We thank the reviewers for their thoughtful comments, which have very much improved
our paper! Please find attached a “tracked changes” version of the manuscript.

R1
Review of Towards robust community assessments of the Earth’s climate sensitivity

General Comments

The authors present a nice overview of how Bayesian statistics can be used to make an
assessment on climate sensitivity. Importantly, they discuss the various choices taken to
make inference on climate sensitivity and how the choices affect the resulting estimate.
While the paper is written well and most information is presented well, | feel the key
concepts are somewhat obscured by their notation and lack of clarity. Below, | include
some specific examples that | feel could be improved upon.

Specific Comments

Numerous terms are undefined. For example, in Eq. (1), what is MO? (It is not defined
until two pages later). Same with Ma and other models. Also, while it may be colloquial
for some, F2xCO2 and AT2xCO2 are undefined.

We agree! We’ve now defined these terms.
Various mathematical terms are undefined.

* Line 105 - What is N(—8.43,2)? | assume you mean a normal distribution with mean
-8.43 and variance 2. Also, math cal font is used for N in section 7 and not for line 105.

Fixed. As an aside, thank you for calling this out. Often in the literature it's unclear
whether s is the standard deviation or the variance in the notation N(m,s).

* Line 201 - What is AT'(x) and what is x?

This has been removed.

In multiple areas the authors discuss the idea of reducing uncertainties but do not
explicitly say which uncertainties are being (or will be) reduced. | think this is a common
misnomer when discussing statistical concepts. Some uncertainties are irreducible,
such as types of data uncertainty, and some are reducible, such as types of model
uncertainty. A key concept in statistics is being able to identify each type and providing
the best possible quantification of each - e.g. an appropriate quan- tification of
irreducible uncertainty and reducing all other uncertainty if possible. | feel strongly that
the manuscript would benefit if this distinction were made clear.



We’ve now tried to make this much clearer. This paper is intended as a guide for those
embarking on large-scale expert assessments, whether a follow-up to Sherwood et al
2020 or assessments of other quantities like TCR or ZEC. To that end, we’re focusing
on identifying the areas where unavoidable subjective decisions (i.e., expert judgment)
enter the analysis.

Line 60 - “... update our prior beliefs P(©)... ” Are you making the distinction that you
can update you P(O|Y) if new information becomes available? If so, | think this needs to
be reworded. Otherwise, | do not believe Bayes’ Theorem says update our prior beliefs.
Instead, if you have a prior belief or knowledge, P(©), you can get an estimate of the
probability of © given data/evidence Y using that prior knowledge. If more data
becomes available, you could then refine that belief and use a new prior. This is distinct
from updating your prior belief.

Yes, this is a tough one to convey. We were trying to balance technical rigor with
comprehensibility for a wider audience. Please see the rewritten “Analysis Framework”
section:

“This framework allows us to use our prior understanding of the parameter values to
calculate the posterior probabilities P (@|Y, M ) of the model parameters given the
evidence. This posterior can be updated as new evidence becomes available.”

Section 2 Analysis framework - This is a crucial section for your paper and | would like
to see it expanded. Throughout the rest of the paper, terms like posterior, marginal, joint
probability density, ... are used but not defined. The general reader of ESD may be
unfamiliar with these terms. The latter parts of the paper would be easier to follow if
these terms are defined in the context of section 2. Additionally, how does one get P
(©]Y )? Is it as simple as writing distributions down and using Bayes’ Theorem? What if
the distribution is not tractable, how would that be handled? Expanding on some of the
steps needed to make inference on © within

this section will help orient readers as to why this is such a difficult and important
problem, and how they can take what you have shown and apply it to their own
analysis.

We've substantially rewritten the entire section for clarity- see the revised text below.
The section now begins with a definition of evidence, model, and prior. (Note that now
we explicitly represent the prior dependence on the model). We then define prior,
likelihood, and posterior as relevant for the problem of assessing ECS.

“‘Bayes’ Theorem can be written as

P@©OIY,M)=P (Y |©,M))P (OIM)/P (Y M) . (3)



Here, we will define these terms as they apply to the problem of estimating climate
sensitivity.

Evidence The evidence Y used to constrain climate sensitivity consists of the global
mean

temperature change AT in response to a forcing AF as well as, in non-equilibrium
states, the net energy imbalance AN . We have estimates of these quantities for the
historical period (derived from observations and models) and for past climate states
(derived from paleoclimate proxies and models), and Y therefore consists of multi-

ple lines Y1 ...Yn. For example, S20 used process-based understanding of underlying

physics, recent observations, and proxy-based reconstructions of past climates to
assess

S.

The model M codifies how we interpret the evidence Y . It specifies the parameters

© whose posterior distributions we estimate. For example, in the simple energy balance
model denoted MO, there is only one parameter and © = A. The model determines the
likelihood P (Y |©, M) of observing the data given particular values of the parameters
©. We discuss methods for calculating this likelihood in Section 4.1.

The prior probability distribution P (©|M ) reflects prior beliefs or knowledge about

the model parameters ©. For example, in the simple model MO, the community assess-
ment S20 adopted a uniform prior on A as a baseline choice, choosing not to rule out

net positive feedbacks (and therefore an unstable climate) a priori. “

Line 120 - The notation surrounding this equation is confusing. It appears as though you
are treating Y = (AT,AF) as normally distributed random variables where the mean and
standard deviation of each are estimated from experts. You define the joint probability
density of AT and AF as J(Y) = J(AT,AF). You then marginalize over AT and AF and
somehow get a likelihood of the evidence as P(AT,AF|A). However, this equation (A.3),
does not contain either AT or AF because they have been marginalized out. Instead it
contains their mean and standard deviation (assumed fixed?) that are estimated by
experts. My confusion is in your definition of evidence and how AT and AF (or their



mean and standard deviation) play a role in that evidence. | think this could be fixed by
being more clear on your notation and the steps taken to arrive at the equation on line
120 (and subsequent equations).

You're right that this section was lacking clarity. In climate sensitivity assessments, the
evidence is necessarily uncertain. We don’t have point measurements of temperature,
forcing, etc. Instead, we can assess the literature and come up with a joint probability
density p(AT, AF ) (here, this is the product of the PDFs for AT and AF, but more
complex distributions reflecting correlated errors are possible). In this paper, we make
the argument that given a model M described by a curve C in evidence space, the
likelihood can be approximated by calculating the probability mass along the curve.
S20 calculated historical and paleo likelihoods using a similar method but different
language; to our knowledge no other climate statistics paper has employed the
probability mass method. We’ve rewritten the section to be clearer.

Model Ma - This is slightly confusing to me. By definition, a = OMOAT is a function of A.
However, you assign independent priors to A and a when a is constrained by the value
of A. Is there justification for specifying independent priors here? Or is this done for
illustrative purposes? If so, | feel it is important to note they are not independent.

In this case, ais a constant, not a continuous function of A. There is no a priori reason
why the uncertainty in the net feedbacks should be correlated with the uncertainty in
their rate of change with global mean temperature. The point here is to make N a
quadratic function of AT, N = AF + aAT +bAT”*2 where a= A and b = a/2.

Eqgn. (7) - Same as above comment except now for AA.

AN is a Gaussian that we specify, which is independent of A _hist. Obviously the fact
that the net feedback A = A _hist + AN means that A is not independent of A _hist or AA?
Perhaps this is where the confusion arises?

Section 7.1 - | rather like this section and | think it puts a lot of the paper into context.
However, | feel as though some terms are not defined and potentially un- known to the
general ESD reader. A (Bayesian) hierarchical model is left undefined and for the reader
to interpret. Generally, a BHM is defined in terms of data, pa- rameter, and sometimes
hyperparameter models. It might help contextualize your message if you state what a
hierarchical model is in terms defined from section 2 and then connect it to equations
(9)-(12).

We’ve rewritten the section for improved clarity, and no longer provide a meta-analysis
estimate of radiative forcing, which we now realize enlarged the scope of our paper
unnecessarily. To appeal to a broader audience, we’ve also de-emphasized the



hierarchical nature of Bayesian meta-analysis, stressing the physical meaning of the
priors on the hyperparameters mu and tau. This has also helped us make clearer
recommendations: these priors must be specified, and we suggest that organizers of
future assessments do so (as opposed to querying the broader community of experts).

Line 261 - This is a very bold claim. | would argue it is one useful application of
hierarchical modeling, but maybe not one of the most.

Removed.
Line 396 - C is already defined as the curve.

fixed

Technical Comments

1. A few citations have typos in or surrounding how they are placed in the text 2. Figure
1 - needs labels

fixed.
3. Line 9 - multiple twice fixed
4. Line 234 - Missing ) This discussion has been removed from the paper.

5. Line 241 - “... that this is are the ...” 6. Line 243 - Missing ) This discussion has been
removed from the paper.

R2

This manuscript presents an assessment of the uncertainty associated with Bayesian
inferences of the effective climate sensitivity parameter, S as assessed by Sherwood et
al. (2020). The authors clearly point out three sources of uncertainty that were not
previously addressed in Sherwood et al. (2020): evidence uncertainty, structural
uncertainty, and prior uncertainty and illustrate each with examples related to the Last
Glacial Maximum. They conclude with a recommendation of how to combine multiple
lines of evidence to constrain S that will allow for rapid updates in light of new evidence
in the future.

The manuscript creates more awareness in terms of the uncertainty involved in
Bayesian inferences such as that of Sherwood et al. (2020). The topic is both



interesting and important. The authors provided several interesting examples, however,
in my opinion, the manuscript reads somewhat esoteric for the atmospheric science
community. Overall, | have a few suggestions that are quite minor in nature, mostly
regarding clarifying the main messages for individual sections for the authors to
consider before recommending publication.

For context, it would be helpful if the authors could please specify in the Introduction the
uncertainty that was discussed in Sherwood et al. (2020) and then follow this with the
additional complementary detail that they consider.

This is a helpful comment. We've now tried to clarify the aims of our paper vs those of
S20 (and IPCC ARG6) and have added the text below.

IPCC ARG assessed confidence in the range of S based on suport from individual lines
of evidence, and the medium confidence assessed was in large part due to the fact that
not all lines of evidence supported the same upper bound. By contrast, S20 sought to
provide a robust estimate by combining lines of evidence in a coherent Bayesian
framework. However, S20 used baseline priors and estimates of the evidence and
investigated the impact of alternate choices as sensitivity tests rather than attempt to
combine multiple priors, estimates, and expert judgements into a single posterior
probability distribution. In both IPCC AR6 and S20, as in almost all previous
assessments, the means by which disagreements among experts were resolved or
handled was not necessarily made transparent. This paper presents some lessons
learned by two authors of S20 and attempts to chart a way forward.

Our goal is not to provide a single updated estimate but rather to understand where
unavoidable subjective decisions enter in to the analysis and to present a framework for
systematically and fairly incorporating the subjective judgements of multiple experts.

Section 6.1: this section on comparing “apples to apples” when considering different
lines of evidence to constrain S is an important point that was raised, and the example
is interesting, however, the main point is unclear and the description is too roundabout.
In this particular example, are the authors recommending the Bayes factor as a solution
for evaluating the reliability of different lines of evidence? | would suggest a clear
statement at the end of this section regarding the authors’ recommendation regarding
how to treat the issues of fairly comparing different lines of evidence when constraining
S.

This section was initially quite confusing, and we apologize. We've rewritten it to stress
the importance of the interpretive model in rendering multiple lines of evidence
compatible and resolving the “Twin Peaks” problem. The “best” model will depend on
prior knowledge: if we have reason to believe that one interpretive model is better than
another, then the Twin Peaks problem may not be an actual problem: a small area of



overlap between posteriors updated with multiple lines of evidence may then constrain
the parameters extremely well. However, if we have no reason to believe that one
model is “better” than any other, then models that render lines of evidence more
compatible will be preferred.

Lines 248-251: This brings up the important point that subjectivity is an issue, however,
other than suggesting more transparency in terms of making subjective decisions, it
does not seem that the authors are reducing any subjectivity. Please clarify. For
example, on lines 319-320, why use a weighted average? This choice itself is
apparently subjective. A well-justified recommendation could better convince others to
follow these recommendations in the future.

We’'ve clarified to explain that we’re not necessarily reducing subjectivity: as Figure 1
shows, there are unavoidable subjective decisions in every analysis. Instead, we're
arguing that these decisions need to be clearly communicated, and that expert
judgment should be clearly specified in the form of priors. We’ve now added specific
‘recommendation” sections throughout Section 7 to make this clearer. In short, we
present a method for achieving transparency and clarity on necessary subjective
decisions made.

| recommend that the authors also summarize their specific recommendations for future
Bayesian analysis in the Abstract. There is space for it in the Abstract.

Good suggestion, done.

Typographic errors

Lines 242: “that this is are the model...” should be “that this is the model...”
This discussion has been removed from the paper.

Line 269: “about a some true...” should be “about some true...” fixed

Line 279: “As an specific” should be “As a specific” fixed

Line 329: Latex compilation error for Table fixed, table moved to
supplementary material

Line 343: “distributions” should be singular fixed

Line 337: Isn’'t Expert B also open to the idea that lambda can be positive too
in Figure 8a?

For consistency and convenience, please number all equations, including the
ones on page 13, even if not explicitly referenced in the text. fixed

The notation N(x,y) was defined in Sherwood et al. (2020) but not in this
manuscript. Please define it in this manuscript. defined.

R3



In this manuscript the authors discuss issues and possible ways forward with bayesian
based assessments of climate sensitivity. This follows on a first major attempt by Sherwood
et al. (2020), which was influential on the IPCC report (Forster et al. 2021). | have no major
issues with the manuscript, and | think it is great that the approach and issues are discussed
openly. | would have hoped, before reading it, that the text would have been even more
accessible to a wider audience, but in several places there is quite a bit of statistics
jargon.The minor recommendations below are not fully addressing this issue, and | would
leave it up to the authors to consider this issue. Anyway, | see no major obstacles to
publication.

2-3, Most of these lines of evidence constrain S or ECS, not feedback in isolation.

We’'ve replace this with “The uncertainty inS primarily results from uncertainties in net
physical climate feedback, usually denoted as \lambda. “

26-27, Note that IPCC did not use the bayesian method, so perhaps state what they did.
Furthermore, the medium confidence is due to not all individual lines of evidence supporting
a 95th percentile close to 5 K.

We’ve now noted this in the Introduction- but note that assessing confidence based on
support from individual lines of evidence is at odds with our proposed method of combining
lines of evidence in a coherent Bayesian framework.

26, the reference should be Forster et al. (2021) fixed

53, remove one instance of 'is'

Removed

59, why use quotation marks here?

Removed

63-64, | am not sure this was what the lines of evidence were called in S20.

It wasn’t, but we’ve adopted this notation for clarity. Note the rewritten Analysis section that
now clearly defines all terms.

96-97, See also Annan et al. (2022) for a discussion of how T20 might be cold-biased and
over-confident due to reliance on a single-model prior.

Agreed. We’ve now noted this and emphasized that the two studies are not comparable,
and use them only to illustrate the impact of evidence uncertainty



98, These are not simply two equally valid or comparable studies. S20 is an assessment in
which, in principle, the authors took into account a much broader evidence base than used
by T20.

Agreed- see response above.

105, should probably be '-9.6'

Fixed

125, missing closing parenthesis.

Fixed

Section 4, Perhaps check out https://doi.org/10.5194/cp-19-323-2023.
Cited.

136-137, The quadratic model is that ECS changes monotonically until an instability occurs.
There is some evidence that ECS will increase with warming, but we also know there were
snow ball Earth instabilities in the past, so ECS must increase into a bifurcation at cooling
temperatures. The shape of this function is not well known, other than that there is a
minimum not too far from our current climate. What | am getting at is that the quadratic
model is only half the story, and the evidence for a positive alpha comes mostly from
warmer climates. It might be negative at colder temperatures, which effectively means the
model is no longer valid.

This is of course possible, and we’ve now alluded to the potential bifurcation of alpha with
temperature in our list of potential models.

166-167, A bit of an understatement. Since we are here it is not physically possible that
climate sensitivity is negative, i.e. the system is unstable, so prior knowledge forbids
negative climate sensitivity.

In S20, flat uniform priors were placed on the individual feedback components in the
process evidence, implying a prior on the net feedback that puts equal weight on positive
and negative values. Clearly, as you point out, this is unphysical. S20 dealt with this by
removing low-likelihood values of individual feedback components, while here we prefer to
allow unstable climates to be definitively ruled out by the evidence. In the prior uncertainty
section we do use the knowledge derived from the process evidence as an alternate prior.

Figure 3, | think this would have been useful earlier, just a thought.
Thanks! We've now moved it to Figure 1.

198, + Modak and Mauritsen https://doi.org/10.5194/acp-23-7535-2023



https://doi.org/10.5194/cp-19-323-2023
https://doi.org/10.5194/acp-23-7535-2023

Cited.

203, Note that this is based on the AMIPII dataset which produces the largest pattern effect
of all SST reconstructions (https://doi.org/10.5194/acp-23-7535-2023)

Yes, we’ve now noted that the prior on Delta lambda used in S20 may be too weighted
toward large values (and possibly too narrow), but we use the S20 marginal historical
likelihood for illustrative purposes.

223-224, | find this argument weak: it looks better, hence it must be right? On could also
state that we trust historical warming, and we will use alpha as a fudge factor on the LGM
evidence to make it match the historical.

We’'ve substantially rewritten this section, but we do feel that the “Twin Peaks” problem is
worth noting. If posteriors updated by multiple lines of evidence have a small region of
overlap, one of two things is true: either we can be highly confident in the resulting
estimates, or the lines of evidence are not, in fact, measuring the same thing. In the
absence of prior knowledge regarding either of these possibilities, a model that brings
posteriors from different lines into better agreement has more evidence to support it. If we
do have prior knowledge or beliefs that we are indeed comparing “apples to apples”, this is
reflected in the term P(M1)/P(M2), and causes the resulting posterior derived from multiple
lines of evidence to be more sharply peaked.

Equation above 235 and the equation shortly thereafter, there is a missing closing
parenthesis.

This has been removed.

244 (some issue with line numbering, that is the line just above 245), A strange formulation,
| would say "If using T20 evidence, more agreement with historical evidence is obtained if
assuming alpha is close to zero." If one were to use Annan et al. (2022) or a weaker pattern
effect estimate, then the result would be different.

We agree completely with this statement. We’ve now rewritten the text to say “Clearly, the
“best" model depends on the evidence used, the prior knowledge of whether we are
comparing “apples to apples", and the priors we place on $\lambda$, $\Delta \lambda$, and
$\alpha$.”

288, Perhaps comment why this entire range is warmer than the range estimated above? It
is the same evidence, | suppose, so a nice example of how a too wide asymmetric prior can
bias the posterior.

We’ve added “and warmer”- note that this is because a “fixed effects” model will simply treat
cool estimates as outliers, hence the warmer values.

339, missing table number


https://doi.org/10.5194/acp-23-7535-2023

Table deleted in rewrite.
Table 3,'1,9' ->'1.9'
Table deleted in rewrite.

342, The authors are careful to write she/he in other places, but not here. Why is it that the
extremely overconfident expert is male?

We’ve added she pronouns.

Section 8, | felt this section was hard to read, and | feel like it could be shortened and
sharper.

We’ve made some big changes, not least identifying specific recommendations.

353, "where do those estimates or measurements come from", | think this text is open to too
much interpretation.

We’'ve replaced this with “how do we decide what counts as “evidence”, which we hope is
clearer.

356, please state which section.
This has been rewritten to describe the overall strategy.

371, delete one instance of 'make'
Done.

Comment by John Eyre

General Comments

1. This is an interesting paper, containing both results and discussion of method that are
likely to be helpful to the community involved in assessments of climate sensitivity.

Thank you.

2. | suggest that the paper could be improved substantially by adopting different
terminology: by transferring from a terminology appropriate to a subjective interpretation
of probability theory (flowing from a subjectivist theory of knowledge) to a terminology
appropriate to objective theories of both probability and knowledge. This would involve
no changes to the equations or the results, as the mathematics of the probability theory
would be unchanged, but it would change the way in which the mathematics is
interpreted in terms of its relation to the real world.



In Bayesian statistics there are multiple schools of thought, including subjectivist
Bayesianism and Obijectivist Bayesianism (see Gelman and Hennig 2017 for a review).
There is a lack of consensus on the best terminology to use in Bayesian statistics, with
many different approaches being advocated by different researchers. Additionally,
Gelman and Hennig (2017) argue that the words ‘objective’ and ‘subjective’ in statistics
discourse are used in a mostly unhelpful way. Many of your points certainly might be
valid, but we are not experts on the philosophy of statistics, and the purpose in this
study is not to address longstanding debates about the terminology of Bayesian
statistics. It is to propose improvements to the way that Bayesian statistics can be
applied to the problem of organizing community assessments of evidence.

Our understanding is that subjectivist language is more commonly used than objectivist
language in the literature and; the terminology we have adopted is commonly used if not
universally agreed upon. Perhaps more importantly, the colloquial understanding of
Bayesian methods (such as it exists) regards Bayesian inference as analogous to a
learning process, in which prior beliefs are replaced by updated beliefs in light of
evidence. That said, we find your arguments compelling and will also adopt some of
your specific proposals - please see below for details.

3. Specifically, | suggest the term “belief” (particularly in the term “prior belief’) be
changed throughout. In most place it could be replaced by “estimate” or “information” or
‘knowledge”. In other places the meaning is different, and it would be better replaced
by “assumption”. Similarly, | suggest that the term “subjective” is over-used. In most
places, what is described as “subjective” is in fact objective, i.e. it is inter-subjectively
shared and criticised. In most cases, this sharing and criticism is of the very high
standard expected of publications in the scientific literature.

We've replaced most instances of “belief” with “belief and/or knowledge” or just “prior”.
However, in some cases, we humbly suggest that we do mean “belief’ in the actual
sense. See, e.g., our discussion of how to handle experts with overly narrow and/or
biased priors. While scientific knowledge should, in theory, be updated systematically
and dispassionately with evidence, it is not our experience in working with actual
scientists that this always happens. Scientists, as humans, approach questions with
priors informed not just by previous evidence but emotional states, ego, cultural
background, political biases, etc. Our hypothetical scientist C strongly believes climate
sensitivity to be low, not necessarily because s/he has extensive knowledge others with
broader priors do not, but because s/he wants it to be.

4. So, if accepted, these comments would imply numerous changes to the text, but ones
that could be made without changes to the structure and scientific content of the paper.

5. A subjective theory of knowledge was widely accepted up to the middle of the 20 th
century. It was accompanied by a subjective interpretation of probability theory in
general

and of Bayes theorem in particularly. This interpretation was heavily criticised by Karl



Popper in many of his key works. The preference for an objective rather than a
subjective,

theory of probability is discussed most cogently by Popper in “Realism and the aim of
science” (1983). Chapter 1 of Part |l is entitled “Objective and subjective probability”,
and

the comments in this review are intended to be consistent with Popper’s treatment of
these

problems. In summarising the difference between these two approaches to probability
theory, Popper says (section 7, para 1): “... The subjectivist takes a as his hypothesis
and

P(alb) as our degree of belief in it, whilst the objectivist takes 'P(alb)=r’ as his
hypothesis.

(He may or may not believe iniit.) ...” . (The subjectivist example here stands for the
probability that hypothesis a is true given evidence b, but it applies equally to the case
where

a is the estimate of a quantity and b is the observational evidence supporting it.)

If one accepts Popper’s criticisms, then the subjective interpretation of probability is
both out-moded and unnecessary (although it appears to linger on in some text books
on philosophy of science and on statistics).

We’re far from experts in the philosophy of science and can’t necessarily fault Popper
here. But more modern works (such as Gelman and Hennig 2017) discuss objectivist
and subjectivist approaches and do not state that the subjective interpretation of
probability is both out-moded and unnecessary. Hence we must conclude that they do
not wholly accept Popper’s criticisms. We recognize that this is an “appeal to authority”
argument which may be flawed, but we don’t feel sufficiently qualified to contribute to
the objectivist vs subjectivist debate- we simply observethat the matter does not appear
to be closed.

Popper (1984) is mainly concerned with to process of testing theories in physics. Again
our use case is not limited to this - it's about estimating climate sensitivity. Faced with a
number of estimates of LGM cooling from different studies, how to we reach a
consensus estimate when experts disagree on the merits of different studies? It's not
clear exactly how to do this in an objectivist point of view, especially when other factors
(rivalries, personalities, egos, biases) might enter in to it. All we can do here is argue
for transparency in decision making.

6. One could argue that we should not worry about words, because “belief’ could be
interpreted as “estimate” or “information” or “knowledge” or “assumption”. However, |
suggest that it is unhelpful to use “belief’ in a way that differs radically from its everyday
usage. This is epitomised by the biblical story of Doubting Thomas: “Jesus saith unto
him, Thomas, because thou hast seen me, thou hast believed: blessed are they that



have not seen, and yet have believed.” (John, 20: 29). | suggest that in science, we
tend to side with Thomas rather than with Jesus - we tend to demand the evidence and
to avoid belief without it.

We are using it in sense of *rational® belief - see Belief, credence, and norms |
Philosophical Studies (springer.com) This paper does not discuss religious belief.

We'd also refer to the Stanford Encyclipedia of Philosophy entry on formal belief which
discusses both subjective bayesian probability theory and personal questions of faith

https://plato.stanford.edu/entries/formal-belief/ Perhaps see also
https://plato.stanford.edu/entries/epistemology-bayesian/

7. Another problem of using the term “prior belief’ for an element on the right-hand side
of the Bayesian equation is that, if we are consistent, the term on the left-hand side of
the

equation is then a “posterior belief’. However, in this paper and elsewhere, the
implication is

that the result of the Bayesian process is an objective result, rather than just a belief —
that,

somewhere along the line, a subjective belief is transformed into an objective estimate.
Objective theories of probability avoid this problem..

.We’ve removed instances of “posterior belief’. As another reviewer noted, we should
not even regard the posterior as an “updated prior”, simply the result of the Bayesian
process given a set of priors and a model.

8. There is much reference in the paper to “expert judgement” but expert judgement is
informed by past experience and its accompanying evidence. Moreover, it is not
derived subjectively but through participation in the objective work of the scientific
community.

Expert judgment is of course informed by experience and evidence, and it would be
ideal if experts derived only via participation in the objective work of the scientific
community. As it stands, all experts could have more or less equal access to the
published scientific literature- and yet disagreement would persist. It is our goal here to
propose methods for the world as it is, not necessarily as it should be.

Perhaps a useful way to think about this is in terms of a hierarchy of models. Why don’t
we know LGM cooling? We don’t know which published estimate to believe. We don’t
know the proper forward model that converts proxy reconstructions to global mean
temperature. There is uncertainty in the proxy measurements. And so on and so on.
There is uncertainty at each level. In a perfectly objective world, we’'d be able to delve
arbitrarily deep into the hierarchy, allowing evidence to determine the posterior
distribution of all hyperpriors. However, for tractability, the model must be truncated


https://link.springer.com/article/10.1007/s11098-013-0182-y
https://link.springer.com/article/10.1007/s11098-013-0182-y
https://plato.stanford.edu/entries/formal-belief/
https://plato.stanford.edu/entries/epistemology-bayesian/

somewhere- to paraphrase Newton, we must let ourselves stand on the shoulders of
giants/

9. | think the only example of “belief’ in this paper is where an “expert” persists in
making a

judgement despite evidence to the contrary. | think this is rare — usually there is
objective

evidence for a judgement, even though the evidence is incomplete. A good scientist
recognises that it is incomplete and is open to new evidence.

More generally, a good scientist holds his/her views tentatively and hypothetically,
recalling that scientific progress takes place through the replacement of one false
hypothesis by a better (but probably false) hypothesis. Consequently, a good scientist
tries not to “believe” anything but to work via a series of hypotheses and assumptions
and their testing.

Not all scientists will be familiar with all of the evidence, and some may be
over-confident. Part of the motivation here is to find a way of combining the expert
judgements of many scientists, relying on the observation that the scientists who are not
open to new evidence are a minority group, and so will only have a small impact on the
end consensus result.

Detailed comments

11.1.7. Here and many other places. “beliefs”. See General Comments above.
We’'ve replaced “beliefs” in most places

12. 1.9. Here and many other places. “subjective”. See General Comments above.

For the reasons above, we’ve kept “subjective”. We must decide what evidence to use,
assess its quality, choose a model (or candidate models) to interpret it, specify priors on
model parameters, and decide how different lines of evidence relate to one another. All
of these are decisions that must be made, and therefore we feel “subjective” is
appropriate.

13.1.19, eq.(1). What is M 0 ? - the climate system, a model of the climate system, or
the

simple energy balance model? If the last, then is the RHS of (1), i.e. including AN,
different?

We’ve more clearly defined MO

14. 1.33: “aerosols”. Net cooling in response to aerosols?



Reworded to “We also have the evidence of the planet itself, which has been steadily
warming in response to net anthropogenic forcing, which includes not just emissions of
$\rm{CO} 2% but of other greenhouse gases and aerosols as well.”

15. 1.49 and 1.170: “knowledge”. See General Comments above.
We’ve removed most references to “belief”

16. 1.61-622, eq.(3) and following line. If P(O) is a belief, then P(Y|®) must also be a
belief

(a posterior belief). See General Comment 7 above.

This section has been rewritten

17. Fig.1(a). Axes need labels.
Fixed.

18.1..120, equation. This is not very clear. C is not defined.
This section has been rewritten to emphasize the “probability mass” concept- please
see response to R1 above.

19.

[.161-162. Sentence “These incorporate expert judgement ...”. These are normally
objective, not subjective, i.e. they are inter-subjectively shared and criticised. This is
fundamental in science.

Yes, expert judgment should be shared and criticized (and this is one of the goals of this
paper) but this does not necessarily make such judgements, especially about an
uncertain quantity, “objective”- merely that frameworks such as this one that seek to
interrogate and synthesize these judgments using evidence are necessary.

20.
1.166-167: “well-informed scientist”. Again, informed by objective information.21.

Unfortunately, well-informed scientists may still have imperfect knowledge or different
opinions on the literature

1.217-218: “Why do these two distributions not overlap substantially?” They appear to
overlap substantially - they are well within each other’s one-sigma points.

This is fair, and we’ve removed this. We're only trying to illustrate that the two
distributions overlap more if a model with state dependence in the LGM is used.

22.
1.229: “odds”. This is another word associated with a subjective theory of probability,



and best avoided if you adopt an objective approach.

This is likely another example of where we disagree due to hierarchy truncation. Yes,
an expert should allow evidence to inform her/his judgment of model odds. But that
would require “going another step down” in the hierarchy and having a scientific debate
over the prior odds, which would in turn require a debate over the evidence informing
those prior odds, and so on and so on. We feel it's better, in a tractable analysis, to
simply clearly specify these priors.

23.

[.237: “definite”. What does definite mean here? Does it mean “certain”? If so, this
would not be a scientific statement - uncertainty is all-pervasive in science. If you

remove

“definite” from this sentence, do you not conclude that state dependence is likely?

We’'ve rewritten this section and it no longer appears.

24.

1.242: “We are not arguing that this is the objectively “correct” way to combine the

Last Glacial Maximum reconstructions with historical observations.” Given my comment
above, it is not clear what you are arguing here.

We’ve rewritten this section and it no longer appears.

25.
1.250: “relying on a community of experts”. Yes! - this makes it objective - this is how
we do science - inter-subjectively shareable and criticisable.

This is how science should be done, but it is not how it is done- at least on timescales
necessary for publishing assessments! Experts are often unable to reach consensus
decisions, and thus a framework that incorporates potentially subjective prior
information is necessary. We feel that making decisions transparent is the first step
toward such important criticism.

26.

[.263: “assume”. Yes - so these are hypotheses (to be tested), not beliefs.

Yes, as we point out in the previous section, the Bayesian model evidence allows us to
assess models in light of the evidence. Our ability to reject or accept a hypothesis,
however, depends strongly on the prior odds, and is - in a truncated model hierarchy-
subjective.

27.

1.286: “prior assumptions: Yes - much better! You can assume something without
believing it.

Ok, we've kept this



28.

1.290: “accurate”. Meaning exact? Unusually, accuracy means a quantification of the
Uncertainty.

Replaced with “Similarly, we might set the prior on $imu$ using the result of a single
published study (say, for example, $\Delta T$ from T20). “

29.

1.294: “belief’. At no point in the discussion contained in this paragraph do you need to
“believe” anything - you are making certain assumptions or posing certain hypotheses,
and then

testing their consequences.

We've removed “belief’

30.

1.337: “the prior beliefs of two hypothetical experts”. Or you could say just two
hypotheses?

31.

[.341: “However, some experts may not be so open-minded ...”. So, are you are saying
that there are closed-minded experts who “believe” things and open-minded experts
who make hypotheses?

Perhaps we're saying that there are some experts who might be considered by some to
be unscientific. But we need to include their views to give a consensus estimate. Also
it's not a clear-cut thing - there’s a sliding scale depending on how narrow their priors
are.

32.

1.343-345: “Expert C’s confidence remains unshaken ...” and following sentence.

This is fundamental to how science works. You are saying that Expert C is not
influenced by

evidence and so is not behaving rationally/scientifically. In (good) science, we suspend
belief and act tentatively and hypothetically.

Yes, the idea is that this method allows you to include the views of all experts, whether
they are willing to modify their views or not. This is what IPCC does, and we're trying to
do the same, but in a more transparent way. Hopefully their contributions will be
downweighted but not entirely ignored. This avoids you having to screen out people
who you think might be overconfident, something that can be problematic, when
building a community assessment.

33.

1.348-349: “The narrowness of C’s prior ...”. It's OK to have a narrow prior, if all the
evidence you have (at present) points in that direction, but it is prudent to assume that
there is some possibility (low probability) of a gross error, because of some effect that
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Towards robust community assessments of the Earth’s climate
sensitivity

Kate Marvel' and Mark Webb?

'NASA Goddard Institute for Space Studies, New York, NY, USA
ZMet Office Hadley Centre, Exeter, UK

Abstract. The eventual planetary warming in response to elevated atmospheric carbon dioxide concentrations is not precisely
known. Fhis-elimate sensitivity The uncertainty in S depends-primarity-on-the-primarily results from uncertainties in net phys-
ical climate feedbacksfeedback, usually denoted as A. Multiple lines of evidence can constrain this feedback parameter: proxy-
based and model evidence from past equilibrium climates, process-based understanding of the physics underlying changes,
and recent observations of temperature change, top-of-atmosphere energy imbalance, and ocean heat content. However, de-
spite recent advances in combining these lines of evidence, the estimated range of .S remains large. Here, using a Bayesian
framework, we discuss three sources of uncertainty: uncertainty in the evidence, structural uncertainty in the model used to

interpret that evidence, and differing prior knowledge and/or beliefs, and show how these affect the conclusions we may draw
from a single line of evidence. We then propose a-method-strategies to combine multiple estimates-of-the-evidence,multiple

ofexpertslines of evidence. We end with three recommendations. First, we suggest a Bayesian random effects meta-analysis
be used to estimate the evidence and its uncertainty from published literature. Second, we advocate that the organizers of
future assessments clearly specify an interpretive model or group of candidate models,in the latter case using Bayesian model
averaging to more heavily weight models that best fit the evidence. Third, we recommend that expert judgment be incorporated
via solicitations of priors on model parameters.

1 Introduction

When a radiative forcing A F' is applied to the climate system, it induces a radiative imbalance AN at the top of the atmosphere
and a response AR of the system itself. To first order, AR = AAT, where AT is the change in global mean surface temper-
ature. The feedback parameter A thus measures the additional radiative flux density exported to space per unit warming. On

sufficiently long timescales the climate comes into equilibrium (AN = 0), internal variability is negligible and we can write a
simple energy balance model (denoted M) for the climate system:

MDMo: AN = AF + \AT. (1)
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In the special case where the radiative forcing results from a doubling of atmospheric COx relative to its preindustrial concen-

tration of 280ppm an

and-the (AF = F the resulting temperature change defines the equilbriumr-equilibrium climate sensitivity .S:
Faxco
ATyxco2 =S==— % 2

$-5'is often used as a metric to quantify expected warming in response to radiative forcing, but has remained stubbornly uncer-

tain even as climate models have improved and become more sophisticated. A 2020 community assessment ((Sherweod-et-al2020)
Sherwood et al. (2020), hereafter S20) reduced this range using multiple lines of evidence, but the recent IPCC report (Ferster; 2021H)-

Forster (2021) assessed only “medium confidence" in the upper bound. Itis-therefore-imperative-to-reduce-the-uncertainty-and
enhanece-confidence-in-a-quantity-so-eructal-to-climate-seienee-and-poliey—Is it possible to further narrow the estimated range

of 5, and can we increase our confidence in this result?

S-S is determined by the net feedbacks A at equilibrium and in response to doubled CO. While these are unobservable in
the current system, in which CO5 has not yet doubled and which is out of equilibrium, there exist several lines of evidence
that might constrain A. We have some process-based understanding of individual feedback processes and their correlations
derived from observations and basic physics. We also have the evidence of the planet itself, which has been steadily warming

in response to anthrepegenie-net anthropogenic forcing, which includes not just emissions of CO s-but of other greenhouse

gases s-and-aerosels-and aerosols as well. Finally, we have proxies that provide evidence about equilibrium climates of the past.

S20 attempted to synthesize these three lines of evidence, incorporating-the-judgementof-many-experts;-and-arrived-arriving at
constraints on climate sensitivity that narrowed the former range.

In 20, the spread in S arose from reported and assessed uncertainty in historical observations and paleoclimate reconstructions,
expert judgement about the uncertainty of physical processes, and the use of different priors on A and/or 5. IPCC ARG assessed
confidence in the range of 5 based on support from individual lines of evidence, and the medium confidence assessed was in
large part due to the fact that not all lines of evidence supported the same upper bound. By contrast, S20 sought to provide
a robust estimate by combining lines of evidence in a coherent Bayesian framework. However, S20 used baseline priors and
estimates of the evidence and investigated the impact of alternate choices as sensitivity tests rather than attempt to combine
multiple priors, estimates, and expert judgements into a single posterior probability distribution. In both IPCC AR6 and S20,

as in almost all previous assessments, the means by which disagreements among experts were resolved or handled was not
necessarily made transparent. This paper presents some lessons learned by two authors of S20 and attempts to chart a way

forward.

Our goal is to understand where unavoidable subjective decisions enter in to the analysis and 3)-to present a framework for
systematically and fairly incorporating the subjective judgements of multiple experts. Ultimately, we seek to create a framework
in which expert judgement is incorporated in the form of clearly specified priors.

The paper is organized as follows. In section 2, we review the basic Bayesian analysis framework. Sections 3, 4, and 5 discuss
evidence, structural, and prior uncertainty, respectively. In these sections, we use a single line of evidence— paleoclimate data

from the Last Glacial Maximum-— to illustrate how these sources of uncertainty shape estimates of climate feedbacks and



sensitivity. In Section 6 we show how these sources of uncertainty affect constraints derived from multiple lines of evidence.
In Section 7 we propose a new method for combining multiple published studies and multiple models, which may be used
60 in the future to arrive at a robust community assessment of climate sensitivity. Finally, in section ?? we discuss possible

generalizations and extensions.

2 Analysis framework

65
70
75
written as
POY) = P(Y}I%)VI)’@)
e P(Y|@13?54/)|;\];)(®|M)' (3)

to the problem of estimating climate sensitivity.

Evidence The evidence Y eonsist-used to constrain climate sensitivity consists of the global mean temperature change AT

85 in response to a forcing AF' as well as, in non-equilibrium states, the net energy inbalance AN. We have estimates
of these quantities for the historical period (derived from observations and models) and for past climate states (derived

from paleoclimate proxies and models), and ¥ therefore consists of multiple lines of-evidenee Y7 ... Y3~ For example,
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520 used direct-observations;-models-of-varying-complexity,process-based understanding of underlying physics, recent

observations, and proxy-based reconstructions of past climates —tn-seetion-3-we-wilk-diseuss-how-differing-interpretations
cd o ) i ntiesinto-tl Ivsis.

The-to assess 5.

Model The model M codifies how we interpret the evidence Y. It specifies the parameters © are-specified-by-an-underlying
generative-model-\4-for the-datawhose posterior distributions we estimate. For example, the-simplestin the simple en-
ergy balance model enoted M), there is only one parameter and © = M-

P(Y|©, M) of observing the data given particular values of the parameters ©. We discuss methods for calculating this

likelihood in Section 3.1.

Prior The prior probability distribution P(©|M) reflects prior beliefs or knowledge about the model parameters ©. For
example, in the simple model My, the community assessment S20 adopted a uniform prior on A as a baseline choice,
choosing not to rule out net positive feedbacks (and therefore an unstable climate) a priori. Both the geological evidence
and process understanding presented in Section 3 of S20 effectively rule out both positive and extremely negative

feedbacks, and thus an alternate prior reflecting this physical knowledge might be a normal distribution N (u,o) with

mean u =-1.30 and standard deviation g = 0.44.

This framework allows us to use our prior understanding of the parameter values to calculate the posterior probabilities

P(0]Y, M) of the model parameters given the evidence. This posterior can be updated as new evidence becomes available.

Bayesian statistics is both praised and criticized for its inherent subjectivit .g. Gelman et al. (1995)). But al/ statistical

analyses depend on prior knowledge and interpretive models, whether implicit or explicit. The Bayesian framework merel
makes clear where unavoidable subjective decisions enter the analysis. While-in-theorysufficient-evidence should-update-the

priors-ot-a asonabie-anaty and : ar-po O ates;H-pra pa vid ane-strongty &b

Figure 1 summarizes the decisions that must be made in any Bayesian analysis of climate feedbacks. First, the analyst must
decide what constitutes “evidence". This requires an assessment of the feedback-parameter--literature assessing AT, AF,
and AN for each line of evidence. Second, the analyst must specify a model (and its parameters ©) in order to interpret that
evidence. For example, the model My assumes the feedback parameter is time- and state-independent, and thus estimating it
from the past is a reliable guide to the hypothetical future under doubled CO,. Finally, the analyst must clearly specify her or
his priors on the model parameters.
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Which published values should we use Which model should we use to What is our prior knowledge of the
as evidence? interpret the evidence? model parameters?

Y P(Y|®,M)  P(O|M)

Figure 1. Schematic of unavoidable subjective decisions in an analysis of climate feedbacks.

3 Evidenee-uneertainty

interpreted-using-modeling-assumptionsIn the following sections, we show how different reasonable choices about evidence

iven a single line

different posterior distributions for \ (and hence climate sensitivity .S

models, and priors can lead to ve

of evidence.

1-S20;-the-

3 Evidence uncertaint

The strongest constraints on the-upper-bound-of-warming-equilibrium climate sensitivity in S20 were derived from paleoclimate
evidence-In-this-section;we-will-show-how-uncertainty-in-the-evidence-affects-our confidence-in-those-constraints—The-, and the

closest equilibrium climate to eurs-the present is the Last Glacial Maximum (LGM) approximately 21,000 years ago. Recon-

structions (Annan-and Hargreaves; 2013 Bereiteret-al- 2048 Friedrichet-al52016: Holdenetal;

2018); Friedrich et al. (2016); Holden et al. (2009); 2006); Shakun et a

or model-based estimates {Braconnotetal; 2042 Kageyama-etal52021H-Braconnot et al. (2012); Kageyama et al. (2021) of

the global mean temperature change AT" and the radiative forcing AF' have been used to calculate the global mean feedbacks

Annan and Hargreaves (2013); Bereiter et al. von Deimling et al.

A inferred from this period. Neither of these “observed" quantities is precisely known. For example, multiple, seemingly incom-

patible, estimates of the LGM global mean cooling AT are available in the published literature {Annan-and Hargreaves; 2013 Holdenet-al-
Annan and Hargreaves (2013); Holden et al. (2009); Shakun et al. (2012); von Deimling et al. (2006); Friedrich et al. (2016);

. These are derived from climate models participating in the Paleoclimate Model Intercomparison Project (PMIP (Kageyama-et-al52021H
Kageyama et al. (2021)) and combinations of models and various proxies, and are often in conflict with one another.

Hansen et al




We will illustrate the impact of this uncertainty by comparing the evidence used in two recent studies. S20 used expert

145 judgement applied to a literature review to estimate AT = —5K with a 95% confidence interval of (-3.0K, -7.0K). How-
ever, a contemporaneous study using an-tpeated-a new temperature reconstruction (Tierney et al 2020 (Fierney-et-al;-2026)
Tierney et al. (2020), hereafter T20) estimated both colder (mean -6.1K) and less uncertain (with a 95 % highest posterior den-

sity interval of -6.5 to -5.7 K) values for LGM cooling. We note that the two studies are not exactly comparable: S20 represents
a community assessment of evidence that took into account a broad range of evidence and uncertainties, whereas T20 was a
150  single study. The temperature estimates in T20 may also be cold-biased and overconfident due to reliance on a prior derived
from a single climate model Annan etal. (2022). However, in order to illustrate evidence uncertainty, we here treat S20 and
T20 as different reasonable estimates of AT and AF’ over the LGM. We discuss methods for incorporating estimates such as

T20 in expert assessments in Section 7.1.
The two studies S20 and T20 also differ in their estimates of the radiative forcing that led to this temperature change. Both

155 agree that it was colder 21,000 years ago because a change in orbital forcing, while negligible in the global mean, led to the
development of large, reflective ice sheets in the northern hemisphere and lower levels of atmospheric greenhouse gases. The
forcings associated with orbital changes (Kageyama-etal;2021-Kageyama et al. (2021) and CO, (Siegenthaler-et-al52005)-
Siegenthaler et al. (2005) are relatively well-constrained; the forcings from other well-mixed greenhouse gases {Leulergte-et-al;260%)-
Loulergue et al. (2008) and ice sheets less so but still informed by proxy and model evidence (Section ??), and those from dust

160 (Mahowald-et-al52006;-Albani-and-Mahewald; 2019)--Mahowald et al. (2006); Albani and Mahowald (2019), other aerosols,
and vegetation (Kéhleret-al52040)-Kaohler et al. (2010) highly uncertain. While S20 estimated total radiative forcing in the
LGM to be N(-8.43, 2) W m~2, T20 use a best estimate of -6.8 W m~2 with a 95% confidence interval of 96-9.6t0-52W

165 used-to-constrain-those-parameters—Here;-we-will-define-evidence uneertainty-as-unecertainty-in-thejoint-probability-density-of

Contour lines in Figure 2a show the joint probability distribution (assumm uncorrelated errors) p(AT, AF) as reported by S20
@Vlgglgland T20 are
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during-the EGM;butrathera-, our evidence Y consists of estimates of the joint probability density F{¥)-fer-beth—Fhe-meodel
Mo-impeses-therequirement-thatgiven-afixed-p(AT, AF).

3.1 Calculating the likelihood

1

The likelihood of “observing” this probability density for any given value of the feedback parameter A is determined by the
model, which dictates the relationship between ), at-pairsof (AT AL Hieonthe AT and AF'. For example, the simple energy.
balance model M constrains all possible pairs of (AT, AL to line on a line with slope A—tntegrating the-joint-probability
density-along-thattine-resultsin-—\. Intuitively, the value of —) that maximizes the likelihood is the slope of the line that
passes through through the greatest probability density. These maximum likelihood estimates are shown as straight lines in
Figure 2a.

We therefore define the likelihood of the-evidence-given-p(AT, AF) for any A (Figure2¢b)):-as the probability mass along.
the curve C described by the energy balance model with fixed A:

P(AT,AFY|X) / Jp(AT, AF)ds
C
C:0=AF+\AT

If the joint evidence is Gaussiana multivariate normal distribution (as it is in S20), this leads to an exact analytic expression

for P(Y|\) (Appendix 1). Otherwise, the integral can be computed numerically. The resulting likelihood functions are shown
as thick lines in Figure 2b.

3.2 Climate sensitivity estimates depend on the evidence

Clearly, the constraints placed on the climate feedback by the Last Glacial Maximum depend on our estimates of the temperature
difference and the radiative forcing that caused it. Using S20 evidence, this energy balance model, and a uniform prior

P()\) =U(-10,10), we find that the most likely value of the feedback parameter is A = —1.7 Wm~2K~! (thick black line,

RAARAARRAINAY
Figure 2¢b)-b) with a 5-95% range of (-3.37, -1.09) Wm—2K~! . Fhiseorresponds-to-a-5-95% range-of (+17K3-69K)for

—Using T20 evidence, the most likely value is
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Figure 2. Panel a: joint evidence distributions for AT and AF used in Sherwood et al (black contours) and Tierney et al (red contours).

Structural uncertainty is illustrated using solid lines (corresponding to fixed values of A using the model M) and dashed lines lines

corresponding to fixed values of A and « using the model M,,). b: Likelihoods as a function of A and given S20 (black lines) or T20

red lines) evidence and different values of the state dependence «. b: Resulting likelihoods for A given the evidence from S20 (black) and

T20 (red) and different values of the state dependence parameter «. Likelihoods derived using the simple energy balance model (. = 0) are

highlighted by thick lines.

For simplicity, here we calculate the likelihood PAF-AFRYP(Y | )), and use the resulting posterior PIMALAT e« PAT-AF PP
PY) x P(Y|A\)P(A) to calculate S (Appendix 2). This neglects the small correlation between A F' and the forcing at dou-

bled COa, but this simplification does not substantially affect our results (Appendix 3).

Using S20 evidence from the LGM, we find a 5-95% range of (1.17K, 3.69K) for the climate sensitivity .S (assuming, as in
S20, that F: ~ N(4.0,0.3)). Using T20 evidence, the 5-95% range for S is (2.61K, 4.72K).

4 Structural uncertainty

Many-Thus far, we have relied on the simple energy balance model to interpret the LGM evidence. However, many recent stud-

ies (e.g. 5 : = : = Rohling et al. (2018); Stap et al. (2019); Friedrich et al. (2016); Renc
) suggest that the-simple-model-Ay-, might not be appropriate for past climates due to the dependence of the feedbacks

on the background climate state. If the relationship between temperature change and radiative forcing is nonlinear, then the
feedbacks in a past cold climate should not be treated as identical to those in a future warm one. To model this background

temperature dependence, we might use an alternate model that includes a second-order term in the radiative response



MMo:0=AF + AT+ ZAT? @

220 where a = OA/O(AT) is an additional parameter reflecting the background state dependence (Selers; 1969:-Caballero-and Huber; 204 3;
Sellers (1969); Caballero and Huber (2013); Budyko (1969); Sherwood et al. (2020). Intuitively, nonzero values of « change
the relationship between the paleoclimate evidence and the feedback parameter A. This, in turn, makes the evidence more or
less likely given a value of \. For example, if o = +0.1 (which translates to a change in feedback of -0.5 Wm=2K~! at a
cooling of -5 K), the most likely value of A is not the same as the most likely value of A assuming av = 0 (dotted and solid lines,

225 Figure 2a). In this case, the likelihoods (Figure 2b) are calculated by integrating the joint probability distribution for AT" and
AF along the curve defined by Eq. 4, and depend on the value of the state dependence parameter «.

If o is not a fixed value but an unknown parameter, then the evidence can constrain only the joint distribution of © = (A, ).
Obviously, in order for the climate of the past to tell us anything about the climate of the future, we must have some information
about how they relate to one another.

230 There is no limit to the complexity of models we might use to interpret the evidence of the LGM. We might allow for
both non-unit forcing efficacy and state dependence;for-examples-or. We might assign different efficacies to different forcing
agents, or allow the parameter « to bifurcate at lower temperatures. We might also include an additive pattern effect A\ that
reflects differences in the spatial pattern of temperature change in the LGM and the pattern of warming expected at elevated
CO-, concentrations (e.g. Cooper et al. (2024)).

235 The-interpretive-model-Regardless of the interpretive model used, it is both required for analysis and subjectively chosen by

the analyst. Different reasonable analysts might make different choices about the model to use. This means that the choice of
model is an important source of uncertainty that must be clearly specified or quantified. There is, however, one more source of
uncertainty to discuss. Even given a single model, for example A0, our degree of confidence in the constraints placed by
paleoclimate evidence on the feedback parameter A necessarily reflects our prior knowledge of the state dependence of climate

240 feedbacks. It is to this prior uncertainty that we turn in Section 5.

5 Prior uncertainty

Once a model is specified, we would like to use the evidence to tell us something about its parameters ©. Bayes’ theorem says

s—distributions of the parameters

that the posterior distributions—essentially;-our-degree-of beliefinthe-values-of these-paramete
are simply obtained by multiplying the likelihood by priers=prior probability distributions reflecting our pre-existing beliefs -

245 These-and/or knowledge. These priors incorporate expert judgement, the results of other analyses, and knowledge of physical
processes. Posterior distributions of individual parameters can depend strongly on prior knowledge of all parameters. For
example, Figure 3¢a--a shows the joint posteriors for the feedbacks X and the state dependence a assuming the model M5 M,
the temperature and radiative forcing values reported in S20, and uniform priors on both parameters. In the absence of any

physical knowledge about these parameters, the joint posterior is not very informative. In fact, considerable posterior weight
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Figure 3. Joint posteriors for the feedback parameter A and the state dependence « under different priors: €a »-Uniform priors on both
parameters ¢b >Uniform prior on A, Gaussian prior from expert judgement of published literature (used in S20) on « (c) Gaussian prior from

process evidence (used in S20) on A, uniform prior on « (d) Gaussian priors (from S20) on both.
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250 is placed on extremely large positive values of « and positive A=, which would make negative climate sensitivity appear more
likely than most scientists would consider credible. A well-informed scientist, however, is unlikely to think that o = 1 (which
implies an enormous mean change in feedback of -5 W m~2 K~ for 5K of glacial cooling) is just as likely as o = 0 (implying
no change in feedback). In S20, a prior of A4—+6-46-14)-N(4+0.1,0.1) was assigned to the state dependence «, reflecting the
current state of the literature. This prior knewledge-substantially constrains the resulting joint posterior distribution (Figure 3

255 b). Conversely, imposing a more informative prior on the feedbacks-feedback parameter A, for example by using the process

constraints in S20 that result in A~A{—130:0-44)) ~ N(—1.30,0.44), also constrains the joint distribution: positive values

of « (i.e., which imply a lower sensitivity in the LGM than at doubled COs) receive more posterior weight. Combining the
informative priors on both A and « further constrains the joint posterior (Figure 3¢d))—Schematic-ofunavoidablesubjective

260

265

6 Combining multiple lines of evidence

The examples we have presented thus far have all used palee-evideneefrom-a single line of evidence— paleoclimate reconstructions
270 of the Last Glacial Maximum-Maximum-— to constrain A. However, it is not necessary to look back over twenty thousand years

to gauge the planet’s response to external influences. More recently, a large increase in radiative forcing has resulted in sig-

nificant global warming and a large imbalance-reflected-in-an-increased-rate-of-ocean-heat-uptakeradiative imbalance at the
top of the atmosphere. To constrain A with transient historical observations, the-we use evidence Y = (AT,AF,AN). where

AN is estimated from observed changes in ocean heat uptake and/or satellite observations constrained by ocean heat content

275 (Forster-2046)-Forster (2016).

In this three-dimensional joint probability space, the simplest energy balance model A4-) defines a plane rather than a line

in evidence space (Figure 4), and the likelihood of the evidence given A is proportional to the integral over this surface. Figure

11



(a): Line integral (b): Likelihoods

(=4
)
>

—— Historical, no pattern effect
—— Historical, AN ~ N(0.5,0.3)

14 (=4
i n

Likelihood
o
w

Figure 4. a: Calculating the likelihood of observing the historical evidence used in S20 for a putative value of A. Each value
of A\ defines a plane; shown are EWHM&NW)A%%M&M (orange) and
A=—2Wm—2K\ = —2Wm K '(green). The likelihood is the surface integral of the joint PDF along the plane. b: Likelihood for the

4 shows the historical evidence reported in S20, in which

280 AT ~ N(1.03,0.085)N(1.03,0.085) (5)
AN ~ N(0.6,0.18)N(0.6,0.18) (6)

and AF is calculated using unconstrained aerosol ERFs from BeHouinet-al5-2026)-Bellouin et al. (2020) with median 1.83
W m~2 and 5-95% range (-0.03, 2.71) W m~2. The gray line in Figure 224 shows the resulting likelihood as a function of .
The maximum likelihood value is A = —1.53Wm 2K 1.

285 However, the simplest energy balance model Ay~ assumes the feedback parameter is the same for climate changes in the

deep past, the transient historical period, and the future. Many studies (e.g. (Marvel-et-al; 2016 Andrews-etal;2018;- Donget-al5-2020; Re
Marvel et al. (2016); Andrews et al. (2018); Dong et al. (2020); Rose et al. (2014); Armour et al. (2013); Gregory and Andrews (2016); M

) now argue that a more appropriate model should include a “pattern effect” A that reflects the differences between feedbacks
triggered by the observed spatial pattern of transient warming and the feedbacks expected in response to the long-term equilib-

290 rium warming pattern:

Z\/[A)\ ZAN = (/\—A/\)AT-FAF

Max: AN = (A= ANAT + AF

12



S20 placed a Gaussian prior on this pattern effect AX =N(0.5 , 0.3) W m~2K~!. This corresponds to a modification of
295 the tilt of the plane in Figure 4a. Because this model assumes the pattern effect is linearly additive, no further curvature is
introduced. By multiplying the joint likelihood P(AQ, AT, AF|X,A\) by this prior P(A)) and integrating over all values
of A), we obtain a “marginal” likelihood for the historical evidence as a function of the feedback parameter \. This is shown
by the black line in Figure 224b. The inclusion of the additive pattern effect and our prior-belief-physics-informed intution
that it is likely to be positive shift the most likely value of the feedback parameter to A = —1.0Wm ™ 2K ~!. Likelihood-forthe
300 . . . . S

305 =
Gaussian-priorsthe same asused-in"The pattern effect estimate used in S20»-was based on the Atmospheric Model Intercomparison
Project I (AMIPID) dataset, which produces the largest estimate of the pattern effect Modak and Mauritsen (2023), and therefore
the priors on A used there may be both overconfident and too strongly weighted toward high values. However, while noting

310 this important caveat, for illustrative purposes we will use the S20 historical likelihood marginalized over the pattern effect
estimate as the “historical” likelihood for the rest of this paper. Fhese priorsreflect-our beliefsthat this pattern-effect-actsto

315 6.2 The “Twin Peaks'' problem

Assuming conditional independence between lines of evidence, the posterior distribution of the feedback parameter )\ derived
: he historicalobs . ” fFeet)TnFi S(a)s the-is.

POIY) ¢ PV WP (Vi )PV g

That is, the posterior estimate of A\ given two lines of evidence is proportional to the product of the individual likelihoods.
320 But what if the likelihoods have a small (or no) region of overlap? Can we really be confident that the posterior estimate is

well-constrained in this case? Figure 5a highlights this potential pitfall. The black line shows the marginal likelihood for the
historical evidence as a function of A. The light blue line shows the likelihood for A-derived-from-the S20 LGM evidence as

0 t antta are

a function of ), assuming no state dependence —Wh

AAAAAAAAANAANA

in-the-evidenceused;the-answer-must-(a = 0). The product of these likelihoods is shown as a green dashed line. The less the
325 historical and paleo likelihoods overlap, the narrower the posterior will be. We refer to this conundrum as the "Twin Peaks"
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330

335

340

345

350

roblem: should larger incompatibility between multiple lines of evidence really reduce the uncertainty in A? Or could it be
that the EGM-and-historical-data-are-two lines of evidence are not, in fact, measuring the same thing?
We can take the latter possibility into account by using an alternate model for the paleo evidence. Note that the posterior

for A shown in fa

the-same—-\—The-dark-blue-line-in-Figure 5(b)-shows-the-marginal-likelthoodfor-a is conditional on a model M, for the
paleoclimate evidence that contains only one parameter Agiven-thesameLGM-evidence;a-model-that- The model assumes
that the equilibrium feedbacks in a warmer climate are exactly the same as those in a colder climate, that the response to pure
CO, forcing is equivalent to the response to LGM forcings. and that the pattern effect is zero over the LGM. An alternate model,
say M,, allows for state dependence s-and-a-Gaussian-prior-on-the-state-dependenee-parameter-via an additional parameter ov.
The marginal likelihood for the paleo data given M, and Gaussian priors on « is shown as a dark blue line in Figure 5b. While

the overlap between these two distributions is far from exact, it is substantially larger than for the no-state-dependence case

illustrated in Figure 5€a}4ﬂfutﬁve}y—fhefsﬁﬂaafe&a Simply put, the historical evidence and the LGM evidence appear to be in

more compatible when we correct for the state dependence of the past cold period. When using T20 evidence, however,
there is considerable overlap between the historical (with pattern effect) and paleo (with no state dependence) likelihoods. As
in the top two panels, the black lines in Figure Sc and d show the historical likelihood. The likelihood for A obtained from
T20 evidence and assuming no state dependence (orange line, Figure Sc closely overlaps the historical likelihood, as does the
likelihood assuming state dependence with a prior on « as in S20 (red line, Figure 5d. The latter model, however, yields a
broader likelihood for A and therefore the region of overlap with the historical evidence is smaller.

Combining multiple lines of evidence therefore introduces another source of unavoidable subjectivity: how can we be sure
that in doing so, we are comparing “apples to apples”?

6.3 Model Odds

The question of how to compare separate lines of evidence is a question of models: namely, how do we interpret the separate
lines? Fortunately, Bayesian methods allow us to compare and criticize models based on the evidence. Consider, for example
two models for the LGM: M, and M. The model odds are defined as

(M |Yhi§ta paleo)
(MO|Yh1§t7 paleo

P(Yhzsh paleo'M) ( «

odds =

)

)
Pt Yateo Mo) P(Mo)
)

P(M,

= BF x
P(Mp)

where the Bayes Factor BF' is the ratio of the evidence for each model.
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(a): S20 evidence with no state dependence

(b): S20 evidence with state dependence

0.6
m—Historical, A - N(D.5, 0.5} mm Hist orical, 44 = N(D.5, 0.5
LGM, 520 evidence, no state dependence | GM, 520 evidence, @ ~-N{D.1, 0.1}
0.6 - = Product m— Product
0.5
0.5
0.4 1
0.4 +
0.3
0.3
0.2
0.2 1
0.1 0.1 -
0.0 ~ 0.0 A
T T T T T T T T T T
—4 -2 0 2 4 —4 -2 0 2 4
A A
(c): T20 evidence with no state dependence (d): T20 evidence with state dependence
2.00 + m— Historical, A4 - NID.5, 0.5} m— Historical, A - NID.5, 0.5}
LGM, T20 evidence, na state dependence 1.0 4 m— |GM, T20 evidence, @ ~N[0.1,0.1}
1.75 - mm Product mmm Product
1.50 4
1.25 A
1.00 A ﬂ
0.75 1 "‘
1
0.50 - ri
|
0.25 1 /, I

Figure 5. Likelihoods from multiple lines of evidence. In all four panels, the black line shows the likelihood for the historical evidence given
A and assuming a pattern effect A\ ~ N(0.5,0.3). ¢a): Likelihood of S20 evidence given A assuming no state dependence in the LGM (light
blue line) and overlap (dashed green line). ¢by:Likelihood of S20 evidence given A assuming state dependence and o ~ N (0.1,0.1) (dark
blue line) and overlap (dashed green line). (c): Likelihood of T20 evidence given A assuming no state dependence in the LGM (orange line)

and overlap (dashed green line). {b}:Likelihood of T20 evidence given A assuming state dependence and o ~ N (0.1,0.1) (dark red line) and

overlap (dashed green line).
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355 The model evidence for-any-givenr-model-Myean-be-caleulated-using-

PIYIM,) = /P(Y\@,Mg)P(@\Mg)d@.

for any given model M, is defined as the integrated likelihood over all values of its parameters O:

P(Y|M,) :/P(Y|@,M2)P(94|Mz)d9£~ ®)

360

365

P(}/histaY;JaleAMO,A)\) O(//P(Ypaleo‘)\)P(Yhzst‘)\vA)‘)P()‘)P(AA)d/\d(AA)

For example, the model evidence for model M is

P(Yhistaypaleo|M0) (X/P(Ypaleo|>\)PA)\(Yhist|)\)P(>\)d>\

370

AXA{as-i-S20assumed-to-be N(O-5;0-3Pmodel evidence for M, is therefore the area under the green curve in Figure Sa.
Fhe-By contrast, the model evidence for the second-meodelis-model M, is_

Pt Vool Mo Me) [ [ P(Fpateal )P (Vi A, AN PO@)P(AN Pla)dad(A) da

We-can-then-caleulate-the Bayes-faetor-
o P(Y|M(X,AA) o P()/h,ist»}/pa,leo|M(y,AA)

375 BF = =
P(YlMO,A)\ P(YhistaypaleolMO,A)\)

=1.33.

H-eurprier-belief-When combined with a uniform prior on \, the model evidence for M, is the area under the green curve in
Figure 5b.
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385

390

395

400

405

Using S20 evidence and these priors, we find that the Bayes Factor is 1.33. This means that if our prior is that both models
are equally likely, the evidence shifts those odds: the model depicted in panel (b-)-b is about 33% more likely to have generated

the observed paleo and historical evidence.

EGM-evideneceare-those-with-and-However, using T20 evidence, the Bayes factor is 0.93. This suggests that the “better" model

to use, given T20 evidence, is one without state dependenceand-tsing-5260°s-Gausstan-priors-on-o-that-this-ts-are-the-modet-tha
aximizes-the-agreement-between-separate tines-ofevide rot argting-that-this-is-the-objectively—correet. Clearly,

the “best" wa vith historical-observations.
Tn-faet-whether-or-not-model depends on the evidence used, the prior knowledge of whether we are comparing “apples

to apples'depends—very-heavily-on-the-evidenee—weuse—As—in-thetop—two—panels;—thebla nes—rFietre atre—(d

Y|MQ,A/\)

P(
BF = =0.93.
P(YlMoﬁA)\

er-priors we place on \depend-heavily-on

We note that whether the twin peaks problem is indeed a “problem" is largely dependent on the prior odds P(Mq,)/P(Mo).
which must be specified. If we have prior knowlege that the interpret that-evidenceand-prior beliefs-about the
parameters-Moreover,-our-ability to-compare-differenttwo lines of evidence are measuring the same thing, then we will give
more prior weight to the simple model My and the Bayes Factor will do little to shift the odds. This will result in a narrower
posterior estimate: if two lines of evidence 4 i i ¢ i L

nreeare compatible only for a small range of values, and we are
confident in what the evidence is telling us, then we may be more confident in its posterior value.
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410 combining-

7 A Way Forward

Thus far, we have established that there are three places where unavoidable subjective decisions must be made: collecting
evidence, choosing the interpretive model. and assessing prior knowledge of that model’s parameters. We have also established
that multiple lines of evidence - ifert RioR-1 ai systematie-way—appear more or less compatible
415  depending on the models used. Here, we presentasuggestedwayfewmﬁkfeﬁe*peﬁasse%ﬁmn%%efyﬁaalyﬁwﬂ%%qwfe

ehoiees—framework for making these decisions in a community assessment framework.

7.1 Assessing-evidence-uneertainty

7.1 Handling evidence uncertaint

420

hierarchical-modelingis-Bayestan-Whether and how much a newly published estimate of a particular quantity (for example

AT or AF from the Last Glacial Maximum) affects the evidence base depends on prior knowledge of that quantity. It also
depends on expert assessment of how the new study relates to existing literature. A single highly certain, high-quality study can
425  strongly shift previously uncertain estimates, while low-quality or uncertain published estimates may not change previously.
firm understandings.
We suggest formalizing these intuitions using a Bayesian random effects meta-analysis tSmith-et-ak;+995)Smith et al. (1993)
, frequently used in fields as diverse as psychology {Gf%%f%ﬂ%@%&ﬁedﬁm{%&ﬁmﬁﬁd%bﬁmm—z@%mwm

medicine Sutton and Abrams (2001), and ecology

430 . This model can be written as

~Koricheva et al. (201-

i ~ NN (0:y5,0:5) )
@yg ~ NN (@Y, )~ g()T ~h(.) (10)

H&e#y—ﬁnd—aﬁ“lhgm are the reported mean and uheertainty-of-the-evidenee-(ire AL-AN-or-AF)-from-stady—-
re-standard deviation of each study j. We assume the true (latent)

435
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460

465

470

cP1io oh—t—ana Oo—7T1ehe oUr—prioroeHce aooutHotHtne ge—-varac—o

studies—In-a—fixed-effectsmeta-analysis-the-the expected inter-study standard deviation,
The priors we put on the quantities of interest— the overall mean Y and the between-study spread Tis-asstmed-to-be-zero

uantify our previous knowledge of and views about the literature. A 7 very close to zero suggests homogeneity across studies
and, in fact, choosing to set 7 = 0 reduces the random-effects model to the fixed-effects model). By contrast, in-a—random

expect-variation-between-estimatesif we have reason to believe that multiple studies should vary in their reported values due to

structural and design factors, then we might place a broad prior on 7. For example, a fixed-effects model might be appropriate
for calculating the ensemble mean of a quantity within a single CMIP model, whereas a random-effects model might be more

appropriate for combining ensembles of multiple CMIP models, which we know to differ structurally.
As an-a specific example relevant to calculating the feedback parameter ), we-witk-consider multiple published LGM global

mean temperature changes AT’ derived from proxies and models as well as from PMIP3 and PMIP4 models (Table 1).

Figure 6 illustrates how the posterior distribution of AT’ depends on prior beliefs about the nature and quality of the pub-

lished literature assessing it. Consider, for example, a random-effects model in which we place broad priors on the mean
i~ N(0,100) and inter-study standard deviation 7 ~ U (0, 100). With these prior assumptions, 90% of the resulting posterior
density for p (the true value of AT') lies between (-5.9K, -4.8K). Assuming that there is no inter-study spread (i.e, 7 is assumed
to be zero with zero uncertainty: a fixed effect model) would yield an estimate of AT 90% likely to be between -4.8 and -4.5K.
This much narrower (and warmer) estimate results from the extremely restrictive prior belief that every study, regardless of
method, targets the same underlying AT and would yield the same results if performed perfectly and with adequate data.

Similarly, if-we-believe-the-we might set the prior on u using the result of a single published study (say, for examplet20;to-be

may-adoptthis-as-ourprior-belief;setting-the-prior-on—-to-be-the T20-distribution-of, AT from T20). Com-
bined with a broad uniform prior on the inter-study spread, this results in an 90% posterior density estimate of (-6.2K, -5.6K).
If, however, we adopt the restrictive fixed effects model, the T20 study is merely treated as an outlier and fails to substantially
move the posterior distribution toward cooler values of AT (red line), even if-eurprior-behiefis-that F20-s-exactly-correet-

LVARY: hicmeaneicthat o cim a hiare hical -1 a he_avideanca A AL A< a) o + diffara A Aarta
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Mean (K)
-4.00
-5.80
-6.20
-3.58
-6.20
-6.30
-5.70
-5.75
-6.10
-5.00
-4.85
-2.70
-4.63
-4.92
-5.19
-4.64
-5.40
-4.41
-4.67
-4.71
-3.75
-3.81
-6.80
-7.16
-5.92
-6.46
-3.28
-3.26
-3.73
-4.63
-4.02
-3.90
-5.27

Standard Deviation
0.41
0.77
0.46
0.12
0.92
0.61
0.20
0.38
0.20
1.00
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Reference

(Annan-and-Hargreaves;2613)-Annan and Hargreaves (2013)
(vonDeimling-etal52006)-von Deimling et al. (2006)

Shakun-et-al-2642)>-Shakun et al. (2012)
Snyder;-2616)-Snyder (2016

(Friedrich-and-Timmermann;2020)-Friedrich and Timmermann (2020)
Friedrich-et-als2046)-Friedrich et al. (2016

(Fierney-etal52020)-Tierney et al. (2020

Table 1. Estimates of global cooling AT during the Last Glacial Maximum

20

Derived From

Proxies and models
Proxies and models
GENIE-1

Proxies

Proxies and models
Proxies (ocean temperature) and models
N/A

SST proxies and a model simulation
proxies and isotope-enabled climate moc
Synthesis

CESM

CNRM

FGOALS-g2
GISSE2-pl

GISSE2-p2

IPSL

MIROC

MPI-pl

MPI-p2

MRI

AWIESM1

AWIESM2

CESM1-2
HadCM3-PMIP3
HadCM3-ICE6GC
HadCM3-GLAC1D
iLOVECLIM-ICE-6G
iLOVECLIM-GLACI1D
INM-CM4-8
IPSLCM5A2
MIROC-ES2L
MPI-PMIP4
UT-CCSM4



480

5 Fixed effect, broad prior
—— Random effects, T20 prior I||
g | — Fixed effect, T20 prior [ |

—— Random effects, broad prior ’\

Figure 6. How cold was the Last Glacial Maximum? The answer depends on your prior beliefs about the cooling and about the literature.
Shown are posterior distributions for the LGM cooling AT assuming a random effects model and broad (blue line) or T20 (green) priors on
the mean or a fixed effects model and broad (orange line) or T20 (red line) priors on the mean.

3 I KAer-S—We-willexplore-the-impact-of-different-medels-and-using the T20 prior.

7.1.1 Recommendations

Unavoidable subjective decisions about the evidence can be made explicit by adopting a random effects meta-analysis. This
requires the specification of priors en-this-—estimate-in—seections—7-2-and-7-3;respeetivelyon the inter-study spread 7 and the
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490

495

500

505

510

515

overall mean Y. Our recommendation is that the organizers of community assessments choose and clearly specify these priors
rather than allowing individual experts to choose their own.

7.2 Handling model uncertainty

As shown in Section 4, the constraints placed on climate sensitivity by paleo-or-histerical-evidence-multiple lines of evidence
evidence depend on the model(s) used to interpret that evidence. This means that the design of every expert assessment must
be explicit about the-modelsused-to-interpret-each-line-of-evideneeits interpretive models. As the assessment is planned, it is
crucial to arrive at consensus on credible interpretive models for the evidence. For example, one possible model for the Last
Glacial Maximum might incorporate parameters « (representing state dependence), £ (representing the difference between
long-term equilibrium LGM feedbacks and the target quasi-equilibrium feedbacks to doubled CO2) and A\ (representing
radiatively important sea-surface pattern differences between the LGM and doubled CO2):

B —AF

AEQALAM 4 CAT

Given a model, even-an-unwieldy-one-with-multiple parameters;-experts may then be asked to specify their prior beliefs about

each parameter. If an expert disagrees with the inclusion of a parameter in a model, s/he would be free to set a prior very

AT

narrowly clustered around O on that prior.
If consensus cannot be reached on a particular model, then we suggest that the planning team for any assessment arrive at a

list of candidate models A ——Ax-M; ... M. The aggregate posterior can then be taken as a weighted average over different
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models:

P(@|Y):iwkp(@|MMkaY)- (11
k=1
Here, (O|M},,Y") is the posterior obtained using the model A4/}, to interpret the evidence Y.
The weights reflect how well the model fits the data, and are given by
P(Y | M) P (M) P(Y | M) P(My,)

wyp = P(MM|Y) = ' .
+ = PIMMIY) Yt POIM)P(My) 35, PYIM) P (M) -

The term P{A¥)-P (M, |Y) is the model evidence (Eq 8, discussed in section 6.2). These weights, and hence the combined
posterior, depend on the priors 2{A4;-P (M) we put on the correctness of each model. If an assessment allows for experts

to use one of multiple models, it is therefore imperative to specify assessment-wide priors on these models upfront.

7.2.1 Recommendations

We recommend that organizers of community assessments clearly specify a single interpretive model for the evidence. If this
is not possible, organizers should specify a list of possible candidate models M. and ask and a prior P(M},) for each candidate
model. The resulting estimate will then be a weighted averages over the models.

7.3 Expert elicitation via priors

Finally, it is necessary to quantify the degree of pre-existing knowledge and/or beliefs through the use of prior distributions.

may be usefully incorporated in an assessment.

However, we require consistent ways to aggregate the judgement of multiple experts. In theory, sufficient evidence should
lead to a high degree of agreementamong-experts, even if they-different experts begin the analysis with differentprior-beliefsvery
different priors. Figure 7¢a-)-shows-the-prior-beliefs-of-a shows the priors placed on the parameter A by two hypothetical experts.

Expert A (solid red line) believes the feedback parameter to be less negative than Expert B (solid blue line) and is even open

to the idea that it might be positive. Dashed red and blue lines show both experts’ posteriors, when updated using the evidence
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Figure 7. ¢a): Experts A (solid red line) and B (solid blue line) begin with different priors on \. The evidence presented in S20 updates these
priors, and the resulting posteriors are nearly identical (dotted red and blue lines). The purple line shows the weighted posterior. (a): Experts
A (solid red line) and C (solid blue line) begin with different priors on A, but C’s prior is very narrowly peaked. The evidence presented in
S20 updates these priors, but the posteriors remain very different(dotted red and blue lines). The purple line shows the weighted posterior,

which is almost identical to A’s posterior.

presented in S20. While the experts began their analysis with differing opinions, the weight of the evidence has updated their
understandings and they now agree about the feedback parameter A. However, some experts may not be as open-minded as
our researchers A and B. Expert C (blue line, Figure 7¢b-)-b believes the feedback parameter to be strongly negative. More-
over, s/he is extremely confident in this: hisprior-distributiens-/her prior distribution is very narrowly peaked around a value of
A= —3Wm=2K~!. Expert C’s confidence remains unshaken by the evidence presented in S20, and his/her posterior remains
nearly identical to his/her prior beliefs. How should an assessment handle such excessively confident experts, whose beliefs
appear to be unshakeable by any reasonable amount of evidence?

Consider an assessment in which N experts each specify their priors P;(6), where i = 1... N. A reasonable aggregate prior

might then be a linear combination of the individual expert priors:

N

555 P(0) =Y a;P;(0).

i=1
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N
P(f) = ZaiPi(Q). (13)

The aggregate posterior is therefore a weighted average of the individual expert posteriors

P0,Y)=> a;Pi(0]i,Y)

560
PO,Y)=> a;Pi(0i,Y) (14)
where
a: [ P(Y|6)P,(6)d8
L Yia [ P(YI9)P(9)dd
i | P(Y|0)P;(60)d6
565 a, — il VORI (15)
>iciai [P(Y|0)P;(0)do
This method introduces N new parameters: the prior weight a; we assign to each expert’s judgement. This is a far easier task
than setting priors on models (as discussed in Section 7.2) because it requires no physical understanding, only a belief about
the “quality" of each expert’s initial beliefs. We recommend weighting each expert equally by setting a1 =as =...ay = %,
in which case the posterior weights become
P(Y|0)P;(6)do
570 5, - _JPOIOP)

Zf\:1 IP(Y‘Q)Pi(tQ)dQ.

; [ P(Y|0)P;(0)do

(16)

The purple line in Figure 7¢a—)-a shows the resulting aggregate posterior given A and B’s priors. Because both these experts
are similarly able to update their priors, the weighting process has no effect on the outcome. However, the weighted average
575 of A and C’s posteriors, shown as a purple line in 7¢byb, is similar to A’s posterior distribution. The narrowness of C’s prior
causes his/her posterior distribution to be down-weighted in the weighted average. We suggest this as an effective strategy for

handling inflexible or extremely anomalous expert opinions.
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7.0.1 Recommendations

We recommend eliciting expert judgement in a systematic way by allowing experts to specify priors on pre-determined model
arameters. The analysis can then be performed using a single aggregate posterior calculated as the weighted average of
individual expert posteriors.

8 Conclusions

Here, we have presented three sources of uncertainty that enter in to estimates of climate sensitivity. First, what evidence
are we using to constrain climate sensitivity, where-do-these-estimates-or-measurements-come-fromhow do we decide what
counts as “evidence", and how should we handle estimates that disagree or conflict? Second, what interpretive model should
we be using to relate the evidence to the climate sensitivity, and what parameters are required? Third, what prior knowledge of
these parameters is it appropnate to include? Mﬁ%seqﬂaﬁeeﬁw—w&hweﬁémﬁmm%a
itymake the role of expert judgement
in subsequent assessments fairer and more transparent. The advantage of this strategy, combining Bayesian meta-analysis and

Bayesian model averaging, is that it can incorporate newly published data and is easily expanded to handle uncertainties at

strategy to

multiple levels.

There is no limit to the number of nested levels we could theoretically use within a Bayesian hierarchical model: the prior for
radiative forcing from ice sheets, for example, can be updated using a global ice sheet reconstruction, which itself is constrained
by individual geological measurements. Similarly, a prior on ocean heat uptake AN or historical warming AT’ can be updated
as new measurements become available. However, to remain tractable every project must truncate the hierarchy at some finite
level. In practice, this means treating the posteriors that arise from observational, GCM, or paleoclimate studies as evidence;
where we draw the line between evidence and parameter sets the bounds of our analysis.

As a result, we propose a framework in which experts are required to specify their choices at clearly defined decision
points. Once priors are specified, the model and evidence will update them accordingly, arriving at a new, aggregate consensus
posterior. We review this framework here.

Somewhat obviously, experts’ beliefs about the data are based on their prior beliefs, updated by the evidence. But how
they interpret and use that evidence depends on the subjective choices they make: what counts as a "study" or "evidence"?
How should we best compare estimates derived from proxies or observations and estimates from GCMs? Should some studies

receive more weight than others? In our framework, experts must make make-the following judements about the evidence:
1. What is your informed belief about the evidence? (E.g. what is your prior on ;1?)

2. What is your belief about the published literature? (What is your prior on 7)

26



Second, we suggest taking the choice of model out of individual participants’ hands to the greatest extent possible. Ideally,
assessment planners would arrive at a single model and set of parameters on which experts may specify their priors. If not,
610 they should arrive at a list of candidate models, specify firm prior beliefs about these models, and perform Bayesian model
averaging over the posteriors of individual experts, which will depend on the model they use.
Third, once a model is specified, experts should specify their prior beliefs about the parameters of that model.
The results presented here are meant to begin, not end, a conversation. The beauty of Bayesian methods is that we can
allow new evidence to update our existing betiefsknowledge. As climate researchers gear up for the next generation of model
615 intercomparison projects and assessments, it is important to consider how these new results will be integrated with existing
knowledge. Our methods presented here allow for new discoveries to advance our understanding, ultimately narrowing the

bounds of climate sensitivity and informing future research and decision making.
Code availability. TEXT
Data availability. TEXT
620 Code and data availability. TEXT
Sample availability. TEXT

Video supplement. TEXT

Appendix A: 1Exact forms of integrals
Al Exaetforms-of-integrals

625 To estimate the likelihood of the evidence AT and A F given the simple energy balance model, we integrate the joint probability
distribution 7 (AT, AF’) over the curve C' defined by the model :

P(Y|A\,MMg) = /j(AT,AF)ds (A1)
C
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The-eurve-C' can be parameterized as

r(t) =ti+ —\tj

and the integral is then
PYILMM) = [ @) @llde= [ T(t-3vT+ Nt (A3)

In the case where AT and AF are Gaussian and independent with means pr, pt and standard deviations o1, 0 respectively,

the likelihood has an exact analytic form, substantially speeding up its computation:

o\ /2 B?

P(Y |\ My)=C|— — A4
o =c (%) e (55) (a9
where

V14 A2 g
Cc = +exp<“§+”§)

2rorop o5 Op

1 A2
A = 72“!‘72

or Op

pr ApE
B = =%

T F

In the case of a three-dimensional space (as for the historical evidence), the curve C' defines a plane, not a line, and we have

P(Y|\) x /lJ(AT,AF, AN)dS = / /j(r(u.,‘u)) [|7 X 74 ||dudv
2 J .

P(Y|\) x /j(AT, AF,AN)dS = //j(r('u,v)) [|7w X 70 ||dudv (AS)
2 .

where

r=ui+vj+Au+v)k

r=ui+v]+ (Mu+v)k (A6)
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A2
Ounisd| A1 A8 AN) =214 g1 (a) E‘Xp{

where-

4 0;2 + /\20;[2 /\U]}2
)\(IX,Q 052 + (7;,2

9 2 2
WO + Anist UNO N

J = .
|: }L%U;z + /iNO'X;Z
and-

_ 2 2 2 2, 2 2
C=prop” +ppop”™ +pnoy

Al Likelihood-vs Probabili

Appendix B: Likelihood vs Probabilit

We note that this is-method is distinct from estimating A as the ratio of the distributions AF' and AT'. This is due to a conceptual
difference between probability and likelihood. Constructing the likelihood answers the question, "¢a)a: how likely is a particular
hypothesis (in this simple case, a particular value of \) given the evidence?" This is a fundamentally different question from
"¢byb: what is the probability density function of the ratio —AF/AT?" The first question involves fixing a putative value of A,
which is not treated as a random variable. The second question treats A as a random variable. Mathematically, this is reflected
in the difference between a line integral over the curve y = —\z:

o0

(a) : P(z,y|A) = /ny(x,y)ds = / Poy(x,—Az)V14+ N dx
C —00

and the ratio distribution of the random variable A = —y/x
(b) : PA(A) = / Poy(xz,—Az)|z|dx

We use the ratio distribution {b-)-b to estimate S once we have the posterior PDF for X. This is because we treat S as the ratio

of two random variables Fa;c0, and A.
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670

B1 Coerrelations-betweentoxco;and-AF
Appendix C: Correlations between F: and AF

CO; emissions are the primary contributor to present-day radiative forcing change relative to preindustrial. Atmospheric
concentrations of COy were lower in the Last Glacial Maximum. This means that the forcing terms AF' used as evidence
in the LGM and historical periods are correlated with the forcing corresponding to doubled COs. For visual clarity, we neglect

this correlation in this paper. To take it into account, we can write the simple energy balance model as
AN = AF' + Faxco, + AAT.

In this case, the likelihood P(E|X, Foxco,) is defined as the integral of the joint probability distribution of the evidence E

over the curve defined by the model. Following S20, we can then calculate S by changing variables and marginalizing over

Fyvco,
P(S|E):/P(A/aFZ/xCOJE)(S(S_F2,><002/A/)(85/8>‘/)71(88/6F2/><002)71dF2,><COgd/\,

Practically, we can draw samples of A and Fy, ., from the joint posterior distribution and use these to calculate a posterior
distribution for S. This correlation contributes very little to the results; when taking it into account we obtain similar ranges

for S as when we neglect it.
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has not been handled correctly. This leads to a different pdf (e.g. Gaussian + constant).
This is a common problem is science - it's called quality control.

Perhaps our approach can be seen as a quality control method? If one expert’s prior is
much narrower than others, assuming all have access to the same knowledge, then that
suggests the first expert is being overconfident.

34.

1.379: “The beauty of Bayesian methods ...”. The beauty of objective Bayesian methods
is that you don’t need to deal in “belief’ at all.

We have replaced “beliefs” with “knowledge”

35.

1.396, eq.(A3). Superficially, there appears to be a minus sign missing here — required
for

a Gaussian shape.

The integral is correct- it's a commonly used form in quantum field theory. Note that this
is the line integral over the curve defined by the model (and that lambda is negative in
B).

36.

Equations at the end of section A1. Again, not clear how this leads to a Gaussian
shape.

The integrals are correct

Editorial Comments all fixed

37.1.242: typo “is are”.

38. 1.260, 261.: typos “s(S”, “y(K”

39. A2, line 1: typo “this is method is distinct”.



