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Abstract. In the presence of waves due e.g. to gravity, rotation or a quasi-uniform magnetic field, energy transfer time-scales,

spectra and physical structures within turbulent flows differ from the fully developed fluid case, but some features remain such

as intermittency or quasi-parabolic behaviors of normalized moments of relevant fields. After reviewing some of the roles

intermittency can play in various geophysical flows, we present results of direct numerical simulations at moderate resolution

and run for long times. We show that the power-law scaling relations between kurtosis K and skewness S found in multiple5

and diverse environments can be recovered using existing multifractal intermittency frameworks. In the specific context of the

She-Lévêque model (1994) generalized to MHD and developed as a two-parameter system in Politano and Pouquet (1995), we

find that a parabolic K(S) law can be recovered for maximal intermittency involving the most extreme dissipative structures.

1 Introduction

A word-frequency study performed on research papers centered on a variety of atmospheric issues indicated that the most10

frequent cloud-controlling factor is turbulence (Siebesma et al. (2009); see also Pumir and Wilkinson (2016)), likely because

of its ubiquity but also because it could presumably explain a multitude of somewhat puzzling phenomena that occur at small

scale, be it only that of order-unity dissipation at high Reynolds number. More recently, fully developed turbulence (FDT) has

been associated with the barotropic state of large-scale atmospheric turbulence, with the multiplicative effect due to turbulence

in the occurence of the acceleration of the jet stream, and the rapid intensification of hurricanes (Shepherd, 2020; Emanuel15

et al., 2023; Shaw and Miyawaki, 2024). A similar study for plasma physics might reveal the same feature, namely that the

complexity of nonlinear phenomena is the dominant property impeding the development of wide-encompassing theoretical

and modeling techniques of small-scale behavior, thus making the much-needed prediction of disruptions in fusion plasmas

difficult, even though it is essential.

Observations of magnetohydrodynamic (MHD) and plasma turbulence in space physics are numerous, with consistent20

progress in the resolution of satellite instrumentation and with now the exploration of the kinetic regime (Fox et al., 2016;
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Muller, D. et al., 2020). The access to small-scale dynamics through newly-launched spacecrafts allows for example for a

direct evaluation of the dissipation rate spectrum through the measurement of the current and electric field using the Magne-

tospheric MultiScale Mission (MMS, He et al. (2019)). It has been known for a long time that vortex sheets observed in the

first direct numerical simulations (DNS) of turbulence using pseudo-spectral methods could roll-up into vortex filaments (Pat-25

terson and Orszag, 1971; Siggia and Patterson, 1978), whereas in MHD the dynamics leads to complex current and vorticity

structures stemming from the sheet destabilization observed in DNS in two dimensions (2D) (Matthaeus and Lamkin, 1986;

Pouquet et al., 1986), and leading to various reconnection processes and possible singularities (Friedel et al., 1997; Kerr and

Brandenburg, 1999; Cartes et al., 2009), a topic however which will not be covered in this review (see also e.g. Bhattacharjee

(2004); Mininni et al. (2008); Zweibel and Yamada (2009); Daughton et al. (2011); Zhdankin et al. (2013); Lazarian et al.30

(2020); Oka et al. (2022) for more details). Reconnection and the intermittency associated with singularities have been related

(Osman et al., 2014), including at high cross helicity (Smith et al., 2009), and can lead to plasma heating (Marino et al., 2008).

Lastly, analytical and numerical attempts were made to determine the possible development of singular structures in fluids and

plasmas in the limit of infinite Reynolds number, but the problem remains open.

Furthermore, new accurate observations of the magnetic field of the Earth have been obtained recently from global ocean35

circulation measurements, leading potentially to a better understanding of oceanic tides, of ionosphere-magnetosphere inter-

actions and of their variabilities (Hornschild et al., 2022). Thus, one of the marked property of velocity and magnetic fields is

that of intermittency (and ensuing anomalous scaling), that is the presence of strong localized structures. These structures can

be identified as vortex filaments, as Alfvén vortices which are observed in the solar wind (Wang et al., 2019), or current sheets

which undergo instabilities such as Kelvin-Helmholtz (KH) (see Barkley et al. (2015) for a recent review of KH), reconnec-40

tion and thus dissipation (Matthaeus and Montgomery, 1981; Uzdensky et al., 2010; Faganello and Califano, 2017; Adhikari

et al., 2021)). An abundance of observations of our close environment points to a complex suite of systems and structures that

include turbulence and nonlinearities in MHD and plasma instabilities, displaying as well anomalous scaling and dissipation

(see e.g. for recent reviews Matthaeus et al. (2015); Chen (2016); Galtier (2018); Schekochihin (2022); Balasis et al. (2023);

Marino and Sorriso-Valvo (2023)). Intermittent dissipation in the MHD range has been shown to lead to beam acceleration45

in the magnetosphere at ionic scales and below (Sorriso-Valvo et al., 2019)), and particle acceleration has also been observed

with MMS in the vicinity of a reconnection X-line, leading also to strong turbulence (Ergun et al., 2020).

There are of course plenty other manifestations of intermittency, e.g. through non-Gaussian wings on Probability Distribution

Functions (PDFs) for Eulerian and Lagrangian fields. Thus, one way to characterize intermittency in turbulence is through the

dual observation of large-scale structures separated by sharp active gradients both for fluids and MHD, particularly noticeable50

in 2D (Kinney et al., 1995; Meneguzzi et al., 1996; Matthaeus et al., 2015). Another way to quantify the degree of intermittency

of a flow is to measure the anomalous exponents of structure functions, i.e. measure a departure from self-similarity, as done

in the solar wind (Burlaga, 1991) and in DNSs (Politano et al., 1995). MHD intermittency models were built (Grauer et al.,

1994; Politano and Pouquet, 1995) to explain the observed behavior, but one difficulty resides in the necessity of having a

vast amount of data. In this context, after giving the equations in the next section, we shall analyze in §3 numerical results55

on the third and fourth-order normalized moments in several systems run at moderate Reynolds numbers for long times, and
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give a justification of power-law behavior between moments in the framework of turbulence models in §4. We mention other

frameworks for the study of such intermittency in §5, and conclude in the last section.

2 Equations, parameters and numerical set-up

The incompressible equations for rotating stratified flows in the Boussinesq incompressible framework are:60

∂tu+u · ∇u =−∇p−Nθẑ + 2u× f0ẑ + ν∇2u+Fu , ∂tθ +u · ∇θ = Nw + κ0∇2θ + Fθ , ∇ ·u = 0 , (1)

with u,θ the velocity and the temperature fluctuations (in velocity units here), w the velocity in the direction of imposed gravity

and/or rotation (here, the vertical z direction), p the pressure, N and f0/2 the Brunt-Väisälä and rotation frequencies, and ν,κ0

the viscosity and thermal diffusivity, taken equal (unit Prandtl number). Fu,Fθ are forcing terms. For N = 0,f0 = 0, one

recovers the Navier-Stokes (NS) equations with a passive scalar. We also write the magnetohydrodynamic (MHD) equations:65

[∂t +u ·∇]u≡Dtu =−∇P +b ·∇b+ν∆u+Fu , [∂t +u ·∇]b≡Dtb = b ·∇u+η∆b , ∇·b = 0 , PM = ν/η ; (2)

b is the induction in Alfvén velocity units, P = p + |u|2/2 the total pressure, η the diffusivity, and PM = ν/η the magnetic

Prandtl number. The results described herein have been obtained integrating numerically these equations with pseudo-spectral

accuracy using the GHOST (Rosenberg et al., 2020) or CUBBY (Ponty et al., 2005) codes. In the absence of dissipation

(ν = 0, η = 0, κ0 = 0), the total energy is conserved as well as cross-helicity and magnetic helicity in MHD, and potential70

vorticity in the stratified case (see §3.2 for definitions of the helicities which are pseudo-scalars).

Given a typical large scale taken as the integral scale L0, and a characteristic r.m.s. velocity at that scale, u0, one defines the

kinetic and magnetic Reynolds numbers and the Froude and Rossy numbers, Fr, Ro in a standard way, namely:

RV =
u0L0

ν
, RM =

u0L0

η
, Fr =

u0

L0N
, Ro =

u0

L0f
; RB = RoFr2 , Rλ =

λ

L0
RV , Rig = N(N−∂zθ)/[∂zu⊥]2 . (3)

Fr,Ro measure the wave period vs. the turn-over time τNL = L0/u0, and RB the intensity of the waves. Are also defined75

the Taylor Reynolds number Rλ based on the Taylor scale λ =
√
⟨u2⟩/⟨ω2⟩, with ω =∇×u the vorticity, and the gradient

Richardson number Rig . The kinetic and magnetic energies are EV = ⟨u2⟩/2,EM = ⟨b2⟩/2, and u ·FV is the kinetic energy

input. The point-wise dissipation rates of kinetic and magnetic energy are ϵv(x) = u · ∂tu , ϵm(x) = b · ∂tb. They can be

expressed in terms of the symmetric part of the velocity gradient tensor, Sij , and of j2, with j =∇×b the current density:

Sij(x) =
∂jui(x) + ∂iuj(x)

2
, ϵv(x) = ΣijSij(x)Sij(x) , ϵm(x) = j2(x) . (4)80

Finally, the skewness and excess kurtosis are written below for a scalar field f , with Sf = 0,Kf = 0 for a Gaussian distribution:

Sf = ⟨f3⟩/⟨f2⟩3/2 , Kf = ⟨f4⟩/⟨f2⟩2− 3 , Kf (Sf )∼ S
αf

f .

In the following sections, variations of αf with parameters will be succinctly analyzed for several turbulence fields and settings.
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Figure 1. Stratified turbulence: Kurtosis-skewness plots for ϵv for several Froude numbers (see insets in which are also given the fit parame-

ters assuming K ∼ a∗Sb). Note the different scales for S and K, and in particular the high K values for the run with Fr ≈ 0.076 (middle).

3 Numerical data on K(S) ∼ Sα behavior for a few turbulent flows

3.1 The fluid case with or without stratification and possibly also rotation

We briefly give numerical results showing the ubiquity of K(S)∼ κSα scaling in turbulence, stressing the following examples:

Navier-Stokes fluids; stratified flows without or with rotation, and MHD in the fast dynamo regime. In Sreenivasan and Antonia85

(1997), one finds a compilation of skewness and flatness up to Taylor Reynolds number in excess of 3× 104, for a variety of

flows, experimental, numerical and in the atmospheric boundary layer (see their Figures 5 and 6). By digitalizing the data,

making log-log fits and selecting points with Rλ ≥ 660, one finds a fit K ≈ S2.34 (see also (Sattin et al., 2009). It will be of

interest to redo this compilation with more recent experiments, but this already tells us that a pseudo-parabolic scaling between

K and S is present for fluid turbulence, as shown as well in numerical simulations of the Navier-Stokes equations with a90

passive scalar (Pouquet et al. (2023)1, Table 1. Note that the analysis in PRM2 was done rather in terms of the variation with

governing parameters, say the Froude number Fr, of the coefficient assuming a parabolic fit, viz. K ∼ a(Fr)S2, whereas here

we do not assume a priori the power-law scaling between K and S, and instead search for α. In that context, we observe that

the first figure of PRM2 gives K(S) for the vertical buoyancy flux ⟨wθ⟩; a quasi-parabola emerges, and with kurtosis up to

≈ 12. Moreover, K(S) statistics of local square vorticity and local dissipation differ somewhat, in particular at moderate RV95

values as shown in PRM2, but such statistics are found in Donzis et al. (2008) to be quite similar for the most extreme events,

defined as having 104 times the mean dissipation at high Rλ. It will thus be of interest to extend this study to higher RV .

In the presence of stable stratification, as is found in the atmosphere and the ocean, we plot in Fig. 1 above for several

Froude numbers (see insets), the power-law fits to K(S)∼ Sαϵ for the kinetic energy dissipation ϵv , a good indicator of

clear-air turbulence (Storer et al., 2019); this leads to an exponent αϵ that increases continuously with Fr, from ≈ 2.22 to100

2.45 (parameters for the runs are given in Table 1 of PRM2). The highest values of both S and K are reached for the run with

1This paper, by Pouquet, Rosenberg, Marino & Mininni (2023), is denoted hereafter PRM2.
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Figure 2. Quasi-geostrophic (QG) turbulence: Left: Variation with RB of exponent for K(S) scaling for kinetic energy dissipation for

QG runs. Note the sharp transition which occurs at RB ≈ 25 corresponding to ⟨Rig⟩ ≈ 1.5. Center and right: PDFs of potential energy

dissipation for runs with RB = 3 (center) and RB = 385 (right; Q1 and Q8 in PRM2, see Table 1), with dashed lines for equivalent Gaussians.

Fr ≈ 0.076 corresponding to the strongest intermittency of the vertical velocity in particular (Feraco et al., 2018; Marino et al.,

2022), strong local dissipation and associated localized shear layers.

When now combining rotation and stratification of comparable magnitude as found in the ocean (N/f0 ≈ 5), we observe in

Fig. 2 (left) for quasi-geostrophic (QG) runs (see Table 1 of PRM2 for run specifications) a sharp transition in the exponent105

of the K(S)∼ Sα fits for the buoyancy flux around RB ≈ 25, corresponding to an average gradient Richardson number

⟨Rig⟩ ≈ 1.5, close to that for a KH transition to instability. This points to the importance of the occurrence of turbulence at

small scale once the Ozmidov scale is larger than the Kolmogorov scale, ℓOz ≥ ηK with ℓ2Oz = ϵV /N3, η4
K = [ϵV /ν3]−1. We

also give in Fig. 2 the PDFs of the potential energy dissipation ϵθ = κ0⟨|∇θ|2⟩ for QG runs Q1 (center) and Q8 (right) with

buoyancy Reynolds numbers RB of 3.2 and 385. The respective fits (0.1exp−2.7ϵθ and 0.0008exp−0.37ϵθ ) are in agreement110

with the expected increase in small-scale structures and dissipation as RB grows and a fully turbulent regime is reached.

3.2 Coupling to a magnetic field in MHD: fast dynamos in the ABC, Roberts and Taylor-Green flows

The dynamo problem is that of the growth of magnetic fields due to either, at small scale, chaotic streamlines of the velocity or,

at large scales, the kinetic helicity content of the flow, where HV = ⟨u ·ω⟩ (Steenbeck et al., 1966; Moffatt, 1969; Zel’dovich

et al., 1983; Brandenburg and Subramanian, 2005), and it plays an essential role in the solar context in the presence of convec-115

tion (see e.g. Ponty et al. (2001)). Both the cross-helicity HC = ⟨u ·b⟩ (Pouquet et al., 1986; Yokoi, 2013), and the magnetic

helicity HM = ⟨A ·b⟩, with b =∇×A, also play a role, the latter in the nonlinear saturation of the dynamo associated with an

inverse cascade of HM (Pouquet et al., 1976). In fact, with sufficient large-scale separation, a dynamo can occur with HV ≡ 0

overall but with sufficient local fluctuations (Gilbert et al., 1988). The dynamo can also be sub-critical because the growing

magnetic seed will alter the flow and reduce the turbulence (Ponty et al., 2007; Mannix et al., 2022). The resulting 3D turbulent120
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flow is made-up of current and vorticity sheets, rolling-up around the local mean magnetic field and with a strong twist of b

across the sheet (Mininni et al., 2006; Ponty and Plunian, 2011; Homann et al., 2014); see also Uzdensky et al. (2010); Lazarian

et al. (2020); Oka et al. (2022).

Parabolic K(S) laws in MHD have been found both in laboratory plasmas and in the cosmos (Labit et al. (2007); Krommes

(2008); Osmane et al. (2015)). Recently, variations of α with parameters have been discussed briefly in the context of the125

classical She-Lévêque (SL) model as found in the fast dynamo context (Ponty et al., 2024), and we are expanding on these

results presently for generalized SL models (see equ. (7) analyzed in §4.1), as well as for higher order moment ratios.

Figure 3 first shows Q5(S) with Q5 the normalized fifth-order moment (defined in equ. (10) below); the data is given for

the vertical velocity and magnetic field (vz, bz), as well as the kinetic and magnetic dissipation (ϵv, j2). In the Q5(S) data,

power-laws emerge in the tails of the kinetic variables and bz , and throughout for j2. Variation of the power-law index α with130

a threshold in skewness is given in the middle-right plots for Q5 for the two TG flows (top), and for the normalized sixth-order

moment H6 (bottom) for the two ABC flows (see Table 1 in Ponty et al. (2024) for details on these four runs, and see equ. (10),

with σ = [53/22] for Q5 and [63/22] for H6). The variation of the fit constant κ is shown as a function of a given threshold

in skewness, S ⟩ (top right), and we give (bottom right) the number of data points involved at a S ⟩ level (see Table 1 in

Ponty et al. (2024) for more information on the runs). Note also that these results are linked to the Lagrangian statistics of135

the flow, as discussed in Homann et al. (2014). High S are reached for H6 for the ABC flows. As discussed in §4.3 below,

the power-law indices are noticeably lower than the predicted values using the standard SL models developed in Grauer et al.

(1994); Politano and Pouquet (1995), and also, for Q5, the high-intermittency limit of αQ → 3 appears plausible. For H6,

the discrepancy is higher and might indicate an insufficiently high Reynolds number leading to too few extreme events, or an

insufficient complexity in the models themselves.140

New dynamo computations with the G.O. Roberts flow with a helical forcing give the following scaling results (third row of

Fig. 3). The overall diagnostics for these runs stem from runs using grids of 642×128 and 1282×256 (runs GOR1 and GOR2),

with respective Reynolds numbers of 147 and 445 (and Rλ of 38 and 66). These flows are well resolved (the dissipation scale

is more than twice the numerical cut-off according to the Kaneda criteria), and they are run for long times (15000 and 2000

τNL resp.); however, the energy spectra (not shown) are not yet sufficiently developed (see also Ponty and Plunian (2011) for145

different runs using the G.O. Roberts dynamo configuration), although the skewness of j2 reaches high values above 18.

Preliminary results indicate the following. We reach here a ratio rE = EM/EV approaching equipartition (Fig. 3, bottom

row, left), and the scatter plot for j2 for run GOR2 indicate a clear power law, the blue line following the parabola K(S) =

3/2[S2− 1]. The scaling exponent α and constant κ given here for the TG, ABC and GOR runs show variations with forcing

function, with Reynolds number and with the threshold in S used for the plot, as well as possibly with the equipartition ratio150

rE . As is the case for the TG and ABC flows, the Reynolds number leads to a difference in scaling for the fit parameters. Thus,

runs at higher Reynolds numbers with all three configurations will have to be performed in order to study the scaling of the

α,κ parameters for relevant variables, but in the next section we begin an approach that can elucidate these scalings laws in the

framework of three multifractal intermittency models.
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Figure 3. Fast dynamos in MHD. Top and middle rows, left: Variation with skewness of Q5 ∼ κQSαq , in log-log, ABC2 run for kinetic

(top) and magnetic (middle) fields for vz, bz (left), and ϵv, j2 (center left); the vertical color bar far left gives the timestamp, from early (blue)

to late (red), with≈ 3×105τNL altogether. Center right: Variation of the power-law αQ for the TG1,2 runs for ϵV for Q5 (top row), and αH

for H6 for j2 for the ABC1,2 runs (middle row), as a function of increasing threshold in skewness. Rightmost: for j2, ABC1,2 runs, constant

κQ (top), and percentage of points at a given threshold in S (bottom). Third row, Run GOR2, RV ≈ 445; leftmost: EM/EV (t), and (center

left), K(S) for j2. Runs GOR1 and GOR2 for j2: power-law α(S >) (center right) and constant κ(S >) (right).

4 Theoretical moment scaling using several multi-fractal intermittency models155

4.1 Expression for the kurtosis-skewness scaling exponent, K ∼ Sα, for both fluids and MHD in the SL framework

We now give a path towards a theoretical formulation for K(S) scaling using a classical intermittency model and several of its

extensions. Assuming a power-law scaling for velocity and magnetic field structure functions δu(r), δb(r) defined as

⟨[u(x + r)−u(x)]p⟩ ≡ ⟨δu(r)p⟩ ∼ rζ(f)
p , ⟨[b(x + r)− b(x)]p⟩ ≡ ⟨δb(r)p⟩ ∼ rζ(m)

p , (5)
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and assuming as well a power-law scaling between kurtosis and skewness for both fluids (f ) and MHD (m), we easily obtain:160

Kf (Sf )∼ S
αf

f , Km(Sm)∼ Sαm
m , αf =

ζ
(f)
4 − 2ζ

(f)
2

ζ
(f)
3 − 3ζ

(f)
2 /2

, αm =
ζ
(m)
4 − 2ζ

(m)
2

ζ
(m)
3 − 3ζ

(m)
2 /2

, (6)

with the functions ζ
(f,m)
p depending on the (fluid or MHD) intermittency dynamics or on an explicit model.

We now recall the scaling laws derived in the context of the She-Lévêque formulation for fluids (1994) and for MHD as

generalized in Politano et al. (1995); these GSL models, named gslf and gslm respectively depend on two open parameters,

0 < x < 1 and 0 < β < 1, with x = 0,β = 0 in the non-intermittent case; they are respectively for fluids and MHD2:165

ζgslf
p =

p(1−x)
3

+
x(1−βp/3)

1−β
; ζgslm

p =
p(1−x)

4
+

x(1−βp/4)
1−β

. (7)

We note that x is related to the co-dimension of the most dissipative structures in the nonlinear system, and that β is a measure

of the efficiency of energy transfer and dissipation among intermittent structures as the moment order varies. This formulation

leads to log-Poisson statistics (see e.g. She and Lévêque (1994); Dubrulle (1994); Frick et al. (1995)). A further assumption

of the models concerns the scaling of nonlinear transfer in terms of characteristic times of the problem, namely the nonlinear170

eddy turn-over time, the wave period (in MHD, the Alfvén wave) and the transfer time of energy to small scales.

The multi-fractal framework (see Frisch (1995)) allows for a multiplicity of dissipative structures of diverse physical (co)-

dimensions: vortex and current sheets, flux tubes, current filaments or bubbles, resulting in a non-integer effective β parameter.

An extension of the multifractal framework to vectors (velocity field) as opposed to scalars (velocity amplitude), can be found

in Schertzer and Tchiguirinskaia (2020). The SL formulation for MHD has been used for example in modeling intermittent175

nano-flares in connection with solar wind data (Veltri et al., 2005). In the numerical context, it is stressed in Servidio et al.

(2011) that a high resolution is needed to quantify properly the properties of local reconnection and current sheets; moreover,

reconnection events and the ensuing dissipation are highly local and very varied in amplitude, somewhat reminiscent of the

multifractality property reviewed in detail in Lovejoy and Schertzer (2012); Benzi and Toschi (2023).

From equations (7), we can compute the general scaling exponents of kurtosis vs. skewness using equation (6). We obtain:180

αgslf =
2(1− 2β2/3 + β4/3)

1 +2β− 3β2/3
; αgslm =

2(1− 2β1/2 + β)
1 +2β3/4− 3β1/2

, β ̸= 1 . (8)

Note that, interestingly, both the αgslf and αgslm exponents are independent of x, the fractal co-dimension of the most dissi-

pative structures. It is also straightforward to see, again both for fluids and for MHD, that the limit, for β → 0, is α→ 2. In

other words, a parabolic law is reached when the most dissipative structure dominates the small-scale dynamics, irrespective of

its geometrical (co)-dimension, likely at high RV ,RM as well as ⟨Rig⟩ ≈ 1 (see equations (3)). However we note that, in the185

shell models examined in Frick et al. (1995), β never reaches this low limit. Another point concerns the fact that the variation

of α could reflect the dependence on the form of the second invariant in the shell models, that is akin to helicity (Frick et al.,

1995; Kadanoff et al., 1995). This may point to a limitation of such models when restricted to nearest-neighbor interactions or

with different sets of invariants, restrictions that cannot encompass by construction the highly non-local (in scale) interactions

leading to anomalous dissipation. Thus, this point will need further investigations.190

2The standard SL-MHD model is generalized in Merrifield et al. (2005) to include extended self-similarity (see also Merrifield et al. (2007) for 2.5D).
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4.2 The standard choice of parameters for the SL models for fluids and MHD

The standard case for the classical fluid SL model is obtained for x = 2/3, β = 2/3 associated with vortex filaments, whereas

in the MHD case with wave-vortex interactions and current sheets, the standard parameters become x = 1/2, β = 1/2 (Grauer

et al., 1994; Politano and Pouquet, 1995). This yields respectively for the K(S)∼ Sα for fluids (sslf ) and MHD (sslm):

ζsslf
p = p

9 + 2
[
1−

(
2
3

)p/3
]

, αsslf ≈ 2.56 ; ζsslm
p = p

8 + 1− 1
2p/4 , αsslm ≈ 2.53 ; these α values for the standard SL195

models are also given in Ponty et al. (2024). Note that such values are sensitive to the number of decimals taken; in the fluid

case using strictly 2 decimals throughout, one finds αsslf ≈ 2.00.

All αs are close except for extreme cases (β at its limits), in part because the values of the anomalous exponents for

structure functions for fluids are anchored at ζ3 ≡ 1. For θ,v and b, there are more complex constraints since they involve

cross-correlations between fields at third order (Yaglom, 1949; Antonia et al., 1997; Politano and Pouquet, 1998), and also200

because the analytical expressions for α lead to small fractional power of β, and we are at relatively low orders of the structure

functions. In fact, an extension of the SL theory to the intermittency of the passive scalar θ in the fluid case can be found in

Lévêque et al. (1999). We can then derive the expression KFθ
∼ Sαθ

Fθ
in the framework of that model. Here, the scalar flux Fθ is

defined as Fθ(r)(p) := ⟨|δu(r)δθ(r)2|p/3⟩ ∼ ⟨|δu(r)δθ(r)2|ζp⟩, an expression using the flux arising from the aforementioned

exact law for the conservation of scalar energy derived in Yaglom (1949). With the numerical values given in Lévêque et al.205

(1999), we find αE
θ ≈ 2.61 using anomalous exponents stemming from experiments, αD

θ ≈ 2.38 for DNSs, and αT
θ ≈ 2.44

using the theory developed in that paper. This shows again the sensitivity of these power-laws to the accuracy of the data.

4.3 Generalized scaling for higher-order normalized structure functions in the framework of the She-Lévêque models

Let us now rewrite the generalized SL models for fluid and MHD slightly differently, with as before 0 < β < 1 and 0 < x < 1:

3(1−β)ζgslf
p = x[3(1−βp/3) + p(β− 1)] + p(1−β) , 4(1−β)ζgslm

p = x[4(1−βp/4) + p(β− 1)] + p(1−β) . (9)210

We now compute the scaling of a generalized adimensionalized structure function vs. another one, provided they exist, writing:

Kpq =
⟨δup⟩
⟨δuq⟩p/q

, Krs =
⟨δur⟩
⟨δus⟩r/s

, Kpq = f(Krs) = Kασ
rs , σ = [pr/qs] , ασ =

ζp− [p/q]ζq

ζr − [r/s]ζs
, (10)

with σ ∈ N+, p > max[q,r], r > s. In §4.1, we considered the case K = Sα, or in the present notation, K42 = K
α43/22
32 , with

p = 4, q = 2 = s,r = 3. After a slightly cumbersome but straightforward computation, one obtains that again ασ is independent

of x, the co-dimension of dissipative structures, for all values of the indices encapsulated in σ; one finds specifically:215

α(gslf)
σ =

s

q

[
q(1−βp/3)− p(1−βq/3)
s(1−βr/3)− r(1−βs/3)

]
; α(gslm)

σ =
s

q

[
q(1−βp/4)− p(1−βq/4)
s(1−βr/4)− r(1−βs/4)

]
. (11)

In the case of extreme intermittency with β → 0, we also have, for both fluids and MHD, and with s ̸= r as stated before:

β → 0 , α
(gslf),(gslm)
pr/qs → s(p− q)

q(r− s)
. (12)

This formula simplifies, for q = s (same normalization of moments) into [p− q]/[r− q], and gives a parabolic scaling for

p + q = 2r. Thus, when choosing for the normalisation the second-order energy moment (q = s = 2), we have a parabolic220
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scaling for 2r = p + 2. Similarly, for a normalisation by the skewness, q = s = 3, we obtain again a parabola for 2r = p + 3.

These parabolic solutions, for β → 0, are directly linked to the algebraic, hierarchical formulations of the SL models.

Finally, let us take two specific examples: Q5(S) with p = 5, q = s = 2, r = 3, and H6(S) with p = 6, q = s = 2, r = 3; the

first example for Q5(S) is also discussed in Sardeshmukh and Sura (2009). We find in the standard case (β = 2/3 for fluids

and β = 1/2 for MHD) the scaling αsslf
53/22 ≈ 4.6, αsslm

53/22 ≈ 4.5, whereas the numerical estimate for the ABC runs gives a225

maximum of Q5 ≈ 3.5. When β → 0, αβ→0
53/22 → 3, a value advocated in Sardeshmukh and Sura (2009) for this Q5(S) scaling

for both vorticity and potential height using a linear stochastically forced Langevin equation model for climate dynamics with

correlated additive and multiplicative noise (see also §5.1 below). To give a second and final example, for H6 in the standard

case again, we have αsslf
63/22 ≈ 7.1, αsslm

63/22 ≈ 6.8, and when β → 0, αβ→0
63/22 → 4, whereas the numerical value we find for the

ABC runs is close to 3.7. The discrepancy with the numerical data given in Fig. 3 is thus large; in this context, a study in terms230

of variation with Reynolds number will be informative, but one may have to investigate the MHD turbulence case in 2D, or

so-called “2.5D" (two space variations, three components of the fields) to reach substantially higher RV ,RM .

4.4 K ∼ Sα scaling for the Yakhot intermittency model

One can use other models of structure function scaling in turbulent flows. For example, a model of intermittency in fluid

turbulence due to Yakhot (2006) (herewith model Y) yields the scaling:235

ζ
(Y )
2p =

2(1 +3βy)p
3(1 +2pβy)

, ζ
(Y )
3 = 1 ∀ βy ; with q = 2p , ζ(Y )

q =
q(1 +3βy)
3(1 + qβy)

. (13)

The model comes from evaluating perturbatively the corrections to two-dimensional turbulence when close to a critical di-

mension at which the energy cascade reverses its direction to the small scales. One can verify that βy = 0 gives a ζp = p/3

standard scaling. We immediately get αy ≈ 2.56 for the relationship K ∼ Sαy when choosing for the open parameter the value

βy ≈ 0.05 close to that given by experiments (see also Nickelsen (2017); Friedrich and Grauer (2020) for recent analyses of this240

and other models3). The anomalous ζp exponents themselves (see Fig. 1 in Friedrich and Grauer (2020)) do not differ by much

from model to model, specially at relatively low order. But in view of the sensitivity of α to the evaluation of the anomalous

exponents, α-scaling in an empirical K(S) law may prove a valuable tool in order to discern between different intermittency

modeling and small-scale parametrisation in general, somewhat better than with the ζp themselves, given sufficiently resolved

data leading to precise fits to the quasi-parabolic power-law behavior for long runs in terms of turn-over times.245

In conclusion, if the change of K(S) scaling with Reynolds number is not known, and is difficult to evaluate experimentally

or numerically, the data is sufficient to assess that such scalings will be observed at high RV ; indeed, it can be expected in

the framework of random multiplicative systems (see Benzi and Toschi (2023) for a recent introduction). We also recall here

that a parabolic law can be justified on several grounds. First, one can write a Taylor expansion for K(S) for a PDF close to a

Gaussian, and note that K ≥ 0; this was performed by Longuet-Higgins (1963) in the context of sea-surface elevations. Another250

reason for observing a K(S) parabolic law relies on the existence of Cauchy-Schwarz relationships (and their generalisations)

3In the Markov process (M ) interpretation of the SL model, the independence of α on the co-dimension of dissipative structures is an independence of the

jump distribution on the associated stochastic process due to M , and only the amplitude of the velocity jumps (leading to dissipation intermittency) matters.
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between the third- and fourth-order moments of a stochastic variable f , namely S2
f ≤Kf +3, with a tightening of the inequality

for a unimodal PDF, namely S2
f ≤Kf + 186/125 for a finite fourth-order moment (Klaassen et al., 2000). We also note that

Beta distributions are advocated in Labit et al. (2007) for the intermittency of density fluctuations in drift-exchange turbulence

in plasmas, in particular because they admit both positive and negative skewness as observed in many instances such as the fast255

dynamo (Ponty et al., 2024). These K(S) relations also provide useful bounds for the data.

5 Other approaches for quasi-parabolic scaling beyond the GSL and Y models

5.1 Linear and non-linear Langevin models

Langevin equations have long been written in the context of turbulent flows, for example in order to take into account the

nonlocality of mode interactions leading to intermittency, modeling as such the separation of spatial and temporal scales260

(Nazarenko et al., 2000; Laval et al., 2003). Indeed, dissipative structures such as shear layers or current sheets are multi-

scale, spanning a range from the integral scale characteristic of their length to the dissipative scale defined by viscosity or

resistivity, e.g. the Kolmogorov scale ηK for NS, although we note that, in the multi-fractal framework such as in the SL

models, there is a range of dissipative scales corresponding as well to a plage of spectral indices. This provides a justification

for the application of a Langevin framework, where the original nonlinearities of the primitive equations are modeled through265

fast-evolving additive and multiplicative stochastic noise. It is shown in Wan et al. (2012) that the kurtosis of the magnetic field

filtered at the dissipation scale and smaller increases sharply and significantly both in high-resolution 2D DNS and in ACE

and Cluster solar wind data. Recent observations in the heliosphere analyzing data from the Parker Solar Probe confirm the

importance of such non-local interactions in the case of so-called imbalanced MHD turbulence with z± = v±b of unequal

amplitudes (Yang et al., 2023), an imbalance enhanced by the quasi-absence of collisions (Miloshevich et al., 2021).270

One can write a stochastic Langevin equation for a fluctuating field c̃, viz. Dtc̃ =−(λ̄k +λ′k)c̃+ ζ̃k, where [λ̄k,λ′k] represent

large-scale and fluctuating small-scale velocity stretching the magnetic field lines in the kinematic phase, and ζ̃k is an additive

noise due to (plausible) rapid small-scale fluctuations. The essential features in the development of Sura and Sardeshmukh

(2008) for climate can thus be reproduced in the MHD case; this will likely lead to the same conclusion of a parabolic behavior.

The large-scale velocity and induction are constrained by divergence-free conditions, by Galilean invariance for the velocity,275

and perhaps even more importantly by existing so-called exact laws4. Such laws involve third-order cross-correlations of u and

b (see Marino and Sorriso-Valvo (2023) for a recent review), whereas the fourth-order moments do not have such constraints

for quadratically nonlinear equations. A non-zero energy dissipation rate (a plausible conjecture) thus implies non-Gaussianity

(S ̸= 0,K ̸= 0). A Langevin equation developed in the kinematic dynamo regime can be amended to model the back reaction

of the Lorenz force. as discussed briefly in Ponty et al. (2024). We finally note that, starting from well-resolved data, one can280

reconstruct a Langevin equation model of the observed stochastic process (Friedrich et al., 2011; Rinn et al., 2016). This may

prove instructive, in particular if different models were to emerge for different regimes or dynamo types.

4These exact laws have been extended to fluid and MHD turbulence as apply to the heliosphere, see e.g. Ferrand et al. (2021); David and Galtier (2022).

11

https://doi.org/10.5194/egusphere-2024-3900
Preprint. Discussion started: 19 December 2024
c© Author(s) 2024. CC BY 4.0 License.



5.2 Self-organized criticality and 1/f law as another possible framework for intermittent quasi-parabolic scaling

Self-Organized Criticality (SOC) has been introduced in the context of sandpile systems and their avalanching properties to

model solar flares (Lu and Hamilton (1991); see also Bramwell et al. (2000); Chapman and Watkins (2001); Osman et al.285

(2014); Watkins et al. (2016); Balasis et al. (2023) for recent discussions). In the context of DNS in three-dimensional (3D)

MHD, Uritsky et al. (2010) identified SOC in the dissipative range of decaying runs (so with a local critical Reynolds number

of order unity). However, SOC was not found in the inertial range, a fact that was interpreted as SOC properties propagating

from the dissipative to the inertial range, with merging of current structures. The critical state is that in which the source (the

energy cascade at a fixed rate) and the sink (the dissipation at a fixed rate through e.g. eddy viscosity) balance, as they do290

on average. Note that Smyth et al. (2019) identified SOC in rotating stratified flows with the Richardson number, governing

shear instabilities such as KH, being the critical parameter (see also Fig. 2). The nonlinear interactions in the inertial range

are conservative, and dissipation sets in through nonlocal interactions between energy-containing eddies and dissipative ones,

lending these interactions to be described by SOC together with 1/f noise (Vespignani and Zapperi, 1998). As shown in

Dmitruk and Matthaeus (2007), this leads to an emphasis on the dynamics of the largest modes, and on their interactions with295

the early dissipative range where intermittency is strongest (Kraichnan, 1967; Chen et al., 1993). Also, the sharp variations of

the flow and field due to the nonlinearities of the primitive equations can be treated as a stochastic force using renormalization

group techniques, reminiscent again of a Langevin approach (Materassi and Consolini, 2008). In all these studies, nonlinear

shear instabilities appear central to the inter-related small-scale and large-scale behavior of the stochastic turbulent flows.

6 Conclusion and perspectives300

We have analyzed in this paper the relative behavior of normalized moments of the velocity and magnetic fields in a variety

of contexts, and have given a rationale to cast these results in the mold of classical intermittency models for fluid and MHD

turbulence, models which provide a natural framework for such relative scalings. The variability of the scaling is linked to the

details of the dissipative structures and their relative intensities. The ubiquity of a quasi-parabolic K(S)∼ Sα law could be

interpreted as it having no specific physical meaning; on the other hand, it may be pointing to a universality of intermittency in305

turbulent flows. We also note that the power-law exponent α is independent of the (co)-dimension of the dissipative structures.

The abrupt transition in α-scaling for the rotating-stratified case when shear instabilities arise (see Fig. 2) is indicative of

an underlying dynamics where the development of turbulence, as measured by the Ozmidov scale becoming larger than the

dissipative scale in that case, plays a dynamical role (Pouquet et al., 2023). In MHD, one issue absent from the present analysis

is to incorporate the potential effect of helical structures (with non-zero kinetic, magnetic and/or cross helicity) on the K(S)310

scaling. It is known from multiple studies that helicity plays a central role in large-scale dynamos (see Brandenburg and

Subramanian (2005)), and that its incorporation in closures of turbulence leads to better modeling of these flows (Yokoi, 2013).

In order to pursue the investigation of K(S) laws in turbulence at higher Taylor Reynolds number, one can implement

hyper-viscosity algorithms, or else use models which, because they are significantly less costly numerically, will allow for

longer statistics at substantially higher RV . Such approaches are numerous. One can think of shell models retaining only315
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one mode per field per wavenumber shell and only nearest-neighbor interactions as developed for MHD in Gloaguen et al.

(1985) (see Plunian et al. (2013) for review). One can also simplify the dynamics by lowering the space dimension, as for

the 1D, 2D and 2.5D cases (see e.g. Thomas (1970); Hada (1993); Laveder et al. (2013); Merrifield et al. (2007); Servidio

et al. (2011)). Numerical adaptation, preferably spectral when dealing with L∞ norms as for extreme intermittent events (see

Ng et al. (2008)), as well as various large-eddy simulations (Sagaut and Cambon (2008)), or the so-called α-model (Holm320

et al., 1998) used fort example in the framework of oceanic dynamics (Pietarila Graham and Ringler, 2013) or analyzed as

well in MHD (Montgomery and Pouquet, 2002) will be similarly useful. These methods will allow for disentangling between

Reynolds number and intermittency effects, the consequences of the presence or not of helicity linked to vortex filaments and

to the dynamo, as well as equipartition or not of kinetic, potential or magnetic energy.

One further important issue will concern incorporating the role of anisotropy which can affect scaling properties and inter-325

pretations of the intermittency, as shown in the context of the atmosphere in Lovejoy et al. (2001), or in Schekochihin (2022) for

MHD. Finally, it was shown in Yeung et al. (2015) that for extreme events, defined as having their local dissipation being more

than 104 above the mean, the strongly intermittent vorticity structure is a sub-part of the usual vortex filament and appears more

as an (isotropic) blob; thus, these intense structures are not force-free (which would require, for the NS case, quasi-parallel ve-

locity and vorticity as in a filament) and are therefore dissipative. These authors also noted that the grid resolution and machine330

precision both affect the estimate of the overall enstrophy (see Fig. S1 of that paper). This type of analysis is not performed

here for lack of sufficiently large Reynolds number, and the ensuing lack of sufficient intense localized dissipation, but a study

of intermittent structures in MHD at substantially higher Reynolds number is planned for the future.
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