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Abstract. Local dimension computed using Extreme Value Theory (EVT) is usually used as a tool
:
to
:
infer dynamical properties

of a given state ζ of the chaotic attractor of the system. The dimension computed in this way is also known as the pointwise

dimension in dynamical systems literature, and is defined using a limit for
::
an infinitely small neighborhood in the phase space

around ζ. Since it is numerically impossible to achieve such
:
a
:
limit, and because dynamical systems theory predicts that this

local dimension is almost constant over the attractor, understanding the properties of this tool for a finite scale R is crucial. We5

show that the dimension can considerably depend on R, and this view differs from the usual one in geophysics literature, where

it is often considered that there is one dimension for a given dynamical state or process. We also systemtically
::::::::::::
systematically

assess the reliability of the computed dimension given the number of points to compute it.

This interpretation of the R-dependence of the local dimension is illustrated on the Lorenz 63 system for ρ= 28, but also

in the intermittent case ρ= 166.5. The latter case shows how the dimension can be used to infer some geometrical properties10

of the attractor in phase space. The Lorenz 96 system with n= 50 dimensions is also used as a higher dimension example. A

dataset of radar images of precipitation (the RADCLIM dataset) is finally considered, with the goal of relating the computed

dimension to the (un
::
in)stability of a given rain field.

1 Introduction

When nowcasting
:::
the rain field, the future state is essentially predicted using lagrangian

:::::::::
Lagrangian

:
persistence (Zawadzki15

et al. (1994), see Pierce et al. (2012) for a review on nowcasting). It is known that the errors in the estimation of the motion

field (the wind) do not dominate the total error of the forecast (Bowler et al., 2007), but that taking into account the growth

and dissipation of rain cells is essential for an accurate nowcast (Germann et al., 2006). In the case of convective events, the

instability may be captured by the convective available potential energy (CAPE) available in NWP outputs, but convective

situations can very quickly evolve. It would therefore be useful to have a real-time method to assess the stability of the current20

situation. Several techniques have been developped
::::::::
developed

:
to produce probabilistic forecasts (Germann and Zawadzki,

2004; Bowler et al., 2007; Berenguer et al., 2011; Pulkkinen et al., 2019a). Despite of these, it is still difficult to emit early

warnings for very severe floods for example, as witnessed by the 2021 flood in Belgium (Journée et al., 2023).

The idea behind the current work is to use the local dimension of a given state in phase space, as
:
a
:
proxy for the complexity

(and possibly the predictability) of the future of that state, following Faranda et al. (2017, 2022, 2023); De Luca et al. (2020).25
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The intuition supporting this idea is that points having a high dimension have a lot of different state
::::
phase

:
space directions

in which to evolve
::
on

:::
the

:::::::
attractor, so that their direction of evolution would be more difficult to guess if one had to do it

stochastically. Other state
:::::
phase space ideas for nowcasting have also been explored in Foresti et al. (2024).

The computation of the dimension of manifolds and attractors of dynamical systems is a huge
:::::
broad and old topic (Russell

et al. (1980), see Abarbanel (1996); Ott (2002) for textbook reviews in the context of dynamical systems, and Camastra and Sta-30

iano (2016) for a review on the dimension in the broader context of manifold dimension estimation). New algorithms were pro-

posed for low dimensional systemsand ,
:
producing mainly global estimation of the dimension : Golay and Kanevski (2014); Erba et al. (2019)

, see also Bac and Zinovyev (2020)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Golay and Kanevski, 2014; Erba et al., 2019; Bac and Zinovyev, 2020). The focus is here

on the dimension computed locally in phase space, using the framework of the extreme value theory (EVT), as in proposed in

Faranda et al. (2012, 2017, 2019, 2023); Pons et al. (2020, 2023).35

The local dimension is also called the pointwise dimension, and its definition is (Ott, 2002)

Dp(ζ) = lim
R→0

lnµ(B(R))

lnR
, (1)

where µ is the natural
:
a
:::::
given measure on the attractor and B(R) is the n-dimensional ball centered on ζ. This definition implies

that µ(B(R))
R→0∼ RDp(ζ) asymptotically (limits of both infinite number of points and infinitely small bulk size). A classical

result in dynamical systems theory is that,
::
if

::
µ

:
is
:::::::
ergodic,

:::
the

:::::::::
dimension

::
is

::::::::::::
asymptotically the dimension should asymptotically40

be the same for all points, Dp(ζ) =D1 (D1 is the information dimension), except for a zero-measure set of points (Pons et al.,

2020; Ott, 2002; Pesin, 1997).

It is obviously impossible to numerically reach the limit R→ 0 in (1), and the question is then how to choose some finite

value of R, as raised for example in Pons et al. (2020). In Datseris et al. (2023) , the discussion about the percentage of points

needed
:::::::::::::::::
Datseris et al. (2023) suggests that N (the number of points at a distance smaller than R from the computation point ζ)45

just needs to be higher than 100-1000. A similar conclusion is reached in Caby (2019). The idea of evaluating the impact of

finite radius R was followed in Little et al. (2017) using a PCA technique in order to identify a scale where the manifold could

be approximated by a plane. A similar idea was used to evaluate the robustness to multiscaling of a good estimator in Camastra

and Staiano (2016).

In this work, we use a maximum likelihood estimator to estimate the local EVT dimension, for different values of R.50

This estimator turns out to be exactly a local version of the Takens estimator for the global dimension (Takens, 1985). The

estimations of the dimension for the different values of R are then used to infer local information on the attractor.

As the focus of the current work is on the non-asymptotic estimation of the dimension, we obviously want to consider only

values of the dimension which will not significantly change if more points are added to the dataset: in this sense, we want to

be in the limit of infinite number of points. We therefore need some techniques to assess whether the dimension computed for55

some value of R has sufficiently converged or not.

The main findings of this work are:

1. The non-asymptotic local dimension depends on the scale R: this can be used to get information on the phase space

structures. This new interpretation of the dimension as dependent on R contrasts with the usual notion of dimension. We
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illustrate this approach on the Lorenz 63 system for ρ= 28 and for ρ= 166.5. The latter displays chaotic intermittency60

(see Sparrow (1982); Ott (2002)), inducing a state
::::
phase

:
space geometry well suited to illustrate our interpretation of

the dependence of the dimension on R. Another reason to study the behavior of the dimension for intermittent systems,

comes from the fact
:::
that

:
our main goal is to compute the dimension for rain fields, which are known to be intermittent.

2. The question of the number of points N needed to have a robust estimation of the dimension is also explored. The

question is raised in Pons et al. (2020) and Datseris et al. (2023) for the EVT dimension. For the correlation dimension65

(Grassberger and Procaccia, 1983), the definition of the dimension (size∼Rdimension) implies, at fixed R, that the

::::::
needed value of N needed grows exponentially with the dimension (Eckmann and Ruelle, 1992; Camastra and Staiano,

2016).

To clarify this, the normalised
:::
The

::::::::::
normalized

:
root mean squared error (NRMSE) (metric proposed in Datseris et al.

(2023)) is used in this work to assess the quality of the fit at a given scale R. The confidence bounds provided by the70

likelihood function are also computed and it is shown
:::
that

:
the true value of the dimension is around the estimated value

with a 10% error and with 95.5% confidence if N > 427, seemingly in contradiction with the mentioned argument of

Eckmann and Ruelle (1992). We introduce a quantity (denoted s hereafter) , which brings some light on this. This gives

a possible answer to the question of the maximal dimension that one can measure with the EVT method and in
:::::
under

which conditions.75

3. The applicability to high-dimensional systems is also explored in the context of the Lorenz 96 with n= 50 dimensions,

for which the dependence of the dimension on R gives some characterization of the phase space.

Radar-estimated rain field over Belgium is investigated with the same tools. In this case, the dimensions for some com-

putation points ζ can be reliably estimated, but only for very narrow ranges of R, and this makes it difficult to draw

conclusions on the dynamical properties of the state based on the values of the dimension. The dimension ranges essen-80

tially between 10 and 30, with a lot of values between 15 and 20. Not surprisingly, we also find a correlation between

the convective rain rate from ERA5 reanalysis and the relevant range of values of R.

This paper is organized as follows. In section 2, we first introduce the pointwise dimension and show how it is computed in

the EVT framework. We also derive the
:::::::::
expression

::
of

:::
the maximum likelihood estimator of the dimension and the expressions

for the
::
of

:::
the bounds of the confidence interval using the likelihood function. After that, we introduce the NRMSE score and85

interpret the estimated dimension. We also introduce the quantity s in order to understand the maximum dimension that one

can compute using a given number of points.

Section 3 introduces the results of the computed dimension on the Lorenz 63 system (for ρ= 28 and ρ= 166.5) and discuss

in details the interpretation. The intermittent case illustrates well that the dimension depends on the radius R, and can be used

as a tool to evaluate the geometric properties of the attractor, such as the distance of chaotic points to the laminar regime.90

Large systems (Lorenz 96 with n= 50 dimensions and the radar dataset) are considered in Section
::::::
section

:
4 and the last

section brielfy
:::::
briefly

:
summarizes the work.
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2 Framework for the estimation of the dimension

The
:::::
Given

:
a
:::::::
measure

:::
on

:::
the

::::::::
attractor,

:::
the

:
pointwise dimension for a computation point ζ is defined in terms of the natural

measure µ on the attractor by (1):95

Dp(ζ) = lim
R→0

lnC(R)

lnR

lnµ(B(R))

lnR
:::::::::

. (2)

This is equivalent to

µ(B(R))
R→0∼ RDp(ζ) (3)

i.e. the measure of the ball B(R) of radius R around ζ scales as RDp(ζ). In the limit of infinite trajectories, this measure

:::
The

:::::::
measure

::
µ
::
is

:::::
often

::::::
chosen

::
to

::
be

:::
the

:::::::
natural

:::::::
measure

::
of

:::
the

:::::::
system:

:::::
given

:::
any

::::
long

:::::::
enough

::::::::
trajectory

:::::::::
originating

:::::
from100

:
a
::::::
typical

:::::
initial

::::::::
condition

:::
of

:::
the

::::::
system,

:::::
µ(A)

::
is
:::::::
defined

:::
for

:::
any

::::::
subset

::
A

::
of

:::
the

:::::
phase

:::::
space

:::
as

:::
the

:::::::
fraction

::
of

:::::
points

:::
of

:::
the

::::::::
trajectory

:::::
inside

::
A,

::
or

::::::::::
equivalently

::
as

:::
the

:::::::
fraction

::
of

::::
time

:::::
spend

::
by

:::
the

::::::
system

::
in

::
A

:::
(see

::::::::::::::::::::::::::::::::::
Ott (2002); Kantz and Schreiber (2003)).

::::
This

:::::
means

::::
that

:::
the

:::::
whole

:::
set

:::
of

:::::
points

::
of

:::
the

:::::::::
trajectory

::
is

::
as

::
if

::
it

:::
had

::::
been

::::::::
sampled

::::
from

:::
the

::::::::
measure

::
µ.

:::::
Some

::::::
points

::::
may

::::
have

::
to

::
be

::::::::
discarded

::
at
:::
the

:::::::::
beginning

::
of

:::
the

::::::::
trajectory

::
in

:::::
order

::
to

:::::
ensure

::::
that

::
it

:
is
:::
on

:::
the

:::::::
attractor.

:

::::
This

::::::
natural

:::::::
measure

:
is
::::::::
invariant

::
by

:::::::::
definition:

:::::::::::::::::
µ(A) = µ(Φ−1

t (A)),
:::::
where

:::
Φt::

is
:::
the

::::
flow

::
of

:::
the

::::::
system.

::::
This

::
is

:::::::
because

::::
each105

::::
point

::
in

:::
the

::::::::
trajectory

:::
has

::::
one

:::::::::
antecedent

:::::
point,

::
so

:::
that

:::
the

:::::::
number

::
of

:::::
points

::
in
::
A
::
is

:::
the

:::::
same

::::
than

::
in

:::::::
Φ−1

t (A).
::
It

::
is

:::
also

:::::::
ergodic

:
if
:::
the

::::::::
attractor

:::::
cannot

:::
be

:::::::::::
decomposed

::
in

:::
two

:::::::
distinct

:::::::
invariant

::::
sets.

:::
In

:::::::
practice,

::::
one

:::
can

::::
also

::::::
assume

:::::::::
ergodicity

:::
by

::::::::
assuming

:::
that

:::
the

::::::
system

::
is
:::::::

always
::
on

:::
the

:::::
same

::::::::
invariant

:::::
subset

::::
(for

::::::::
example

:::::::
because

:::
we

::::::
observe

::::
one

::::
and

::::
only

:::
one

:::::::::
trajectory,

::
as
:::

in

::
the

::::
case

:::
of

:::::::
climate).

:::
As

:::::
stated

::
in
:::
the

:::::::::::
introduction,

:::
the

:::::::::
dimension

::::::
Dp(ζ)::

is
:::::::
constant

:::
for

::::::
almost

::
all

::::::
points

:::::
when

:::
the

:::::::
measure

::
is

::::::
ergodic

:::::::::::::::::::::::::::::::::::
(Pesin, 1997; Ott, 2002; Pons et al., 2020).110

:::
The

::::::
above

:::::::::
discussion

::::::
implies

::::
that,

::::::
given

:
a
::::
long

:::::::
enough

:::::::::
trajectory,

::::::::
µ(B(R))

:
can be approximated as the number C(R)

of points inside B(R), divided by the total number of points in the trajectory. In other words,
:
It

:::::::
follows

:::
that

:
the pointwise

dimension Dp(ζ) can thus be interpreted as a characterization
:::
(see

:::
(5)

::::::
below

::
for

::
a
::::::
precise

:::::::::
statement) of the growth rate of the

number of points
:::::
C(R) that one should find inside a ball B(R) centered around ζ (for infinitely small R).

If there are enough points around ζ, and if they form
::::
span a smooth Dp(ζ)-dimensional surface, one can introduce the115

hyperspherical coordinates (r,θ) and the density of points σ(r,θ). In this case,
::
the

:::::::
number

::
of

:::::
points

:::::
C(R)

::::::
inside

:::::
B(R)

::
is

C(R) =

R∫
0

drrDp(ζ)−1Σ(r) (4)

with Σ(r) =
∫
dθσ(r,θ) being the density integrated over angles. The correlation integral

::::::
number

:::
of

:::::
points

:
C(R) is propor-

tional to RDp(ζ) if and only if Σ(r) is constant. If not, one has to consider the small R limit, where C can be expanded in

Taylor series. One can check that the first nonzero term of this series is the one of order Dp(ζ)(from now, we use the notation120

δ =Dp(ζ)):

C(R) = C(δ)(0)
Rδ

δ!
+O(Rδ+1). (5)
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:::::
where

:::
the

:::::::
notation

:::::::::
δ =Dp(ζ)::

is
::::
used

::::
from

::::
now

:::
on.

:
For example, for δ = 2, we have

C(0) = 0 (6)

C ′(0) = RΣ(R)|R=0 = 0 (7)125

C ′′(0) = (RΣ(R))
′∣∣
R=0

=Σ(0), (8)

so that C(R) = R2

2 Σ(0)+O(R3). This approximation amounts to consider Σ constant on the interval of integration [0,R]

because the term
::::::::::
O(R3)-term containing Σ′(0) is neglected.

After estimation of C(R) for several values of R, and if it has the expected scaling C(R)∼Rδ , the dimension can be

extracted using a fit on this scaling. In the context of the correlation dimension, C(R) is a local version of the correlation130

integral and δ can be computed as lnC(R2)−lnC(R1)
lnR2−lnR1

(R1 and R2 have to be chosen).

Whatever technique we use to estimate δ, the following points have to be kept in mind:

– The distances measured in phase space do not precisely match with r or R: if the surface is curved, the points on the

boundary of B(R) will have a distance along the surface of the attractor bigger than R (see Fig. 1).
::
for

:::
(5)

::
to

:::::
hold,

::
R

:::
has

::
to

::
be

:::::::::
measured

:::::
along

:::
the

::::::
surface

:::
of

:::
the

:::::::
attractor

:::::
(more

:::::::::
precisely,

:::::
along

:::
the

::::::::
geodesics

::
of

::::
the

:::::::
attractor,

::::::::
provided

::
it135

:::
can

::
be

::::::::::::
approximated

::
by

::
a
::::::
smooth

:::::::::
manifold),

:::
but

::::
this

::
is

:::
not

:::::::
possible

:::::
when

:::
our

::::::::::::
representation

::
of

:::
the

:::::::
attractor

::
is
::
a
::
set

:::
of

:::::
points.

:::::::
Instead,

:::
we

::::::::
measure

::::::::
distances

::
in

:::::
phase

:::::
space

::::
and,

::
if

:::
the

:::::::
attractor

::
is
:::::::
curved,

:::::
there

:::
can

::
be

::
a
::::::::
mismatch

:::::
with

:::
the

:::::::
distances

::::::::
measured

:::::
along

:::
the

:::::::
surface

::
of

:::
the

:::::::
attractor.Therefore, the number of points in B(R) might not scale exactly as

Rδ . This could lead to a bias in the estimated dimension (Perinelli et al., 2023). Since the distance computed in phase

space becomes closer to the one computed on the surface when R is small enough (i.e. smaller than some typical scale140

of the curvature,
:::::
given

:::
for

:::::::
example

:::
by

:::
the

::::::
inverse

::
of

:::
the

::::::::
curvature

:::::
itself), C(R) will have the correct behaviour in that

limit
:::
one

:::::::
recovers

::::::::::
C(R)∼Rδ

::
in
:::
the

:::::
limit

::::::
R→ 0.

– If we use a too big value of R, the Rδ+1 term in (5) might not be small anymore. Said differently, Σ(r) in (4) is not

sufficiently constant on [0,R] for C(R)∼Rδ to hold. Actually, if in this range, Σ(r) looks more like ∼ ra for a ̸= 0,

C(R) will scale as Rδ+a. The value of the dimension we will measure in this case does not have a clear geometric145

meaning, but is an effective value δeff = δ+ a, taking into account the change of Σ over [0,R].

In this case, the information contained in δeff is much more difficult to use. If one had a way to estimate a in Σ(r)∼ ra,

one could compute δ = δeff − a.

2.1 Dimension and extreme value theory

Extreme value theory is a framework to study the occurences
:::::::::
occurrences

:
of extreme events (see for example the textbooks150

(Beirlant et al., 2004; Falk et al., 2010; Lucarini et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::
Beirlant et al. (2004); Falk et al. (2010); Lucarini et al. (2016)).

Two approaches can be followed to define extremes among
:::
the samples {Xi}i=1,...n. The Peak Over Threshold (POT)

consists in fixing a threshold u, and
::
the

:
values Xi > u above this threshold are considered as extremes. The threshold u has to
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Figure 1. Illustration that the distance computed in phase space might be different than the distance on the surface: the distance R computed

in phase space is in red, while R should be measured along the surface of which we are trying to estimate the dimension (which is in black),

in order to find the C(R)∼Rδ behavior.

be taken as high as possible to reach the correct definition of extremes. The Block Maxima (BM) approach consists in splitting

the set of samples in chunks of size m, and the extremes are the highest values of each chunk (one extreme for each chunk).155

The size m has to go to infinity in order to correctly define of extremes.

The main theorem in the BM approach states
:::
that,

:
under some conditions, that there are essentially three asymptotic dis-

tribution for extremes, regrouped under the Generalized Extreme Value (GEV) law. In the POT approach, an equivalent the-

orem states that the limiting distribution is a Generalised Pareto Distribution (GPD)
::::
there

:::
are

::::
also

:::::
three

:::::::
limiting

:::::::::::
distributions,

::::::::
regrouped

:::::
under

:::
the

::::::::::
Generalized

::::::
Pareto

::::::::::
Distribution

::::::
(GPD):160

GPDξ(z) =

 (1+ ξz)−1−1/ξ for ξ ̸= 0

e−z for ξ = 0
(9)

where the support of z is z ≥ 0 for ξ ≥ 0 and 0≤ z ≤−1/ξ for ξ < 0.

2.1.1 Theoretical extreme value law around ζ

The scaling C(R)∼Rδ
::::::
induced

::
by

:::
the

::::::::
definition

:::
of

::
the

:::::::::
pointwise

::::::::
dimension

:
(1) is the starting point to estimate the dimension

in the EVT framework using the POT approach (Faranda et al., 2012). We reformulate here some of their results.165

Consider the ball B(R) of radius R in the n-dimensional phase space. C(R)∼Rδ implies that the number of points between

r and r+ dr is

c(r)dr ∼ C ′(r)dr ∼ δ rδ−1 drc(r)dr ∼ C ′(r)dr =
Cδ(0)

(δ− 1)!
rδ−1 dr

:::::::::::::::::::::::::::::

. (10)

In order to have a pdf between 0 and R (i.e. in the B(R) ball), c is normalized to 1 (
∫ R

0
c(r)dr = 1), so that

c(r) =
δ rδ−1

Rδ
(11)170
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::::
With

::::
such

::
a

:::::::::::
normalization

:::
for

:::::
c(r),

:
it
::::
can

::
be

:::::::::
interpreted

:::
as

:::::::
follows:

:
if
:::
we

:::::
select

::
a
:::::
point

::::::::
randomly

:::::
inside

::::::
B(R),

::::::
c(r)dr

::
is

:::
the

:::::::::
probability

:::
that

:::
its

:::::::
distance

::
to

:
ζ
::
is
:::::::
between

::
r

:::
and

::::::
r+ dr

:::
(for

:::::::
r < R).

The usual EVT framework for the dimension is found by using one the following transformations
:::::::::
formulated

::::::
within

:::
the

::::
POT

::::::::
approach.

:::
The

::::::::::
observable

:::::
whose

:::::::
extreme

::::::
values

:::::::::
distribution

::
is
::::::
studied

::
is
:::::
often

:::
one

::
of

:::
the

:::::::::
following

::::::::
functions

::
of

:
r:

g1(r) =− lnr, g2(r) = r−1/α, g3(r) =K − r1/γ . (12)175

The parameter K can be freely chosen, and α and γ have to be positive.
:::::
Given

::
a

::::
point

:
ζ
::
in
:::::
phase

::::::
space,

:::
the

:::::
points

::::::::::::
corresponding

::
to

:::::::
extremes

:::
are

:::::
those

::::::
whose

::::::::
distances

::
to

::
ζ
:::
are

:::::::
smaller

::::
than

::
R.

::::
The

::::::::
threshold

::
of
::::

the
::::
POT

::::::::
approach

::
is

:::::
given

:::
by

::
Ta::

=
::::::
ga(R)

::::::::::
(a= 1,2,3),

:::::
where

:::
ga::

is
:::
the

:::::::
function

::::
that

:::
was

::::::
chosen

:::::
from

:::
the

:::::
above

:::::
three.

:::::
Note

:::
that

:::::
EVT

::::::
usually

:::::::
defines

:::::::
extremes

:::
as

::::
high

:::::
values

::
of

:::
an

:::::::::
observable

:::::
while,

::
in
:::::
terms

:::
of

:::
the

:::::::
distance

:
r
::
to

::
ζ,
::::::::
extremes

:::
are

::::::
defined

:::
as

:::::
small

:::::
values

::
of

::
r.
:
Using these transfor-

mations and their inverses
:
as

::::
well

:::
as (11), the pdf’s describing the distributions of ga = ga(r) (Ta = ga(R) and ga > Ta) are180

written as
:::
are

::::::::
computed

::
to

:::
be

f1,T1
(g1) = δe−δ(g1−T1), f2,T2

(g2) =
δα

T2

(
g2
T2

)−δα−1

, f3,T3
(g3) =

δγ

D−T3

δγ

K −T3
::::::

(
K − g3
K −T3

)δγ−1

. (13)

and one
::::
Note

:::
that

::::
one

:::
has

::::::
always

:::::::
ga ≥ Ta:::::::

because
::::::
r ≥R

:::
and

:::
the

::::::::
functions

:::
in

::::
(12)

:::
are

:::::::::
decreasing

:::
for

:::::
r > 0.

::::
One

:
can check

that each of these distributions
::
the

:::::::::::
distributions

::
in

::::
(13) correspond exactly to one of the signs of ξ (ξ = 0, ξ > 0 and ξ < 0) of

the GPD (9), with185

f1,T1(g1)dg1 =GPD0(z)dz with z = δ(g1 −T1)

f2,T2
(g2)dg2 =GPDξ(z)dz with ξ = 1

δα and g2
T2

= 1+ ξz

f3,T3
(g3)dg3 =GPDξ(z)dz with ξ =− 1

δγ and K−g3
K−T3

= 1+ ξz

(14)

Note that, starting from one of the three possible distributions in (13) and using the corresponding transformations (12), one

recovers back equation (11). That is, the application of each one of the transformations in (12) and the deduction of δ using a

parameter fit of the corresponding distribution in (13), is an alternative way to access the exponent δ of the scaling C(R)∼Rδ .

If we choose γ = 1 and D = 0 in the third case, f3,T3
(g3)dg3 is exactly equal to , which is actually already in an EVT form.190

2.1.2 Maximum likelihood estimation of δ

Let us now derive the
:::
The

:
expression of the maximum likelihood (ML) estimator of the dimension

:
is

::::
now

::::::
derived, using the

above density functions. It in fact leads
::::
leads

::
in

:::
fact

:
to the expression of a local version of the estimator of Takens (Takens,

1985).

To compute the dimension around a computation point ζ, consider all points inside the ball B(R) centered on ζ ("the195

analogues"), whose distances to ζ are ri (with i= 1, . . . ,N and ri <R). The corresponding g’s are defined as ga,i = ga(ri).

We know from the previous section that the ga,i’s should follow the distribution fa,Ta
.

The (log)-likelihood functions are
::
for

::::
each

::::
case:

L1 =

N∏
i=1

δe−δ(g1,i−T1), lnL1 =N lnδ− δ

N∑
i=1

(g1,i −T1) (15)
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L2 =

N∏
i=1

δα

(
g2,i
T2

)−δα−1

, lnL2 =N ln(δα)− (δα+1)

N∑
i=1

ln

(
g2,i
T2

)
(16)200

L3 =

N∏
i=1

δγ

(
K − g3,i
K −T3

)δγ−1

, lnL3 =N ln(δγ)+ (δγ− 1)

N∑
i=1

ln

(
K − g3,i
K −T3

)
(17)

Setting the derivative of lnL with respect to δ to 0 in each case gives the ML estimator:

1

δ̂1
=

∑N
i=1(g1,i −T1)

N
,

1

δ̂2
=

α

N

N∑
i=1

ln

(
g2,i
T2

)
,

1

δ̂3
=− γ

N

N∑
i=1

ln

(
D− g3,i
D−T3

)
(18)

These three estimators are numerically equal. Indeed, using g1,i =− lnri, g2,i = r
−1/α
i and g3,i =K − r

1/γ
i , one has

::::
gets

1

δ̂1
=

1

N

∑
i

(− lnri + lnR) =− 1

N

∑
i

ln
ri
R

(19)205

1

δ̂2
=

α

N

∑
i

ln
(ri
R

)−1/α

=− 1

N

∑
i

ln
ri
R

(20)

1

δ̂3
=− γ

N

∑
i

ln
(ri
R

)1/γ

=− 1

N

∑
i

ln
ri
R

(21)

The estimated inverse dimensions 1/δ̂a are all equal to

1

δ̂a
=− 1

N

N∑
i

ln
ri
R

=− lngeom
(r1
R
,. . . ,

rN
R

)
(22)

which is minus the mean of ri
R in logarithmic scale, or minus the logarithm of the geometric mean of the ratios ri

R .
:::::
Since

:::
the210

:::
δ̂a’s

:::
are

:::
all

:::
the

:::::
same,

:::
we

::::
use

::::
from

::::
now

:::
on

:::
the

:::::::
notation

::
δ̂
:::::::
instead.

:
This is precisely a local version of the expression of the

estimator of the local dimension as given by Takens (Takens, 1985).

This ML estimator is particularly interesting in this case since it is, even for finite N , unbiased and efficient as estimator

(James, 2006).

These three different ML principles are really equivalent since the loglikelihood functions are all equal up to a term inde-215

pendent of δ (so that the derivatives of the loglikelihood functions are equal). Indeed, using the different but equal expressions

of δ̂ in terms of the ga,i’s, one has

lnL1(δ) =N lnδ− δ
∑
i

(g1,i −T ) =N lnδ−Nδδ̂−1 (23)

lnL2(δ) =N ln(δα)− (δα+1)
∑
i

ln
g2,i
T2

=N ln(δα)− (δα+1)
N

δ̂α
= lnL1(δ)+N lnα− N

δ̂α
(24)

lnL3(δ) =N ln(δγ)+ (δγ− 1)
∑
i

ln

(
K − g3,i
K −T3

)
=N ln(δγ)− (δγ− 1)

N

δ̂γ
= lnL1(δ)+N lnγ+

N

δ̂γ
. (25)220

The
::
As

::::::::
functions

::
of

::
δ,
:::

the
:

three different loglikelihood functions are thus equal, up to an additive term independent of δ.

::::
This

:
is
::::
why

:::
the

::::
δ̂a’s

::::
have

:::
all

::
the

:::::
same

:::::
value

:::
and

::::
why

:::
the

:::::::::
confidence

::::::
bounds

:::::
based

:::
on

:::
the

::::::::
likelihood

:::::::
function

:::
do

:::
not

::::::
depend

:::
on

::
the

::::::
chosen

::::::::
function

:::::
ga(r) :::

(see
::::::
section

:
(2.1.3)

:
).
:::
In

:::
the

::::::::
following,

:::
we

:::
use

::::
only

:::
the

:::::::
function

:::::
g1(r)::::::

unless
::::::::
explicitly

::::::
stated.
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In Pons et al. (2023), the authors also estimate the shape parameter (ξ) of the observed extreme value law of the ga,i’s. We do

not do it since it is the choice of the function ga(r) which fixes the extreme value law to expect. If there is a deviation from this225

law, it is because the scaling C(R)∼Rδ is not satisfied in the first place (see section 2.5 for possible reasons why C(R)∼Rδ

does not hold).

2.1.3 Confidence intervals

Confidence bounds on the estimations of the dimension were already studied to some extent in Theiler (1990), but through the

statistical error on the estimation of C(R). Since we do not rely on estimations of C(R) and use only a ML principle for δ̂, we230

present here the computation of the bounds of the confidence intervals of δ using the likelihood function.

The loglikelihood function in the first case (g1(r) =− lnr) is

lnL1(δ) =N lnδ−Nδδ̂−1 (26)

and lnL2 and lnL3 are the same functions of δ, up to an irrelevant term, as shown in section 2.1.2. We have thus

∆lnL1(δ) = ∆lnL2(δ) = ∆lnL3(δ) (27)235

where ∆lnLa(δ) = lnLa(δ)−lnLa(δ̂). Since the computation of confidence bounds using the likelihood involves only ∆lnL,

the confidence bounds will be the same for all three cases.

One
:::::
Given

::
N ,

::::
one can have a nσ confidence interval by finding the values of δ for which (see left panel of Fig. 2, see James

(2006))

∆lnL(δ) =N

(
ln

δ

δ̂
− δ

δ̂
+1

)
=−n2

σ

2
(28)240

If
:::
Vice

::::::
versa,

:
if
:
we fix some target confidence interval [δmin, δmax] around δ̂, one should thus use

:::
we

:::
can

::::
look

:::
for

::
the

:::::::::
minimum

::::
value

:::
of

::
N

::
to

::::
use.

::::
The

:::::
above

:::::::
equation

:::::
turns

::::
into

::
an

:::::::::
inequality,

::
of

::::::
which

::::
there

:::
are

::::
two

:::::::
versions

::::
(for

::::
δmin::::

and
::::::
δmax).

::::::
Taking

:::
into

:::::::
account

:::
the

::::
most

:::::::::
restrictive

:::
one,

::::
one

:::
has

:

N ≥max

[
Nnσ

(
δmin

δ̂

)
,Nnσ

(
δmax

δ̂

)]
, Nnσ

(
δ

δ̂

)
=−n2

σ

2

(
ln

δ

δ̂
− δ

δ̂
+1

)−1

(29)

For example, if we want a 10% interval (i.e. δmin = 0.9δ̂ and δmax = 1.1δ̂) with 95.5% confidence (nσ = 2), the required N245

is computed as

N ≥max(N2(0.9),N2(1.1)) = max(373.1,426.5) = 426.5. (30)

So N has to be bigger than 427 to be sure at 95.5% that the true dimension is
::
at

::::
most

:
10% below or 10% higher than δ̂.

The right panel of Fig. 2 shows a plot of the functions N2

(
δmin

δ̂

)
and N2

(
δmax

δ̂

)
.

One can also invert the relation to compute δ
δ̂ :::::::::

relationship
::
to

::::::::
compute

::::

δmin
δ̂ ::::

and
::::

δmax

δ̂ :
in terms of N :250

δmin

δ̂
=−W0(−e−a),

δmax

δ̂
=−W−1(−e−a) (31)
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Figure 2. Left: Plot of ∆lnL as a function of δ

δ̂
for N = 100 and N = 300. The green horizontal line corresponds to ∆lnL=−n2

σ
2

(nσ = 2). The dotted lines show how to read δmin

δ̂
and δmax

δ̂
for the two different values of N . Right: Plot of N2 versus of δmin

δ̂
and δmax

δ̂

(nσ = 2, 95.5% confidence).

where W0 and W−1 are the Lambert function or order 0 and −1 respectively, and a=
n2
σ

2N +1. Note that these relative bounds

:::
(i.e.

:::
the

::::::
bounds

:::
for

::
δ
::::::::
relatively

::
to

::
δ̂)

:
depend only on the number of observations, i.e. on the number of analogues, and not on

the dimension itself!

These bounds should be taken with caution. They are computed supposing that the underlying distribution of points is indeed255

exponential and that all the samples are IID, as was already pointed out in Theiler (1990). In the case of a dynamical system

producing the dataset, this is only true in the asymptotic limit. Consider for example a system observed with very high time

resolution but on a quite short time. In this case, the system could have visited only a few times the ball B(R) (so that the

system has not explored all directions around ζ yet) but one could still have N ≥ 427. In such case, the distribution of values

of r around ζ has not converged yet and we cannot really trust the confidence interval 0.9δ̂ ≤ δ ≤ 1.1δ̂. It is however unlikely260
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that the observed distribution of values of r looks like an exponential
::
in

:::
that

::::
case. The NRMSE score introduced below helps

to quantify how the experimental distribution is far from an exponential distribution.

2.2 NRMSE score

The ML method produces an estimate of the dimension even if the distribution of points is not at all an exponential, in which

case the estimated dimension and its bounds are not correct. A systematic way to assess whether the fitted distribution is indeed265

exponential or not is therefore needed.

As in Datseris et al. (2023), we tried to use a Kolmogorov-Smirnov test but it did not prove to be very efficient to assess

the quality of the exponential fit to the data. Following their suggestion, the normalised
:::::::::
normalized root mean squared error

(NRMSE) is used instead between the fitted version of the exponential distribution f1,T1
and a uniform distribution. It is

computed as follows:270

1. the data are first binned in bins of equal size and the empirical probability Pi associated with
:::
the bin i is computed as

the fraction of observations lying in bin i
:::
this

:::
bin

:
(the number of bins is taken as the minimum between the Sturge’s rule

and the Freedman-Diaconis rule, see Scott (2015) about those rules);

2. the Ei’s are defined as the fraction of events that would fall into each of the bins , if the events follow
:::::::
followed

:
an

exponential law characterized by δ̂;275

3. U is defined as the probability of falling into each bin using a uniform law over the range of observations
:
(it

:::::
does

:::
not

::::::
depend

::
on

:::
the

:::
bin

:::::::
because

::::
they

:::
are

:::::
taken

::
to

::::
have

:::
all

::
the

:::::
same

::::::
width);

4. the NRMSE score is then computed as

NRMSE =

√∑
i (Pi −Ei)

2∑
i (Pi −U)

2 (32)

The NRMSE score gives an indication of how much the data is better described by an exponential law than by a uniform law. For280

a good fit, we expect a small NRMSE score: in this case, the numerator (which is the error between the experimental distribution

and the fitted exponential distribution) is much lower than the denominator (which is the error between the experimental

distribution and the uniform distribution).

2.3 Interpretation of the estimated dimension

The interpretation of the dimension is more easily understandable in the third case , with g3(x) =−x (with γ = 1)
::::
with

:::::
γ = 1285

:::
and

::::::
K = 0:

:::
the

:::::::::
observable

::
is
::
in

::::
this

::::
case

::::::::::
g3(x) =−x. Since the values of δ obtained in each case are equal, the interpretation

holds irrespectively of the function ga used.

Figure 3 shows two possible histograms for two random variables following both the distribution f3,T3
=

(
g3
T3

)δ−1

=(
r
R

)δ−1
(i.e. with D = 0

:::::
K = 0

:
and γ = 1), but for two different values of δ. If the empirical distribution of radii ri (nor-

malized by R) looks like that of the orange histogram, the estimated value δ̂ will be lower than if the empirical distribution is290
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Figure 3. Example of histograms of two random variables g3 =−r
:::::::::
g3(r) =−r, whose PDFs for both are f3,T3 =

(
g3
T3

)δ−1

=
(

r
R

)δ−1 (i.e.

with D = 0 and γ = 1), but for different values of δ. The horizontal axis is g3
T3

= r
R

.

closer to the dark blue histogram. Mathematically, this is because the higher the value of δ, the steeper rδ−1 is. This means

that, the higher the dimension, the more the analogues inside B(R) will be close to the boundary of B(R). In the following
:
,

the estimated value of the dimension can be
::
is

:::::::::
sometimes artificially high because of that.

2.4 Measure a high dimension with a small N?

The computation of Section
::::::
section 2.1.3 indicates that with N ≳ 400 (and if the NRMSE score is good), a 10% accuracy is295

reached for the estimation of δ, for all values of the dimension. This seems in contradiction with the argument of Eckmann and

Ruelle (1992) (i.e. the number of points in B(R) should be an exponential of δ). In this section, we examine in detail how the

scaling C(R)∼Rδ is consistent with the computation in 2.1.3.

:::
We

:::
set

::::::::
ourselves

:::::
again

::
in

:::
the

::::
first

:::::
case,

:::::
using

::::::::::::
g1(r) =− lnr

:::
as

:::::::::
observable.

:
If we denote ln R

ri
= g1,i −T1 as

::
by

:
xi :::

the

::::::::::
combination

::::
ln R

ri:::::
(also

:::::
equal

::
to

:::::::::
g1,i −T1), the computation of section 2.1.1 implies that the xi’s follow an exponential law300

f1(x) = δ e−δx. In terms of this exponential distribution, δ−1 is interpreted as the scale (see Fig. 4). The ML estimator of the

scale of an exponential is the mean of the xi’s, so that we recover the expression δ̂−1 = 1
N

∑
ixi from the section 2.1.2. From

this point of view, a large dimension just means a smaller scale for the exponential, which is why it is not much more difficult

to measure.

If we denote by
::
Let

:::
us

:::::
write r0 ::

for
:
the smallest of the ri’s and by x0 = ln R

r0 ::
for

:
the biggest of the xi’s, one .

::::
One

:
has305

obviously δ−1 < x0. If there are enough points to estimate δ−1, x0 must be quite far to the right of the plot in Fig. 4, so that a
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Figure 4. An exponential distribution and its scale parametrized by δ−1.

necessary condition is δ−1 ≪ x0, or

s≫ 1, s≡ x0 δ (33)

This expresses that x0 has to be large with respect to the scale δ−1 of the exponential. Conversely, if s≫ 1, this means that the

exponential has been sampled enough to get a high value for x (namely x0).310

One could think that the condition (33) is actually easier to fulfill if the scale δ−1 is smaller (and the dimension bigger),

because this leaves "more room" for x0. But this is not the case, since a smaller scale means that the exponential will be more

peaked near x= 0(which represents r =R), so it will be more difficult to have a sample x with a high value. This is consistent

with the fact that the number N = C(R) of points inside B(R) satisfies

R

r0
=N1/δ, (34)315

(using the scaling C(R)∼Rδ and the fact that C(r0) = 1 since r0 is the smallest of the ri’s). This equality shows that, for a

fixed N , the ratio over which the scaling (3) holds quickly approaches 1
:::::
when

:
δ
::::::::
increases. This is the price to pay to measure

high dimensions with a reduced number of points, and this poses some difficulties when dealing with large systems (see section

4).

Some remarks:320

– Using (34), one can see that s
:::::::
s= x0δ should be just lnN and the condition (33) is simply

lnN ≫ 1. (35)

In practice, the distributions are exactly exponential only in the limit R→ 0, so that s and lnN are not exactly equal.
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– This equivalence between the estimation of different dimensions is because of the scaling transformation of the expo-

nential distribution f1:325  x → λx

δ → δ
λ

, f1(x) = δe−δx → 1

λ
f1(x) (36)

which makes the values of the dimension somewhat equivalent to measure
:::::::
difficulty

:::
of

:::::::::
measuring

:
a
::::
high

:::::
value

:::
of

:::
the

::::::::
dimension

::::::
similar

::
to
:::
the

::::::::
difficulty

::
of

:::::::::
measuring

:
a
:::::
small

:::::
value. Again, in terms of an exponential distribution, the dimen-

sion is just the inverse of the scale of the exponential. The probability density functions f2,T2
and f3,T3

, and adapted

definitions of x in each cases
::::
case, have similar scaling properties. These make possible to absorb a redefinition of δ in a330

redefinition of x if one uses f2,T2
or f3,T3

instead of f1,T1
.

– If the EVT estimator for δ is able to produce a high value over some range, the estimation of the dimension through the

correlation dimension can also do it. Indeed, in both cases, δ̂ is obtained by somehow fitting the scaling C(R)∼Rδ . The

limitation for the correlation dimension is the same than
:
as

:
for the EVT dimension: when δ increases, the range over

which this scaling can hold decreases.335

The left panel of Fig. 5 shows a scatter plot of lnN against s, with the color being the NRMSE score for dimensions in

the Lorenz 63 system (see Appendix A about the Lorenz 63 system). Each point in both panels of Fig. 5 represents a fit. We

computed the dimension for 1000 points, for 20 percentages
:::::::
different

::::::
values

::
of

::
N , so there are 20 000 points in each scatter

plot of this Figure. A given computation point ζ in the phase space is therefore represented several times.
:::
One

:::
can

:::
see

::
a

:::::
rough

::::::::
agreement

:::::::
between

:::::
lnN

:::
and

::
s.

:
Here and in the following, we estimated

::::::::
computed s as s= x0 δ̂.340

The right panel of Fig. 5 shows a scatter plot between the NRMSE score and s for the Lorenz 63 system. The form of this

plot is quite characteristic and will be encountered several times in the
:::
rest

::
of

:::
the

:
paper. The NRMSE score clearly decreases

as s increases: this part corresponds to fits increasingly better. When s > 10, the NRMSE reaches a plateau. The NRMSE

for some high values of s and N is not so good, this is when the B(R) ball is too big and the distribution in it cannot be a

power law (see section 3.2). In practice, one finds that s bigger than 4− 5 seems to give NRMSE scores below 0.4and these345

values can be used to keep the reliable fits
:
.
:::::::
Reliable

:::
fits

:::
can

::
be

:::::::
selected

:::
by

:::::::
keeping

::
for

::::::::
example

::::
only

::::
those

:::
for

::::::
which

::::
s > 5

::::
and

:::::::::::
NRMSE< 0.4.

In summary, the section 2.1.3 has shown that, for a given relative accuracy
:::::::
accuracy

:::
on

::
δ

::::::::
relatively

::
to

::
δ̂, all dimensions

require the same number of points inside B(R). This might seem surprising because of the scaling C(R)∼Rδ , but can

actually be understood if we see δ−1 as the scale of the exponential distribution of the g1’s. However, the range of values of350

R over which the dimension can be measured decreases with the dimension. This is why there is no contradiction with the

original argument of Eckmann and Ruelle (1992), which supposed that R is fixed.

In the following analyses, we use scatter plots in the form of that of the right panel of Fig. 5. The rough agreement between

s and lnN can be seen as a consistencty check that the distributions of values of g1,i are indeed close to exponentials (and

equivalently, that the distributions of ri are close to power laws).355
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Figure 5. For the Lorenz 63 system (see Appendix A) with ρ= 28, 106 points. Left: scatter plot of lnN against s. The color is the NRMSE

of the fit. Right : scatter plot of the NRMSE against s. The color is the 10−logarithm of the number of points used in the exponential fit.

There are 1000 points and 20 fits for each.

2.5 Possible phenomena affecting the value of the dimension

The last sections develop
::::::::
developed tools to quantify how good is a fit to the exponential law. However,

::::
even

::
if

:::
the

::
fit

::
is

:::::
good,

different phenomena can affect δ̂ for a given R.

If the NRMSE or s do not have good scores, the points in B(R) do not follow a Rδ law. The cause of this could be one of

the following:360

1. there
:::::
There

:
are not enough points inside B(R) to properly recognise

::::::::
recognize

:
an exponential (and make the difference

with a uniform law
::
for

:::::::
example).

:

2. the
:::
The points are not statistically independent,

:::
as

::
in

::
the

::::::::
example

:::::::::
mentioned

:
at
:::
the

::::
end

::
of

::::::
section

::::
2.1.3. This was already

noted in Theiler (1990).
:

3. R is too big. To observe the C(R)∼Rδ law, one indeed needs to consider a flat neighborhood around ζ and, if R is too365

large, this law could be affected by the curvature (Perinelli et al., 2023), or by another geometric feature entering B(R).

:::
See

::::::
section

:::
3.2

:::
and

::::
Fig.

::
8

::
for

:::
an

:::::::
example

::
of

::::
that.

:

On the other hand, if the NRMSE and s give good scores, this means that the number of points inside B(R) indeed follows

a power law Rδ̂ . This could have different causes and a non-exhaustive list is:
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1. the
:::
The

:
estimated value of the dimension can indeed reflect the dimension of the surface supporting the neighbouring370

::::::::::
neighboring points. This happens if the density of points is constant and the "surface"

:
of
:::

the
::::::::

attractor is approximately

flat.

2. if
:
If
:
there is a clear structure of points in the phase space, with a the density of points of this structure being higher

enough than its surroundings, the estimated dimension δ̂ will be that of this structure. This is because the intersection

of such a structure with the ball B(R) will make the number of points scale as Rδ , where δ is the dimension of the375

structure. Such a situation is shown schematically in Fig. 6: in a plane, there is a straight line crossing B(R) and the

density λ of points on that line is much higher than anywhere else in B(R). The number of points in B(R) will then be

essentially the number of points on that line. A simple computation
:::::
taking

::::
only

:::
into

:::::::
account

:::
the

:::::
points

:::
of

:::
the

:::
line

:
gives

C(R) = 2λ
√
R2 − a2, and if a≪R (i.e. if ζ is close enough to the line), C(R)≈ 2λR. The scaling of C(R) around ζ

becomes that of the line, even though ζ is not strictly on it.380

The previous case and this one are cases where the estimated dimension is the dimension of some geometric structure in

the phase space. This geometric dimension is only well-defined in
:::
for ranges of R where the geometry is homogeneous

in this range: if , at a given R, the curvature changes or a different geometric feature enters B(R)
::
for

:::::
some

:::::
value

::
of

::
R,

one can not give a geometric meaning to the dimension. It is only for the values of R for which there are clear objects

that the dimension can be interpreted geometrically. In particular, one can approach the
::::::::
pointwise dimension in the limit385

R→ 0 only when R is below any other geometric scale. This will be illustrated in the next sections.

Note that this kind of geometric dimension is conceptually equivalent to the one measured by local PCA techniques

(such as in Little et al. (2017)).

3. the
:::
The fact that C(R)∼Rδ supposes that the density of points is uniform in the range over which the estimation is done.

If the density is increasing when getting away from ζ (i.e. for increasing r, Σ∼ ra for a > 0), the empirical histogram390

of the values of r will be inflated for values of r close to R. In that case, the estimated distribution will be closer to the

dark blue curve than to the orange curve in Fig. 3, so that the estimated dimension will be higher than the dimension of

the surface supporting the points (the "geometric dimension"). In the same way, if the density of points decreases, the

estimated dimension will be lower (see remarks in section 2).

In practice, it is not likely that the density Σ will follow the same behavior Σ∼ ra on a long
::::
large

:
range of values of395

r, and one can try to
:
.
:::
The

:::
fit

::
in

:::
this

::::
case

::
is
:::::::
usually

:::
not

::
so

:::::
good,

:::
so

:::
the

:::::::
selection

:::::
using

:::
the

::::::::
NRMSE

:::
and

::
s

:::
(see

:::::::
section

:::
2.4)

::::::
should

::::::
discard

:::::
some

::
of

:::::
them.

::::
One

:::
can

::::
also

::
try

:::
to

::::::
visually

:
identify when this happens because the dimension will be

fluctuating over the range
::
is

:::::::::
fluctuating

:
a
:::
lot.

Unfortunately, the tools we developped (the NRMSE and the quantity s) can give
:::::::
produce good scores in all three

:::::
above

cases and do not allow to make the difference between each of these cases. One has therefore to keep in mind all possible400

phenomena affecting the estimation of the dimension, and inspect the values of the dimension over some range of values of R,

in order to interpret
:::::::
properly the geometry of the system in this range.
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Figure 6. Picture of a situation where almost all points on the attractor (in dark blue) lie on a line. If the density of points is constant and

denoted λ, the number of points inside B(R) is essentially 2λ
√
R2 − a2. For a≪R, the estimated dimension will be 1.

In the following, as is usual when computing dimension
:::::::::
dimensions from time series, a Theiler window around each com-

putation point ζ was applied (Theiler, 1986), in order to avoid having points to
:::
too close in time inside the ball B(R).

3 Application to small systems405

To illustrate some aspects described in the previous sections, we compute the local dimension for small systems, allowing to

get some insight of what is captured by the estimated dimension.

The classical Lorenz 63 system for ρ= 28 (Lorenz, 1963) is first considered. The relatively simple geometry allows to

illustrate some of the phenomena described in Section
::::::
section 2.5. We then present the results of the computation of the local

dimension for the Lorenz 63 system with ρ= 166.5, which is intermittent (Pomeau and Manneville, 1980; Sparrow, 1982). In410

the case of intermittent systems, a situation like the one displayed in Fig. 6 is often encountered, and the tools described in

Section
::::::
section

:
2 can be used to detect structures in phase space.

3.1 How we choose the values of R

It
:
If

:::
we

::::
want

::
to

::::::::
compute

:::
the

:::::::::
dimension

::
for

::::::::
different

::::::::::
computation

::::::
points

::
ζ,

:
it
:
is difficult to chose relevant values of R for each

computation point ζ
:
of

:::::
them if we do not know

:::
very

::::
well

:
the system. Indeed, depending on the dimension and on the density415
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of points, the values of R needed for B(R) to contain a sufficient number of points to estimate δ, might be different for each

computation point ζ.

An alternative approach is to compute the distance between the computation points and all other points of the trajectory

and keep a given percentage q of points
::::
(i.e.

:::::::
consider

::
as

::::::::
extremes), common to all computation points. For each computation

point ζ, R is then defined such that B(R) contains q% (i.e. the qth percentile) of the total number of points in the dataset .420

:::
(i.e.

::
R

::
is

:::
the

:::
qth

:::::::::
percentile).

:
For each computation point and for each percentage q for which we compute the dimension, there

is thus one value of R. This has the advantage to adapt the range over which the dimension is computed accordingly to the

computation point.

Of course, the percentile will not be exactly the same if one increases the length of the series. However, if the attractor has

been reasonably sampled by Ntot points, additional points should spread in the phase space in the same proportions, so that425

the percentiles computed with Ntot or N ′
tot::::::::::

N ′
tot >Ntot:

should correspond. In other words, if the density of points is already

close to the invariant measure of the attractor µ, the computed percentiles will not significantly change when the length of the

trajectory is increased.

In the following sections, we will use this method with percentages chosen evenly spaced on a logarithmic scale, typically

with the maximum percentage being 10% and the smallest percentage corresponding to 5 analogues. The dimension computed430

with 5 points will not give a precise value (see section 2.1.3) but this allows to ensure to have a dimension computed over a

sufficiently large range of values of R. The values of the dimension with not enough points will be filtered out through the

computation of s and of the NRMSE score.

In section 3.3, we will also choose the values of the radius R
:::::
rather

::::
than

:::::::::
computing

::
it

::
as

:::::::::
percentiles, because it will be easier

to illustrate the interpretation of the dimension in this case.435

3.2 Lorenz 63 with ρ = 28

We start with the usual Lorenz 63 system with ρ= 28 (see Appendix A) and we consider two different trajectories: one with

Ntot = 104 points, and the other one with Ntot = 107 points. Figure 7 shows the dimension
:::::::::
repartition

::
of

:::
the

:::::::::
dimension

:::
on

::
the

::::::::
attractor.

::::
The

:::::::::
dimension

::
is

:
computed with q = 10% (top, A and B)

:::
and

::::
with

:
q = 1% (bottom, C and D), for these two

trajectories. For q = 10%, the two plots look the same and the dimensions agree between the two datasets. This is because440

10% of 104 is already enough points to estimate the dimension, and adding more points to the dataset will not change the

percentiles, nor change the distribution of points on the attractor. Note that the points "on the border" of the attractor have

higher dimensions since, from their point of view, the density of points is increasing. The estimated dimension for these points

is actually an effective dimension reflecting this feature (see section 2.5).

On the other hand, for q = 1%, there are not enough points in the Ntot = 104 dataset (Fig. 7 C) to have a proper estimation445

of the dimension, while the Ntot = 107 dataset (Fig. 7 D) still allows a proper estimation of the dimension. The latter gives

more homogeneous values of the dimension than in the corresponding plot (7 B) with 10% of the points. This is because the

values of the percentiles are smaller, so that the estimation is more local and the density less varying in the balls B(R).
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Figure 7. The Lorenz 63 attractor, with the dimension represented in color, computed with 10% (top) and 1% (bottom) of the points in each

case (only the 1000 points for which the dimension has
:
is
:

computed are represented).
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Figure 8. Top: Histograms of the dimension for the 107 points dataset, for q = 1% and q = 10% (1000 values in each case). Bottom: Two

illustrations that R can be too large for q = 10%. The computation point ζ is in green and some of the points used to compute the dimension

are in orange. The ball B(R) is bigger than the width of the wings, so that the C(R)∼R2 characteristic of a surface cannot hold.

It is also interesting to analyze the histograms of the dimension for the 107 points dataset, for q = 1% and q = 10% (Fig. 8
:
,

:::
top): a lot of points have a dimension close to 1.5 for q = 10%, but most points have a dimension close to 2 for q = 1%. This450

is because, in the q = 10% case, R is too large for some points: 2R is larger than the width of the wings of the attractor, so that

the C(R)∼R2 cannot hold. Figure 8 illustrates
:::
The

::::
two

::::::
bottom

:::::
scatter

:::::
plots

::
of

::::
Fig.

:
8
::::::::
illustrate this. In the q = 1% case, R is

smaller and this never happens.

It is likely that, when decreasing q and increasing Ntot again in order to keep N = qNtot big enough, the dimension for all

points will tend to a common value. This seems to be in agreement with the mentioned asymptotic results that the dimension455

of almost all points converge towards a unique value.

Indeed, as observed on Fig. 7, the dimension of the points on the wings seem to converge to some value close to 2, as

expected for a surface. As q decreases and Ntot increases, the dimension of the points on the "border" of the attractor will

behave as others points on the wings and their dimension would converge to the same value close to 2.

The points close to the intersection of the wings have a dimension bigger than 2 as long as their
::::
balls

:
B(R) includes460

::::::
include this intersection. However, when is q is decreased, the ball

::::
balls B(R) might not anymore enclose the intersection. The

neighborhoods of those points then look as that of any other points on the wings, so that their dimensions will be close to 2.
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Figure 9. Left: Plot of d̂
:
δ̂ versus R for 50 points of the Lorenz 63 system (ρ= 28) with

:
a
::::::::
trajectory

:
of
:
107 points(.

::::
Only

:::
fits

::::
with NRMSE<

0.4, s > 5 )
:::
are

:::::
plotted. Right: scatter plot of NRMSE vs s for the same dataset, but for all 1000 computation points. The color represents the

logarithm of the number of points used in the dimension estimation.

Only the points exactly at the instersection will always have a B(R) including this intersection, so that their dimension will

never approach 2.

The left plot of Fig. 9 displays the dimension estimate δ̂ as a function of R. There is a range of values for which the δ̂ is465

close to 2 for all points. The curves having a bump in the middle of the range of values of R correspond to points near the

intersection of the wings.

As one can see in the right panel of Fig. 9, some points with a high value of s and a high number of points used in the

estimation of δ, have a poor NRMSE score (i.e. up to 0.4, while most of the fits with s > 10 have their NRMSE score below

0.2). Those correspond to situations shown in the bottom plots of Fig. 8, where the fit is not so good anymore, because the470

scaling is ∼R2 for small R but not for higher values of R.

3.3 Lorenz 63 with ρ = 166.5

The
:::::
results

:::
of

:::
the

:
local dimension applied to the intermittent Lorenz 63 system with ρ= 166.5 is

:::
are now analyzed (see

Appendix A for a short presentation
::
of

:::
this

:::::::
system). The case of intermittent systems is interesting since those systems have a

strongly inhomogeneous phase space, allowing to illustrate how the dimension can have different values at different scales R.475
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Figure 10. Left: estimated dimension δ̂ against R for
:::
100

:::::
points

:
of
:

the intermittent Lorenz 63
:::::
system

:
(ρ= 166.5,

:::::::
trajectory

::
of 106 points).

Only fits with NRMSE< 0.4 and s > 5 are shown. Right: scatter plot of NRMSE vs s (all fits).

Intermittent systems are also of special interest, since the primary goal is to use the local dimension on the rain data, which is

known to be intermittent.

This system was integrated for ρ= 166.5 to obtain 106 points on the attractor and the dimension was computed for 1000

points. The plot of the dimension against R (computed as percentiles) is in the left panel of Fig. 10. One can see that, for the

smallest values of R, the dimension is around 2, while it is closer to 2
:
1
:
for the highest values of R.480

Actually, the remaining of the attractor before the bifurcation (see Fig. A1) defines a 1−dimensional structure in phase

space, so that we
:
.
::::
This

::::::::
structure

:
is
::
a
::::::
closed

::::
loop

:::
and

::
is

:::::
made

::
of

:::
the

::::::
points

::
in

:::
the

::::::
laminar

:::::::
regime

::
of

:::
this

::::::::::
intermittent

:::::::
system.

:::
We expect that in the balls B(R) intersecting enough this closed loop, the scaling will be strongly influenced by this closed

loop (as described in Section
:::::
section

:
2.5). A better insight of the behavior of the dimension with R than that given by

:::
the

:::
left

::::
panel

::
of
:
Fig. 10, can be gained by characterizing each point by its position with respect to this closed loop.485

To do so, we select a part of the trajectory where it seems regular and almost periodic, and integrate this part of the trajectory

with a very small timestep
:::
time

::::
step. We then take this as a representation of the laminar regime. Of course,

:::
this

:::
part

:::
of the

trajectory is not strictly periodic, so choosing different parts of the trajectory will lead to slightly different representations.

This representation allows to define the "laminar distance" for any point ζ in the trajectory, as the smallest of the distances

between ζ and all points in the representation of the laminar regime. From a dynamical point of view, points with small laminar490
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distances will be considered as points in the laminar regime, while points with a significantly non-zero laminar distance can be

considered as chaotic points.

Figure 11 shows the dimension as a function of the laminar distance for that point. More specifically, 6 values of the radius

R (R= 2,5,10,15,20,30) were whosen
:::::
chosen

:
and the dimension for 1000 computation points is computed. Each panel

corresponds to a specific radius R. In addition, the red vertical line marks where the laminar distance is equal to the radius R495

used in this plot.

One can see from Fig. 11 that the dimension peaks for points whose laminar distance equals R. In other words, from the

point of view of a given point:

– when R is smaller than the laminar distance, the dimension is around 2,

– when R equals the laminar distance, the dimension has a peak,500

– when R is bigger than the laminar distance, the dimension decreases between 1 and 2.

The fact that there is a peak in the dimension when R equals the laminar distance can be understood by noting that it

corresponds to the entrance of the laminar structure in the B(R) ball around the computation point ζ. There are suddenly a

lot of points in the ball, near the boundary of the ball, so that the distribution of points in B(R) resembles more the dark blue

curve than to the orange curve in Fig. 3.505

When R is bigger than the laminar distance, the situation becomes similar to the one in Fig. 6 and the dimension becomes

closer to 1. The dimension is 1 only if R is sufficiently bigger than the laminar distance (equivalently,
::
i.e.

:
R≫ a in Fig. 6),

which can happen only for points sufficiently close to the laminar regime. For other points, other parts of the loop forming the

attractor in Fig. A1 would enter the B(R) ball and modify the scaling, or the curvature effects become too important. In those

cases (when R is bigger than the laminar distance, but not much bigger), the distribution of points in B(R) is not close to a510

power law, so that the exponential fit is not appropriate.

When computing the dimension in the asymptotic limit
::::::
R→ 0, the radius R should be below any other geometric scale

around the computation point ζ. For the chaotic points, this geometric scale is
:
in

::::
this

::::
case

:
their laminar distance, while for

laminar points, the geometric scale would be
::
is the "width" of the laminar structure in phase space.

As a consistency check for that interpretation, we tried to estimate the laminar distance for each of the 1000 computation515

points as the value of the radius R for which the dimension is maximum. For these 1000 computation points, we computed the

radii R as percentiles, the corresponding dimensions, and their laminar distance
::
To

::::::
achieve

::::
this,

:::
we

::::
used

:::
the

:::::
values

:::
of

::
the

::::::
radius

::
R

::::::::
computed

::
as

::::::::::
percentiles

:::
and

:::
the

::::::::::::
corresponding

::::::::::
dimensions. In order to use only meaningful values of the dimension, for

each computation point, we restricted the dimension to the range of values of R where NRMSE< 0.5 and s > 4. We rejected

all estimations where the maximum was found on one of the end of this range because this points to the fact that the true520

peak of the dimension is maybe not in this
::::::
outside

::
of

:::
the

:
range of values

:
of

::
R
:::
we

:::::
have

::
for

:::::
these

::::::
points. Because of that, the

laminar distance could be estimated for only one fourth of the 1000 computation points. The scatter plot in Fig. 12 shows

the comparison of the laminar distance with this estimation of the laminar distance using EVT (
::::
which

:::
we

::::
call "EVT laminar

distance").
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Figure 11. Scatter plots of the local dimension in terms of the laminar distance. In a plot, all the dimensions have been computed with the

same radius R (the value is above the plot). The red horizontal line marks the dimension value equal to 2, while the vertical red lines marks

::::
mark the value of the laminar distance which is equal to the radius R.
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Figure 12. Comparison of the EVT laminar distance with the laminar distance for the intermittent Lorenz 63 (ρ= 166.5). The EVT laminar

distance is computed as the distance for which the dimension is maximum (see text).

Note that the EVT laminar distance tends to be bigger than the laminar distance
::::
itself. This is because, if R is precisely equal525

to the laminar distance, there are not enough points in B(R) for δ̂ to be really influenced. R has to be a little bigger than the

laminar distance for δ̂ to really increase, and the dimension
::::
peak

:
of δ̂ is for values of R a little bigger than the laminar distance.

We carried out the same analysis on two other intermittent dynamical systems: the Lorenz 96 system with n= 4 variables

for F = 11.87, and the Lorenz 96 system for n= 12 variables for F = 4.4. Figures similar to 11 for those two systems are

displayed in Appendix B.530

4 Application to large systems

In this section, we present the results of the computation of the dimension for two large systems: the Lorenz 96 system with

n= 50 dimensions and the RADCLIM dataset (radar images of the precipitation field).

4.1 Lorenz 96, n = 50

The Lorenz 96 system (see Appendix B for a brief description) with n= 50
:::::::::
dimensions

:
and F = 4.9 was integrated for535

tmax = 106,
::::
was

::::::::
integrated

::::
for

:::
106

:::::
time

::::
units

:
with a timestep

::::
time

::::
step

:
of dt= 0.1

::
for

::::
two

::::::
values

::
of

:::
the

::::::::::
parameter:

:::
for

:::::::
F = 4.9

:::
and

:::::
F = 6. This gives a total number of points of Ntot = 107 points in the trajectory.

::::
Each

::
of

:::
the

:::
two

::::::::::
trajectories

:::
has

:::
107

::::::
points. The radii R are

::::
were computed as percentiles and the corresponding estimates of the dimension are

::::
were

:
computed

::
in

::::
each

::::
case.
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Figure 13. Left: Plot of the dimension against the radius R for 100 computation points for Lorenz 96 with n= 50 and F = 4.9. Only fits for

which NRMSE<0.4 and s > 6 are shown. The dotted lines detect a structure and the corresponding points are part of that structure. Right:

Scatter plot of the NRMSE vs s for the Lorenz 96 system with n= 50 and F = 4.9, with log10N in color.

:::
The

::::::
results

:::
for

:::::
F = 6

:::
are

:::::::::
presented

::
in

::::
Fig.

:::
B3.

::::
Our

::::::
method

::::::::
suggests

:::
that

:::::
there

:::
are

::
no

::::::
salient

:::::::::
geometric

:::::::
structure

:::
in

:::::
phase540

::::
space

:::
for

::::
that

::::::::
parameter

::::::
value.

:::
We

::::
focus

::::
now

:::
on

:::
the

:::::::
F = 4.9

::::
case.

The right plot of Fig. 13 shows as expected that the NRMSE score decreases when s is increased. The left panel of Fig. 13

shows the estimated local dimension against the radius R of the ball for 100 points in this system. The more a curve starts at

a high value of R, the more the corresponding point is alone in phase space. We selected the points for which the NRMSE is

smaller than 0.4 and s > 6.545

One can see at the bottom of the plot a set of curves having all a small maximum for radii between 8 and 12, and maximum

dimension smaller than ∼ 12 (dotted curves).

These points seem to detect a structure of points at a distance 10− 12 from them. If there was such a structure at that

distance, we would see other curves with maxima for small values of R for the points which are part of this structure, as for the

intermittent Lorenz 63 in section 3.3. Since there are no such curve,
:::
and because the dotted curves look quite regular, and also550

because they correspond to a great proportion of all the curves, we can think that the points corresponding to these curves are

part of the detected structure. In other words, the dotted curves correspond to points which are part of the structure that these

curves detect. Geometrically, the points of these curves have a similar role than the laminar points of the section 3.3.
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To understand how a structure can be detected by the curves of the points which are part of that structure, consider points

uniformly distributed on a circle of radius R̃. From the point of view of a point on the circle, the number of points at a distance555

<R grows as R̃arccos
(
1− R2

2R̃2

)
. This curve is the steepest when R approaches 2R̃, so that the fitted δ would have a peak

for R∼ 2R̃. This peak is analogous to the peak of the dotted curves in the left plot of Fig. 13.

The curves which are not in this set are much more diverse. They all start at a higher value of the radius, which is because

the corresponding points are in less dense parts of the phase space. Typically, their starting value of δ̂ is also higher, and this

is because the density of points around those points typically increases. This leads to artificially high values of δ (see δeff of560

section 2.5). Some of these curves have a bump: these could be because the structure described above enters their ball, and the

radius for which this happens would then be the distance of the corresponding points to the structure (laminar distance of the

section 3.3).

To further clarify this viewpoint, a trajectory of this system with 105 points was generated and the dimension is computed

for all points. The 105 points were labelled as
:::::
either laminar or chaotic, with the following steps:565

1. restrict the curve for radii R> 8;

2. look for the maximum of this restricted curve;

3. if this maximum is not at the ends of this curve, and if the value of the dimension at the maximum is smaller than 12, the

point is labelled as laminar.

Points not labelled as laminar are labelled as chaotic. Note that the laminar/chaotic points are not necessarily laminar/chaotic570

in the context of chaotic intermittency in dynamical systems, but we use this terminology to distinguish
:::::::
between

:
points with

different dimension characteristics.

If the points we have labelled as laminar indeed form a geometric structure in phase space, the distance of chaotic points

to this structure should correspond to a maximum of the dimension. Therefore, we proceed as in section 3.3: for each chaotic

point,575

1. we define the laminar distance as the minimum distance between the point and all the laminar points (in other words,

using the
::
set

::
of

:
points labelled as laminar as a representation of a laminar regime).

2. we define the EVT laminar distance as the radius R giving the maximum dimension.

If our above labelling of laminar and chaotic points is meaningful, the two distances should agree. As shown in the scatter

plot of Fig. 14, there is a good agreement and we take this as a consistency check of our interpretation of the curves in the left580

panel of Fig. 13.

Note that, for 32.8% of the chaotic points, no distance could be computed using the second way (for the same reason than
::
as

in section 3.3). Also, the fact that we find a structure in phase space, analog to the laminar structures of the previous sections,

points to the fact that the Lorenz 96 system
::::
with

::::::
n= 50

::::::::::
dimensions for this value of F

:::::::
F = 4.9 could be in an intermittent

regime.585
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Figure 14. Scatter plots of the two ways to compute the distance to the laminar structure
::
for

::::::
chaotic

:::::
points.

To summarize, we computed the dimension in this high-dimensional system . As
::::
and,

::
as shown in the previous section 3.3,

the dimension highly depends on the radius R used to compute it, but this can be used to obtain some characterization of the

geometry of the phase space: some points of the attractor are collected in a structure, much as the laminar points in section 3.3.

The distance from the other points to this structure can be estimated.

4.2 RADCLIM dataset590

We now present the results of the computation of the dimension for the RADCLIM dataset (see Appendix C for a description).

Before computing the dimension, the images were upscaled to 14x14 for two reasons. The first is that the whole dataset is

then obviously easier to work with. The second is based on the hope that the upscaled images would define a reduced and less

complex attractor , with smaller values of the local dimension
:::::
within

::
a
:::::::
reduced

:::::
phase

:::::
space.

The upscaling to 14x14 images was done by averaging the neighbouring pixels, after the log-transform of the rain rate. This595

is a way to take into account the multiplicative structure of the rain (Veneziano et al., 2006; Seed, 2003; Lovejoy and Schertzer,

2013) during the upscaling. As in Pulkkinen et al. (2019b), the zeros were transformed to -15 in logarithmic scale.

The geometry of the phase space defined by these images is quite particular. The value of each pixel is taken as an axis in

phase space, which is therefore a 14x14 = 196 dimensional euclidean space. Since the minimum value for all pixels is -15,

the phase space is actually restricted to the orthant defined by xi ≥−15 ∀i= 1, ...,196. There are 7150 (= 1.13% of 630008)600

images without any rain (i.e. dry event, xi =−15 ∀i).
:::
The

:::::
point

::::::::::
xi =−15 ∀i

:::::::::::
corresponds

::
to

::::::
images

:::::::
without

:::
any

::::
rain,

::::::
which

::
we

::::
call

:::
the

:::
dry

:::::
event.

:::::
There

:::
are

:::::
7150

::::
such

::::::
images

::::::
(1.13%

::
of

:::
all

:::
630

::::
008

::::::
images). Even among images with rain, most of them
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Figure 15. Histogram of the distances to the dry event for the RADCLIM dataset.

are close to the dry event. The histogram in Fig. 15 shows the distribution of all distances to the dry events (including the dry

events themselves).

This histogram shows that the density of points in phase space decreases very quickly when getting away from the dry605

event. As a comparison, if the density of points ρ was constant in phase space, the number of points whose distance to the

dry event is between r and r+ dr would be ≈ ρrn−1dr = ρr195dr. This means that the heights of the sticks in this histogram

would grow as r195, which is radically different than
::::
from what is observed! The relationship between distances and volumes

in high-dimensional spaces can be quite different than
::::
from our 3-dimensional intuition.

For 2000 computation points, the dimension was computed for 40 different values
::
of

::
R. As before, 40 percentages were fixed610

(exponentially spaced between 8× 10−4%→ 5 points and 10%→ 63 000 points), and the radii
::
R were chosen to correspond

to the percentiles among all distances. Figure 16 shows the computed dimension as a function of the radius R for 100 points:

the left plot has a logarithmic scale for R and the right plot has a linear scale for R, allowing to see more clearly the plot for

small R values or for large R values. The color represents the 10-logarithm of the averaged convective rain rate (see below).

For some of the 2000 points, there is a bump in the dimension, which would point to the existence of some structure. We615

tried to apply the same procedure as in section 3.3 to compute the distance to the laminar regime. The procedure outputted

::::::
allowed

::
to

:::
get

:
a laminar distance for only 487 out of 2000 points (for the same reason than

::
as in section 3.3: we discarded the

estimation if the maximum dimension is on one of the ends of the range). It turns out that the laminar distance
::::::::
computed

::
in
::::
this

:::
way

:
is highly correlated to the distance to the dry event: see Fig. 17. As a consequence, the points labelled as laminar would

simply be the dry events, or events which are almost dry. The laminar distance as defined in this way does not really seem to620

contain any additional valuable information than the distance to dry events.
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Figure 16. Plot of the dimension against the radius for 100 points for the RADCLIM data (NRMSE< 0.4 and s > 5).
:::
The

::::
color

::
is

:::
the

::::::::::
10−logarithm

::
of

:::
the

::::::::
convective

:::
rain

:::
rate

::::::
(CRR).

In order to check if there is any valuable information in the set of values of R for one
:::
any computation point, we computed

the
:::::
looked

:::
for

::
a
::::
way

::
to

::::::::
aggregate

:::
the

:::
40

::::::
values

::
of

::
R

:::
we

::::
have

:::
for

:::::
each

::::::::::
computation

:::::
point,

::::
and

:::::::::
considered

:::
the

:
mean and the

median of R for all
::::::::::
computation points. Note that these quantities obviously depend on the way the percentages to compute the

dimension for were chosen. Because of that, one could think that this mean and this median
::::
these

:::::
mean

:::
and

:::::::
medianwould not625

be very informative. These values are however relatively stable: we checked for example that they do not change much if we

use the 10 smallest radii
:::
that for each point, instead of the 40 we have. This is because the extent of the range of values of radii

::
we

:::::
have

::
for

::::
one

::::::::::
computation

:::::
point is small with respect to the actual values of the radii. This also is

:
is

::::
also why the mean and

the median does
::
do

:
not differ much, and why they give a measure of the relevant values of the radius for each point. Figure 17

shows that there is a correlation of these two quantities
:::::
(mean

:::
and

:::::::
median

::::
radii)

:
with the laminar distance and the dry distance.630

This shows that these 4 quantities (median radius, mean radius, laminar distance, dry distance) are essentially the same.

We see here the difficulty to work with high-dimensional systems, as discussed in the section 2.4. The particular geometry

of this phase space worsens even more the situation, because most of the points are collected near the dry event, as shown

in the histogram of Fig. 15. Because of this, the dimension for all points can only be computed reliably on quite small range

relatively to the
::::::
ranges

::
of

:
values of Rinvolved. For example, the points for which the curves are on the left of Fig. 16 have635
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Figure 17. RADCLIM data:
:::::
Scatter

:::
plot

::
of

:
the laminar distance on x−axis, with the median radius, the mean radius and the distance to the

dry event on the y−axis.

often R approximatively within [30,40]. This is a too small range of values of R to properly interpret the computed values of

δ. The same happens for the points for which the curves are on the right of the figure: they have often R ∈ [80,100].

We used the convective available potential energy (CAPE), the convective rain rate (CRR) and the convective precipitation

(CP) data from the ERA5 reanalysis to compare with the quantities computed in the phase space. For the region covered by the

RADCLIM dataset, they come in
::
as 26x41 images with a 1-hour resolution. We computed the mean of these images in order to640

have one value for each hour. For each of the 2000 computation images
:::::
points, we associated the closest in time available value

of the CAPE, the CP and the CRR. As suggested by the color grading in Fig. 16, one can find a correlation between the mean

radius, the dry distance or the laminar distance on one hand, and the CRR on the other hand: Fig. 18 shows the corresponding

scatter plots for the 2000 images.

Results with the CP instead of the CRR are very similar, while the correlations with the CAPE also exist but are not as good.645

The correlation of the CRR is the highest with the laminar distance but this is because of the restriction to some points. The

laminar distance could indeed be computed for only 487 points out of 2000, while the mean radius and the dry distance can be

computed for all the points. If we restrict the computation of the correlation between the CRR and the mean radius to the points

for which a laminar distance was computed, one gets a correlation of 0.70. The same happens for the correlation between the

CRR and the dry distance.650

We checked also if some information can be extracted from the mean value of the dimension: for each image, we computed

the mean of the dimensions
:::::::
resulting

::::
from

::::
fits whose NRMSE score was below 0.4 and s above 5. Figure 19 shows the

histogram of the repartition of this mean dimension for our 2000 computation images
:::::
points (in orange) and the scatter plot of
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Figure 18. RADCLIM data: scatter
:::::
Scatter

:
plots of the mean radius, the dry distance and the laminar distance (y−

::
x−axis) with respect to

mean convective rain rate (CRR) (x−
::
y−axis). The numbers in the legend are the correlation coefficients of the 10-logarithm of each of these

distances with log10(CRR).

this mean dimension with the CRR (in color grading from dark blue to orange). A complementary 2D histogram of the mean

dimension with to the CRR is shown in Appendix C (Fig. C1).655

A few things can be noted here:

– the
:::
The

:
histogram has a nice peak around a mean dimension of 15-20; .

:

– the
:::
The

:
relationship with the CRR is not very clear, except that there is generally less variability in the CRR when the

dimension is higher; .
:

– as
:::
As expected, images the farther away from the dry event have the higher CRR, but those images do not have the660

highest values of the mean dimension: their mean dimension is rather between 10 and 20;
:::
20.

– when
:::::
When the mean dimension is below 10, the distance to the dry event is always relatively small(i. e.

:
.
::::
Vice

:::::
versa, for

big enough distances, the dimension is always above 10; this
:::
10.

::::
This can also be seen from Fig. 16 taking into account

that the distance to the dry event is almost the same than
:
as

:
R.

This
::
To

::::::::::
summarize,

:::
this analysis of the results of the computed dimension for the RADCLIM dataset shows that it is possible665

to compute reliably the dimension for some points and for some radii R, but the results are quite difficult to interpret,
:
.
::::
This

:
is
:

essentially because of the limited number of data with respect to the number of dimensions at play. The estimated local

dimensions ranges between 10 and 30, with a peak around 15-20. Not surprisingly, we observed a link between the convective

rain rate and the distance to the dry event.
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Figure 19. Histogram of the repartition of the mean dimension for our 2000 computation images
::::
points

:
(in orange) and scatter plot of this

mean dimension with the CRR (in color scale). The color is the distance to the dry event.

5 Summary and discussion670

As emphasized in the introduction, results on the local dimension of attractors of dynamical systems predict that
:::::
almost

:
all

points have the same dimension in the asymptotic limit . The
::
of

::::::
infinite

:::::::
number

::
of

:::::
points

:::
and

::::::::
infinitely

:::::
small

:::::
radius

:::
R.

:::::::
Because

::::
these

:::::
limits

:::
are

::::::::::
impossible

::
to

:::::
reach,

:::
we

::::::
studied

:::
the

::::::::
behavior

::
of

:::
the

:
local dimension for finite R

:::
and

:::::::
showed

:::
that

::
it allows to

detect geometrical structures in phase space of chaotic dynamical systems.
:::
The

:::::
main

::::::
visible

::::::
feature

::
of

::::
this

::::::::
detection,

::
is

::::
that

::
the

:::::::::
dimension

:::
has

::
a
::::
peak

:::
for

:::
the

:::::
value

::
of

::
R

::::::::::::
corresponding

::
to

:::
the

:::::::
entrance

::
of

::
a

::::::::
geometric

::::::::
structure

:::::
inside

::::::
B(R).675

When working with such tools, one always faces the question to know if the estimation of the dimension is reliable or not.

This question is linked to that of the maximal dimension that one can estimate with a given number of points inside B(R). We

systematically used the NRMSE score and the quantity s to tackle this problem. The development leading to the definition of s

brought some light on the problem of the maximal measurable dimension using EVT techniques. This gives some falsifiability

methods, which were lacking before, as was noticed in Datseris et al. (2023).680

In short, the dimension is estimated as the exponent of the power law C(r)∼ rδ over a some range [0,R]. If the NRMSE

score is good enough, a 10% accuracy for δ
:::::::
relatively

:::
to

:
δ̂
:

is achieved with N ≳ 400 points. However, a high exponent in

the scaling C(r)∼ rδ (i.e. a high dimension) will not be visible over a long interval [0,R] if there is
::
are

:
not enough points.

This is why high dimensions may be estimated, but only on limited ranges. There is no contradiction with the argument of
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(Eckmann and Ruelle, 1992)
:::::::::::::::::::::::
Eckmann and Ruelle (1992) : for a fixed range [0,R], the number of points needed to measure a685

dimension indeed grow exponentially with the dimension. The same applies for the correlation dimension: for a fixed number

of points, higher dimensions can be measured if the range [0,R] decreases.

As shown, the dimension depends on the finite radius R of the ball B(R) used to compute the dimension. This implies that

one cannot simply choose some small percentage (as 2% or 5%), compute R as the corresponding percentile and get a unique

value for the dimension. In fact, different finite values of R may lead to very different values for the dimension.690

To understand what is captured by the computed dimension at a given scale R, one has to compare R with the other local

geometrical scales on the attractor. In this work, these scales were mainly set by some geometrical structures, but Perinelli et al.

(2023) showed that the curvature could also set some scale, and the idea that the scale of the noise could play a role was raised

by Little et al. (2017). We also identified that estimations of the dimension can be affected when the density of points is not

constant. This often leads to an overestimation of the dimension. The value of the dimension for a given R can be affected by695

yet other phenomena, and it is important to recognize which ones are at play to interpret correctly the dimension.

For the RADCLIM dataset, one difficulty is that the number of points is rather limited so that, for each computation point,

values of the dimension could only be computed in a very limited range of values of R. This was expected from the analysis of

Section
:::::
section

:
2.4, and this makes difficult the interpretation of the value of the dimension for this high-dimensional system.

Some interesting conclusions could however be gathered from the analysis, in particular that the range of dimension is between700

10 and 30 with a peak at 15-20.

:::::
There

:::::
exists

:::::
other

::::
ways

:::
to

:::::::
compute

:::
the

:::::
local

:::::::::
dimension,

::::
such

:::
as

:::
the

::::::::
Lyapunov

:::::::::
dimension

::::::::::::::::::::::
(Kaplan and Yorke (1979)

:
,
:::
see

:::::::::
Ott (2002)

::
for

::
a
:::::::
textbook

:::::::
review)

::::
and

:::
the

:::::::::
dimension

:::::::
induced

::
by

:::
the

:::::
delay

:::::::::
coordinate

:::::::
method

::::::
(delay

:::::::::
embedding

::::::::::
dimension,

:::::::::::::::::
Packard et al. (1980),

:::
see

:::::::::::::::
Abarbanel (1996)

:::
for

:
a
:::::::
textbook

:::::::
review).

::::
The

:::::::::
dimensions

:::::::::
estimated

::::
using

:::
the

:::::::::
correlation

::::::::::
dimension,

:::::
which

:::
we

::::::
argued

::
is

:::::::::::
conceptually

:::::::::
equivalent

::
to

:::
the

:::::
EVT

::::::::::
dimension,

:::
and

:::::
using

:::
the

:::::
EVT

:::::::::
dimension

:::::
itself

:::
are

:::::::::
compared

:::
the705

::::::::
Lyapunov

:::::::::
dimension

::::
and

::
to

:::
the

::::::
delay

:::::::::
embedding

:::::::::
dimension

:::
in

:::::::::::::::::
Datseris et al. (2023)

:
.
:::::
Note

::::
also

::::
that,

:::
for

:::::
these

::::
two

:::::
latter

::::::::
definitions

:::
of

:::
the

::::::::::
dimension,

:::::
there

::
is

::
no

::::::::::
equivalent

::
to

:::
the

:::::
scale

::
R

:::
of

:::
the

:::::
EVT

:::::::::
dimension

:::
and

::::
the

:::::::::
correlation

::::::::::
dimension.

:::::::
Because

::
of

::::
that,

:::
we

::
do

:::
not

::::::
expect

:::::
future

::::::::::
comparison

:::::
study

::
(if

::::
any)

::
to

::
be

::::
able

::
to

::::::
recover

:::
the

::::::::::::
interpretation

::
of

:::
the

::::::::::::
R-dependence

::
of

:::
the

::::::::
dimension

::::::::
proposed

::::
here

:::
for

:::
the

::::::::
Lyapunov

:::::::::
dimension

::::
and

:::
the

::::
delay

::::::::::
embedding

:::::::::
dimension.

:

Appendix A: Lorenz 63 system710

The Lorenz 63 system is defined by the following equations (Lorenz, 1963)
ẋ = σ(y−x)

ẏ = ρx− y−xz

ż = xy−βz

(A1)

where σ,β and ρ are constant. Usual values are σ = 10, β = 8/3 and ρ= 28. In this configuration, the system is known to be

chaotic.
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Figure A1. Lorenz 63 attractor for ρ= 166.5. The remaining of the attractor before the bifurcation is visible.

The same system for ρ= 166.5 was also considered (σ and β being unchanged). This system is known to be intermittent,715

meaning that it follows regular
:::
and

::::::
almost

:::::::
periodic patterns for some periods of time (so-called "laminar" phases), alternating

with other periods where it seems to behave randomly (the "chaotic bursts"), see Ott (2002); Schuster and Just (2006); Elaskar

and Rio (2017) about intermittent dynamical systems. A trajectory is displayed in Fig. A1.

As was first noted in Pomeau and Manneville (1980), this system undergoes a bifurcation for
::
at ρ≈ 166.07: the attractor is

first periodic but disappears through a saddle-node bifurcation (Sparrow, 1982). The regular pattern followed during laminar720

phases after the bifurcation is the remaining of the attractor before the bifurcation.

Appendix B: Lorenz 96 system

The Lorenz 96 system (Lorenz, 1996) is a dynamical system with n variables xi for i= 1, . . . ,n (n≥ 4). The evolution equa-

tions for the xi’s are

ẋi = (xi+1 −xi−2)xi−1 −xi +F (B1)725

where index i is understood as periodic: x−1 = xn−1, x0 = xn and xn+1 = x1. The parameter F is a forcing constant.

This system for n= 4 goes through a saddle-node bifurcation at F ≈ 11.83 (Sterk and van Kekem, 2017; van Kekem and

Sterk, 2018) and is intermittent after
:::
for

::::::
slightly

::::::
higher

:::::
values

::
of

::
F
:
(see Appendix A for a brief introduction on intermittency).

Figure B1 shows that the estimated value of δ is maximum when the laminar distance is equal to R, as in Fig. 11.
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Figure B1. Same as Fig. 11 but for the Lorenz 96 system with n= 4 and F = 11.87 (106 points in the trajectory). The vertical red lines

marks
::::
mark the value of the laminar distance which is equal to the radius R and the horizontal line marks the values 2 for δ̂.

We also considered the Lorenz 96 system with n= 12
::
for

:::::::
F = 4.4. We found a bifurcation at F ≈ 4.25 with an intermittent730

behavior after this value. The attractor before the bifurcation is multi-dimensional, and so is also the laminar regime in this

case. Because of this,
::::::
laminar

::::::
regime

:::
for

::::
this

::::::
system

:::::
forms

::
a
:::::
higher

:::::::::::
dimensional

:::::::
structure

:::
in

:::::
phase

:::::
space

:::
and

:
the trajectory

in laminar phases is not almost periodicand one .
::::
One

:
cannot proceed as we did for Lorenz 63 with ρ= 166.5 , to get a

representation of the laminar regime. Instead, we used a trajectory for F = 4.2 to represent the laminar regime. The problem

with this appraoch
:::::::
approach is that the laminar regime after the bifurcation has moved and expanded in phase space with735

respect to the attractor at F = 4.2. The peak of the dimension when the laminar distance is equal to R is still clearly visible in

Fig. B2.

::
In

::::::::::
complement

:::
to

:::
the

:::::::
analysis

:::
for

::::
the

::::::
Lorenz

:::
96

::::::
system

:::::
with

::::::
n= 50

::::::::::
dimensions

::
in

:::::::
section

::
4,

:::
we

:::::::::
computed

:::
the

:::::
local

::::::::
dimension

:::
for

:::
the

:::::
same

::::::
system

:::
for

::::::
F = 6.

:::
We

::::
used

:
a
::::::::
trajectory

::
of
::::
107

::::::
points.

:::
The

:::
left

:::::
panel

::
of

::::
Fig.

:::
B3

:::::::
displays

:::
the

:::::::::
dimension

::
as

:
a
:::::::
function

:::
of

::
R

:::
for

::
50

:::::::::::
computation

:::::
points

:::::::::
(restricted

::
to

::::::::::::
NRMSE< 0.4

::::
and

::::::
s > 6),

:::::
while

:::
the

::::
right

:::::
panel

::
is
:::
the

::::::
scatter

::::
plot740
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Figure B2. Same as Fig. 11 but for the Lorenz 96 system with n= 12 and F = 4.4 (105 points in the trajectory). The vertical red lines marks

::::
mark the value of the laminar distance which is equal to the radius R.

::
of

:::
the

:::::::
NRMSE

:::
vs

:
s
:::
for

:::
all

:::
fits.

::::
The

:::::::
behavior

:::
of

:::
the

:::::::::
dimension

::::::
against

::
R

::
is

:::
the

:::::
same

:::
for

::
all

::::::
points

:::
and

:::
we

::::::::
conclude

:::
that

::::
our

::::::
method

::::::::
suggests

::::
that

::::
there

::
is

:::
no

:::::
salient

:::::::::
geometric

:::::::
structure

::
in
:::::
phase

:::::
space

:::
for

::::
that

::::::::
parameter

:::::
value.

Appendix C: RADCLIM dataset

The RADCLIM radar dataset (Goudenhoofdt and Delobbe, 2016; Journée et al., 2023) is a high horizontal and temporal

resolution quantitative precipitation estimation in Belgium and its surroundings. It is based on radar measurements, which are745

merged with rain gauges measures.

The time resolution is 5 minutes and we used 6 years of product. A few images are missing in the dataset, which has in total

630 008 radar images. The images are 700x700, with each pixel representing a square of 1kmx1km.
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Figure B3.
::
For

:::
the

:::::
Lorenz

:::
96

:::::
system

::::
with

::::::
n= 50

:::::::::
dimensions,

::::
same

::
as

:::
Fig.

:::
13

::
but

:::
for

::::::
F = 6.

::::
Left:

::::::::
dimension

:
δ̂
::
as

:
a
:::::::
function

::
of

::
R

::
for

:::
50

:::::::::
computation

:::::
points

:::::::::::
(NRMSE< 0.4

:::
and

::::::
s > 6).

:::::
Right:

:::::
scatter

:::
plot

::
of

:::
the

:::::::
NRMSE

::
vs

:
s
:::
(all

:::
fits).

Figure C1. 2D histogram of the repartition of the mean dimension for 5000 computation images
::::
points

:
with the associated CRR.

As a complement to Fig. 19, Fig. C1 is a 2D histogram of the mean dimension against the CRR. 5000 computation images

:::::
points were used (instead of 2000 in Section

::::::
section 4.2) in order to have a more reliable histogram.750
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