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Abstract. The eventual planetary warming in response to elevated atmospheric carbon dioxide concentrations is not precisely

known. The uncertainty in S primarily results from uncertainties in net physical climate feedback, usually denoted as λ.

Multiple lines of evidence can constrain this feedback parameter: proxy-based and model evidence from past equilibrium

climates, process-based understanding of the physics underlying changes, and recent observations of temperature change,

top-of-atmosphere energy imbalance, and ocean heat content. However, despite recent advances in combining these lines of5

evidence, the estimated range of S remains large. Here, using a Bayesian framework, we discuss three sources of uncertainty:

uncertainty in the evidence, structural uncertainty in the model used to interpret that evidence, and differing prior knowledge

and/or beliefs, and show how these affect the conclusions we may draw from a single line of evidence. We then propose

strategies to combine multiple lines of evidence. We end with three recommendations. First, we suggest a Bayesian random

effects meta-analysis be used to estimate the evidence and its uncertainty from published literature. Second, we advocate that10

the organizers of future assessments clearly specify an interpretive model or group of candidate models,in the latter case using

Bayesian model averaging to more heavily weight models that best fit the evidence. Third, we recommend that expert judgment

be incorporated via solicitations of priors on model parameters.

1 Introduction

When a radiative forcing ∆F is applied to the climate system, it induces a radiative imbalance ∆N at the top of the atmosphere15

and a response ∆R of the system itself. To first order, ∆R= λ∆T , where ∆T is the change in global mean surface temper-

ature. The feedback parameter λ thus measures the additional radiative flux density exported to space per unit warming. On

sufficiently long timescales the climate comes into equilibrium (∆N = 0), internal variability is negligible and we can write a

simple energy balance model (denoted M0) for the climate system:

M0 : ∆N =∆F +λ∆T. (1)20

In the special case where the radiative forcing results from a doubling of atmospheric CO2 relative to its preindustrial concen-

tration of 280ppm (∆F = F2×CO2) the resulting temperature change defines the equilibrium climate sensitivity S:

S ≡−F2×CO2

λ
. (2)
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S is often used as a metric to quantify expected warming in response to radiative forcing, but has remained stubbornly uncertain

even as climate models have improved and become more sophisticated. A 2020 community assessment (?, hereafter S20)25

reduced this range using multiple lines of evidence, but the recent IPCC report ? assessed only “medium confidence" in the

upper bound. Is it possible to further narrow the estimated range of S, and can we increase our confidence in this result?

S is determined by the net feedbacks λ at equilibrium and in response to doubled CO2. While these are unobservable in

the current system, in which CO2 has not yet doubled and which is out of equilibrium, there exist several lines of evidence

that might constrain λ. We have some process-based understanding of individual feedback processes and their correlations30

derived from observations and basic physics. We also have the evidence of the planet itself, which has been steadily warming

in response to net anthropogenic forcing, which includes not just emissions of CO2 but of other greenhouse gases and aerosols

as well. Finally, we have proxies that provide evidence about equilibrium climates of the past. S20 attempted to synthesize

these three lines of evidence, arriving at constraints on climate sensitivity that narrowed the former range.

In S20, the spread in S arose from reported and assessed uncertainty in historical observations and paleoclimate recon-35

structions, expert judgement about the uncertainty of physical processes, and the use of different priors on λ and/or S. IPCC

AR6 assessed confidence in the range of S based on support from individual lines of evidence, and the medium confidence

assessed was in large part due to the fact that not all lines of evidence supported the same upper bound. By contrast, S20 sought

to provide a robust estimate by combining lines of evidence in a coherent Bayesian framework. However, S20 used baseline

priors and estimates of the evidence and investigated the impact of alternate choices as sensitivity tests rather than attempt to40

combine multiple priors, estimates, and expert judgements into a single posterior probability distribution. In both IPCC AR6

and S20, as in almost all previous assessments, the means by which disagreements among experts were resolved or handled

was not necessarily made transparent. This paper presents some lessons learned by two authors of S20 and attempts to chart a

way forward.

Our goal is to understand where unavoidable subjective decisions enter in to the analysis and to present a framework for45

systematically and fairly incorporating the subjective judgements of multiple experts. Ultimately, we seek to create a framework

in which expert judgement is incorporated in the form of clearly specified priors.

The paper is organized as follows. In section 2, we review the basic Bayesian analysis framework. Sections 3, 4, and 5 discuss

evidence, structural, and prior uncertainty, respectively. In these sections, we use a single line of evidence– paleoclimate data

from the Last Glacial Maximum– to illustrate how these sources of uncertainty shape estimates of climate feedbacks and50

sensitivity. In Section 6 we show how these sources of uncertainty affect constraints derived from multiple lines of evidence.

In Section 7 we propose a new method for combining multiple published studies and multiple models, which may be used

in the future to arrive at a robust community assessment of climate sensitivity. Finally, in section ?? we discuss possible

generalizations and extensions.

2 Analysis framework55

Bayes’ Theorem can be written as
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P (Θ|Y,M) =
P (Y |Θ,M))P (Θ|M)

P (Y |M)
. (3)

Here, we will define these terms as they apply to the problem of estimating climate sensitivity.

Evidence The evidence Y used to constrain climate sensitivity consists of the global mean temperature change ∆T in re-

sponse to a forcing ∆F as well as, in non-equilibrium states, the net energy inbalance ∆N . We have estimates of these60

quantities for the historical period (derived from observations and models) and for past climate states (derived from pale-

oclimate proxies and models), and Y therefore consists of multiple lines Y1 . . .Yn. For example, S20 used process-based

understanding of underlying physics, recent observations, and proxy-based reconstructions of past climates to assess S.

Model The model M codifies how we interpret the evidence Y . It specifies the parameters Θ whose posterior distributions

we estimate. For example, in the simple energy balance model denoted M0, there is only one parameter and Θ= λ.65

The model determines the likelihood P (Y |Θ,M) of observing the data given particular values of the parameters Θ. We

discuss methods for calculating this likelihood in Section 3.1.

Prior The prior probability distribution P (Θ|M) reflects prior beliefs or knowledge about the model parameters Θ. For ex-

ample, in the simple model M0, the community assessment S20 adopted a uniform prior on λ as a baseline choice,

choosing not to rule out net positive feedbacks (and therefore an unstable climate) a priori. Both the geological evidence70

and process understanding presented in Section 3 of S20 effectively rule out both positive and extremely negative feed-

backs, and thus an alternate prior reflecting this physical knowledge might be a normal distribution N(µ,σ) with mean

µ=-1.30 and standard deviation σ = 0.44.

This framework allows us to use our prior understanding of the parameter values to calculate the posterior probabilities

P (Θ|Y,M) of the model parameters given the evidence. This posterior can be updated as new evidence becomes available.75

Bayesian statistics is both praised and criticized for its inherent subjectivity (see, e.g. ?). But all statistical analyses depend

on prior knowledge and interpretive models, whether implicit or explicit. The Bayesian framework merely makes clear where

unavoidable subjective decisions enter the analysis.

Figure 1 summarizes the decisions that must be made in any Bayesian analysis of climate feedbacks. First, the analyst must

decide what constitutes “evidence". This requires an assessment of the literature assessing ∆T , ∆F , and ∆N for each line of80

evidence. Second, the analyst must specify a model (and its parameters Θ) in order to interpret that evidence. For example,

the model M0 assumes the feedback parameter is time- and state-independent, and thus estimating it from the past is a reliable

guide to the hypothetical future under doubled CO2. Finally, the analyst must clearly specify her or his priors on the model

parameters.

In the following sections, we show how different reasonable choices about evidence, models, and priors can lead to very85

different posterior distributions for λ (and hence climate sensitivity S) given a single line of evidence.

3



Which published values should we use 
as evidence?

Which model should we use to 
interpret the evidence?

What is our prior knowledge of the 
model parameters?

𝑃(𝑌|Θ,𝑀) 𝑃(Θ|𝑀)Y
Figure 1. Schematic of unavoidable subjective decisions in an analysis of climate feedbacks.

3 Evidence uncertainty

The strongest constraints on equilibrium climate sensitivity in S20 were derived from paleoclimate evidence, and the closest

equilibrium climate to the present is the Last Glacial Maximum (LGM) approximately 21,000 years ago. Reconstructions

??????? or model-based estimates ?? of the global mean temperature change ∆T and the radiative forcing ∆F have been used90

to calculate the global mean feedbacks λ inferred from this period. Neither of these “observed" quantities is precisely known.

For example, multiple, seemingly incompatible, estimates of the LGM global mean cooling ∆T are available in the published

literature ??????????. These are derived from climate models participating in the Paleoclimate Model Intercomparison Project

(PMIP ?) and combinations of models and various proxies, and are often in conflict with one another.

We will illustrate the impact of this uncertainty by comparing the evidence used in two recent studies. S20 used expert95

judgement applied to a literature review to estimate ∆T =−5K with a 95% confidence interval of (-3.0K, -7.0K). However,

a contemporaneous study using a new temperature reconstruction (Tierney et al 2020 ?, hereafter T20) estimated both colder

(mean -6.1K) and less uncertain (with a 95 % highest posterior density interval of -6.5 to -5.7 K) values for LGM cooling.

We note that the two studies are not exactly comparable: S20 represents a community assessment of evidence that took into

account a broad range of evidence and uncertainties, whereas T20 was a single study. The temperature estimates in T20 may100

also be cold-biased and overconfident due to reliance on a prior derived from a single climate model ?. However, in order to

illustrate evidence uncertainty, we here treat S20 and T20 as different reasonable estimates of ∆T and ∆F over the LGM. We

discuss methods for incorporating estimates such as T20 in expert assessments in Section 7.1.

The two studies S20 and T20 also differ in their estimates of the radiative forcing that led to this temperature change. Both

agree that it was colder 21,000 years ago because a change in orbital forcing, while negligible in the global mean, led to105

the development of large, reflective ice sheets in the northern hemisphere and lower levels of atmospheric greenhouse gases.

The forcings associated with orbital changes ? and CO2 ? are relatively well-constrained; the forcings from other well-mixed

greenhouse gases ? and ice sheets less so but still informed by proxy and model evidence (Section ??), and those from dust ??,

other aerosols, and vegetation ? highly uncertain. While S20 estimated total radiative forcing in the LGM to be N(-8.43, 2) W

m−2, T20 use a best estimate of -6.8 W m−2 with a 95% confidence interval of -9.6 to -5.2 W m−2.110
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Contour lines in Figure 2a show the joint probability distribution (assuming uncorrelated errors) ρ(∆T,∆F ) as reported by

S20 (black) and T20 (red). Rather than exact measurements of the temperature change and radiative forcing, our evidence Y

consists of estimates of the joint probability density ρ(∆T,∆F ).

3.1 Calculating the likelihood

The likelihood of “observing" this probability density for any given value of the feedback parameter λ is determined by the115

model, which dictates the relationship between λ, ∆T and ∆F . For example, the simple energy balance model M0 constrains

all possible pairs of (∆T,∆F ) to line on a line with slope −λ. Intuitively, the value of −λ that maximizes the likelihood is the

slope of the line that passes through through the greatest probability density. These maximum likelihood estimates are shown

as straight lines in Figure 2a.

We therefore define the likelihood of ρ(∆T,∆F ) for any λ as the probability mass along the curve C described by the120

energy balance model with fixed λ:

P (Y |λ)∝
∫
C

ρ(∆T,∆F )ds

C : 0 = ∆F +λ∆T

If the joint evidence is a multivariate normal distribution (as it is in S20), this leads to an exact analytic expression for

P (Y |λ) (Appendix 1). Otherwise, the integral can be computed numerically. The resulting likelihood functions are shown as125

thick lines in Figure 2b.

3.2 Climate sensitivity estimates depend on the evidence

Clearly, the constraints placed on the climate feedback by the Last Glacial Maximum depend on our estimates of the temper-

ature difference and the radiative forcing that caused it. Using S20 evidence, this energy balance model, and a uniform prior

P (λ) = U(−10,10), we find that the most likely value of the feedback parameter is λ=−1.7 Wm−2K−1 (thick black line,130

Figure 2b) with a 5-95% range of (-3.37, -1.09) Wm−2K−1 . Using T20 evidence, the most likely value is λ=−1.1Wm−2K−1

(thick red line, Figure 2b). The 5-95% range is (-1.49, -0.87) Wm−2K−1.

For simplicity, here we calculate the likelihood P (Y |λ), and use the resulting posterior P (λ|Y )∝ P (Y |λ)P (λ) to calculate

S (Appendix 2). This neglects the small correlation between ∆F and the forcing at doubled CO2, but this simplification does

not substantially affect our results (Appendix 3).135

Using S20 evidence from the LGM, we find a 5-95% range of (1.17K, 3.69K) for the climate sensitivity S (assuming, as in

S20, that F2×CO2
∼N(4.0,0.3)). Using T20 evidence, the 5-95% range for S is (2.61K, 4.72K).

4 Structural uncertainty

Thus far, we have relied on the simple energy balance model to interpret the LGM evidence. However, many recent studies

(e.g.????) suggest that M0 might not be appropriate for past climates due to the dependence of the feedbacks on the background140
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Figure 2. Panel a: joint evidence distributions for ∆T and ∆F used in Sherwood et al (black contours) and Tierney et al (red contours).

Structural uncertainty is illustrated using solid lines (corresponding to fixed values of λ using the model M0) and dashed lines lines (corre-

sponding to fixed values of λ and α using the model Mα). b: Likelihoods as a function of λ and given S20 (black lines) or T20 (red lines)

evidence and different values of the state dependence α. b: Resulting likelihoods for λ given the evidence from S20 (black) and T20 (red)

and different values of the state dependence parameter α. Likelihoods derived using the simple energy balance model (α= 0) are highlighted

by thick lines.

climate state. If the relationship between temperature change and radiative forcing is nonlinear, then the feedbacks in a past cold

climate should not be treated as identical to those in a future warm one. To model this background temperature dependence,

we might use an alternate model that includes a second-order term in the radiative response

Mα : 0 = ∆F +λ∆T +
α

2
∆T 2 (4)

where α= ∂λ/∂(∆T ) is an additional parameter reflecting the background state dependence ????. Intuitively, nonzero145

values of α change the relationship between the paleoclimate evidence and the feedback parameter λ. This, in turn, makes the

evidence more or less likely given a value of λ. For example, if α=+0.1 (which translates to a change in feedback of -0.5

Wm−2K−1 at a cooling of -5 K), the most likely value of λ is not the same as the most likely value of λ assuming α= 0

(dotted and solid lines, Figure 2a). In this case, the likelihoods (Figure 2b) are calculated by integrating the joint probability

distribution for ∆T and ∆F along the curve defined by Eq. 4, and depend on the value of the state dependence parameter α.150

If α is not a fixed value but an unknown parameter, then the evidence can constrain only the joint distribution of Θ= (λ,α).

Obviously, in order for the climate of the past to tell us anything about the climate of the future, we must have some information

about how they relate to one another.
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There is no limit to the complexity of models we might use to interpret the evidence of the LGM. We might allow for both

non-unit forcing efficacy and state dependence. We might assign different efficacies to different forcing agents, or allow the155

parameter α to bifurcate at lower temperatures. We might also include an additive pattern effect ∆λ that reflects differences

in the spatial pattern of temperature change in the LGM and the pattern of warming expected at elevated CO2 concentrations

(e.g. ?).

Regardless of the interpretive model used, it is both required for analysis and subjectively chosen by the analyst. Different

reasonable analysts might make different choices about the model to use. This means that the choice of model is an important160

source of uncertainty that must be clearly specified or quantified. There is, however, one more source of uncertainty to discuss.

Even given a single model, for example Mα, our degree of confidence in the constraints placed by paleoclimate evidence on

the feedback parameter λ necessarily reflects our prior knowledge of the state dependence of climate feedbacks. It is to this

prior uncertainty that we turn in Section 5.

5 Prior uncertainty165

Once a model is specified, we would like to use the evidence to tell us something about its parameters Θ. Bayes’ theorem

says that the posterior distributions of the parameters are simply obtained by multiplying the likelihood by prior probability

distributions reflecting our pre-existing beliefs and/or knowledge. These priors incorporate expert judgement, the results of

other analyses, and knowledge of physical processes. Posterior distributions of individual parameters can depend strongly

on prior knowledge of all parameters. For example, Figure 3a shows the joint posteriors for the feedbacks λ and the state170

dependence α assuming the model Mα, the temperature and radiative forcing values reported in S20, and uniform priors on

both parameters. In the absence of any physical knowledge about these parameters, the joint posterior is not very informative. In

fact, considerable posterior weight is placed on extremely large positive values of α and positive λ, which would make negative

climate sensitivity appear more likely than most scientists would consider credible. A well-informed scientist, however, is

unlikely to think that α= 1 (which implies an enormous mean change in feedback of -5 W m−2 K−1 for 5K of glacial cooling)175

is just as likely as α= 0 (implying no change in feedback). In S20, a prior of N(+0.1,0.1) was assigned to the state dependence

α, reflecting the current state of the literature. This prior substantially constrains the resulting joint posterior distribution (Figure

3 b). Conversely, imposing a more informative prior on the feedback parameter λ, for example by using the process constraints

in S20 that result in λ∼N(−1.30,0.44), also constrains the joint distribution: positive values of α (i.e., which imply a lower

sensitivity in the LGM than at doubled CO2) receive more posterior weight. Combining the informative priors on both λ and180

α further constrains the joint posterior (Figure 3d).

6 Combining multiple lines of evidence

The examples we have presented thus far have all used a single line of evidence– paleoclimate reconstructions of the Last

Glacial Maximum– to constrain λ. However, it is not necessary to look back over twenty thousand years to gauge the planet’s
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Figure 3. Joint posteriors for the feedback parameter λ and the state dependence α under different priors: a Uniform priors on both parameters

b Uniform prior on λ, Gaussian prior from expert judgement of published literature (used in S20) on α (c) Gaussian prior from process

evidence (used in S20) on λ, uniform prior on α (d) Gaussian priors (from S20) on both.
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(a): Line integral (b): Likelihoods

𝜆 = −1.5 𝑊𝑚−2𝐾−1

𝜆 = −1 𝑊𝑚−2𝐾−1

𝜆 = −2 𝑊𝑚−2𝐾−1

Figure 4. a: Calculating the likelihood of observing the historical evidence used in S20 for a putative value of λ. Each value of λ defines

a plane; shown are λ=−1Wm−2K−1 (blue),λ=−1.5Wm−2K−1 (orange) and λ=−2Wm−2K−1(green). The likelihood is the surface

integral of the joint PDF along the plane. b: Likelihood for the feedback parameter λ given the simple energy balance model with no pattern

effect (gray line) and marginal likelihood for λ given an additive pattern effect with prior ∆λ∼N(0.5,0.3).

response to external influences. More recently, a large increase in radiative forcing has resulted in significant global warming185

and a large radiative imbalance at the top of the atmosphere. To constrain λ with transient historical observations, we use evi-

dence Y = (∆T,∆F,∆N). where ∆N is estimated from observed changes in ocean heat uptake and/or satellite observations

constrained by ocean heat content ?.

6.1 Historical likelihood

In this three-dimensional joint probability space, the simplest energy balance model M0 defines a plane rather than a line in190

evidence space (Figure 4), and the likelihood of the evidence given λ is proportional to the integral over this surface. Figure 4

shows the historical evidence reported in S20, in which

∆T ∼ N(1.03,0.085) (5)

∆N ∼ N(0.6,0.18) (6)

and ∆F is calculated using unconstrained aerosol ERFs from ? with median 1.83 W m−2 and 5-95% range (-0.03, 2.71)195

W m−2. The gray line in Figure 4 shows the resulting likelihood as a function of λ. The maximum likelihood value is λ=

−1.53Wm−2K−1.

However, the simplest energy balance model M0 assumes the feedback parameter is the same for climate changes in the deep

past, the transient historical period, and the future. Many studies (e.g. ????????) now argue that a more appropriate model

should include a “pattern effect" ∆λ that reflects the differences between feedbacks triggered by the observed spatial pattern

of transient warming and the feedbacks expected in response to the long-term equilibrium warming pattern:

M∆λ : ∆N = (λ−∆λ)∆T +∆F
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S20 placed a Gaussian prior on this pattern effect ∆λ=N(0.5 , 0.3) W m−2K−1. This corresponds to a modification of

the tilt of the plane in Figure 4a. Because this model assumes the pattern effect is linearly additive, no further curvature is

introduced. By multiplying the joint likelihood P (∆Q,∆T,∆F |λ,∆λ) by this prior P (∆λ) and integrating over all values of200

∆λ, we obtain a “marginal" likelihood for the historical evidence as a function of the feedback parameter λ. This is shown by

the black line in Figure 4b. The inclusion of the additive pattern effect and our physics-informed intution that it is likely to be

positive shift the most likely value of the feedback parameter to λ=−1.0Wm−2K−1.

The pattern effect estimate used in S20 was based on the Atmospheric Model Intercomparison Project II (AMIPII) dataset,

which produces the largest estimate of the pattern effect ?, and therefore the priors on ∆λ used there may be both overconfident205

and too strongly weighted toward high values. However, while noting this important caveat, for illustrative purposes we will

use the S20 historical likelihood marginalized over the pattern effect estimate as the “historical" likelihood for the rest of this

paper.

6.2 The “Twin Peaks" problem

Assuming conditional independence between lines of evidence, the posterior distribution of the feedback parameter λ is210

P (λ|Y )∝ P (Yhist|λ)P (YLGM |λ)P (λ) (7)

That is, the posterior estimate of λ given two lines of evidence is proportional to the product of the individual likelihoods.

But what if the likelihoods have a small (or no) region of overlap? Can we really be confident that the posterior estimate is

well-constrained in this case? Figure 5a highlights this potential pitfall. The black line shows the marginal likelihood for the

historical evidence as a function of λ. The light blue line shows the likelihood for the S20 LGM evidence as a function of λ,215

assuming no state dependence (α= 0). The product of these likelihoods is shown as a green dashed line. The less the historical

and paleo likelihoods overlap, the narrower the posterior will be. We refer to this conundrum as the "Twin Peaks" problem:

should larger incompatibility between multiple lines of evidence really reduce the uncertainty in λ? Or could it be that the two

lines of evidence are not, in fact, measuring the same thing?

We can take the latter possibility into account by using an alternate model for the paleo evidence. Note that the posterior220

for λ shown in Figure 5a is conditional on a model M0 for the paleoclimate evidence that contains only one parameter λ.

The model assumes that the equilibrium feedbacks in a warmer climate are exactly the same as those in a colder climate, that

the response to pure CO2 forcing is equivalent to the response to LGM forcings, and that the pattern effect is zero over the

LGM. An alternate model, say Mα, allows for state dependence via an additional parameter α. The marginal likelihood for the

paleo data given Mα and Gaussian priors on α is shown as a dark blue line in Figure 5b. While the overlap between these two225

distributions is far from exact, it is substantially larger than for the no-state-dependence case illustrated in Figure 5a. Simply

put, the historical evidence and the LGM evidence appear to be more compatible when we correct for the state dependence

of the past cold period. When using T20 evidence, however, there is considerable overlap between the historical (with pattern

effect) and paleo (with no state dependence) likelihoods. As in the top two panels, the black lines in Figure 5c and d show the

historical likelihood. The likelihood for λ obtained from T20 evidence and assuming no state dependence (orange line, Figure230
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Figure 5. Likelihoods from multiple lines of evidence. In all four panels, the black line shows the likelihood for the historical evidence given

λ and assuming a pattern effect ∆λ∼N(0.5,0.3). a: Likelihood of S20 evidence given λ assuming no state dependence in the LGM (light

blue line) and overlap (dashed green line). b:Likelihood of S20 evidence given λ assuming state dependence and α∼N(0.1,0.1) (dark

blue line) and overlap (dashed green line). (c): Likelihood of T20 evidence given λ assuming no state dependence in the LGM (orange line)

and overlap (dashed green line). b:Likelihood of T20 evidence given λ assuming state dependence and α∼N(0.1,0.1) (dark red line) and

overlap (dashed green line).
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5c closely overlaps the historical likelihood, as does the likelihood assuming state dependence with a prior on α as in S20

(red line, Figure 5d. The latter model, however, yields a broader likelihood for λ and therefore the region of overlap with the

historical evidence is smaller.

Combining multiple lines of evidence therefore introduces another source of unavoidable subjectivity: how can we be sure

that in doing so, we are comparing “apples to apples"?235

6.3 Model Odds

The question of how to compare separate lines of evidence is a question of models: namely, how do we interpret the separate

lines? Fortunately, Bayesian methods allow us to compare and criticize models based on the evidence. Consider, for example,

two models for the LGM: M0 and Mα. The model odds are defined as

odds =
P(Mα|Yhist,Ypaleo)

P(M0|Yhist,Ypaleo)
240

=
P (Yhist,Ypaleo|Mα)P (Mα)

P (Yhist,Ypaleo|M0)P (M0)

≡BF × P (Mα)

P (M0)

where the Bayes Factor BF is the ratio of the evidence for each model.

The model evidence for any given model Mℓ is defined as the integrated likelihood over all values of its parameters Θℓ:

P (Y |Mℓ) =

∫
P (Y |Θ,Mℓ)P (Θℓ|Mℓ)dΘℓ. (8)245

This reflects the probability that model Mℓ could have generated the observed evidence under a given set of priors on its

parameters θℓ.

For example, the model evidence for model M0 is

P (Yhist,Ypaleo|M0)∝
∫

P (Ypaleo|λ)P∆λ(Yhist|λ)P (λ)dλ

where P∆λ(Yhist|λ) is the marginal historical likelihood (black line, Figure 5a). When combined with a uniform prior on λ,

the model evidence for M0 is therefore the area under the green curve in Figure 5a.

By contrast, the model evidence for the model Mα is

P (Yhist,Ypaleo|Mα)∝
∫

P (Ypaleo|λ,α)P∆λ(Yhist|λ)P (α)P (λ)dαdλ

When combined with a uniform prior on λ, the model evidence for Mα is the area under the green curve in Figure 5b.250

Using S20 evidence and these priors, we find that the Bayes Factor is 1.33. This means that if our prior is that both models

are equally likely, the evidence shifts those odds: the model depicted in panel b is about 33% more likely to have generated the

observed paleo and historical evidence.

However, using T20 evidence, the Bayes factor is 0.93. This suggests that the “better" model to use, given T20 evidence, is

one without state dependence. Clearly, the “best" model depends on the evidence used, the prior knowledge of whether we are255

comparing “apples to apples", and the priors we place on λ, ∆λ, and α.
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We note that whether the twin peaks problem is indeed a “problem" is largely dependent on the prior odds P (Mα)/P (M0),

which must be specified. If we have prior knowlege that the two lines of evidence are measuring the same thing, then we

will give more prior weight to the simple model M0 and the Bayes Factor will do little to shift the odds. This will result in a

narrower posterior estimate: if two lines of evidence are compatible only for a small range of values, and we are confident in260

what the evidence is telling us, then we may be more confident in its posterior value.

7 A Way Forward

Thus far, we have established that there are three places where unavoidable subjective decisions must be made: collecting

evidence, choosing the interpretive model, and assessing prior knowledge of that model’s parameters. We have also established

that multiple lines of evidence appear more or less compatible depending on the models used. Here, we present a suggested265

framework for making these decisions in a community assessment framework.

7.1 Handling evidence uncertainty

Whether and how much a newly published estimate of a particular quantity (for example, ∆T or ∆F from the Last Glacial

Maximum) affects the evidence base depends on prior knowledge of that quantity. It also depends on expert assessment of how

the new study relates to existing literature. A single highly certain, high-quality study can strongly shift previously uncertain270

estimates, while low-quality or uncertain published estimates may not change previously firm understandings.

We suggest formalizing these intuitions using a Bayesian random effects meta-analysis ?, frequently used in fields as diverse

as psychology ?, medicine ?, and ecology?. This model can be written as

ŷj ∼N(yj ,σj) (9)

yj ∼N(Y,τ) (10)275

where ŷj and σj are the reported mean and standard deviation of each study j. We assume the true (latent) mean yj of each

study is normally distributed about an overall mean Y , with τ the expected inter-study standard deviation.

The priors we put on the quantities of interest– the overall mean Y and the between-study spread τ– quantify our previous

knowledge of and views about the literature. A τ very close to zero suggests homogeneity across studies (and, in fact, choosing

to set τ = 0 reduces the random-effects model to the fixed-effects model). By contrast, if we have reason to believe that multiple280

studies should vary in their reported values due to structural and design factors, then we might place a broad prior on τ . For

example, a fixed-effects model might be appropriate for calculating the ensemble mean of a quantity within a single CMIP

model, whereas a random-effects model might be more appropriate for combining ensembles of multiple CMIP models, which

we know to differ structurally.

As a specific example relevant to calculating the feedback parameter λ, consider multiple published LGM global mean285

temperature changes ∆T derived from proxies and models as well as from PMIP3 and PMIP4 models (Table 1).
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Mean (K) Standard Deviation Reference Derived From Generation

-4.00 0.41 ? Proxies and models N/A

-5.80 0.77 ? Proxies and models N/A

-6.20 0.46 ? GENIE-1 N/A

-3.58 0.12 ? Proxies N/A

-6.20 0.92 ? Proxies and models N/A

-6.30 0.61 ? Proxies (ocean temperature) and models N/A

-5.70 0.20 ? N/A N/A

-5.75 0.38 ? SST proxies and a model simulation N/A

-6.10 0.20 ? proxies and isotope-enabled climate model N/A

-5.00 1.00 ? Synthesis N/A

-4.85 N/A ? CESM PMIP3

-2.70 N/A ? CNRM PMIP3

-4.63 N/A ? FGOALS-g2 PMIP3

-4.92 N/A ? GISSE2-p1 PMIP3

-5.19 N/A ? GISSE2-p2 PMIP3

-4.64 N/A ? IPSL PMIP3

-5.40 N/A ? MIROC PMIP3

-4.41 N/A ? MPI-p1 PMIP3

-4.67 N/A ? MPI-p2 PMIP3

-4.71 N/A ? MRI PMIP3

-3.75 N/A ? AWIESM1 PMIP4

-3.81 N/A ? AWIESM2 PMIP4

-6.80 N/A ? CESM1-2 PMIP4

-7.16 N/A ? HadCM3-PMIP3 PMIP4

-5.92 N/A ? HadCM3-ICE6GC PMIP4

-6.46 N/A ? HadCM3-GLAC1D PMIP4

-3.28 N/A ? iLOVECLIM-ICE-6G PMIP4

-3.26 N/A ? iLOVECLIM-GLAC1D PMIP4

-3.73 N/A ? INM-CM4-8 PMIP4

-4.63 N/A ? IPSLCM5A2 PMIP4

-4.02 N/A ? MIROC-ES2L PMIP4

-3.90 N/A ? MPI-PMIP4 PMIP4

-5.27 N/A ? UT-CCSM4 PMIP4
Table 1. Estimates of global cooling ∆T during the Last Glacial Maximum
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Figure 6. How cold was the Last Glacial Maximum? The answer depends on your prior beliefs about the cooling and about the literature.

Shown are posterior distributions for the LGM cooling ∆T assuming a random effects model and broad (blue line) or T20 (green) priors on

the mean or a fixed effects model and broad (orange line) or T20 (red line) priors on the mean.

Figure 6 illustrates how the posterior distribution of ∆T depends on prior beliefs about the nature and quality of the pub-

lished literature assessing it. Consider, for example, a random-effects model in which we place broad priors on the mean

µ∼N(0,100) and inter-study standard deviation τ ∼ U(0,100). With these prior assumptions, 90% of the resulting posterior

density for µ (the true value of ∆T ) lies between (-5.9K, -4.8K). Assuming that there is no inter-study spread (i.e, τ is assumed290

to be zero with zero uncertainty: a fixed effect model) would yield an estimate of ∆T 90% likely to be between -4.8 and -4.5K.

This much narrower (and warmer) estimate results from the extremely restrictive prior belief that every study, regardless of

method, targets the same underlying ∆T and would yield the same results if performed perfectly and with adequate data.

Similarly, we might set the prior on µ using the result of a single published study (say, for example, ∆T from T20). Combined

with a broad uniform prior on the inter-study spread, this results in an 90% posterior density estimate of (-6.2K, -5.6K). If,295

however, we adopt the restrictive fixed effects model, the T20 study is merely treated as an outlier and fails to substantially

move the posterior distribution toward cooler values of ∆T (red line), even using the T20 prior.
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7.1.1 Recommendations

Unavoidable subjective decisions about the evidence can be made explicit by adopting a random effects meta-analysis. This

requires the specification of priors on the inter-study spread τ and the overall mean Y . Our recommendation is that the organiz-300

ers of community assessments choose and clearly specify these priors, rather than allowing individual experts to choose their

own.

7.2 Handling model uncertainty

As shown in Section 4, the constraints placed on climate sensitivity by multiple lines of evidence evidence depend on the

model(s) used to interpret that evidence. This means that the design of every expert assessment must be explicit about its305

interpretive models. As the assessment is planned, it is crucial to arrive at consensus on credible interpretive models for the

evidence. For example, one possible model for the Last Glacial Maximum might incorporate parameters α (representing state

dependence), ξ (representing the difference between long-term equilibrium LGM feedbacks and the target quasi-equilibrium

feedbacks to doubled CO2) and ∆λLGM (representing radiatively important sea-surface pattern differences between the LGM

and doubled CO2):310

∆T =
−∆F

λ+∆λLGM

1+ξ + α
2∆T

Given a model, experts may then be asked to specify their prior beliefs about each parameter. If an expert disagrees with the

inclusion of a parameter in a model, s/he would be free to set a prior very narrowly clustered around 0 on that prior.

If consensus cannot be reached on a particular model, then we suggest that the planning team for any assessment arrive at a

list of candidate models M1 . . .MK . The aggregate posterior can then be taken as a weighted average over different models:315

P (Θ|Y ) =

K∑
k=1

wkP (Θ|Mk,Y ). (11)

Here, (Θ|Mk,Y ) is the posterior obtained using the model Mk to interpret the evidence Y .

The weights reflect how well the model fits the data, and are given by

wk = P (Mk|Y ) =
P (Y |Mk)P (Mk)∑K
k=1P (Y |Mk)P (Mk)

. (12)

The term P (Mk|Y ) is the model evidence (Eq 8, discussed in section 6.2). These weights, and hence the combined posterior,320

depend on the priors P (Mk) we put on the correctness of each model. If an assessment allows for experts to use one of multiple

models, it is therefore imperative to specify assessment-wide priors on these models upfront.

7.2.1 Recommendations

We recommend that organizers of community assessments clearly specify a single interpretive model for the evidence. If this

is not possible, organizers should specify a list of possible candidate models Mk and ask and a prior P (Mk) for each candidate325

model. The resulting estimate will then be a weighted averages over the models.
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Figure 7. a: Experts A (solid red line) and B (solid blue line) begin with different priors on λ. The evidence presented in S20 updates these

priors, and the resulting posteriors are nearly identical (dotted red and blue lines). The purple line shows the weighted posterior. a: Experts A

(solid red line) and C (solid blue line) begin with different priors on λ, but C’s prior is very narrowly peaked. The evidence presented in S20

updates these priors, but the posteriors remain very different(dotted red and blue lines). The purple line shows the weighted posterior, which

is almost identical to A’s posterior.

7.3 Expert elicitation via priors

Finally, it is necessary to quantify the degree of pre-existing knowledge and/or beliefs through the use of prior distributions.

This is where a wide variety of expert opinion may be usefully incorporated in an assessment.

However, we require consistent ways to aggregate the judgement of multiple experts. In theory, sufficient evidence should330

lead to a high degree of agreement, even if different experts begin the analysis with very different priors. Figure 7a shows

the priors placed on the parameter λ by two hypothetical experts. Expert A (solid red line) believes the feedback parameter

to be less negative than Expert B (solid blue line) and is even open to the idea that it might be positive. Dashed red and blue

lines show both experts’ posteriors, when updated using the evidence presented in S20. While the experts began their analysis

with differing opinions, the weight of the evidence has updated their understandings and they now agree about the feedback335

parameter λ. However, some experts may not be as open-minded as our researchers A and B. Expert C (blue line, Figure 7b

believes the feedback parameter to be strongly negative. Moreover, s/he is extremely confident in this: his/her prior distribution

is very narrowly peaked around a value of λ=−3Wm−2K−1. Expert C’s confidence remains unshaken by the evidence
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presented in S20, and his/her posterior remains nearly identical to his/her prior beliefs. How should an assessment handle such

excessively confident experts, whose beliefs appear to be unshakeable by any reasonable amount of evidence?340

Consider an assessment in which N experts each specify their priors Pi(θ), where i= 1 . . .N . A reasonable aggregate prior

might then be a linear combination of the individual expert priors:

P (θ) =

N∑
i=1

aiPi(θ). (13)

The aggregate posterior is therefore a weighted average of the individual expert posteriors

P (θ,Y ) =
∑
i

ãiPi(θ|i,Y ) (14)345

where

ãi =
ai
∫
P (Y |θ)Pi(θ)dθ∑N

i=1 ai
∫
P (Y |θ)Pi(θ)dθ

. (15)

This method introduces N new parameters: the prior weight ai we assign to each expert’s judgement. This is a far easier task

than setting priors on models (as discussed in Section 7.2) because it requires no physical understanding, only a belief about

the “quality" of each expert’s initial beliefs. We recommend weighting each expert equally by setting a1 = a2 = . . .aN = 1
N ,350

in which case the posterior weights become

ãi =

∫
P (Y |θ)Pi(θ)dθ∑N

i=1

∫
P (Y |θ)Pi(θ)dθ

. (16)

The purple line in Figure 7a shows the resulting aggregate posterior given A and B’s priors. Because both these experts are

similarly able to update their priors, the weighting process has no effect on the outcome. However, the weighted average of

A and C’s posteriors, shown as a purple line in 7b, is similar to A’s posterior distribution. The narrowness of C’s prior causes355

his/her posterior distribution to be down-weighted in the weighted average. We suggest this as an effective strategy for handling

inflexible or extremely anomalous expert opinions.

7.3.1 Recommendations

We recommend eliciting expert judgement in a systematic way by allowing experts to specify priors on pre-determined model

parameters. The analysis can then be performed using a single aggregate posterior calculated as the weighted average of360

individual expert posteriors.

8 Conclusions

Here, we have presented three sources of uncertainty that enter in to estimates of climate sensitivity. First, what evidence are we

using to constrain climate sensitivity, how do we decide what counts as “evidence", and how should we handle estimates that

disagree or conflict? Second, what interpretive model should we be using to relate the evidence to the climate sensitivity, and365
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what parameters are required? Third, what prior knowledge of these parameters is it appropriate to include? We then propose

a strategy to make the role of expert judgement in subsequent assessments fairer and more transparent. The advantage of this

strategy, combining Bayesian meta-analysis and Bayesian model averaging, is that it can incorporate newly published data and

is easily expanded to handle uncertainties at multiple levels.

There is no limit to the number of nested levels we could theoretically use within a Bayesian hierarchical model: the prior for370

radiative forcing from ice sheets, for example, can be updated using a global ice sheet reconstruction, which itself is constrained

by individual geological measurements. Similarly, a prior on ocean heat uptake ∆N or historical warming ∆T can be updated

as new measurements become available. However, to remain tractable every project must truncate the hierarchy at some finite

level. In practice, this means treating the posteriors that arise from observational, GCM, or paleoclimate studies as evidence;

where we draw the line between evidence and parameter sets the bounds of our analysis.375

As a result, we propose a framework in which experts are required to specify their choices at clearly defined decision

points. Once priors are specified, the model and evidence will update them accordingly, arriving at a new, aggregate consensus

posterior. We review this framework here.

Somewhat obviously, experts’ beliefs about the data are based on their prior beliefs, updated by the evidence. But how

they interpret and use that evidence depends on the subjective choices they make: what counts as a "study" or "evidence"?380

How should we best compare estimates derived from proxies or observations and estimates from GCMs? Should some studies

receive more weight than others? In our framework, experts must make the following judements about the evidence:

1. What is your informed belief about the evidence? (E.g. what is your prior on µ?)

2. What is your belief about the published literature? (What is your prior on τ )

Second, we suggest taking the choice of model out of individual participants’ hands to the greatest extent possible. Ideally,385

assessment planners would arrive at a single model and set of parameters on which experts may specify their priors. If not,

they should arrive at a list of candidate models, specify firm prior beliefs about these models, and perform Bayesian model

averaging over the posteriors of individual experts, which will depend on the model they use.

Third, once a model is specified, experts should specify their prior beliefs about the parameters of that model.

The results presented here are meant to begin, not end, a conversation. The beauty of Bayesian methods is that we can allow390

new evidence to update our existing knowledge. As climate researchers gear up for the next generation of model intercompari-

son projects and assessments, it is important to consider how these new results will be integrated with existing knowledge. Our

methods presented here allow for new discoveries to advance our understanding, ultimately narrowing the bounds of climate

sensitivity and informing future research and decision making.

Code availability. The code for this project is available at https://github.com/netzeroasap/LambdaBayes/395
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Appendix A: Exact forms of integrals

To estimate the likelihood of the evidence ∆T and ∆F given the simple energy balance model, we integrate the joint probability

distribution J (∆T,∆F ) over the curve C defined by the model :

P (Y |λ,M0) =

∫
C

J (∆T,∆F )ds (A1)

C can be parameterized as400

r(t) = t̂i+−λtĵ (A2)

and the integral is then

P (Y |λ,M0) =

∞∫
−∞

J (r(t)) ||r′(t)||dt=
∞∫

−∞

J (t,−λt)
√
1+λ2 dt. (A3)

In the case where ∆T and ∆F are Gaussian and independent with means µT ,µF and standard deviations σT ,σF respectively,

the likelihood has an exact analytic form, substantially speeding up its computation:405

P (Y |λ,M0) = C

(
2π

A

)1/2

exp

(
B2

2A

)
(A4)

where

C =

√
1+λ2

2πσTσF
exp

(
µ2
T

σ2
T

+
µ2
F

σ2
F

)
A =

1

σ2
T

+
λ2

σ2
F

B =
µT

σ2
T

− λµF

σ2
F

410

In the case of a three-dimensional space (as for the historical evidence), the curve C defines a plane, not a line, and we have

P (Y |λ)∝
∫
C

J (∆T,∆F,∆N)dS =

∫ ∫
J (r(u,v)) ||ru × rv||dudv (A5)

where

r = uî+ vĵ+(λu+ v)k̂ (A6)

Appendix B: Likelihood vs Probability415

We note that this method is distinct from estimating λ as the ratio of the distributions ∆F and ∆T . This is due to a conceptual

difference between probability and likelihood. Constructing the likelihood answers the question, "a: how likely is a particular

20



hypothesis (in this simple case, a particular value of λ) given the evidence?" This is a fundamentally different question from

"b: what is the probability density function of the ratio −∆F/∆T ?" The first question involves fixing a putative value of λ,

which is not treated as a random variable. The second question treats λ as a random variable. Mathematically, this is reflected

in the difference between a line integral over the curve y =−λx:

a : P (x,y|λ) =
∫
C

Pxy(x,y)ds=

∞∫
−∞

Pxy(x,−λx)
√
1+λ2 dx

and the ratio distribution of the random variable λ=−y/x

b : Pλ(λ) =

∞∫
−∞

Pxy(x,−λx)|x|dx

We use the ratio distribution b to estimate S once we have the posterior PDF for λ. This is because we treat S as the ratio of

two random variables F2xCO2 and λ.

Appendix C: Correlations between F2×CO2 and ∆F

CO2 emissions are the primary contributor to present-day radiative forcing change relative to preindustrial. Atmospheric

concentrations of CO2 were lower in the Last Glacial Maximum. This means that the forcing terms ∆F used as evidence

in the LGM and historical periods are correlated with the forcing corresponding to doubled CO2. For visual clarity, we neglect

this correlation in this paper. To take it into account, we can write the simple energy balance model as

∆N =∆F ′ +βF2×CO2
+λ∆T.

In this case, the likelihood P (E|λ,F2×CO2
) is defined as the integral of the joint probability distribution of the evidence E

over the curve defined by the model. Following S20, we can then calculate S by changing variables and marginalizing over

F2×CO2

P (S|E) =

∫
P (λ′,F ′

2×CO2
|E)δ(S−F ′

2×CO2
/λ′)(∂S/∂λ′)−1(∂S/∂F ′

2×CO2
)−1dF ′

2×CO2
dλ′

Practically, we can draw samples of λ and F ′
2×CO2

from the joint posterior distribution and use these to calculate a posterior

distribution for S. This correlation contributes very little to the results; when taking it into account we obtain similar ranges420

for S as when we neglect it.
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