurtén et al., 2016; Tröstl et al., 2016) have already indicated that C10 class molecules alone do not have low enough vapor pressure to initiate the nucleation, without the presence of other species such as sulfuric acid or bases. This is further supported by that C20 class molecules are mainly responsible for pure biogenic nucleation (Heinritzi et al., 2020; Frege et al., 2018).$

590

There might be some overestimations with C15 and C20 involved in new particle formation if we assume that all the accretion products are ELVOC or ULVOC. In the updated model, $C_{15}H_{18}O_9$ (C15, extremely low volatility) and $C_{20}H_{32}O_8$ (C20, ultralow volatility) are just simplified representatives of all C15 and C20 dimers. Although more dimer species with low volatility has been already detected on chamber experiments (Stolzenburg et al., 2018; Ye et al., 2019; Schervish and Donahue, 2020),

- 595 they did not provide the explicit chemical kinetics of related reactions (i.e. the intermediate products and their yields). On the other hand, although yields of accretion products vary by 1 to 2 orders of magnitude in previous studies (Rissanen et al., 2015; Berndt et al., 2018; Zhao et al., 2018), the yields of C15 and C20 we currently use are very low (4%), resulting in relatively low dimer concentrations. Even if they were all ELVOC and ULVOC, it would not lead to significant overestimation, and therefore, would not substantially impact nucleation and growth rates.
- 600

Neglecting the oligomerization of accretion products can lead to higher volatility of aerosols, resulting in reduced the mass concentration in the particle phase and reduced condensation sink (CS), but increased mass in the gaseous phase. This could lead to an overestimation of the NPF rate. However, since the mass of HOMs-SOA accounts for only about 10% of the total SOA mass, the impact on NPF rate can be neglected.

605

Not considering decomposition of accretion products may lead to an overestimation of the mass and number concentration of HOMs in particle phase, and consequently an overestimation of CS and underestimation of the NPF rate. However, C15-SOA and C20-SOA account for less than 4% of the total SOA (Liu et al., 2024), so the impact of ignoring the decomposition of accretion products is negligible.

610

Zhang et al. (2011) showed that radon contributes additional ionization in the boundary layer, especially over land. This implies that our pure organic nucleation rate might be underestimated since we only consider ion-pair production rate by galactic cosmic rays. However, even over the continents, the contribution of the ionization rate caused by the radioactive decay of radon is only significant (> 30%) within the lowest 1km (Fig. 12 in Zhang et al. (2011)). Above 3km, the contribution of radon

615 <u>decay induced ionization rate can be neglected (<10%)</u>. In this study, we focused on the proportion of organic NPF in the vertical integration within the whole atmosphere. Therefore, we will not consider incorporating the ion nucleation rate caused by radon.

The NPF rate at about 20nm is calculated based on the Eq. (14) based on Kerminen and Kulmala (2002). It is derived with several simplifying assumptions and approximations: (1) the only important sink for the newly formed particles is their coagulation to larger pre-existing particles; (2) the newly formed particles grow by condensation at a constant rate; (3) the pre-existing population of larger particles remains unchanged during the newly formed particles growth. However, Lehtinen et al. (2007) reformulates the previously (Kerminen and Kulmala, 2002) published theory, in which both the accuracy has been improved and the applicability to different conditions is more straightforward. Since CAM6-Chem does not include a nuclea-

625 <u>tion mode, we are not able to update the NPF rate based on Lehtinen et al. (2007). However, future work, such as implementing</u> <u>a nucleation mode in CAM6-Chem and resolving particle growth rate within 20nm, is worth exploring.</u>

The overestimation of H₂SO₄ in CAM6-Chem could potentially impact our final results regarding the organic proportion in both nucleation and the initial growth rate because both the dependency of inorganic and organic nucleation rate on H₂SO₄
 concentration are modeled with an exponent greater than 2 (Eq. (2)-(6)). Also, nitrate is not included CMIP6 emissions because of uncertainties in both ammonia emissions and its chemistry and removal (Heald et al., 2012; Paulot et al., 2016). The underestimated nitrate concentrations result in reduced rate of ammonia consumption, potentially leading to an overestimation of residual atmospheric ammonia. Therefore, the inorganic nucleation rate may be overestimated and consequently, the organic proportion of the nucleation rate is likely underestimated.

Given the limited knowledge of explicit chemical reactions forming anthropogenic-derived HOMs (Wang et al., 2017; Wang et al., 2020; Garmash et al., 2020; Molteni et al., 2018), we solely focus on organic nucleating species derived from monoterpene oxidation. This treatment likely leads to an underestimation of organic nucleation rates, particularly in urban areas (Fig.

⁶³⁵

More studies about chemical mechanisms of anthropogenic HOMs which could be applied globally are needed. Our work
 points out that subsequent growth of the newly formed particles to larger size may have a more significant effect on aerosol
 number than nucleation. More studies are needed to quantify the contribution of anthropogenic organics to initial growth rate.
 The change in simulated aerosol number and size distribution caused by anthropogenic HOMs-driven NPF can have important
 implications for CCN concentrations and aerosol indirect forcing, which also need further analysis (Wang and Penner, 2009;
 Wang et al., 2009; Gordon et al., 2016; Zhu et al., 2019).

645 Data availability

The data set from the ACRIDICON–CHUVA campaign is archived and publicly accessible from the HALO database maintained by the German Aerospace Center (DLR) at https://halo-db.pa.op.dlr.de/mission/5 (Full description of the data set are shown in Andreae et al. (2018)). Data processed into a consistent, model-ready format during the NERC-funded GASSP project (NE/J024252/1) are available upon request from co-authors Leighton Regayre and Ken Carslaw

650 Author contribution

MW and XD designed the study. XS performed the data analysis, produced the figures, and wrote the manuscript draft. LR, MA, MP and MY collected the datasets. YL, WS, SA and KS contributed to the analysis methods. DJ provided the model. All the authors contributed to the discussion, writing, and editing of the manuscript.

Competing interests

655 At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. <u>The contact author</u> <u>has declared that none of the authors has any competing interests.</u>

Acknowledgments

This research is supported by the Natural Science Foundation of China (41925023, U2342223, and 91744208). This research was also supported by the Collaborative Innovation Center of Climate Change, Jiangsu Province, and supported by the Fun-

660 <u>damental Research Funds for the Central Universities - CEMAC "GeoX" Interdisciplinary Program (2024ZD05)</u>. <u>Leighton</u> <u>Regayre was supported by the Met Office Hadley Centre Climate Programme funded by DSIT</u>. We greatly thank the High Performance Computing Center of Nanjing University for providing the computational resources used in this work. The CESM project is supported primarily by the United States National Science Foundation (NSF). This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative 665 Agreement No. 1852977. We thank all the scientists, software engineers, and administrators who contributed to the development of CESM2.

References

Andreae, M. O., Andreae, T. W., Ditas, F., and Pöhlker, C.: Frequent new particle formation at remote sites in the subboreal forest of North America, Atmos. Chem. Phys., 22, 2487-2505, 10.5194/acp-22-2487-2022, 2022.

- Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., 670 Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., and Ziereis, H.: Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin, Atmos. 675 Chem. Phys., 18, 921-961, 10.5194/acp-18-921-2018, 2018.
- Asmi, A., Wiedensohler, A., Lai, P., Fiaeraa, A. M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J. P., Marinoni, A., Tunved, P., Hansson, H. C., Fiebig, M., Kivekäs, N., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P. P., Swietlicki, E., Kristensson, A., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., de Leeuw, G., Henzing, B., Harrison, R. M., Beddows, D., O'Dowd, C., Jennings, S. G., Flentje, H., Weinhold, K., Meinhardt, F., Ries,
- 680 L., and Kulmala, M.: Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys., 11, 5505-5538, 10.5194/acp-11-5505-2011, 2011. Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A. L., Dufresne, J. L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mulmenstadt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz,
- M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative 685 Forcing of Climate Change, Rev. Geophys., 58, e2019RG000660, 10.1029/2019RG000660, 2020. Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and Hansel, A.: Accretion Product Formation from Ozonolysis and OH Radical Reaction of α -Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene, Environ. Sci. Technol., 52, 11069-11077, 10.1021/acs.est.8b02210, 2018.
- 690 Bianchi, F., Kurten, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, Chem. Rev., 119, 3472-3509, 10.1021/acs.chemrev.8b00395, 2019.
- Bianchi, F., Trostl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, 695 N., Chen, X., Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kurten, A., Manninen, H. E., Munch, S., Perakyla, O., Petaja, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J., Worsnop, D. R., Kulmala, M., Dommen, J., and Baltensperger, U.: New particle formation in the free troposphere: A question of chemistry and timing, Science, 352, 1109-1112, 10.1126/science.aad5456, 2016.

Boy, M., Karl, T., Turnipseed, A., Mauldin, R. L., Kosciuch, E., Greenberg, J., Rathbone, J., Smith, J., Held, A., Barsanti, K., 700 Wehner, B., Bauer, S., Wiedensohler, A., Bonn, B., Kulmala, M., and Guenther, A.: New particle formation in the Front Range of the Colorado Rocky Mountains, Atmos. Chem. Phys., 8, 1577-1590, 10.5194/acp-8-1577-2008, 2008.

Carslaw, K. S.: Chapter 2 - Aerosol in the climate system, in: Aerosols and Climate, edited by: Carslaw, K. S., Elsevier, 9-52, https://doi.org/10.1016/B978-0-12-819766-0.00008-0, 2022.

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G. W., Spracklen, D. V., 705 Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty in indirect forcing, Nature, 503, 67-71, 10.1038/nature12674, 2013.

- Deng, C. J., Fu, Y. Y., Dada, L., Yan, C., Cai, R. L., Yang, D. S., Zhou, Y., Yin, R. J., Lu, Y. Q., Li, X. X., Qiao, X. H., Fan, X. L., Nie, W., Kontkanen, J., Kangasluoma, J., Chu, B. W., Ding, A. J., Kerminen, V. M., Paasonen, P., Worsnop, D. R., Bianchi, F., Liu, Y. C., Zheng, J., Wang, L., Kulmala, M., and Jiang, J. K.: Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing, Environ. Sci. Technol., 54, 8547-8557, 10.1021/acs.est.0c00808, 2020. 710

Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J. P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321-4344, 10.5194/acp-6-4321-2006, 2006.

- 715 Dunne, E. M., Gordon, H., Kurten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C. L. S., Riccobono, F., Richards, N. A. D., Rissanen, M. P., Rondo,
- 720 L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipilaa, M., Smith, J. N., Stozkhov, Y., Tome, A., Trostl, J., Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw, K. S.: Global atmospheric particle formation from CERN CLOUD measurements, Science, 354, 1119-1124, 10.1126/science.aaf2649, 2016. Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J.,
- Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Dal Maso, M., Berndt, T., Petaja, T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476-+, 10.1038/nature13032, 2014. Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D., Lamarque, J. F., Marsh, D., Mills, M. J., Tilmes, S., Bardeen, C., Buchholz, R. R., Conley, A., Gettelman, A., Garcia, R., Simpson, I., Blake, D. R., Meinardi, S., and Pétron,
- G.: The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Sy., 12, 10.1029/2019ms001882, 2020.
 Evring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled

Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-1958, 10.5194/gmd-9-1937-2016, 2016.

- 735 Frege, C., Ortega, I. K., Rissanen, M. P., Praplan, A. P., Steiner, G., Heinritzi, M., Ahonen, L., Amorim, A., Bernhammer, A. K., Bianchi, F., Brilke, S., Breitenlechner, M., Dada, L., Dias, A., Duplissy, J., Ehrhart, S., El-Haddad, I., Fischer, L., Fuchs, C., Garmash, O., Gonin, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H., Kirkby, J., Kürten, A., Lehtipalo, K., Leiminger, M., Mauldin, R. L., Molteni, U., Nichman, L., Petäjä, T., Sarnela, N., Schobesberger, S., Simon, M., Sipilä, M., Stolzenburg, D., Tomé, A., Vogel, A. L., Wagner, A. C., Wagner, R., Xiao, M., Yan, C., Ye, P., Curtius, J., Donahue, N. M.,
- 740 Flagan, R. C., Kulmala, M., Worsnop, D. R., Winkler, P. M., Dommen, J., and Baltensperger, U.: Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation, Atmos. Chem. Phys., 18, 65-79, 10.5194/acp-18-65-2018, 2018. Garmash, O., Rissanen, M. P., Pullinen, I., Schmitt, S., Kausiala, O., Tillmann, R., Zhao, D., Percival, C., Bannan, T. J.,

 Priestley, M., Hallquist, Å. M., Kleist, E., Kiendler-Scharr, A., Hallquist, M., Berndt, T., McFiggans, G., Wildt, J., Mentel, T.
 F., and Ehn, M.: Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics, Atmos. Chem. Phys., 20, 515-537, 10.5194/acp-20-515-2020, 2020.

- Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M., Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle, C. R., Kulmala, M., Kurten, A., Lehtipalo, K., Makhmutov, V., Molteni, U., Rissanen, M. P., Stozkhov, Y., Trostl, J., Tsagkogeorgas, G., Wagner, R.,
- 750 Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.: Causes and importance of new particle formation in the present-day and preindustrial atmospheres, J. Geophys. Res.-Atmos., 122, 8739-8760, 10.1002/2017jd026844, 2017. Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner, R., Dunne, E. M., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X. M., Craven, J. S., Dias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs,
- 755 C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Kirkby, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Monks, S. A., Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplanh, A. P., Pringle, K. J., Richards, N. A. D., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeldo, J. H., Sharma, S., Sipila, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P. L., Zhang, X., Hansel, A., Dommen, J., Donahue,
- 760 N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Curtius, J., and Carslaw, K. S.: Reduced anthropogenic aerosol

radiative forcing caused by biogenic new particle formation, P. Natl. Acad. Sci. USA, 113, 12053-12058, 10.1073/pnas.1602360113, 2016.

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492, 10.5194/gmd-5-1471-2012, 2012.

Heald, C. L., Collett Jr, J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Clarisse, L., Hurtmans, D. R., Van Damme, M., Clerbaux, C., Coheur, P. F., Philip, S., Martin, R. V., and Pye, H. O. T.: Atmospheric ammonia and particulate inorganic nitrogen over the United States, Atmos. Chem. Phys., 12, 10295-10312, 10.5194/acp-12-10295-2012, 2012.

765

- Heinritzi, M., Dada, L., Simon, M., Stolzenburg, D., Wagner, A. C., Fischer, L., Ahonen, L. R., Amanatidis, S., Baalbaki, R.,
 Baccarini, A., Bauer, P. S., Baumgartner, B., Bianchi, F., Brilke, S., Chen, D., Chiu, R., Dias, A., Dommen, J., Duplissy, J.,
 Finkenzeller, H., Frege, C., Fuchs, C., Garmash, O., Gordon, H., Granzin, M., El Haddad, I., He, X., Helm, J., Hofbauer, V.,
 Hoyle, C. R., Kangasluoma, J., Keber, T., Kim, C., Kürten, A., Lamkaddam, H., Laurila, T. M., Lampilahti, J., Lee, C. P.,
 Lehtipalo, K., Leiminger, M., Mai, H., Makhmutov, V., Manninen, H. E., Marten, R., Mathot, S., Mauldin, R. L., Mentler, B.,
 Molteni, U., Müller, T., Nie, W., Nieminen, T., Onnela, A., Partoll, E., Passananti, M., Petäjä, T., Pfeifer, J., Pospisilova, V.,
- 775 Quéléver, L. L. J., Rissanen, M. P., Rose, C., Schobesberger, S., Scholz, W., Scholze, K., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Vazquez-Pufleau, M., Virtanen, A., Vogel, A. L., Volkamer, R., Wagner, R., Wang, M., Weitz, L., Wimmer, D., Xiao, M., Yan, C., Ye, P., Zha, Q., Zhou, X., Amorim, A., Baltensperger, U., Hansel, A., Kulmala, M., Tomé, A., Winkler, P. M., Worsnop, D. R., Donahue, N. M., Kirkby, J., and Curtius, J.: Molecular understanding of the suppression of new-particle formation by isoprene, Atmos. Chem. Phys., 20, 11809-11821, 10.5194/acp-20-11809-2020, 2020.
- 780 Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J. I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369-408, 10.5194/gmd-11-369-2018, 2018.
- Jo, D. S., Hodzic, A., Emmons, L. K., Marais, E. A., Peng, Z., Nault, B. A., Hu, W., Campuzano-Jost, P., and Jimenez, J. L.:
 A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models: a case study with GEOS-Chem v11-02-rc, Geosci. Model Dev., 12, 2983-3000, 10.5194/gmd-12-2983-2019, 2019.

Jo, D. S., Hodzic, A., Emmons, L. K., Tilmes, S., Schwantes, R. H., Mills, M. J., Campuzano-Jost, P., Hu, W., Zaveri, R. A., Easter, R. C., Singh, B., Lu, Z., Schulz, C., Schneider, J., Shilling, J. E., Wisthaler, A., and Jimenez, J. L.: Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the

- importance of physicochemical dependency, Atmos. Chem. Phys., 21, 3395-3425, 10.5194/acp-21-3395-2021, 2021.
 Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V. M., Junninen, H., Paasonen, P., Stratmann, F., Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., and Sipila, M.: Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications, P. Natl. Acad. Sci. USA, 112, 7123-7128, 10.1073/pnas.1423977112, 2015.
- Kerminen, V. M. and Kulmala, M.: Analytical formulae connecting the "real" and the "apparent" nucleation rate and the nuclei number concentration for atmospheric nucleation events, J. Atmos. Sci., 33, 609-622, 10.1016/s0021-8502(01)00194-x, 2002. Kerminen, V. M., Chen, X. M., Vakkari, V., Petaja, T., Kulmala, M., and Bianchi, F.: Atmospheric new particle formation and growth: review of field observations, Environ. Res. Lett., 13, 10.1088/1748-9326/aadf3c, 2018.
- 800 Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X. M., Craven, J., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K., Rap, A.,
- 805 Richards, N. A. D., Riipinen, I., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipila, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P. L., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Carslaw, K. S., and Curtius, J.: Ion-induced nucleation of pure biogenic particles, Nature, 533, 521-+, 10.1038/nature17953, 2016.

810 Kooperman, G. J., Pritchard, M. S., Ghan, S. J., Wang, M., Somerville, R. C. J., and Russell, L. M.: Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5, J. Geophys. Res.-Atmos.,, 117, 10.1029/2012jd018588, 2012. Krapf, M., El Haddad, I., Bruns, Emily A., Molteni, U., Daellenbach, Kaspar R., Prévôt, André S. H., Baltensperger, U., and

Dommen, J.: Labile Peroxides in Secondary Organic Aerosol, Chem, 1, 603-616, 815 <u>https://doi.org/10.1016/j.chempr.2016.09.007</u>, 2016.

- Kuang, C., McMurry, P. H., McCormick, A. V., and Eisele, F. L.: Dependence of nucleation rates on sulfuric acid vapor concentration in diverse atmospheric locations, J. Geophys. Res.-Atmos., 113, 10.1029/2007jd009253, 2008.
 Kulmala, M.: How Particles Nucleate and Grow, Science, 302, 1000-1001, 10.1126/science.1090848, 2003.
 Kulmala, M., Lehtinen, K. E. J., and Laaksonen, A.: Cluster activation theory as an explanation of the linear dependence
- between formation rate of 3nm particles and sulphuric acid concentration, Atmos. Chem. Phys., 6, 787-793, 10.5194/acp-6-787-2006, 2006.
- Kulmala, M., Asmi, A., Lappalainen, H. K., Carslaw, K. S., Pöschl, U., Baltensperger, U., Hov, Ø., Brenquier, J. L., Pandis, S. N., Facchini, M. C., Hansson, H. C., Wiedensohler, A., and O'Dowd, C. D.: Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 9, 2825-2841, 10.5194/acp-9-2825-2009, 2009.
- Lee, S., Shin, J. E., Yoon, R., Yoo, H., and Kim, S.: Annulation of O-silyl N,O-ketene acetals with alkynes for the synthesis of dihydropyridinones and its application in concise total synthesis of phenanthroindolizidine alkaloids, Front. Chem., 11, 1267422, 10.3389/fchem.2023.1267422, 2023.
- Lehtinen, K. E. J., Dal Maso, M., Kulmala, M., and Kerminen, V.-M.: Estimating nucleation rates from apparent particle
 formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation, J. Aerosol Sci., 38, 988-994,
 <u>https://doi.org/10.1016/j.jaerosci.2007.06.009</u>, 2007.

Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, National Science Review, 4, 834-866, 10.1093/nsr/nwx150, 2017.

- Liu, X., Ma, P. L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., and Rasch, P. J.: Description and evaluation of
 a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model,
 Geosci. Model Dev., 9, 505-522, 10.5194/gmd-9-505-2016, 2016.
- Liu, Y., Dong, X., Wang, M., Xu, R., Thornton, J. A., Shao, X., Emmons, L. K., Jo, D. S., Yue, M., and Shrivastava, M.: A Modeling Study of Global Distribution and Formation Pathways of Highly Oxygenated Organic Molecules Derived Secondary Organic Aerosols (HOMs-SOA) from Monoterpenes, J. Geophys. Res.-Atmos., (under review), 2024.
- 840 Liu, Y., Dong, X., Emmons, L. K., Jo, D. S., Liu, Y., Shrivastava, M., Yue, M., Liang, Y., Song, Z., He, X., and Wang, M.: Exploring the Factors Controlling the Long-Term Trend (1988–2019) of Surface Organic Aerosols in the Continental United States by Simulations, J. Geophys. Res.-Atmos., 128, 10.1029/2022jd037935, 2023. Luo, Z., Zhang, Y., Chen, W., Van Damme, M., Coheur, P. F., and Clarisse, L.: Estimating global ammonia (NH3) emissions

Luo, Z., Zhang, Y., Chen, W., Van Damme, M., Coheur, P. F., and Clarisse, L.: Estimating global ammonia (NH3) emissions based on IASI observations from 2008 to 2018, Atmos. Chem. Phys., 22, 10375-10388, 10.5194/acp-22-10375-2022, 2022.

- 845 Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A., Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J., Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E., Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson, C. E., Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A., Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U., Jennings, S. G., O'Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen,
- 850 Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H. C., Swietlicki, E., and Henzing, J. S.: Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity, Atmos. Chem. Phys., 14, 4679-4713, 10.5194/acp-14-4679-2014, 2014.
 MacMurg, B. H. Fink, M. Stolauroi, H. Stolauroi, M. P. Mauldin, B. L. Smith, L. Finale, F. Moore, K. Siostadt, S.
- McMurry, P. H., Fink, M., Sakurai, H., Stolzenburg, M. R., Mauldin, R. L., Smith, J., Eisele, F., Moore, K., Sjostedt, S., Tanner, D., Huey, L. G., Nowak, J. B., Edgerton, E., and Voisin, D.: A criterion for new particle formation in the sulfur-rich Atlanta atmosphere, J. Geophys. Res.-Atmos., 110, 10.1029/2005jd005901, 2005.
- Merikanto, J., Napari, I., Vehkamaki, H., Anttila, T., and Kulmala, M.: New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions, J. Geophys. Res.-Atmos., 112, 10.1029/2006jd007977, 2007. Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmos. Chem. Phys., 9, 8601-8616, 10.5194/acp-9-8601-2009, 2009.

- Mohr, C., Thornton, J. A., Heitto, A., Lopez-Hilfiker, F. D., Lutz, A., Riipinen, I., Hong, J., Donahue, N. M., Hallquist, M., Petaja, T., Kulmala, M., and Yli-Juuti, T.: Molecular identification of organic vapors driving atmospheric nanoparticle growth, Nat.Commun., 10, 10.1038/s41467-019-12473-2, 2019.
 Molteni, U., Bianchi, F., Klein, F., El Haddad, I., Frege, C., Rossi, M. J., Dommen, J., and Baltensperger, U.: Formation of highly oxygenated organic molecules from aromatic compounds, Atmos. Chem. Phys., 18, 1909-1921, 10.5194/acp-18-1909-
- 865 2018, 2018.
- Paasonen, P., Nieminen, T., Asmi, E., Manninen, H. E., Petäjä, T., Plass-Dülmer, C., Flentje, H., Birmili, W., Wiedensohler, A., Hörrak, U., Metzger, A., Hamed, A., Laaksonen, A., Facchini, M. C., Kerminen, V. M., and Kulmala, M.: On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation, Atmos. Chem. Phys., 10, 11223-11242, 10.5194/acp-10-11223-2010, 2010.
- 870 Paulot, F., Ginoux, P., Cooke, W. F., Donner, L. J., Fan, S., Lin, M. Y., Mao, J., Naik, V., and Horowitz, L. W.: Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth, Atmos. Chem. Phys., 16, 1459-1477, 10.5194/acp-16-1459-2016, 2016.

Pierce, J. R. and Adams, P. J.: A Computationally Efficient Aerosol Nucleation/ Condensation Method: Pseudo-Steady-State Sulfuric Acid, Aerosol Sci. Technol., 43, 216-226, 10.1080/02786820802587896, 2009.

- 875 Pye, H. O. T., D'Ambro, E. L., Lee, B. H., Schobesberger, S., Takeuchi, M., Zhao, Y., Lopez-Hilfiker, F., Liu, J., Shilling, J. E., Xing, J., Mathur, R., Middlebrook, A. M., Liao, J., Welti, A., Graus, M., Warneke, C., de Gouw, J. A., Holloway, J. S., Ryerson, T. B., Pollack, I. B., and Thornton, J. A.: Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation, P. Natl. Acad. Sci. USA, 116, 6641-6646, 10.1073/pnas.1810774116, 2019.
- Reddington, C. L., Carslaw, K. S., Stier, P., Schutgens, N., Coe, H., Liu, D., Allan, J., Browse, J., Pringle, K. J., Lee, L. A.,
 Yoshioka, M., Johnson, J. S., Regayre, L. A., Spracklen, D. V., Mann, G. W., Clarke, A., Hermann, M., Henning, S., Wex, H.,
 Kristensen, T. B., Leaitch, W. R., Pöschl, U., Rose, D., Andreae, M. O., Schmale, J., Kondo, Y., Oshima, N., Schwarz, J. P.,
 Nenes, A., Anderson, B., Roberts, G. C., Snider, J. R., Leck, C., Quinn, P. K., Chi, X., Ding, A., Jimenez, J. L., and Zhang,
 Q.: The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty, Bull.
 Amer. Meteor. Soc., 98, 1857-1877, 10.1175/bams-d-15-00317.1, 2017.
- 885 Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Downard, A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hansel, A., Junninen, H., Kajos, M., Keskinen, H., Kupc, A., Kurten, A., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Nieminen, T., Onnela, A., Petaja, T., Praplan, A. P., Santos, F. D., Schallhart, S., Seinfeld, J. H., Sipila, M., Spracklen, D. V., Stozhkov, Y., Stratmann, F., Tome, A., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Vrtala, A.,
- 890 Wagner, P. E., Weingartner, E., Wex, H., Wimmer, D., Carslaw, K. S., Curtius, J., Donahue, N. M., Kirkby, J., Kulmala, M., Worsnop, D. R., and Baltensperger, U.: Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles, Science, 344, 717-721, 10.1126/science.1243527, 2014.

Rissanen, M. P., Kurtén, T., Sipilä, M., Thornton, J. A., Kausiala, O., Garmash, O., Kjaergaard, H. G., Petäjä, T., Worsnop, D. R., Ehn, M., and Kulmala, M.: Effects of Chemical Complexity on the Autoxidation Mechanisms of Endocyclic Alkene
Ozonolysis Products: From Methylcyclohexenes toward Understanding α-Pinene, J. Phys. Chem. A, 119, 4633-4650,

- 10.1021/jp510966g, 2015.
 Roldin, P., Ehn, M., Kurtén, T., Olenius, T., Rissanen, M. P., Sarnela, N., Elm, J., Rantala, P., Hao, L., Hyttinen, N., Heikkinen, L., Worsnop, D. R., Pichelstorfer, L., Xavier, C., Clusius, P., Öström, E., Petäjä, T., Kulmala, M., Vehkamäki, H., Virtanen, A., Riipinen, I., and Boy, M.: The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system,
- Nat.Commun., 10, 4370, 10.1038/s41467-019-12338-8, 2019.
 Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols Affect Precipitation?, Science, 321, 1309-1313, 10.1126/science.1160606, 2008.
 Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K. S., Suni, T., Wagner, T., Wild, M., and Quaas, J.: Global observations of aerosol-cloud-precipitation-
- 905 climate interactions, Rev. Geophys., 52, 750-808, 10.1002/2013rg000441, 2014. Schervish, M. and Donahue, N. M.: Peroxy radical chemistry and the volatility basis set, Atmospheric Chemistry and Physics, 20, 1183-1199, 10.5194/acp-20-1183-2020, 2020.

Scott, C. E., Rap, A., Spracklen, D. V., Forster, P. M., Carslaw, K. S., Mann, G. W., Pringle, K. J., Kivekäs, N., Kulmala, M., Lihavainen, H., and Tunved, P.: The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14, 447-470, 10.5194/acp-14-447-2014, 2014.

Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio, A. M., Frohlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino, Y., Poschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol Health Effects from Molecular to Global Scales, Environ. Sci. Technol., 51, 13545-13567, 10.1021/acs.est.7b04417, 2017.

910

915 Sihto, S. L., Kulmala, M., Kerminen, V. M., Dal Maso, M., Petaja, T., Riipinen, I., Korhonen, H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., and Lehtinen, K. E. J.: Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms, Atmos. Chem. Phys., 6, 4079-4091, 10.5194/acp-6-4079-2006, 2006.

Simon, M., Dada, L., Heinritzi, M., Scholz, W., Stolzenburg, D., Fischer, L., Wagner, A. C., Kürten, A., Rörup, B., He, X. C.,
Almeida, J., Baalbaki, R., Baccarini, A., Bauer, P. S., Beck, L., Bergen, A., Bianchi, F., Bräkling, S., Brilke, S., Caudillo, L.,
Chen, D., Chu, B., Dias, A., Draper, D. C., Duplissy, J., El-Haddad, I., Finkenzeller, H., Frege, C., Gonzalez-Carracedo, L.,
Gordon, H., Granzin, M., Hakala, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kong, W., Lamkaddam, H., Lee, C. P., Lehtipalo,
K., Leiminger, M., Mai, H., Manninen, H. E., Marie, G., Marten, R., Mentler, B., Molteni, U., Nichman, L., Nie, W., Ojdanic,

- A., Onnela, A., Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Quéléver, L. L. J., Ranjithkumar, A., Rissanen, M. P.,
 Schallhart, S., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J.,
 Tomé, A. R., Vazquez-Pufleau, M., Vogel, A. L., Wagner, R., Wang, M., Wang, D. S., Wang, Y., Weber, S. K., Wu, Y., Xiao,
 M., Yan, C., Ye, P., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Baltensperger, U., Dommen, J., Flagan, R. C., Hansel, A.,
 Kulmala, M., Volkamer, R., Winkler, P. M., Worsnop, D. R., Donahue, N. M., Kirkby, J., and Curtius, J.: Molecular
 understanding of new-particle formation from α-pinene between -50 and +25 °C, Atmos. Chem. Phys., 20, 91839207, 10.5194/acp-20-9183-2020, 2020.
- Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V. M., Mann, G. W., and Sihto, S. L.: The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales, Atmos. Chem. Phys., 6, 5631-5648, 10.5194/acp-6-5631-2006, 2006.

Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C. L., Pickering, S., Ogren, J. A., Andrews, E., 935 Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kiyekas, N., Komppula, M.,

- 935 Baltensperger, U., Weingartner, E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekas, N., Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O'Dowd, C., Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K., Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M., Talbot, R., and Sun, J.: Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation, Atmos. Chem. Phys., 10, 4775-4793, 10.5194/acp-10-4775-2010, 2010.
- 940 Stolzenburg, D., Fischer, L., Vogel, A. L., Heinritzi, M., Schervish, M., Simon, M., Wagner, A. C., Dada, L., Ahonen, L. R., Amorim, A., Baccarini, A., Bauer, P. S., Baumgartner, B., Bergen, A., Bianchi, F., Breitenlechner, M., Brilke, S., Buenrostro Mazon, S., Chen, D., Dias, A., Draper, D. C., Duplissy, J., El Haddad, I., Finkenzeller, H., Frege, C., Fuchs, C., Garmash, O., Gordon, H., He, X., Helm, J., Hofbauer, V., Hoyle, C. R., Kim, C., Kirkby, J., Kontkanen, J., Kürten, A., Lampilahti, J., Lawler, M., Lehtipalo, K., Leiminger, M., Mai, H., Mathot, S., Mentler, B., Molteni, U., Nie, W., Nieminen, T., Nowak, J. B.,
- 945 Ojdanic, A., Onnela, A., Passananti, M., Petäjä, T., Quéléver, L. L. J., Rissanen, M. P., Sarnela, N., Schallhart, S., Tauber, C., Tomé, A., Wagner, R., Wang, M., Weitz, L., Wimmer, D., Xiao, M., Yan, C., Ye, P., Zha, Q., Baltensperger, U., Curtius, J., Dommen, J., Flagan, R. C., Kulmala, M., Smith, J. N., Worsnop, D. R., Hansel, A., Donahue, N. M., and Winkler, P. M.: Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range, P. Natl. Acad. Sci. USA, 115, 9122-9127, 10.1073/pnas.1807604115, 2018.
- 950 Stolzenburg, D., Simon, M., Ranjithkumar, A., Kurten, A., Lehtipalo, K., Gordon, H., Ehrhart, S., Finkenzeller, H., Pichelstorfer, L., Nieminen, T., He, X. C., Brilke, S., Xiao, M., Amorim, A., Baalbaki, R., Baccarini, A., Beck, L., Brakling, S., Murillo, L. C., Chen, D. X., Chu, B. W., Dada, L., Dias, A., Dommen, J., Duplissy, J., El Haddad, I., Fischer, L., Carracedo, L. G., Heinritzi, M., Kim, C., Koenig, T. K., Kong, W., Lamkaddam, H., Lee, C. P., Leiminger, M., Li, Z. J., Makhmutov, V., Manninen, H. E., Marie, G., Marten, R., Muller, T., Nie, W., Partoll, E., Petaja, T., Pfeifer, J., Philippov, M., Rissanen, M. P.,
- 955 Rorup, B., Schobesberger, S., Schuchmann, S., Shen, J. L., Sipila, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Tome, A., Vazquez-Pufleau, M., Wagner, A. C., Wang, M. Y., Wang, Y. H., Weber, S. K., Wimmer, D., Wlasits, P. J., Wu, Y. S., Ye, Q., Zauner-Wieczorek, M., Baltensperger, U., Carslaw, K. S., Curtius, J., Donahue, N. M., Flagan, R. C., Hansel,

A., Kulmala, M., Lelieveld, J., Volkamer, R., Kirkby, J., and Winkler, P. M.: Enhanced growth rate of atmospheric particles from sulfuric acid, Atmos. Chem. Phys., 20, 7359-7372, 10.5194/acp-20-7359-2020, 2020.

960 van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697-720, 10.5194/essd-9-697-2017, 2017.

van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A. L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global

- 965 biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329-3357, 10.5194/gmd-10-3329-2017, 2017. Vehkamaki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and Laaksonen, A.: An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions, J. Geophys. Res.-Atmos., 107, 10.1029/2002jd002184, 2002.
- 970 Wang, M. and Penner, J. E.: Aerosol indirect forcing in a global model with particle nucleation, Atmos. Chem. Phys., 9, 239-260, 10.5194/acp-9-239-2009, 2009.

Wang, M., Penner, J. E., and Liu, X.: Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution, J. Geophys. Res.-Atmos., 114, 10.1029/2008jd010459, 2009.

Wang, S. N., Wu, R. R., Berndt, T., Ehn, M., and Wang, L. M.: Formation of Highly Oxidized Radicals and Multifunctional
 Products from the Atmospheric Oxidation of Alkylbenzenes, Environ. Sci. Technol., 51, 8442-8449, 10.1021/acs.est.7b02374, 2017.

Wang, Y., Mehra, A., Krechmer, J. E., Yang, G., Hu, X., Lu, Y., Lambe, A., Canagaratna, M., Chen, J., Worsnop, D., Coe, H., and Wang, L.: Oxygenated products formed from OH-initiated reactions of trimethylbenzene: autoxidation and accretion, Atmos. Chem. Phys., 20, 9563-9579, 10.5194/acp-20-9563-2020, 2020.

- 980 Weber, J., Archer-Nicholls, S., Griffiths, P., Berndt, T., Jenkin, M., Gordon, H., Knote, C., and Archibald, A. T.: CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry–aerosol– climate models, Atmos. Chem. Phys., 20, 10889-10910, 10.5194/acp-20-10889-2020, 2020. Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., and Jefferson, A.: Measurements of new particle
- Weber, R. J., Marti, J. J., McMurry, P. H., Eisele, F. L., Tanner, D. J., and Jefferson, A.: Measurements of new particle formation and ultrafine particle growth rates at a clean continental site, J. Geophys. Res.-Atmos., 102, 4375-4385, 10.1029/96jd03656, 1997.
- Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T.,
 Abdelmonem, A., Afchine, A., Araùjo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann, S., Braga, R., Buchholz,
 B., Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F., Fisch, G.,
 Fix, A., Frank, F., Fütterer, D., Heckl, C., Heidelberg, F., Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., Kanter, S., Kästner,
- 990 U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R., Kölling, T., Krämer, M., Krüger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., Molleker, S., Münch, S., Nillius, B., Pfeilsticker, K., Pöhlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter, M., Schneider, J., Schulz, C., de Souza, R. A. F., Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zöger, M.: ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and
- 995 Precipitation over Amazonia Using the New German Research Aircraft HALO, B. Am. Meteorol. Soc., 97, 1885-1908, <u>https://doi.org/10.1175/BAMS-D-14-00255.1</u>, 2016. Xu, L., Pye, H. O. T., He, J., Chen, Y., Murphy, B. N., and Ng, N. L.: Experimental and model estimates of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States, Atmos. Chem.
- from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States, Atmos. Chem. Phys., 18, 12613-12637, 10.5194/acp-18-12613-2018, 2018.
 Xu, R. C., Thornton, J. A., Lee, B., Zhang, Y. X., Jaegle, L., Lopez-Hilfiker, F. D., Rantala, P., and Petaja, T.: Global
- simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products, Atmos. Chem. Phys., 22, 5477-5494, 10.5194/acp-22-5477-2022, 2022. Ye, Q., Wang, M., Hofbauer, V., Stolzenburg, D., Chen, D., Schervish, M., Vogel, A., Mauldin, R. L., Baalbaki, R., Brilke, S., Dada, L., Dias, A., Duplissy, J., El Haddad, I., Finkenzeller, H., Fischer, L., He, X., Kim, C., Kürten, A., Lamkaddam, H.,
- 1005 Lee, C. P., Lehtipalo, K., Leiminger, M., Manninen, H. E., Marten, R., Mentler, B., Partoll, E., Petäjä, T., Rissanen, M., Schobesberger, S., Schuchmann, S., Simon, M., Tham, Y. J., Vazquez-Pufleau, M., Wagner, A. C., Wang, Y., Wu, Y., Xiao, M., Baltensperger, U., Curtius, J., Flagan, R., Kirkby, J., Kulmala, M., Volkamer, R., Winkler, P. M., Worsnop, D., and

Donahue, N. M.: Molecular Composition and Volatility of Nucleated Particles from α -Pinene Oxidation between -50 °C and +25 °C, Environ. Sci. Technol., 53, 12357-12365, 10.1021/acs.est.9b03265, 2019.

1010 Yue, M., Dong, X., Wang, M., Emmons, L. K., Liang, Y., Tong, D., Liu, Y., and Liu, Y.: Modeling the Air Pollution and Aerosol-PBL Interactions Over China Using a Variable-Resolution Global Model, J. Geophys. Res.-Atmos., 128, 10.1029/2023jd039130, 2023.

Zaveri, R. A., Easter, R. C., Singh, B., Wang, H., Lu, Z., Tilmes, S., Emmons, L. K., Vitt, F., Zhang, R., Liu, X., Ghan, S. J., and Rasch, P. J.: Development and Evaluation of Chemistry-Aerosol-Climate Model CAM5-Chem-MAM7-MOSAIC: Global

Atmospheric Distribution and Radiative Effects of Nitrate Aerosol, J Adv Model Earth Syst, 13, e2020MS002346, 10.1029/2020MS002346, 2021.
 Zawadowicz, M. A., Lee, B. H., Shrivastava, M., Zelenyuk, A., Zaveri, R. A., Flynn, C., Thornton, J. A., and Shilling, J. E.: Photolysis Controls Atmospheric Budgets of Biogenic Secondary Organic Aerosol, Environ. Sci. Technol., 54, 3861-3870,

10.1021/acs.est.9b07051, 2020.

1020 Zhang, Y. M., Zhang, X. Y., Sun, J. Y., Lin, W. L., Gong, S. L., Shen, X. J., and Yang, S.: Characterization of new particle and secondary aerosol formation during summertime in Beijing, China, Tellus B., 63, 382-394, 10.1111/j.1600-0889.2011.00533.x, 2011.

Zhao, D., Schmitt, S. H., Wang, M., Acir, I. H., Tillmann, R., Tan, Z., Novelli, A., Fuchs, H., Pullinen, I., Wegener, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A., and Mentel, T. F.: Effects of NOx and SO2 on the secondary organic aerosol

formation from photooxidation of α -pinene and limonene, Atmos. Chem. Phys., 18, 1611-1628, 10.5194/acp-18-1611-2018, 2018.

Zheng, J., Zhang, L., Che, W., Zheng, Z., and Yin, S.: A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment, Atmos. Environ., 43, 5112-5122, https://doi.org/10.1016/j.atmosenv.2009.04.060, 2009.

O30 Zhou, Y., Zhao, Y., Mao, P., Zhang, Q., Zhang, J., Qiu, L., and Yang, Y.: Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China, Atmos. Chem. Phys., 17, 211-233, 10.5194/acp-17-211-2017, 2017.

Zhu, J. and Penner, J. E.: Global Modeling of Secondary Organic Aerosol With Organic Nucleation, J. Geophys. Res.-Atmos., 124, 8260-8286, 10.1029/2019jd030414, 2019.

O35 Zhu, J. L., Penner, J. E., Yu, F. Q., Sillman, S., Andreae, M. O., and Coe, H.: Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change, Nat.Commun., 10, 10.1038/s41467-019-08407-7, 2019.