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Abstract. Local dimension computed using Extreme Value Theory (EVT) is usually used as a tool to infer dynamical properties
of a given state ( of the chaotic attractor of the system. The dimension computed in this way is also known as the pointwise
dimension in dynamical systems literature, and is defined using a limit for an infinitely small neighborhood in the phase space
around (. Since it is numerically impossible to achieve such a limit, and because dynamical systems theory predicts that this
local dimension is almost constant over the attractor, understanding the properties of this tool for a finite scale R is crucial. We
show that the dimension can considerably depend on R, and this view differs from the usual one in geophysics literature, where
it is often considered that there is one dimension for a given dynamical state or process. We also systemtieally-systematically
assess the reliability of the computed dimension given the number of points to compute it.

This interpretation of the R-dependence of the local dimension is illustrated on the Lorenz 63 system for p = 28, but also
in the intermittent case p = 166.5. The latter case shows how the dimension can be used to infer some geometrical properties
of the attractor in phase space. The Lorenz 96 system with n = 50 dimensions is also used as a higher dimension example. A
dataset of radar images of precipitation (the RADCLIM dataset) is finally considered, with the goal of relating the computed

dimension to the (arin)stability of a given rain field.

1 Introduction

When nowcasting the rain field, the future state is essentially predicted using tagrangian-Lagrangian persistence (Zawadzki
et al. (1994), see Pierce et al. (2012) for a review on nowcasting). It is known that the errors in the estimation of the motion
field (the wind) do not dominate the total error of the forecast (Bowler et al., 2007), but that taking into account the growth
and dissipation of rain cells is essential for an accurate nowcast (Germann et al., 2006). In the case of convective events, the
instability may be captured by the convective available potential energy (CAPE) available in NWP outputs, but convective
situations can very quickly evolve. It would therefore be useful to have a real-time method to assess the stability of the current
situation. Several techniques have been developped-developed to produce probabilistic forecasts (Germann and Zawadzki,
2004; Bowler et al., 2007; Berenguer et al., 2011; Pulkkinen et al., 2019a). Despite ef-these, it is still difficult to emit early
warnings for very severe floods for example, as witnessed by the 2021 flood in Belgium (Journée et al., 2023).

The idea behind the current work is to use the local dimension of a given state in phase space, as a proxy for the complexity
(and possibly the predictability) of the future of that state, following Faranda et al. (2017, 2022, 2023); De Luca et al. (2020).
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The intuition supporting this idea is that points having a high dimension have a lot of different state-phase space directions
in which to evolve on the attractor, so that their direction of evolution would be more difficult to guess if one had to do it
stochastically. Other state-phase space ideas for nowcasting have also been explored in Foresti et al. (2024).

The computation of the dimension of manifolds and attractors of dynamical systems is a huge-broad and old topic (Russell
et al. (1980), see Abarbanel (1996); Ott (2002) for textbook reviews in the context of dynamical systems, and Camastra and Sta-

iano (2016) for a review on the dimension in the broader context of manifold dimension estimation). New algorithms were pro-

posed for low dimensional systemsand-, producing mainly global estimation of the dimension +Getay-andIanevski(26+4); Erba-etal(264

see-alseBae-andZinovyev(2020)(Golay and Kanevski, 2014; Erba et al., 2019; Bac and Zinovyev, 2020). The focus is here

on the dimension computed locally in phase space, using the framework of the extreme value theory (EVT), as in-proposed in
Faranda et al. (2012, 2017, 2019, 2023); Pons et al. (2020, 2023).
The local dimension is also called the pointwise dimension, and its definition is (Ott, 2002)

_ . Inp(B(R))
Dp(€) = %LHOW’

ey

where p is the-natural-a given measure on the attractor and B(R) is the n-dimensional ball centered on ¢. This definition implies

that u(B(R)) B30 RD»(Q) asymptotically (limits of both infinite number of points and infinitely small bulk size). A classical

result in dynamical systems theory is that, if 4 is ergodic, the dimension is asymptotically the dimenston-sheuld-asymptotically
be-the-same for all points, D,(¢) = D; (D is the information dimension), except for a zero-measure set of points (Pons et al.,
2020; Ott, 2002; Pesin, 1997).

It is obviously impossible to numerically reach the limit R — 0 in (1), and the question is then how to choose some finite
value of R, as raised for example in Pons et al. (2020).
needed-Datseris et al. (2023) suggests that /V (the number of points at a distance smaller than R from the computation point ()
just needs to be higher than 100-1000. A similar conclusion is reached in Caby (2019). The idea of evaluating the impact of

finite radius R was followed in Little et al. (2017) using a PCA technique in order to identify a scale where the manifold could
be approximated by a plane. A similar idea was used to evaluate the robustness to multiscaling of a good estimator in Camastra
and Staiano (2016).

In this work, we use a maximum likelihood estimator to estimate the local EVT dimension, for different values of R.
This estimator turns out to be exactly a local version of the Takens estimator for the global dimension (Takens, 1985). The
estimations of the dimension for the different values of R are then used to infer local information on the attractor.

As the focus of the current work is on the non-asymptotic estimation of the dimension, we obviously want to consider only
values of the dimension which will not significantly change if more points are added to the dataset: in this sense, we want to
be in the limit of infinite number of points. We therefore need some techniques to assess whether the dimension computed for
some value of R has sufficiently converged or not.

The main findings of this work are:

1. The non-asymptotic local dimension depends on the scale R: this can be used to get information on the phase space

structures. This new interpretation of the dimension as dependent on R contrasts with the usual notion of dimension. We
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illustrate this approach on the Lorenz 63 system for p = 28 and for p = 166.5. The latter displays chaotic intermittency
(see Sparrow (1982); Ott (2002)), inducing a state-phase space geometry well suited to illustrate our interpretation of
the dependence of the dimension on R. Another reason to study the behavior of the dimension for intermittent systems,

comes from the fact that our main goal is to compute the dimension for rain fields, which are known to be intermittent.

2. The question of the number of points N needed to have a robust estimation of the dimension is also explored. The
question is raised in Pons et al. (2020) and Datseris et al. (2023) for the EVT dimension. For the correlation dimension
(Grassberger and Procaccia, 1983), the definition of the dimension (size ~ Rdimension) implies, at fixed R, that the
needed value of N needed-grows exponentially with the dimension (Eckmann and Ruelle, 1992; Camastra and Staiano,

2016).

To-elarify-this;-the normalised-The normalized root mean squared error (NRMSE) (metric proposed in Datseris et al.
(2023)) is used in this work to assess the quality of the fit at a given scale R. The confidence bounds provided by the
likelihood function are also computed and it is shown that the true value of the dimension is around the estimated value
with a 10% error and with 95.5% confidence if N > 427, seemingly in contradiction with the mentioned argument of
Eckmann and Ruelle (1992). We introduce a quantity (denoted s hereafter) --which brings some light on this. This gives
a possible answer to the question of the maximal dimension that one can measure with the EVT method and in-under

which conditions.

3. The applicability to high-dimensional systems is also explored in the context of the Lorenz 96 with n = 50 dimensions,

for which the dependence of the dimension on R gives some characterization of the phase space.

Radar-estimated rain field over Belgium is investigated with the same tools. In this case, the dimensions for some com-
putation points ¢ can be reliably estimated, but only for very narrow ranges of R, and this makes it difficult to draw
conclusions on the dynamical properties of the state based on the values of the dimension. The dimension ranges essen-
tially between 10 and 30, with a lot of values between 15 and 20. Not surprisingly, we also find a correlation between

the convective rain rate from ERAS reanalysis and the relevant range of values of R.

This paper is organized as follows. In section 2, we first introduce the pointwise dimension and show how it is computed in
the EVT framework. We also derive the expression of the maximum likelihood estimator of the dimension and the-expressions
for-the-of the bounds of the confidence interval using the likelihood function. After that, we introduce the NRMSE score and
interpret the estimated dimension. We also introduce the quantity s in order to understand the maximum dimension that one
can compute using a given number of points.

Section 3 introduces the results of the computed dimension on the Lorenz 63 system (for p = 28 and p = 166.5) and discuss
in details the interpretation. The intermittent case illustrates well that the dimension depends on the radius R, and can be used
as-a-teolto evaluate the geometric properties of the attractor, such as the distance of chaotic points to the laminar regime.

Large systems (Lorenz 96 with n = 50 dimensions and the radar dataset) are considered in Seetien section 4 and the last

section brielfy-briefly summarizes the work.
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2 Framework for the estimation of the dimension

The-Given a measure on the attractor, the pointwise dimension for a computation point ( is defined in terms of the natural
measure p on the attractor by (1):

InC(R) Inpu(B(R)) .

D,(¢) =1 2
W)= MR @

This is equivalent to

u(B(R)) =" RP#(©) (3)

i.e. the measure of the ball B(R) of radius R around ¢ scales as R»(©).

The measure 4 is often chosen to be the natural measure of the system: given any long enough trajectory originating from
a typical initial condition of the system, 1(A) is defined for any subset A of the phase space as the fraction of points of the
This means that the whole set of points of the trajectory is as if it had been sampled from the measure 1. Some points may.
have to be discarded at the beginning of the trajectory in order to ensure that it is on the attractor.

if the attractor cannot be decomposed in two distinct invariant sets. In practice, one can also assume ergodicity by assuming
that the system is always on the same invariant subset (for example because we observe one and only one trajectory, as in
the case of climate). As stated in the introduction, the dimension Dy, (() is constant for almost all points when the measure is
ergodic (Pesin, 1997; Ott, 2002; Pons et al., 2020).

The above discussion implies that, given a long enough trajectory, u(B(R)) can be approximated as the number C(R)
of points inside B(R), divided by the total number of points in the trajectory. In-other-words:It follows that the pointwise
dimension D), (¢) can thus-be interpreted as a characterization (see (5) below for a precise statement) of the growth rate of the
number of points C'(R) that one should find inside a ball B(R) centered around ¢ (for infinitely small R).

If there are enough points around ¢, and if they ferm-gpan a smooth D, (¢)-dimensional surface, one can introduce the
hyperspherical coordinates (r,0) and the density of points o(r,8). In this case, the number of points C(R) inside B(R) is

R
C(R) = / drrPr©O=T5(r) @
0

with X(r) = [ d6c(r,0) being the density integrated over angles. The eerrelation-integral-number of points C'(R) is propor-
tional to RP»(©) if and only if X(r) is constant. If not, one has to consider the small R limit, where C' can be expanded in

Taylor series. One can check that the first nonzero term of this series is the one of order D), (¢){fromnowwe-use-the-notation
S — D)y
R§

C(R) = C(0) 5 + O(R™), )
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where the notation § = D is used from now on. For example, for 6 = 2, we have

C(0)=0 (6)
C'(0) = RE(R)| ;g =0 (7

C"(0) = (RE(R))| ,_, = 2(0), ®)

so that C(R) = R;E(O) + O(R3). This approximation amounts to consider 3. constant on the interval of integration [0, R]
because the term-O(R?)-term containing ¥’(0) is neglected.

After estimation of C(R) for several values of R, and if it has the expected scaling C'(R) ~ R?, the dimension can be
extracted using a fit on this scaling. In the context of the correlation dimension, C'(R) is a local version of the correlation
integral and  can be computed as %—i;‘%& (R; and Ry have to be chosen).

Whatever technique we use to estimate §, the following points have to be kept in mind:

— The distances measured in phase space do not premsely match with r or R: tf—fhe%uffaeeﬁ&eufved—fh&pemt&efﬁhe
—for (5) to hold, R
has to be measured along the surface of the attractor (more precisely, along the geodesics of the attractor, provided it

can be approximated by a smooth manifold), but this is not possible when our representation of the attractor is a set of

oints. Instead, we measure distances in phase space and, if the attractor is curved, there can be a mismatch with the
distances measured along the surface of the attractor. Therefore, the number of points in B(R) might not scale exactly as

RY. This could lead to a bias in the estimated dimension (Perinelli et al., 2023). Since the distance computed in phase

space becomes closer to the one computed on the surface when R is small enough (i.e. smaller than some typical scale

of the curvature, given for example by the inverse of the curvature itself), E(R)-will-have-the-correct-behavieurin-that
timit one recovers C(R) ~ R? in the limit R — 0.

— If we use a too big value of R, the R+ term in (5) might not be small anymore. Said differently, 3(r) in (4) is not
sufficiently constant on [0, R] for C(R) ~ R° to hold. Actually, if in this range, ¥:(r) looks more like ~ 7 for a # 0,
C(R) will scale as R°*®. The value of the dimension we will measure in this case does not have a clear geometric
meaning, but is an effective value d. sy = J + a, taking into account the change of ¥ over [0, R].

In this case, the information contained in d. ¢ s is much more difficult to use. If one had a way to estimate @ in X(r) ~ ¢,

one could compute § = 6 — a.

2.1 Dimension and extreme value theory

Extreme value theory is a framework to study the eeeurenees-occurrences of extreme events (see for example the textbooks

Beirlant et al. (2004); Falk et al. (2010); Lucarini et al. (2016)).
Two approaches can be followed to define extremes among the samples {X;};=1 . .. The Peak Over Threshold (POT)

consists in fixing a threshold u, and the values X; > u above this threshold are considered as extremes. The threshold v has to
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Figure 1. Illustration that the distance computed in phase space might be different than the distance on the surface: the distance R computed
in phase space is in red, while R should be measured along the surface of which we are trying to estimate the dimension (which is in black),

in order to find the C'(R) ~ R’ behavior.

be taken as high as possible to reach the correct definition of extremes. The Block Maxima (BM) approach consists in splitting
the set of samples in chunks of size m, and the extremes are the highest values of each chunk (one extreme for each chunk).
The size m has to go to infinity in order to correctly define of extremes.

The main theorem in the BM approach states that, under some conditions, that-there are essentially three asymptotic dis-

tribution for extremes, regrouped under the Generalized Extreme Value (GEV) law. In the POT approach, an equivalent the-

orem states that there are also three limiting distributions

=}

regrouped under the Generalized Pareto Distribution (GPD):

—1-1/¢
GPDe(2) = (1+§zj for£ #£0 ©)
e * foré =0

where the support of zis z >0for§ > 0and 0 <z < —1/¢ for £ < 0.
2.1.1 Theoretical extreme value law around ¢

The scaling C(R) ~ R? induced by the definition of the pointwise dimension (1) is the starting point to estimate the dimension
in the EVT framework using the POT approach (Faranda et al., 2012). We reformulate here some of their results.

Consider the ball B(R) of radius R in the n-dimensional phase space. C(R) ~ R° implies that the number of points between
rand r +dr is
C°(0)

(N T s (O (N T s S0 81 20N TN
c(r)dr ~ C'(r)dr ~ or°™ " dre(r)dr ~ C'(r)dr G-

o dr. (10)

In order to have a pdf between 0 and R (i.e. in the B(R) ball), ¢ is normalized to 1 (fOR c(r)dr = 1), so that

§ 6—1
o(r) = s (11)
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With such a normalization for ¢(r), it can be interpreted as follows: if we select a point randomly inside B(R), ¢(r)dr is the

robability that its distance to  is between 7 and r + dr (for r < R).
The usual EVT framework for the dimension is found-by-tsing-one-the followingtransformationsformulated within the POT
approach. The observable whose extreme values distribution is studied is often one of the following functions of 7:

gi(r)=—Inr, ga(r)=r"1" gs(r)=K—r"/7. (12)
The parameter K can be freely chosen, and « and «y have to be positive. Given a point { in phase space, the points correspondin
to extremes are those whose distances to ¢ are smaller than R. The threshold of the POT approach is given by T}, = g,(R

(a=1.2.3), where g, is the function that was chosen from the above three. Note that EVT usually defines extremes as high
values of an observable while, in terms of the distance 7 to ¢, extremes are defined as small values of 7. Using these transfor-
mations and their inverses as well as (11), the pdf’s describing the distributions of g, = g,(r) For=-1 : o o
written-as-are computed to be.

da

—da—1
(g1 g2 oy 0y
fim(g1) =38e @ =T fy 1 (go) = T <T2) o fam(g3) = D T,K_T <

and-one-Note that one has always ¢, > T, because r > R and the functions in (12) are decreasing for » > 0. One can check
that each of these-distributions-the distributions in (13) correspond exactly to one of the signs of £ (£ =0, £ > 0 and £ < 0) of

the GPD (9), with
f1,1 (91)dg1 = GPDy(2)dz with z=6(g1 — T1)
for,(92)dga = GPDe(2z)dz with £ = 5L and 2 =1+¢ (14)
fa1,(93)dgs = GPD¢(2)dz  with { = —% and f:gg =1+&2

K—g3 >M1

KTy (13)

Note that, starting from one of the three possible distributions in (13) and using the corresponding transformations (12), one
recovers back equation (11). That is, the application of each one of the transformations in (12) and the deduction of § using a

parameter fit of the corresponding distribution in (13), is an alternative way to access the exponent § of the scaling C'(R) ~ R?.

2.1.2 Maximum likelihood estimation of &

Letusnow-derive-the-The expression of the maximum likelihood (ML) estimator of the dimension is now derived, using the
above density functions. It infaet-leads-leads in fact to the expression of a local version of the estimator of Takens (Takens,
1985).

To compute the dimension around a computation point ¢, consider all points inside the ball B(R) centered on ¢ ("the
analogues"), whose distances to ¢ are r; (with i =1,..., N and r; < R). The corresponding g’s are defined as g, ; = go(7;).
We know from the previous section that the g, ;’s should follow the distribution f, 7 .

The (log)-likelihood functions are for each case:

N N
L= H(;e*t;(gl,ﬁTl), InL; =Nlnd— 52(91,i —Ty) (15)

i=1 i=1
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—da—1 N

Lg_Ha <g“) , lnngNln(Ja)—(5a+1)Zln (9;2) (16)
L _H5 K = T L= Nl + (6y-1 Zln B s (17)

3 ) 3 ’y ’y K — T3
Setting the derivative of In L with respect to ¢ to 0 in each case gives the ML estimator:
1 Yilgi-T) 1 (.921) 1 7 % (D—g:u)
== ’—, 3 In , ==——>In : (18)
o N o N Z 3 N ; D-T3

These three estimators are numerically equal. Indeed, using g1 ; = —Inr;, go; =7, Ve and g3 ; = K — ril / 7, one has-gets
1
5 N§:44m3+mR }:1 (19)
1 ro\ —1/a .
S 2N (i) — S 20
R (@) oy )
1 vy ri\ 1/ 1 T
=23y m(E) =Y m 21
o) Tyt “

The estimated inverse dimensions 1/ b, are all equal to

1 1 N
e N R | (77) 2
Z ngeom R R 22)
which is minus the mean of 7 in logarithmic scale, or minus the logarithm of the geometric mean of the ratios 7. Since the

bo’s are all the same, we use from now on the notation ¢ instead. This is precisely a local version of the expression of the

estimator of the local dimension as given by Takens (Takens, 1985).

This ML estimator is particularly interesting in this case since it is, even for finite [V, unbiased and efficient as estimator
(James, 2006).

These three different ML principles are really equivalent since the loglikelihood functions are all equal up to a term inde-
pendent of 6 (so that the derivatives of the loglikelihood functions are equal). Indeed, using the different but equal expressions

of & in terms of the Ja,i’S, one has

InLy(8)=NIng—6» (g1;—T)=NIns—Nss* (23)
92,i N
InLs(6) = NIn(da) — (bax + 1 InZ=- = NIn(da) — (daa+1)— =InL;(d 24
2(9) (6r) — ( )Ei T (6a) = ( )6(1 1(6) = 24)
K g3z> N N
InL3(0) = Nln(év)+ (0y—1 In =NIn(éy)—(0y—1)—=InL,(6)+Nlnvy+ —. 25
(6= N1n(on) + (57~ DS (F=%) = Nnidm) = (7= ) = La(9)+ N+ - es)

The-As functions of J, the three different loglikelihood functions are thus equal, up to an additive term independent of J.

This is why the &,,’s have all the same value and why the confidence bounds based on the likelihood function do not depend on
the chosen function g, () (see section (2.1.3)). In the following, we use only the function g; () unless explicitly stated.
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In Pons et al. (2023), the authors also estimate the shape parameter (£) of the observed extreme value law of the g, ;’s. We do
not do it since it is the choice of the function g, (1) which fixes the extreme value law to expect. If there is a deviation from this
law, it is because the scaling C(R) ~ R? is not satisfied in the first place (see section 2.5 for possible reasons why C'(R) ~ R’

does not hold).
2.1.3 Confidence intervals

Confidence bounds on the estimations of the dimension were already studied to some extent in Theiler (1990), but through the
statistical error on the estimation of C'(R). Since we do not rely on estimations of C'(R) and use only a ML principle for 5, we
present here the computation of the bounds of the confidence intervals of ¢ using the likelihood function.

The loglikelihood function in the first case (g1 (r) = —Inr) is
InL;(6) = NInd— N&s ! (26)
and In Ly and In L3 are the same functions of §, up to an irrelevant term, as shown in section 2.1.2. We have thus

where Aln L, (8) =In Ly (6) —1n L, (§). Since the computation of confidence bounds using the likelihood involves only Aln L,
the confidence bounds will be the same for all three cases.

One-Given [V, one can have a n,, confidence interval by finding the values of ¢ for which (see left panel of Fig. 2, see-James

(2006))
n;

- (28)

AlnL((S):N(ln(E—(E—Fl) =
0 9

I-Vice versa, if we fix some target confidence interval [8,,ir,, Onaz] around ) , one-sheuld-thus-tsewe can look for the minimum

value of N to use. The above equation turns into an inequality, of which there are two versions (for o

, 2 -1
Nz max |, (222 ) (22)] 0w () =5 (S-S ) 9)
) ) ) 2 o 0

For example, if we want a 10% interval (i.e. §,nip, = 0.95 and Omaz = 1.13) with 95.5% confidence (n, = 2), the required N

is computed as
N > max(N2(0.9), N3(1.1)) = max(373.1,426.5) = 426.5. (30)

So N has to be bigger than 427 to be sure at 95.5% that the true dimension is at most 10% below or 10% higher than 5.
The right panel of Fig. 2 shows a plot of the functions N (6@") and N, (%)

5
One can also invert the felﬁ&ﬁeﬁ%&eempu{e%relationshi to compute 27" and 9mez in terms of N:

6min —a 6max —a
5 :_WO(_e )a 5 :_W—l(_e ) (31)
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Figure 2. Left: Plot of AlnL as a function of % for N =100 and N = 300. The green horizontal line corresponds to AlnL = —=

ol

(ns = 2). The dotted lines show how to read 6’”% and 5’"% for the two different values of N. Right: Plot of /N5 versus of 6’"% and 5"‘%

(ne =2, 95.5% confidence).

where W and W_; are the Lambert function or order 0 and —1 respectively, and a = % + 1. Note that these relative bounds
(i.e. the bounds for d relatively to §) depend only on the number of observations, i.e. on the number of analogues, and not on
the dimension itself!

These bounds should be taken with caution. They are computed supposing that the underlying distribution of points is indeed
exponential and that all the samples are IID, as was already pointed out in Theiler (1990). In the case of a dynamical system
producing the dataset, this is only true in the asymptotic limit. Consider for example a system observed with very high time
resolution but on a quite short time. In this case, the system could have visited only a few times the ball B(R) (so that the
system has not explored all directions around ¢ yet) but one could still have N > 427. In such case, the distribution of values

of r around ( has not converged yet and we cannot really trust the confidence interval 0.95 < § < 1.16. It is however unlikely

10
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that the observed distribution of values of r looks like an exponential in that case. The NRMSE score introduced below helps

to quantify how the experimental distribution is far from an exponential distribution.
2.2 NRMSE score

The ML method produces an estimate of the dimension even if the distribution of points is not at all an exponential, in which
case the estimated dimension and its bounds are not correct. A systematic way to assess whether the fitted distribution is indeed
exponential or not is therefore needed.

As in Datseris et al. (2023), we tried to use a Kolmogorov-Smirnov test but it did not prove to be very efficient to assess
the quality of the exponential fit to the data. Following their suggestion, the nermalised-normalized root mean squared error
(NRMSE) is used instead between the fitted version of the exponential distribution f; 7, and a uniform distribution. It is

computed as follows:

1. the data are first binned in bins of equal size and the empirical probability P; associated with the bin ¢ is computed as
the fraction of observations lying in bin--this bin (the number of bins is taken as the minimum between the Sturge’s rule

and the Freedman-Diaconis rule, see Scott (2015) about those rules);

2. the E;’s are defined as the fraction of events that would fall into each of the bins -if the events followfollowed an

exponential law characterized by 5;

3. U is defined as the probability of falling into each bin using a uniform law over the range of observations (it does not

depend on the bin because they are taken to have all the same width);

4. the NRMSE score is then computed as

> (P — Ey)?

NRMSE = 3
Ei (Pi - U)

(32)

The NRMSE score gives an indication of how much the data is better described by an exponential law than by a uniform law. For
a good fit, we expect a small NRMSE score: in this case, the numerator (which is the error between the experimental distribution
and the fitted exponential distribution) is much lower than the denominator (which is the error between the experimental

distribution and the uniform distribution).
2.3 Interpretation of the estimated dimension

The interpretation of the dimension is more easily understandable in the third case swith-gs{#)=—a(withos=Dbwith y =1
and K = 0: the observable is in this case g3(x) = —x. Since the values of ¢ obtained in each case are equal, the interpretation
holds irrespectively of the function g, used.

Figure 3 shows two possible histograms for two random variables following both the distribution f5 1, = (%)571 =
(%)671 (i.e. with D=0-K =0 and y = 1), but for two different values of J. If the empirical distribution of radii r; (nor-

malized by R) looks like that of the orange histogram, the estimated value & will be lower than if the empirical distribution is
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Figure 3. Example of histograms of two random variables g5-=—g3(r) = —r, whose PDFs for both are f3 1, = (%—z) = (%) ot (i.e.

with D = 0 and y = 1), but for different values of §. The horizontal axis is % =%
closer to the dark blue histogram. Mathematically, this is because the higher the value of d, the steeper 7! is. This means
that, the higher the dimension, the more the analogues inside B(R) will be close to the boundary of B(R). In the following,

the estimated value of the dimension ean-be-is sometimes artificially high because of that.
2.4 Measure a high dimension with a small N?

The computation of Seetion section 2.1.3 indicates that with N 2 400 (and if the NRMSE score is good), a 10% accuracy is
reached for the estimation of ¢, for all values of the dimension. This seems in contradiction with the argument of Eckmann and
Ruelle (1992) (i.e. the number of points in B(R) should be an exponential of ). In this section, we examine in detail how the

scaling C(R) ~ R? is consistent with the computation in 2.1.3.
We set ourselves again in the first case, usin r) =—Inr as observable. If we denote tnLt=gr—Fras-by z; the
combination In £ (also equal to g; ; — 7)), the computation of section 2.1.1 implies that the z;’s follow an exponential law

f1(x) = e, In terms of this exponential distribution, 6~ is interpreted as the scale (see Fig. 4). The ML estimator of the
scale of an exponential is the mean of the x;’s, so that we recover the expression 1= % >, x; from the section 2.1.2. From
this point of view, a large dimension just means a smaller scale for the exponential, which is why it is not much more difficult
to measure.

H-we-denote-by-Let us write ro for the smallest of the r;’s and by-x¢ =In % for the biggest of the x;’s;-one-, One has

obviously 6 ~1 < z. If there are enough points to estimate 1, xo must be quite far to the right of the plot in Fig. 4, so that a

12
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Figure 4. An exponential distribution and its scale parametrized by 6 .

necessary condition is § —l <z, or
s>1, s=uxpd (33)

This expresses that ¢ has to be large with respect to the scale 5~ of the exponential. Conversely, if s >> 1, this means that the
exponential has been sampled enough to get a high value for x (namely ().

One could think that the condition (33) is actually easier to fulfill if the scale ! is smaller (and the dimension bigger),
because this leaves "more room" for x(. But this is not the case, since a smaller scale means that the exponential will be more
peaked near x = Otwhichrepresents+=-1?), so it will be more difficult to have a sample = with a high value. This is consistent
with the fact that the number N = C(R) of points inside B(R) satisfies

B yus, (34)
To

(using the scaling C(R) ~ R’ and the fact that C(ro) = 1 since 7 is the smallest of the 7;’s). This equality shows that, for a
fixed NV, the ratio over which the scaling (3) holds quickly approaches 1 when ¢ increases. This is the price to pay to measure
high dimensions with a reduced number of points, and this poses some difficulties when dealing with large systems (see section
4).

Some remarks:
— Using (34), one can see that s-s = £ should be just In /N and the condition (33) is simply
InN > 1. (35)

In practice, the distributions are exactly exponential only in the limit R — 0, so that s and In N are not exactly equal.
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— This equivalence between the estimation of different dimensions is because of the scaling transformation of the expo-

nential distribution f7:

A 1
§ : ;, fi(@) =8¢ = < fi(a) (36)

which makes the

difficulty of measuring a high value of the
dimension similar to the difficulty of measuring a small value. Again, in terms of an exponential distribution, the dimen-

sion is just the inverse of the scale of the exponential. The probability density functions fo 7, and fs 1,, and adapted
definitions of z in each easescase, have similar scaling properties. These make possible to absorb a redefinition of ¢ in a

redefinition of z if one uses fo 7, or fs 1, instead of fi 7.

— If the EVT estimator for § is able to produce a high value over some range, the estimation of the dimension through the
correlation dimension can also do it. Indeed, in both cases, 4 is obtained by somehow fitting the scaling C'(R) ~ R°. The
limitation for the correlation dimension is the same than-as for the EVT dimension: when ¢ increases, the range over

which this scaling can hold decreases.

The left panel of Fig. 5 shows a scatter plot of In N against s, with the color being the NRMSE score for dimensions in
the Lorenz 63 system (see Appendix A about the Lorenz 63 system). Each point in both panels of Fig. 5 represents a fit. We
computed the dimension for 1000 points, for 20 pereentagesdifferent values of IV, so there are 20 000 points in each scatter
plot of this Figure. A given computation point ¢ in the phase space is therefore represented several times. One can see a rough
agreement between In NV and s. Here and in the following, we estimated-computed s as s = 2.

The right panel of Fig. 5 shows a scatter plot between the NRMSE score and s for the Lorenz 63 system. The form of this
plot is quite characteristic and will be encountered several times in the rest of the paper. The NRMSE score clearly decreases
as s increases: this part corresponds to fits increasingly better. When s > 10, the NRMSE reaches a plateau. The NRMSE
for some high values of s and N is not so good, this is when the B(R) ball is too big and the distribution in it cannot be a
power law (see section 3.2). In practice, one finds that s bigger than 4 — 5 seems to give NRMSE scores below 0.4and-these
NRMSE< 0.4,

In summary, the section 2.1.3 has shown that, for a given W@W@M all dimensions
require the same number of points inside B(R). This might seem surprising because of the scaling C(R) ~ R’, but can
actually be understood if we see 6! as the scale of the exponential distribution of the g;’s. However, the range of values of
R over which the dimension can be measured decreases with the dimension. This is why there is no contradiction with the
original argument of Eckmann and Ruelle (1992), which supposed that R is fixed.

In the following analyses, we use scatter plots in the form of that of the right panel of Fig. 5. The rough agreement between
s and In NV can be seen as a consistencty check that the distributions of values of g; ; are indeed close to exponentials (and

equivalently, that the distributions of r; are close to power laws).
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Figure 5. For the Lorenz 63 system (see Appendix A) with p = 28, 10° points. Left: scatter plot of In N against s. The color is the NRMSE
of the fit. Right : scatter plot of the NRMSE against s. The color is the 10—logarithm of the number of points used in the exponential fit.
There are 1000 points and 20 fits for each.

2.5 Possible phenomena affecting the value of the dimension

The last sections develop-developed tools to quantify how good is a fit to the exponential law. However, even if the fit is good,
different phenomena can affect 6 for a given R.
If the NRMSE or s do not have good scores, the points in B(R) do not follow a R® law. The cause of this could be one of
360 the following:

1. there-There are not enough points inside B(R) to properly recognise-recognize an exponential (and make the difference
with a uniform law for example).

2. the-The points are not statistically independent, as in the example mentioned at the end of section 2.1.3. This was already
noted in Theiler (1990).

365 3. Ris too big. To observe the C(R) ~ R® law, one indeed needs to consider a flat neighborhood around ¢ and, if R is too
large, this law could be affected by the curvature (Perinelli et al., 2023), or by another geometric feature entering B(R).

See section 3.2 and Fig. 8 for an example of that.

On the other hand, if the NRMSE and s give good scores, this means that the number of points inside B(R) indeed follows

a power law RS, This could have different causes and a non-exhaustive list is:
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1. the-The estimated value of the dimension can indeed reflect the dimension of the surface supporting the neighbouring

neighboring points. This happens if the density of points is constant and the "surface" of the attractor is approximately
flat.

. #-If there is a clear structure of points in the phase space, with a-the density of points of this structure being higher

enough than its surroundings, the estimated dimension & will be that of this structure. This is because the intersection
of such a structure with the ball B(R) will make the number of points scale as R°, where & is the dimension of the
structure. Such a situation is shown schematically in Fig. 6: in a plane, there is a straight line crossing B(R) and the
density A of points on that line is much higher than anywhere else in B(R). The number of points in B(R) will then be
essentially the number of points on that line. A simple computation taking only into account the points of the line gives
C(R) = 2)\VR? — a2, and if a < R (i.e. if ( is close enough to the line), C(R) ~ 2\R. The scaling of C'(R) around ¢

becomes that of the line, even though ( is not strictly on it.

The previous case and this one are cases where the estimated dimension is the dimension of some geometric structure in
the phase space. This geometric dimension is only well-defined in-for ranges of R where the geometry is homogeneous
in this range: if ;-at-a-given-R;-the curvature changes or a different geometric feature enters B(R) for some value of R,
one can not give a geometric meaning to the dimension. It is only for the values of R for which there are clear objects
that the dimension can be interpreted geometrically. In particular, one can approach the pointwise dimension in the limit

R — 0 only when R is below any other geometric scale. This will be illustrated in the next sections.

Note that this kind of geometric dimension is conceptually equivalent to the one measured by local PCA techniques
(such as in Little et al. (2017)).

. theThe fact that C(R) ~ R? supposes that the density of points is uniform in the range over which the estimation is done.

If the density is increasing when getting away from ¢ (i.e. for increasing r, X ~ r® for a > 0), the empirical histogram
of the values of r will be inflated for values of r close to R. In that case, the estimated distribution will be closer to the
dark blue curve than to the orange curve in Fig. 3, so that the estimated dimension will be higher than the dimension of
the surface supporting the points (the "geometric dimension"). In the same way, if the density of points decreases, the

estimated dimension will be lower (see remarks in section 2).

In practice, it is not likely that the density 3 will follow the same behavior ¥ ~ 7 on a leng-large range of values of

r-and-one-ean-try-to-. The fit in this case is usually not so good, so the selection using the NRMSE and s (see section
2.4) should discard some of them. One can also try to visually identify when this happens because the dimension will-be

fluetaating-over-the-rangeis fluctuating a lot.

Unfortunately, the tools we developped (the NRMSE and the quantity s) can give-produce good scores in all three above

400 cases and do not allow to make the difference between each of these cases. One has therefore to keep in mind all possible

phenomena affecting the estimation of the dimension, and inspect the values of the dimension over some range of values of R,

in order to interpret properly the geometry of the system in this range.
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Figure 6. Picture of a situation where almost all points on the attractor (in dark blue) lie on a line. If the density of points is constant and

denoted )\, the number of points inside B(R) is essentially 2A\v/R? — a?. For a < R, the estimated dimension will be 1.

In the following, as is usual when computing dimension-dimensions from time series, a Theiler window around each com-

putation point ¢ was applied (Theiler, 1986), in order to avoid having points te-too close in time inside the ball B(R).

3 Application to small systems

To illustrate some aspects described in the previous sections, we compute the local dimension for small systems, allowing to
get some insight of what is captured by the estimated dimension.

The classical Lorenz 63 system for p = 28 (Lorenz, 1963) is first considered. The relatively simple geometry allows to
illustrate some of-the-phenomena described in Seetion section 2.5. We then present the results of the computation of the local
dimension for the Lorenz 63 system with p = 166.5, which is intermittent (Pomeau and Manneyville, 1980; Sparrow, 1982). In
the case of intermittent systems, a situation like the one displayed in Fig. 6 is often encountered, and the tools described in

Seetion section 2 can be used to detect structures in phase space.

3.1 How we choose the values of R

-If we want to compute the dimension for different computation points (, it is difficult to chose relevant values of R for each
computation-point-¢-of them if we do not know very well the system. Indeed, depending on the dimension and on the density
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of points, the values of R needed for B(R) to contain a sufficient number of points to estimate J, might be different for each
computation point (.

An alternative approach is to compute the distance between the computation points and all other points of the trajectory
and keep a given percentage ¢ of points (i.e. consider as extremes), common to all computation points. For each computation
point ¢, R is then defined such that B(R) contains ¢% fi-e—the-¢"~pereentite}-of the total number of points in the dataset -
(i.e. R s the ¢'" percentile). For each computation point and for each percentage ¢ for which we compute the dimension, there
is thus one value of R. This has the advantage to adapt the range over which the dimension is computed accordingly to the
computation point.

Of course, the percentile will not be exactly the same if one increases the length of the series. However, if the attractor has
been reasonably sampled by NV,,; points, additional points should spread in the phase space in the same proportions, so that
the percentiles computed with Ny, or Ni5=IN/ . > N, should correspond. In other words, if the density of points is already
close to the invariant measure of the attractor p, the computed percentiles will not significantly change when the length of the
trajectory is increased.

In the following sections, we will use this method with percentages chosen evenly spaced on a logarithmic scale, typically
with the maximum percentage being 10% and the smallest percentage corresponding to 5 analogues. The dimension computed
with 5 points will not give a precise value (see section 2.1.3) but this allows to ensure to have a dimension computed over a
sufficiently large range of values of R. The values of the dimension with not enough points will be filtered out through the
computation of s and of the NRMSE score.

In section 3.3, we will also choose the values of the radius R rather than computing it as percentiles, because it will be easier

to illustrate the interpretation of the dimension in this case.
3.2 Lorenz 63 with p = 28

We start with the usual Lorenz 63 system with p = 28 (see Appendix A) and we consider two different trajectories: one with
Nyor = 10* points, and the other one with N;,; = 107 points. Figure 7 shows the dimenston—repartition of the dimension on
the attractor. The dimension is computed with ¢ = 10% (top, A and B) and with ¢ = 1% (bottom, C and D), for these two
trajectories. For ¢ = 10%, the two plots look the same and the dimensions agree between the two datasets. This is because
10% of 10* is already enough points to estimate the dimension, and adding more points to the dataset will not change the
percentiles, nor change the distribution of points on the attractor. Note that the points "on the border" of the attractor have
higher dimensions since, from their point of view, the density of points is increasing. The estimated dimension for these points
is actually an effective dimension reflecting this feature (see section 2.5).

On the other hand, for ¢ = 1%, there are not enough points in the N;,; = 10* dataset (Fig. 7 C) to have a proper estimation
of the dimension, while the N;,; = 107 dataset (Fig. 7 D) still allows a proper estimation of the dimension. The latter gives
more homogeneous values of the dimension than in the corresponding plot (7 B) with 10% of the points. This is because the

values of the percentiles are smaller, so that the estimation is more local and the density less varying in the balls B(R).
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Figure 7. The Lorenz 63 attractor, with the dimension represented in color, computed with 10% (top) and 1% (bottom) of the points in each

case (only the 1000 points for which the dimension has-is computed are represented).
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Figure 8. Top: Histograms of the dimension for the 107 points dataset, for ¢ = 1% and ¢ = 10% (1000 values in each case). Bottom: Two
illustrations that R can be too large for ¢ = 10%. The computation point ¢ is in green and some of the points used to compute the dimension

are in orange. The ball B(R) is bigger than the width of the wings, so that the C(R) ~ R? characteristic of a surface cannot hold.

It is also interesting to analyze the histograms of the dimension for the 107 points dataset, for ¢ = 1% and ¢ = 10% (Fig. 8,
top): a lot of points have a dimension close to 1.5 for ¢ = 10%, but most points have a dimension close to 2 for ¢ = 1%. This
is because, in the ¢ = 10% case, R is too large for some points: 2R is larger than the width of the wings of the attractor, so that
the C(R) ~ R? cannot hold. Figure-8-ithustrates The two bottom scatter plots of Fig. 8 illustrate this. In the ¢ = 1% case, R is
smaller and this never happens.

It is likely that, when decreasing g and increasing V;,; again in order to keep N = qN;,; big enough, the dimension for all
points will tend to a common value. This seems to be in agreement with the mentioned asymptotic results that the dimension
of almost all points converge towards a unique value.

Indeed, as observed on Fig. 7, the dimension of the points on the wings seem to converge to some value close to 2, as
expected for a surface. As g decreases and N, increases, the dimension of the points on the "border" of the attractor will
behave as others points on the wings and their dimension would converge to the same value close to 2.

The points close to the intersection of the wings have a dimension bigger than 2 as long as their balls B(R) ineludes
include this intersection. However, when is-¢ is decreased, the balt-balls B(R) might not anymore enclose the intersection. The

neighborhoods of those points then look as that of any other points on the wings, so that their dimensions will be close to 2.
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Figure 9. Left: Plot of ﬁ@(}l versus R for 50 points of the Lorenz 63 system (p = 28) with mly points¢, Only fits with NRMSE<
0.4, s > 5 jare plotted. Right: scatter plot of NRMSE vs s for the same dataset, but for all 1000 computation points. The color represents the

logarithm of the number of points used in the dimension estimation.

Only the points exactly at the instersection will always have a B(R) including this intersection, so that their dimension will
never approach 2.

The left plot of Fig. 9 displays the dimension estimate § as a function of R. There is a range of values for which the b is
close to 2 for all points. The curves having a bump in the middle of the range of values of R correspond to points near the
intersection of the wings.

As one can see in the right panel of Fig. 9, some points with a high value of s and a high number of points used in the
estimation of 4, have a poor NRMSE score (i.e. up to 0.4, while most of the fits with s > 10 have their NRMSE score below
0.2). Those correspond to situations shown in the bottom plots of Fig. 8, where the fit is not so good anymore;-because-the

3.3 Lorenz 63 with p = 166.5

The results of the local dimension applied to the intermittent Lorenz 63 system with p = 166.5 is-are now analyzed (see
Appendix A for a short presentation of this system). The case of intermittent systems is interesting since those systems have a

strongly inhomogeneous phase space, allowing to illustrate how the dimension can have different values at different scales R.
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Figure 10. Left: estimated dimension ) against R for 100 points of the intermittent Lorenz 63 system (p = 166.5, WNG points).
Only fits with NRMSE< 0.4 and s > 5 are shown. Right: scatter plot of NRMSE vs s (all fits).

Intermittent systems are also of special interest, since the primary goal is to use the local dimension on the rain data, which is
known to be intermittent.

This system was integrated for p = 166.5 to obtain 10° points on the attractor and the dimension was computed for 1000
points. The plot of the dimension against R (computed as percentiles) is in the left panel of Fig. 10. One can see that, for the
smallest values of R, the dimension is around 2, while it is closer to 2-1 for the highest values of .

Actually, the remaining of the attractor before the bifurcation (see Fig. Al) defines a 1—dimensional structure in phase
space;so-that-we-. This structure is a closed loop and is made of the points in the laminar regime of this intermittent system.
We expect that in the balls B(R) intersecting enough this closed loop, the scaling will be strongly influenced by this closed
loop (as described in Seetion section 2.5). A better insight of the behavior of the dimension with R than that given by the left
panel of Fig. 10, can be gained by characterizing each point by its position with respect to this closed loop.

To do so, we select a part of the trajectory where it seems regular and almost periodic, and integrate this part of the trajectory
with a very small timesteptime step. We then take this as a representation of the laminar regime. Of course, this part of the
trajectory is not strictly periodic, so choosing different parts of the trajectory will lead to slightly different representations.
This representation allows to define the "laminar distance" for any point ¢ in the trajectory, as the smallest of the distances

between ( and all points in the representation of the laminar regime. From a dynamical point of view, points with small laminar
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distances will be considered as points in the laminar regime, while points with a significantly non-zero laminar distance can be
considered as chaotic points.

Figure 11 shows the dimension as a function of the laminar distance for that point. More specifically, 6 values of the radius
R (R =2,5,10,15,20,30) were whesen—chosen and the dimension for 1000 eemputation—points is computed. Each panel
corresponds to a specific radius R. In addition, the red vertical line marks where the laminar distance is equal to the radius R
used in this plot.

One can see from Fig. 11 that the dimension peaks for points whose laminar distance equals RR. In other words, from the

point of view of a given point:

— when R is smaller than the laminar distance, the dimension is around 2,
— when R equals the laminar distance, the dimension has a peak,

— when R is bigger than the laminar distance, the dimension decreases between 1 and 2.

The fact that there is a peak in the dimension when R equals the laminar distance can be understood by noting that it
corresponds to the entrance of the laminar structure in the B(R) ball around the computation point ¢. There are suddenly a
lot of points in the ball, near the boundary of the ball, so that the distribution of points in B(R) resembles more the dark blue
curve than to the orange curve in Fig. 3.

When R is bigger than the laminar distance, the situation becomes similar to the one in Fig. 6 and the dimension becomes
closer to 1. The dimension is 1 only if R is sufficiently bigger than the laminar distance (eguivalentty-i.e. 2 > a in Fig. 6),
which can happen only for points sufficiently close to the laminar regime. For other points, other parts of the loop forming the
attractor in Fig. A1 would enter the B(R) ball and modify the scaling, or the curvature effects become too important. In those
cases (when R is bigger than the laminar distance, but not much bigger), the distribution of points in B(R) is not close to a
power law, so that the exponential fit is not appropriate.

When computing the dimension in the asymptotic limit R — 0, the radius 12 should be below any other geometric scale
around the computation point ¢. For the chaotic points, this geometric scale is in this case their laminar distance, while for
laminar points, the geometric scale swoutd-be-is the "width" of the laminar structure in phase space.

As a consistency check for that interpretation, we tried to estimate the laminar distance for each of the 1000 computation

pomts as the value of the radius R for which the dimension is maximum. Fe%ﬂ&ese%@@%empﬁtaﬂe&peﬁm—w&eempﬂfeekme

To achieve this, we used the values of the radius

R computed as percentiles and the corresponding dimensions. In order to use only meaningful values of the dimension, for

each computation point, we restricted the dimension to the range of values of R where NRMSE< 0.5 and s > 4. We rejected

all estimations where the maximum was found on one of the end of this range because this points to the fact that the true
peak of the dimension is maybe notin-this-outside of the range of values of R we have for these points. Because of that, the
laminar distance could be estimated for only one fourth of the 1000 computation points. The scatter plot in Fig. 12 shows
the comparison of the laminar distance with this estimation of the laminar distance using EVT (which we call "EVT laminar

distance").
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Figure 11. Scatter plots of the local dimension in terms of the laminar distance. In a plot, all the dimensions have been computed with the
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mark the value of the laminar distance which is equal to the radius R.
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Figure 12. Comparison of the EVT laminar distance with the laminar distance for the intermittent Lorenz 63 (p = 166.5). The EVT laminar

distance is computed as the distance for which the dimension is maximum (see text).

Note that the EVT laminar distance tends to be bigger than the laminar distance itself. This is because, if R is precisely equal
to the laminar distance, there are not enough points in B(R) for 4 to be really influenced. R has to be a little bigger than the
laminar distance for § to really increase, and the dimenston-peak of 4 is for values of R a little bigger than the laminar distance.

We carried out the same analysis on two other intermittent dynamical systems: the Lorenz 96 system with n = 4 variables
for F'=11.87, and the Lorenz 96 system for n = 12 variables for ' = 4.4. Figures similar to 11 for those two systems are

displayed in Appendix B.

4 Application to large systems

In this section, we present the results of the computation of the dimension for two large systems: the Lorenz 96 system with

n = 50 dimensions and the RADCLIM dataset (radar images of the precipitation field).
4.1 Lorenz 96, n = 50

The Lorenz 96 system (see Appendix B for a brief description) with n =50 dimensions and—F—=49-was-integrated—for

tma=10% was integrated for 10° time units with a timestep-time step of d¢t = 0.1 for two values of the parameter: for
F=49and I'=6. Thix-eivestotabnumber-of-points-of -\ — H-points-inthe trajectory-Each of the two trajectories has

107 points. The radii R are-were computed as percentiles and the corresponding estimates of the dimension are-were computed

in each case.
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Figure 13. Left: Plot of the dimension against the radius R for 100 computation points for Lorenz 96 with n = 50 and F' = 4.9. Only fits for
which NRMSE<0.4 and s > 6 are shown. The dotted lines detect a structure and the corresponding points are part of that structure. Right:
Scatter plot of the NRMSE vs s for the Lorenz 96 system with n = 50 and F' = 4.9, with log; IV in color.

The results for F' = 6 are presented in Fig. B3. Our method suggests that there are no salient geometric structure in phase

space for that parameter value. We focus now on the F' = 4.9 case.
The right plot of Fig. 13 shows as expected that the NRMSE score decreases when s is increased. The left panel of Fig. 13

shows the estimated local dimension against the radius R of the ball for 100 points in this system. The-more-a-eurve-starts-at
ing-point-is-alone-in-phase-space—We selected the points for which the NRMSE is

smaller than 0.4 and s > 6.

One can see at the bottom of the plot a set of curves having all a small maximum for radii between 8 and 12, and maximum
dimension smaller than ~ 12 (dotted curves).

These points seem to detect a structure of points at a distance 10 — 12 from them. If there was such a structure at that
distance, we would see other curves with maxima for small values of R for the points which are part of this structure, as for the
intermittent Lorenz 63 in section 3.3. Since there are no such curve, and because the dotted curves look quite regular, and also
because they correspond to a great proportion of all the curves, we can think that the points corresponding to these curves are
part of the detected structure. In other words, the dotted curves correspond to points which are part of the structure that these

curves detect. Geometrically, the points of these curves have a similar role than the laminar points of the section 3.3.
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To understand how a structure can be detected by the curves of the points which are part of that structure, consider points

uniformly distributed on a circle of radius R. From the point of view of a point on the circle, the number of points at a distance
R2
B 2R?
for R ~ 2R. This peak is analogous to the peak of the dotted curves in the left plot of Fig. 13.

< R grows as Rarccos (1 — ) This curve is the steepest when R approaches 2R, so that the fitted § would have a peak

The curves which are not in this set are much more diverse. They all start at a higher value of the radius, which is because
the corresponding points are in less dense parts of the phase space. Typically, their starting value of 4 is also higher, and this
is because the density of points around those points typically increases. This leads to artificially high values of 6 (see d.ys of
section 2.5). Some of these curves have a bump: these could be because the structure described above enters their ball, and the
radius for which this happens would then be the distance of the corresponding points to the structure (laminar distance of the
section 3.3).

To further clarify this viewpoint, a trajectory of this system with 10° points was generated and the dimension is computed

for all points. The 10° points were labelled as either laminar or chaotic, with the following steps:

1. restrict the curve for radii R > §;
2. look for the maximum of this restricted curve;

3. if this maximum is not at the ends of this curve, and if the value of the dimension at the maximum is smaller than 12, the

point is labelled as laminar.

Points not labelled as laminar are labelled as chaotic. Note that the laminar/chaotic points are not necessarily laminar/chaotic
in the context of chaotic intermittency in dynamical systems, but we use this terminology to distinguish between points with
different dimension characteristics.

If the points we have labelled as laminar indeed form a geometric structure in phase space, the distance of chaotic points
to this structure should correspond to a maximum of the dimension. Therefore, we proceed as in section 3.3: for each chaotic

point,

1. we define the laminar distance as the minimum distance between the point and all the laminar points (in other words,

using the set of points labelled as laminar as a representation of a laminar regime).
2. we define the EVT laminar distance as the radius R giving the maximum dimension.

If our above labelling of laminar and chaotic points is meaningful, the two distances should agree. As shown in the scatter
plot of Fig. 14, there is a good agreement and we take this as a consistency check of our interpretation of the curves in the left
panel of Fig. 13.

Note that, for 32.8% of the chaotic points, no distance could be computed using the second way (for the same reason than-as
in section 3.3). Also, the fact that we find a structure in phase space, analog to the laminar structures of the previous sections,
points to the fact that the Lorenz 96 system with n = 50 dimensions for this—value-ofF-I" = 4.9 could be in an intermittent

regime.
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Figure 14. Scatter plots of the two ways to compute the distance to the laminar structure for chaotic points.

To summarize, we computed the dimension in this high-dimensional system —#As-and, as shown in the previous section 3.3,
the dimension highly depends on the radius R used to compute it, but this can be used to obtain some characterization of the
geometry of the phase space: some points of the attractor are collected in a structure, much as the laminar points in section 3.3.

The distance from the other points to this structure can be estimated.
4.2 RADCLIM dataset

We now present the results of the computation of the dimension for the RADCLIM dataset (see Appendix C for a description).
Before computing the dimension, the images were upscaled to 14x14 for two reasons. The first is that the whole dataset is
then obviously easier to work with. The second is based on the hope that the upscaled images would define a reduced and less
complex attractor -with-smatter-vatues-of-the toeal-dimensionwithin a reduced phase space.

The upscaling to 14x14 images was done by averaging the neighbouring pixels, after the log-transform of the rain rate. This
is a way to take into account the multiplicative structure of the rain (Veneziano et al., 2006; Seed, 2003; Lovejoy and Schertzer,
2013) during the upscaling. As in Pulkkinen et al. (2019b), the zeros were transformed to -15 in logarithmic scale.

The geometry of the phase space defined by these images is quite particular. The value of each pixel is taken as an axis in
phase space, which is therefore a 14x14 = 196 dimensional euclidean space. Since the minimum value for all pixels is -15,
the phase space is actually restricted to the orthant defined by z; > —15 Vi = 1, ...,196. Fhere-are 7H50-(=1+13%o£630008)
-The point z; = 15 Vi corresponds to images without any rain, which
we call the dry event. There are 7150 such images (1.13% of all 630 008 images). Even among images with rain, most of them

28



605

610

615

620

800

700

600 -

500 A

400 A

Number of events

300 A

200 A

100 A

T T T
0 20 40 60 80 100 120 140
Distance to dry event

Figure 15. Histogram of the distances to the dry event for the RADCLIM dataset.

are close to the dry event. The histogram in Fig. 15 shows the distribution of all distances to the dry events (including the dry
events themselves).

This histogram shows that the density of points in phase space decreases very quickly when getting away from the dry
event. As a comparison, if the density of points p was constant in phase space, the number of points whose distance to the
dry event is between r and 7 + dr would be ~ pr™~'dr = pr'>dr. This means that the heights of the sticks in this histogram
would grow as 195, which is radically different than-from what is observed! The relationship between distances and volumes
in high-dimensional spaces can be quite different than-from our 3-dimensional intuition.

For 2000 computation points, the dimension was computed for 40 different values of R. As before, 40 percentages were fixed
(exponentially spaced between 8 x 1074% — 5 points and 10% — 63 000 points), and the radii R were chosen to correspond
to the percentiles among all distances. Figure 16 shows the computed dimension as a function of the radius R for 100 points:
the left plot has a logarithmic scale for R and the right plot has a linear scale for R, allowing to see more clearly the plot for
small R values or for large R values. The color represents the 10-logarithm of the averaged convective rain rate (see below).

For some of the 2000 points, there is a bump in the dimension, which would point to the existence of some structure. We
tried to apply the same procedure as in section 3.3 to compute the distance to the laminar regime. The procedure eutputted
allowed to get a laminar distance for only 487 out of 2000 points (for the same reason than-as in section 3.3: we discarded the
estimation if the maximum dimension is on one of the ends of the range). It turns out that the laminar distance computed in this
way is highly correlated to the distance to the dry event: see Fig. 17. As a consequence, the points labelled as laminar would
simply be the dry events;-orevents-which-are-almost-dry. The laminar distance as defined in this way does not really seem to

contain any additional valuable information than the distance to dry events.
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Figure 16. Plot of the dimension against the radius for 100 points for the RADCLIM data (NRMSE< 0.4 and s > 5). The color is the
10—logarithm of the convective rain rate (CRR).

In order to check if there is any valuable information in the set of values of R for ere-any computation point, we computed
the-looked for a way to aggregate the 40 values of /f we have for each computation point, and considered the mean and the
median of 2 for all computation points. Note that these quantities obviously depend on the way the percentages to compute the
dimension for were chosen. Because of that, one could think that this-mean-and-this-medianthese mean and medianwould not
be very informative. These values are however relatively stable: we checked for example that they do not change much if we
use the 10 smallest radii that for each point, instead of the 40 we have. This is because the extent of the range of values of radii
we have for one computation point is small with respect to the actual values of the radii. This aise-ts-is also why the mean and
the median does-do not differ much, and why they give a measure of the relevant values of the radius for each point. Figure 17
shows that there is a correlation of these two quantities (mean and median radii) with the laminar distance and the dry distance.
This shows that these 4 quantities (median radius, mean radius, laminar distance, dry distance) are essentially the same.

We see here the difficulty to work with high-dimensional systems, as discussed in the section 2.4. The particular geometry
of this phase space worsens even more the situation, because most of the points are collected near the dry event, as shown
in the histogram of Fig. 15. Because of this, the dimension for all points can only be computed reliably on quite small range

relatively-to-theranges of values of Rinvelved. For example, the points for which the curves are on the left of Fig. 16 have
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Figure 17. RADCEIM-data-Scatter plot of the laminar distance on x—axis, with the median radius, the mean radius and the distance to the

dry event on the y—axis.

often R approximatively within [30,40]. This is a too small range of values of R to properly interpret the computed values of
0. The same happens for the points for which the curves are on the right of the figure: they have often R € [80,100].

We used the convective available potential energy (CAPE), the convective rain rate (CRR) and the convective precipitation
(CP) data from the ERAS reanalysis to compare with the quantities computed in the phase space. For the region covered by the
RADCLIM dataset, they come in-as 26x41 images with a 1-hour resolution. We computed the mean of these images in order to
have one value for each hour. For each of the 2000 computation #magespoints, we associated the closest in time available value
of the CAPE, the CP and the CRR. As suggested by the color grading in Fig. 16, one can find a correlation between the mean
radius, the dry distance or the laminar distance on one hand, and the CRR on the other hand: Fig. 18 shows the corresponding
scatter plots for the 2000 images.

Results with the CP instead of the CRR are very similar, while the correlations with the CAPE also exist but are not as good.

The correlation of the CRR is the highest with the laminar distance but this is because of the restriction to some points. The
laminar distance could indeed be computed for only 487 points out of 2000, while the mean radius and the dry distance can be
computed for all the points. If we restrict the computation of the correlation between the CRR and the mean radius to the points
for which a laminar distance was computed, one gets a correlation of 0.70. The same happens for the correlation between the
CRR and the dry distance.

We checked also if some information can be extracted from the mean value of the dimension: for each image, we computed
the mean of the dimensions resulting from fits whose NRMSE score was below 0.4 and s above 5. Figure 19 shows the

histogram of the repartition of this mean dimension for our 2000 computation #mages-points (in orange) and the scatter plot of
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Figure 18. RADCERM-data:seatter-Scatter plots of the mean radius, the dry distance and the laminar distance (4#—x —axis) with respect to
mean convective rain rate (CRR) (#—y—axis). The numbers in the legend are the correlation coefficients of the 10-logarithm of each of these

distances with log,,(CRR).

this mean dimension with the CRR (in color grading from dark blue to orange). A complementary 2D histogram of the mean
655 dimension with to the CRR is shown in Appendix C (Fig. C1).

A few things can be noted here:
— the-The histogram has a nice peak around a mean dimension of 15-20;-,

— the-The relationship with the CRR is not very clear, except that there is generally less variability in the CRR when the

dimension is higher;-,

660 — as-As expected, images the farther away from the dry event have the higher CRR, but those images do not have the

highest values of the mean dimension: their mean dimension is rather between 10 and 26;-20.

— when-When the mean dimension is below 10, the distance to the dry event is always relatively smallt—e-. Vice versa, for
big enough distances, the dimension is always above +0:-this-10. This can also be seen from Fig. 16 taking into account

that the distance to the dry event is almost the same than-as 2.

665 This-To summarize, this analysis of the results of the computed dimension for the RADCLIM dataset shows that it is possible
to compute reliably the dimension for some points and for some radii 2, but the results are quite difficult to interpret;-, This
is essentially because of the limited number of data with respect to the number of dimensions at play. The estimated local
dimensions ranges between 10 and 30, with a peak around 15-20. Not surprisingly, we observed a link between the convective

rain rate and the distance to the dry event.
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5 Summary and discussion

As emphasized in the introduction, results on the local dimension of attractors of dynamical systems predict that almost all

points have the same dimension in the asymptotic limit —Fhe-of infinite number of points and infinitely small radius . Because
these limits are impossible to reach, we studied the behavior of the local dimension for finite /2 and showed that it allows to
detect geometrical structures in phase space of chaotic dynamical systems. The main visible feature of this detection, is that
the dimension has a peak for the value of R corresponding to the entrance of a geometric structure inside B([2).

When working with such tools, one always faces the question to know if the estimation of the dimension is reliable or not.
This question is linked to that of the maximal dimension that one can estimate with a given number of points inside B(R). We
systematically used the NRMSE score and the quantity s to tackle this problem. The development leading to the definition of s
brought some light on the problem of the maximal measurable dimension using EVT techniques. This gives some falsifiability
methods, which were lacking before, as was noticed in Datseris et al. (2023).

In short, the dimension is estimated as the exponent of the power law C(r) ~ r° over a some range [0, R]. If the NRMSE
score is good enough, a 10% accuracy for § Mis achieved with N 2 400 points. However, a high exponent in
the scaling C'(r) ~ 79 (i.e. a high dimension) will not be visible over a long interval [0, R] if there is-are not enough points.

This is why high dimensions may be estimated, but only on limited ranges. There is no contradiction with the argument of
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(Eekmann-and Ruelle; 1992) Eckmann and Ruelle (1992) : for a fixed range [0, R], the number of points needed to measure a
dimension indeed grow exponentially with the dimension. The same applies for the correlation dimension: for a fixed number
of points, higher dimensions can be measured if the range [0, R] decreases.

As shown, the dimension depends on the finite radius R of the ball B(R) used to compute the dimension. This implies that
one cannot simply choose some small percentage (as 2% or 5%), compute R as the corresponding percentile and get a unique
value for the dimension. In fact, different finite values of R may lead to very different values for the dimension.

To understand what is captured by the computed dimension at a given scale R, one has to compare 1? with the other local
geometrical scales on the attractor. In this work, these scales were mainly set by some geometrical structures, but Perinelli et al.
(2023) showed that the curvature could also set some scale, and the idea that the scale of the noise could play a role was raised
by Little et al. (2017). We also identified that estimations of the dimension can be affected when the density of points is not
constant. This often leads to an overestimation of the dimension. The value of the dimension for a given R can be affected by
yet other phenomena, and it is important to recognize which ones are at play to interpret correctly the dimension.

For the RADCLIM dataset, one difficulty is that the number of points is rather limited so that, for each computation point,
values of the dimension could only be computed in a very limited range of values of R. This was expected from the analysis of
Seetion section 2.4, and this makes difficult the interpretation of the value of the dimension for this high-dimensional system.
Some interesting conclusions could however be gathered from the analysis, in particular that the range of dimension is between

10 and 30 with a peak at 15-20.

There exists other ways to compute the local dimension, such as the Lyapunoy dimension (Kaplan and Yorke (1979), see
Ot (2002) for a textbook review) and the dimension induced by the delay coordinate method (delay embedding dimension,
Packard et al. (1980), see Abarbanel (1996) for a textbook review). The dimensions estimated using the correlation dimension,
which we argued is conceptually equivalent to the EVT dimension, and using the EVT dimension itself are compared the
Lyapunov dimension and to the delay embedding dimension in Datseris et al. (2023). Note also that, for these two latter
definitions of the dimension, there is no equivalent to the scale 72 of the EVT dimension and the correlation dimension.
Because of that, we do not expect future comparison study (if any) to be able to recover the interpretation of the R-dependence
of the dimension proposed here for the Lyapunov dimension and the delay embedding dimension.

Appendix A: Lorenz 63 system

The Lorenz 63 system is defined by the following equations (Lorenz, 1963)

t = oly—x)
y = pr—y—zxz (A1)
z = zy—pz

where o, 8 and p are constant. Usual values are 0 = 10, 5 = 8/3 and p = 28. In this configuration, the system is known to be

chaotic.
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The same system for p = 166.5 was also considered (¢ and /3 being unchanged). This system is known to be intermittent,
meaning that it follows regular and almost periodic patterns for some periods of time (so-called "laminar" phases), alternating
with other periods where it seems to behave randomly (the "chaotic bursts"), see Ott (2002); Schuster and Just (2006); Elaskar
and Rio (2017) about intermittent dynamical systems. A trajectory is displayed in Fig. Al.

As was first noted in Pomeau and Manneville (1980), this system undergoes a bifurcation fer-at p ~ 166.07: the attractor is

first periodic but disappears through a saddle-node bifurcation (Sparrow, 1982). Fheregularpattern-followed-duringlaminar

Appendix B: Lorenz 96 system

The Lorenz 96 system (Lorenz, 1996) is a dynamical system with n variables x; for i = 1,...,n (n > 4). The evolution equa-

tions for the x;’s are
&y = (Tig1 — Ti—2)Ti—1 —x; + F (B1)

where index ¢ is understood as periodic: x_1 = x,,—1, ¥9 = 5, and 41 = z;. The parameter F' is a forcing constant.
This system for n = 4 goes through a saddle-node bifurcation at F' ~ 11.83 (Sterk and van Kekem, 2017; van Kekem and
Sterk, 2018) and is intermittent after-for slightly higher values of F' (see Appendix A for a brief introduction on intermittency).

Figure B1 shows that the estimated value of § is maximum when the laminar distance is equal to R, as in Fig. 11.
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Figure B1. Same as Fig. 11 but for the Lorenz 96 system with n = 4 and F = 11.87 (10° points in the trajectory). The vertical red lines

marks-mark the value of the laminar distance which is equal to the radius 12 and the horizontal line marks the values 2 for 5.

We also considered the Lorenz 96 system with n = 12 for I = 4.4. We found a bifurcation at I’ ~ 4.25 with an intermittent

behavior after this value. The

ease—Beeause-of-this;-laminar regime for this system forms a higher dimensional structure in phase space and the trajectory

in laminar phases is not almost periodicand-ore-. One cannot proceed as we did for Lorenz 63 with p = 166.5 -to get a
representation of the laminar regime. Instead, we used a trajectory for F' = 4.2 to represent the laminar regime. The problem
with this appraeech approach is that the laminar regime after the bifurcation has moved and expanded in phase space with
respect to the attractor at F' = 4.2. The peak of the dimension when the laminar distance is equal to R is still clearly visible in
Fig. B2.

In complement to the analysis for the Lorenz 96 system with n = 50 dimensions in section 4, we computed the local
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Figure B2. Same as Fig. 11 but for the Lorenz 96 system with n = 12 and F' = 4.4 (10® points in the trajectory). The vertical red lines marks
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mark the value of the laminar distance which is equal to the radius R.

Laminar distance

of the NRMSE vs s for all fits. The behavior of the dimension against R is the same for all points and we conclude that our

method suggests that there is no salient geometric structure in phase space for that parameter value.

Appendix C: RADCLIM dataset

The RADCLIM radar dataset (Goudenhoofdt and Delobbe, 2016; Journée et al., 2023) is a high horizontal and temporal
resolution quantitative precipitation estimation in Belgium and its surroundings. It is based on radar measurements, which are
merged with rain gauges measures.

The time resolution is 5 minutes and we used 6 years of product. A few images are missing in the dataset, which has in total

630 008 radar images. The images are 700x700, with each pixel representing a square of 1kmx1km.
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Figure C1. 2D histogram of the repartition of the mean dimension for 5000 computation images-points with the associated CRR.

As a complement to Fig. 19, Fig. C1 is a 2D histogram of the mean dimension against the CRR. 5000 computation images
750 points were used (instead of 2000 in Seetion section 4.2) in order to have a more reliable histogram.
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