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Abstract. Simulation models are potentially useful tools to test our understanding of the processes involved in 7 

the turnover of soil organic carbon (SOC) and to evaluate the role of management practices in maintaining stocks 8 

of SOC. We describe here a simple model of SOC turnover at the soil profile scale that accounts for two key 9 

processes determining SOC persistence (i.e. microbial energy limitation and physical protection due to soil 10 

aggregation). We tested the model and evaluated the identifiability of key parameters using topsoil SOC contents 11 

measured in three treatments with contrasting organic matter inputs (i.e. fallow, mineral fertilized and cropped, 12 

with and without straw addition) in a long-term field trial. The estimated total input of organic matter (OM) in 13 

the treatment with straw added was roughly three times that of the treatment without straw addition, but only 14 

12% of the additional OM input remained in the soil after 54 years. By taking microbial energy limitation and 15 

enhanced physical protection of root residues into account, the model could explain the differences in C 16 

persistence among the three treatments, whilst also accurately matching the time-courses of SOC contents using 17 

the same set of model parameters. Models that do not explicitly consider microbial energy limitation and 18 

physical protection would need to adjust their parameter values (either decomposition rate constants or the 19 

retention coefficient) to match this data. 20 

We also performed a sensitivity analysis to identify the most influential parameters in the model determining soil 21 

profile stocks of OM at steady-state. Input distributions for soil and crop parameters in the model were defined for 22 

the agricultural production area of PO4 (east-central Sweden), which includes Uppsala. The resulting model 23 

predictions compared well with aggregated soil survey data for the PO4 region. This analysis showed that model 24 

parameters affecting SOC decomposition rates, including the rate constant for microbial-processed SOC and the 25 

parameters regulating physical protection and microbial energy limitation, are more sensitive than parameters 26 

determining OM inputs. Thus, the development of pedotransfer approaches to estimate SOC decomposition rates 27 

from soil properties would help to support predictive applications of the model at larger spatial scales. 28 

1 Introduction 29 

Adopting soil and crop management practices that increase stocks of soil organic carbon (SOC) is one promising 30 

way to mitigate climate change, whilst simultaneously improving soil health (Paustian et al., 2016; Baveye et al., 31 

2020). In conjunction with long-term field experiments, simulation models are useful tools for testing our 32 

understanding of the processes involved in the turnover of SOC and for evaluating the potential of management 33 

practices to enhance SOC sequestration. Most model applications to date have focused on the topsoil, which is 34 

clearly of major importance with respect to the effects of soil management on SOC and soil health. However, 35 

subsoils contain a large proportion of the total stock of SOC (Batjes, 1996; Jobbágy and Jackson, 2000; Poeplau 36 

et al., 2020) and residence times are also much longer (Rumpel and Kögel-Knabner, 2011; Sierra et al., 2024; 37 
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Button et al., 2024). This may indicate a significant potential for long-term C sequestration of root-derived OM in 38 

subsoils, which could be of substantial benefit in mitigating climate change.  39 

Several detailed mechanistic models have recently been developed that describe a wide range of processes 40 

affecting C stocks at the scale of the entire soil profile, including soil water flow, transport of dissolved organic 41 

carbon by advection-diffusion and bioturbation, as well as descriptions of SOC decomposition explicitly 42 

accounting for microbial processes (e.g. Izaurralde et al., 2006; Braakhekke et al., 2011; Riley et al., 2014; Ahrens 43 

et al., 2015; Camino-Serrano et al., 2018; Hicks Pries et al., 2018; Keyvanshokouhi et al., 2019; Yu et al., 2020). 44 

Such mechanistic models are useful tools for improving process understanding (Smith et al., 2018; Derrien et al., 45 

2023), but parameter uncertainty and the ever-present likelihood of equifinality means that predictive model 46 

applications may be problematic (Braakhekke et al., 2013). Simpler empirical (phenomenological) models of SOC 47 

turnover and storage may have an advantage in this respect because they require fewer parameters (Derrien et al, 48 

2023). 49 

Although simple models are in principle well suited to policy and management applications, their validation status 50 

is generally poor: many have been extensively calibrated against field observations, but their reliability in 51 

extrapolation (i.e. prediction of independent data) has not yet been convincingly demonstrated (Garsia et al., 2023; 52 

Le Noë et al., 2023). Furthermore, these models have almost exclusively been tested using measurements in 53 

topsoil. This is because data for subsoils is rarely available and the turnover of organic C in subsoil is very slow, 54 

so datasets will rarely be long enough to detect any changes. One possibility to test predictions for subsoils is to 55 

make use of 14C concentrations as a measure of SOC age (e.g. Braakhekke et al., 2014; Ahrens et al., 2015; Sierra 56 

et al., 2018) or concentrations of natural stable isotopes of C (Balesdent and Mariotti, 1987), their ratio 12C/13C in 57 

C3-C4 vegetation chronosequences (Schiedung et al., 2017) or labelled material (Sanaullah et al., 2011). If such 58 

data is missing, an alternative approach to model validation is to compare model predictions against spatial (soil 59 

survey) datasets either at catchment, regional or national scales. This has often been done for the topsoil (e.g. 60 

Sleutel, et al., 2006; Yagasaki and Shirato, 2014), but to our knowledge there are no examples of this approach in 61 

the published literature dealing with total stocks of organic C in the profile. 62 

Ideally, a model that is intended for predictive applications should combine the advantages of simplicity with 63 

descriptions that adequately capture or mimic the most important processes determining SOC stocks for the 64 

temporal and spatial scales of interest (Campbell and Paustian, 2015). In this respect, the evidence suggests that 65 

turnover of SOC is affected mostly by bioavailability (i.e. soil properties controlling adsorption; Mathieu et al., 66 

2015), physical protection (e.g. Salomé et al., 2010) and the amount of SOC as it provides energy for microbial 67 

biomass growth, maintenance and activity (e.g. Fontaine et al., 2007; Don et al., 2013; Guenet et al., 2013). In this 68 

study, we describe a simple model that is specifically designed to mimic these key processes at the scale of a soil 69 

profile. The model structure is based on the ICBM model described by Andrén and Kätterer (1997), which contains 70 

two C pools (young particulate and old microbial processed SOC). This simple model based on first-order kinetics 71 

was further developed by Meurer et al. (2020) to account for the interactions of soil organic matter (SOM) with 72 

soil physical properties to enable simulation of physical protection due to soil aggregation. More recently, 73 

Coucheney et al. (2024) further developed the model to account for the effects of SOC stocks on decomposition 74 

rates due to microbial energy limitation (i.e. positive and negative priming) following an approach originally 75 

proposed by Wutzler and Reichstein (2013). Compared with the original ICBM model (Andrén and Kätterer, 76 
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1997), this new model only requires two additional parameters, one to account for physical protection and one for 77 

microbial energy limitation. It is therefore still relatively simple, neglecting several potentially important processes 78 

affecting SOC stocks in the soil profile, particularly transport processes such as the advection and diffusion of 79 

dissolved organic C as well as bioturbation. However, using a more complex process-oriented model, Sierra et al. 80 

(2024) recently concluded that these transport processes are generally only of limited importance for subsoil SOC 81 

stocks, which are instead largely determined by the balance between root-derived inputs and decomposition rates.  82 

Coucheney et al (2024) introduced this simple model of SOC turnover into the new soil-crop model USSF (Jarvis 83 

et al., 2024) and used it to evaluate the potential of winter wheat ideotypes with improved root system 84 

characteristics to enhance SOC stocks in a structured clay soil in Uppsala. In doing so, Coucheney et al. (2024) 85 

parameterized the SOC model from literature information, as the available site data was thought to be insufficient 86 

to unequivocally identify the model parameters. In this paper, we describe the SOC model and present a test of 87 

model predictions and parameter identifiability using organic C concentrations measured in the topsoil of three 88 

treatments with strongly contrasting OM inputs in a long-term field experiment in Uppsala. We also perform a 89 

Monte Carlo sensitivity analysis to identify the most influential parameters in the model determining estimates of 90 

total stocks of SOC in the soil profile at steady-state. Input distributions for soil and crop parameters were defined 91 

for the agricultural production area (PO4) in east-central Sweden that encompasses Uppsala. Geo-referenced data 92 

that would enable a spatially explicit test of the model for this region was not available. Instead, aggregated 93 

regional-scale soil survey data was used as a qualitative “reality-check”, assuming that profiles of SOC are 94 

approximately at steady-state.  95 

2 Materials and Methods 96 

In the following, we first describe a new parsimonious model of OM turnover applicable to a single topsoil layer, 97 

which we test using data from three contrasting cropping and fertilization treatments in the Ultuna Long-Term Soil 98 

Organic Matter Experiment. We then derive a steady-state solution of the model and also show how it can be 99 

extended to describe OM storage and turnover in a complete soil profile. Finally, these profile-scale steady-state 100 

solutions are used to support a regional-scale sensitivity analysis and reality-check. 101 

2.1 Model description  102 

2.1.1 SOM turnover and storage in a single soil layer 103 

A dual-porosity model describing the two-way interactions between soil physical properties and SOM stocks and 104 

turnover was described by Meurer et al. (2020). In this model, SOM contents influence the total porosity and its 105 

partitioning between two pore regions in the soil (i.e. mesopores and micropores) using a simple model that 106 

describes how SOM affects aggregation. In turn, the pore size distribution determines the partitioning of root-107 

derived inputs of OM between the two pore regions and also regulates decomposition rates as a consequence of 108 

the physical protection of OM in microporous regions of the soil. Coucheney et al. (2024) introduced a description 109 

of the effects of microbial energy limitation according to the “LimUptake” variant of the model suite described by 110 

Wutzler and Reichstein (2013) into the SOM model described by Meurer et al. (2020). They also simplified the 111 

description of the transfer of SOM between the two pore regions by tillage, making the assumption that there is 112 

always a net transfer of SOM from micropore to mesopore regions. This should give more realistic simulations of 113 

the effects of tillage on SOM and also has the added benefit of allowing a straightforward solution of the model 114 

for steady-state conditions. 115 
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The model tracks four pools of SOM, two pools of young OM (MY(mic) and MY(mes)) and two pools of older 116 

microbial-processed SOM (MO(mic) and MO(mes)). For both types, one part is stored in microporous regions of the 117 

soil (subscript “mic”) where it is partially protected from decomposition, while the remainder is stored in regions 118 

of the soil in contact with larger mesopores (subscript “mes”), which facilitates faster decomposition. Changes in 119 

the mass of SOM in the four pools (kg m-2) in a layer are given by: 120 

ௗெೊ(೘೐ೞ)

ௗ௧
= 𝐼௔ + 𝐼௥൫1 − 𝑓௥,௠௜௖൯ − 𝑘௒𝑘௨(௠௘௦)𝑀௒(௠௘௦) + 𝑘௧௜௟௟𝑀௒(௠௜௖)        (1) 121 

ௗெೀ(೘೐ೞ)

ௗ௧
= ൫𝜀 𝑘௒𝑘௨(௠௘௦)𝑀௒(௠௘௦)൯ − ൫(1 − 𝜀) 𝑘ை𝑘௨(௠௘௦)𝑀ை(௠௘௦)൯ + 𝑘௧௜௟௟𝑀ை(௠௜௖)        (2) 122 

ௗெೊ(೘೔೎)

ௗ௧
= 𝐼௥𝑓௥,௠௜௖ − 𝑘௒𝑘௨(௠௜௖)𝐹௣𝑀௒(௠௜௖) − 𝑘௧௜௟௟𝑀௒(௠௜௖)       (3) 123 

ௗெೀ(೘೔೎)

ௗ௧
= ൫𝜀 𝑘௒𝑘௨(௠௜௖)𝐹௣𝑀௒(௠௜௖)൯ − ൫(1 − 𝜀) 𝑘ை𝑘௨(௠௜௖)𝐹௣𝑀ை(௠௜௖)൯ − 𝑘௧௜௟௟𝑀ை(௠௜௖)  (4) 124 

where Ia and Ir (kg m-2 yr-1) are the supply of OM from above-ground residues and roots respectively, fr,mic (-) is 125 

the proportion of the root-derived OM added to the micropore region,  (-) is the SOM retention coefficient, kY and 126 

kO (yr-1) are reference rate constants for the decomposition of young and old SOM, ktill (yr-1) is rate constant 127 

regulating the transfer of SOM between pore regions by tillage, Fp (-) is a factor varying from zero to unity that 128 

reduces OM decomposition rates in the micropore region to account for physical protection and ku(mes)  and ku(mic) 129 

(-) are microbial energy limitation factors given by the simple model described by Wutzler and Reichstein (2013): 130 

𝑘௨(௠௘௦) = 𝑚𝑎𝑥 ቐ0; ቌ1 −
஺ೌ

ఌቆ௞ೊ൬
ಾೊ(೘೐ೞ)

౴೥
൰ା௞೚൬

ಾ೚(೘೐ೞ)

౴೥
൰ቇ

ቍቑ  (5) 131 

𝑘௨(௠௜௖) = 𝑚𝑎𝑥 ቐ0; ቌ1 −
஺ೌ

ఌி೛ቆ௞ೊ൬
ಾೊ(೘೔೎)

౴೥
൰ା௞೚൬

ಾ೚(೘೔೎)

౴೥
൰ቇ

ቍቑ  (6) 132 

where Aa (kg m-3 yr-1) is a composite microbial parameter that represents a minimum C uptake flux that can support 133 

an active microbial biomass and z is the layer thickness (m).  134 

Soil bulk density, b (kg m-3) and OM content fsom (kg kg-1) are calculated from the stocks of OM as inter-linked 135 

variables (Meurer et al., 2020): 136 

𝛾௕ =
ெ೟೚೟ା൫୼௭೘೔೙ఊ೘(ଵିథ೘೔೙)൯

୼௭
 (7) 137 

𝑓௦௢௠ =
ெ೟೚೟

୼௭ ఊ್
 (8) 138 

where Mtot (kg m-2) is the total OM stock (= MY(mes) + MO(mes) + MY(mic) + MO(mic)), m (kg m-3) is the density of mineral 139 

matter in soil and min is the textural porosity in soil (m3 m-3). The layer thickness in equations 5 to 8 varies due to 140 

soil aggregation (Meurer et al., 2020):  141 

Δ𝑧 = Δ𝑧௠௜௡ + ቄ൫1 + 𝑓௔௚௚൯ ቀ
ெ೟೚೟ 

ఊ೚
ቁቅ (9) 142 

where fagg (m3 m-3) is the aggregation factor, o (kg m-3) is the density of SOM and zmin (m) is the minimum layer 143 

thickness in a soil without SOM and aggregation porosity. 144 
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Meurer et al. (2020) equated fr,mic in equations 1 and 3 with the micropore fraction of the soil pore space, which 145 

varied with changes in OM stocks in each pore region. Here, in order to derive a solution for OM stocks at steady-146 

state (see “Steady-state solution for SOM stocks”), the fraction of the root-derived OM added to the micropore 147 

region (fr,mic in equations 1 and 3) is assumed to be a constant and is calculated from a micropore fraction of the 148 

pore space fmic (-) estimated from the soil clay content, weighted by a dimensionless constant w (0  w  1) to 149 

account for the effects of soil strength on the distribution of roots between the two pore regions. Using a power 150 

law function for the pore size distribution gives: 151 

𝑓௥,௠௜௖ = 𝑤 𝑓௠௜௖ = 𝑤 ቀ
టೌ೐

ట೘೔೎
ቁ

ఒ

 (10) 152 

where ae and mic are the air-entry pressure head (m) and the pressure head (m) equivalent to the largest micropore 153 

in the soil respectively and  (-) is the pore size distribution index (Brooks and Corey, 1964), which is here 154 

estimated from soil clay content fclay (kg kg-1) using the pedotransfer functions for field capacity fc and wilting 155 

point w (m3 m-3) derived from a database of water retention curves for Swedish agricultural soils by Kätterer et 156 

al. (2006): 157 

𝜆 =
௟௢௚ቆ

ഇೢ
ഇ೑೎

ቇ

௟௢௚ቀ
బ.ఱ

భఱబ
ቁ
 (11) 158 

𝜃௙௖ = 0.27 + 0.325 𝑓௖௟௔௬ (12) 159 

𝜃௪ = 0.004 + 0.5𝑓௖௟௔௬ (13) 160 

Thus, in this simpler version of the model described by Meurer et al. (2020), changes in SOM contents affect the 161 

porosity and bulk density but not the pore size distribution. 162 

2.1.2 Steady-state solution for SOM stocks  163 

From equations 1 to 4, steady-state SOM stocks in the four pools are given as: 164 

𝑀௒(௠௜௖) =  ൬
ூೝ ௙ೝ,೘೔೎

൛௞ೊி೛௞ೠ,೘೔೎ൟା௞೟೔೗೗
൰ (14) 165 

𝑀௒(௠௘௦) = ൬
ூೌାூೝ൫ଵି௙ೝ,೘೔೎൯ା൛௞೟೔೗೗ெೊ(೘೔೎)ൟ

௞ೊ௞ೠ,೘೐ೞ
൰ (15) 166 

𝑀ை(௠௜௖) =  ൬
ఌ௞ೊ௞ೠ,೘೔೎ி೛ெೊ(೘೔೎)

൛(ଵିఌ)௞ೀி೛௞ೠ,೘೔೎ൟା௞೟೔೗೗
൰ (16) 167 

𝑀ை(௠௘௦) =  ൬
൛ఌ௞ೊ௞ೠ,೘೐ೞெೊ(೘೐ೞ)ൟା௞೟೔೗೗ெೀ,೘೔೎

(ଵିఌ)௞ೀ௞ೠ,೘೐ೞ
൰ (17) 168 

Equations 14 to 17 show that the steady-state stocks depend on ku, while ku, in turn, depends on the stocks 169 

(equations 5 and 6). An iterative procedure is first used to derive a value of ku(mic) at steady-state that simultaneously 170 

satisfies equations 6, 14 and 16. The steady-state stocks in the mesopore region (equations 15 and 17) depend on 171 

the value of ku,mes at steady-state.  172 

  173 
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This can now be calculated directly by substituting equations 15 and 17 into equation 5: 174 

𝑘௨,௠௘௦ =
ଵ

ଵା

⎩
⎪
⎨

⎪
⎧

ಲೌ ౴೥

ഄቌ೔∗శቆ
ഄ೔∗శೖ೟೔೗೗ಾೀ(೘೔೎)

భషഄ
ቇቍ

⎭
⎪
⎬

⎪
⎫
   (18)  175 

where i* is the input of OM to the mesopore region given by:  176 

𝑖∗ = 𝐼௔ + 𝐼௥൫1 − 𝑓௥,௠௜௖൯ + 𝑘௧௜௟௟𝑀௒(௠௜௖) (19) 177 

2.1.3 Application of the model to a soil profile 178 

The model can be applied to a soil profile consisting of two or more soil horizons by expressing ktill, Ia, Ir, and w 179 

as a function of soil depth, keeping all the other parameters constant. Tillage is here assumed to affect SOM 180 

turnover only in the uppermost horizon, with ktill set to zero for all other horizons. Above-ground crop residues Ia 181 

are given by: 182 

𝐼௔ = 𝑌 ቀ
ଵ

ுூ
− 1ቁ 𝑓௜௡௖ (20) 183 

where Y is the yield (kg m-2), HI (-) is the harvest index (the ratio of yield to total above-ground biomass) and finc 184 

is the proportion of the above-ground residues incorporated into soil. The partitioning of Ia among the soil horizons 185 

can be defined by the user, but should reflect tillage systems and depths of cultivation. The total input of root-186 

derived OM, Ir is given by: 187 

𝐼௥(௧௢௧) =
௒ ௙್೒

ுூ൫ଵି௙್೒൯
 (21) 188 

where fbg is the proportion of net primary production that is allocated below-ground, including both root growth 189 

and exudates. Root-derived OM is added to the soil horizons in the profile according to a two-parameter logistic 190 

function, which represents the distribution of roots with depth in the soil (e.g. Schenk and Jackson, 2002; Fan et 191 

al., 2016): 192 

𝑃 =
ଵ

ଵା൬
೥

ವఱబ
൰

೎ (22) 193 

where P is the fraction of the total root biomass found above a depth z, representing the lower boundary of the 194 

horizon in question, c is a root distribution parameter and D50 is the depth above which 50% of the root biomass 195 

is recovered, which is given by: 196 

𝐷ହ଴ =
஽వఱ

ቀ
భ

బ.వఱ
ିଵቁ

భ
೎

 (23) 197 

where D95 is the depth (m) above which 95% of the total root biomass is recovered. With this function, a small 198 

fraction of the root biomass is found below the depth of the soil profile. This additional fraction of the root biomass 199 

is added to the upper two horizons in equal amounts. 200 

Finally, the weighting function to account for the effects of soil strength on the distribution of roots between the 201 

two pore regions is given by: 202 

𝑤 = 𝐸𝑋𝑃൫−𝑤௦(𝑧 − 𝑧ଵ)൯ (24) 203 
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where the constant ws (m-1) reflects the effects of increasing soil strength with depth on the distribution of roots 204 

between soil micropore and mesopore regions and z1 is the depth to the lower boundary of the uppermost soil 205 

horizon. It can be seen from equation 24 that w = 1 for the uppermost horizon, so that the root-derived OM in this 206 

layer is partitioned between the pore regions directly proportional to their estimated respective partial volumes. 207 

2.2 Model applications  208 

2.2.1 Long-term transient simulations of SOC under contrasting cropping and fertilization    209 

We performed a test of the model described by equations 1 to 13 using data from the Ultuna Long-Term Soil 210 

Organic Matter Experiment located at Uppsala, east-central Sweden (59.8oN, 17.7oE, Fig. 1). The mean annual 211 

temperature at Ultuna is 7oC and the mean annual precipitation is 570 mm. The texture in the uppermost 20 cm of 212 

soil is clay loam (37% clay, 41% silt and 22% sand). In this study, we make use of SOC contents measured in the 213 

topsoil (0-20 cm depth) from the start of the trial in 1956 until 2010 in three treatments with contrasting inputs of 214 

organic matter: an uncropped fallow treatment (“Fallow”) and two cropped treatments (“N fertilized” and “N 215 

fertilized + straw”), both of which are supplied with Ca(NO3)2 every year at the time of sowing at a rate of 80 kg 216 

N ha-1 year-1. Most (ca. 95%) of the above-ground crop residues are removed at harvest in autumn and straw is 217 

applied biennially to the treatment “N fertilized + straw” after harvest at an equivalent annual rate of 4.2 t ha-1. 218 

Maize has been grown on the cropped plots since 2000. Before 2000, the crop rotation included barley, oats, beets 219 

(prior to 1967) and rape. All the plots are dug by hand after harvest each year to a depth of 20 cm. We refer readers 220 

to Persson and Kirchmann (1994) and Kätterer et al. (2011) for more details of the design of the field experiment.  221 

 222 
Figure 1. Map showing the location of the Ultuna Long-term Soil Organic Matter Experiment (Uppsala, 223 

Sweden) and the extent of the production area PO4 (Drawn by Anna Lindahl, SLU from Esri, TomTom, 224 

Garmin, FAO, NOAA, USGS) 225 
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Inputs of OM from above- and below-ground crop residues were estimated following Kätterer et al. (2011), who 226 

made use of the allocation functions dependent on crop yields derived by Bolinder et al. (2009), together with a 227 

Michaelis-Menten function to estimate the proportion of the root-derived OM that was presumed to have been 228 

input to the topsoil (0-20 cm). Here, we simplified this method by using average OM inputs in each treatment for 229 

the experimental period (1956-2010) based on annual values calculated for the different crops in the rotation.  230 

The model was simultaneously calibrated to the measurements from the three treatments using the Generalized 231 

Likelihood Uncertainty Estimation (GLUE) method (Beven, 2006; Beven and Binley 2014; Juston et al., 2010). 232 

Inspection of the model equations led us to expect to encounter significant equifinality. All but six of the model 233 

parameters were therefore set to fixed values (Table 1). These included the soil physical properties, since an 234 

analysis of soil structure dynamics was not the main focus of this modelling study, which employs a slightly 235 

simplified description of the interactions between soil aggregation and SOM. Nevertheless, the final bulk densities 236 

simulated with the parameterization shown in Table 1 varied between 1.2 and 1.3 g cm-3 in the three treatments 237 

(“Fallow” > ”N fertilized” > ”N fertilized + straw”), which match reasonably well the values reported in Kätterer 238 

et al. (2011).  239 

Table 1. Model parameters fixed at constant values during the calibration 240 
Parameter Symbol Units Value  

Clay content fclay kg kg-1 0.36 
Density of organic matter o kg m-3 1200 
Density of mineral matter m kg m-3 2700 
Textural porosity min m3 m-3 0.5 
Aggregation factor fagg m3 m-3 3 
Physical protection factor Fp - 0.2 
Air-entry pressure head ae m 0.2 
Pressure head equivalent to the largest 
micropore in soil  

mic m 6.0 

Reference decomposition rate constant 
for young OM 

ky year-1 0.8 

Table 2 shows the prior uncertainty ranges for the six parameters. The OM supply prior to the start of the 241 

experiment and the fraction of this OM supplied as straw, were included in the calibration process to help initialize 242 

the SOM pools during a common 5000-year spin-up period. Four remaining parameters, which were considered 243 

difficult to identify “a priori” from experimentation, but which were thought to be sensitive and therefore 244 

potentially identifiable by calibration, were treated as uncertain (Table 2). We ran 12000 simulations using Latin 245 

Hypercube Sampling to sample uniform distributions between the minimum and maximum values for the six 246 

uncertain parameters (Table 2).  247 

The model efficiency EF was used as the likelihood function in GLUE: 248 

𝐸𝐹 = 1 −
∑ (ை೔ି௉೔)మ೙

೔సభ

∑ (ை೔ିைത)మ೙
೔సభ

 (25) 249 

where O and P are observed and predicted values, Ō is the mean of the observations and n is the number of 250 

observations. The maximum value of EF is one, when predictions and observations are identical, while a negative 251 

value implies a poor model, since it means that taking the average of the observations would give a better 252 

prediction. For each simulation, individual model efficiencies were calculated for each treatment and the mean EF 253 

value for the three treatments was used as a metric to identify acceptable parameters sets. 254 
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Table 2. Initial parameter uncertainty ranges for the model calibration to the Ultuna Long-Term Soil 255 

Organic Matter Experiment  256 

Parameter Symbol Units Prior uncertainty 
bounds  

Total OM input during spin-up Ia + Ir kg m-2 year-1 0.25 – 0.45 
Straw fraction of OM input during 
spin-up 

Ia/(Ia + Ir) - 0.65 – 0.85 

Rate constant for OM transfer by 
tillage between pore regions 

ktill year-1 0 – 0.01 

Reference decomposition rate constant 
for old organic matter 

ko year-1 0.06 – 0.1 

OM retention coefficient  - 0.20 – 0.45 
Microbial energy limitation factor Aa kg m-3 year-1 0.1 – 0.3 

2.2.2 Steady-state calculations: sensitivity analysis and reality-check 257 

We performed a Monte Carlo sensitivity and uncertainty analysis to assess the relative importance of 15 model 258 

parameters for predictions of the steady-state stocks of SOM in the soil profile (equations 7 to 24). The analysis 259 

was based, to the extent possible, on data and information available for the Ultuna field site as well as soil survey 260 

and cropping data (e.g. crop yields, soil clay content) for the agricultural production area PO4 in east-central 261 

Sweden (i.e. the region in which Ultuna is located, Fig. 1). Literature information was used to determine parameter 262 

distributions in the absence of data at the local or regional scale (Table 3). We assumed normal distributions when 263 

the data support was considered sufficient, while uniform distributions were used otherwise (Table 3). One 264 

thousand parameter sets were generated from these distributions by random sampling.  265 

Calculations were performed for a soil profile 120 cm in depth, divided into four soil horizons (0-20, 20-40, 40-266 

60 and 60-120 cm). We added 80% of the above-ground residues Ia (equation 20) to the uppermost horizon in the 267 

soil profile and the remaining 20% to the horizon below. For all 1000 parameter sets, we calculated the SOM stock 268 

in each horizon and in the whole soil profile at steady-state. For each soil horizon, we also calculated the steady-269 

state bulk density and SOM contents as well as the mean residence time of SOM as the steady-state SOM stock 270 

divided by the input/output flux.  271 

We used a multiple linear regression model to characterize variations in the steady-state SOM stocks in the profile 272 

(y), such that the normalized coefficients (1, 2 … n) can be used as a metric of sensitivity to variation in the 273 

parameters (x1, x2 … xn) (Saltelli and Annoni, 2010): 274 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ +  … . 𝛽௡𝑥௡ (26)  275 

Aggregated data for SOC contents measured at three depth intervals (0-20, 20-40 and 40-60 cm depth) for soils in 276 

production area PO4 (n = 611, 100 and 100 respectively) were extracted from the national soil and crop inventory 277 

carried out from 2001 to 2007 (Eriksson et al., 2010) and used as a qualitative ”reality-check” for the model 278 

calculations. Note that, as a consequence of simulating links to soil physical properties, the model calculates SOM 279 

contents, whereas SOC was measured. In converting from one to the other, we assumed that organic C constituted 280 

50% of the SOM. Likewise, calculated bulk densities at zero to 20 cm and 40 to 60 cm depth were compared with 281 

data available for soil profiles (n = 54) located in the production area PO4 (Klöffel et al., 2024). The model 282 

parameters required to convert calculated SOM stocks to estimates of SOM contents using equations 7 to 9 were 283 

set to the fixed values used in the model calibration (Table 1), with the exception of the textural porosity which 284 
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was reduced from 0.5 to 0.4, as the latter value was considered to be more representative for most soils (Klöffel et 285 

al., 2024).  286 

Table 3. Parameter input distributions in the sensitivity analysis 287 
Group Parameter and symbols Units Distribution Min./Max 

or Mean/St. 
dev 

Source 

Crop 
growth 
and 
residue 
inputs 

Yield Y kg m-2 Normal 0.5; 0.05 
SCB, Statistics 
Sweden 

Harvest index HI - Normal 0.4; 0.05 
Site data; Hay 
(1995) 

Fraction of net 
primary production 
allocated below-
ground 

fbg - Normal 0.2; 0.025 
Bolinder et al. 
(2007); Kätterer et 
al. (2011) 

Fraction of above-
ground crop 
residues 
incorporated 

finc - Normal 0.65; 0.1  Smerald et al. (2023) 

Root depth D95 m Uniform 0.8; 1.2 

Jackson et al. 
(1996); Kätterer et 
al. (2011); Fan et al. 
(2016) 

Root distribution 
factor 

c - Uniform -1.2; -0.9 Fan et al. (2016) 

Tillage Rate constant for 
OM transfer 
between pore 
regions 

ktill y-1 Uniform 0; 0.006  This study 

Organic 
matter 
turnover 

Reference 
decomposition rate 
constant for young 
organic matter 

kY y-1 Uniform 0.6; 1.0 
Andrén and Kätterer 
(1997) 

Reference 
decomposition rate 
constant for old 
organic matter 

kO y-1 Uniform 0.06; 0.1 This study 

OM retention 
coefficient  - Uniform 0.30; 0.35 This study 

Physical protection 
factor 

Fp - Uniform 0.1; 0.3 
Kravchenko et al. 
(2015) 

Microbial energy 
limitation factor 

Aa kg m-3 y-1 Uniform 0.1; 0.3 This study 

Soil 
physical 
properties 

Clay content fclay kg kg-1 Normal 0.3; 0.1 
Eriksson et al. 
(2010) 

Factor for soil 
strength effects on 
root distribution 
between pore 
regions 

ws m-1 Uniform 2; 4  

Pressure head 
defining the largest 
micropore 

mic m Uniform -30; -6  

Killham et al. 
(1993); Strong et al. 
(2004); Ruamps et 
al. (2011) 
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3 Results and Discussion 288 

3.1 Long-term transient simulations 289 

Figure 2 shows that the model could be calibrated to match simultaneously the changes in SOC contents measured 290 

in the three treatments at the Ultuna Long-Term Soil Organic Matter Experiment during the 50 year period, with 291 

the spread of the simulations from the 30 best parameter sets approximately matching the observed variation in 292 

SOC among the four replicate plots. Table 4 shows simulated SOM balances for the three treatments. The total 293 

input of crop residues in the “N fertilized + straw” treatment is roughly three times that of the “N-fertilized” 294 

treatment without straw addition. The calculated inputs of OM derived from roots were similar (Table 4), so that 295 

larger inputs of straw accounted for almost all of the difference in OM inputs between these two treatments. 296 

However, according to the simulations, almost 88% of the additional OM input in the “N fertilized + straw” 297 

treatment was lost as a consequence of enhanced mineralization, with only 12% remaining in the soil. While above-298 

ground crop residues are thought to be less persistent in soil than root-derived residues, the relative importance of 299 

several potential underlying mechanisms that could explain this finding is still unclear (e.g. Rasse et al., 2005; 300 

Kätterer et al., 2011). It can be noted here that the model does not consider any differences in the quality of root- 301 

and straw-derived OM. Instead, the model suggests that the comparatively small difference in OM stocks at the 302 

end of the experiment in the two treatments in relation to the large difference in OM inputs is a result of two 303 

processes: firstly, straw incorporated in the “N fertilized + straw” treatment is solely added to the mesopore region, 304 

which does not afford any physical protection. In contrast, a certain proportion, fmic, of root-derived OM is added 305 

to the physically-protected micropore region. Secondly, mineralization rates in the “N-fertilized” treatment without 306 

straw addition are reduced by microbial energy limitation as a consequence of an overall decrease in OM stocks 307 

due to the export of residues. Taking both these processes into account (physical protection and microbial energy 308 

limitation; see equations 1 to 6) enabled the model to reproduce the time-courses of SOC contents in the two 309 

treatments with identical parameterizations. 310 

Figure 3 shows that only one of the parameters included in the calibration procedure (the OM retention coefficient, 311 

) was well constrained by the data, with acceptable values lying within a narrow range (ca. 0.30 to 0.35). In 312 

contrast, for the other five parameters, simulations with large model efficiencies could be found across almost the 313 

entire prior uncertainty ranges (Fig. 3). An inspection of the mathematical structure of the model suggests that 314 

such a high degree of equifinality should be expected, as many of the key parameters should be strongly correlated 315 

(Coucheney et al., 2024). For the 30 best parameter sets, Figure 4 demonstrates that this is indeed the case for the 316 

four parameters regulating decomposition rates in the model (, ko, Aa and ktill). These strong correlations of ko, Aa 317 

and ktill with  mean that, in practice, all four parameters are well constrained by the calibration. The acceptable 318 

ranges for these four parameters shown in Figure 4 were utilized in the sensitivity analysis (Table 3). 319 
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 320 
Figure 2. Comparisons of measured SOC contents (symbols are the means of four replicates and the bars 321 

are standard deviations) with the 30 best simulations from the GLUE analysis (the dashed lines indicate 322 

ranges) 323 

Table 4. Simulated mass balances (kg m-2) for SOM for the 55-year experimental period (1956 to 2010) at 324 

the Ultuna Long-Term Soil Organic Matter Experiment. Values shown for mineralization are the means 325 

and standard deviations (in brackets) for the 30 best simulations. Values for change of stocks in brackets 326 

are the percentage changes in relation to the original stock of SOM. 327 

Component Treatment 
 Fallow N fertilized N fertilized + straw 
Inputs:  
1Estimated below-ground residues 

 
0.44 

 
9.85 

 
10.67 

Above-ground residues  0 1.82 22.94 

Total crop residue input 0.44 11.67 33.61 
Mineralization in soil 3.01 (0.18) 12.53 (0.16) 31.75 (0.20) 
Change of SOM stock -2.57 (-35.1%) -0.86 (-11.7%) 1.86 (25.4%) 

1 estimated using the algorithms presented by Bolinder et al. (2007) and Kätterer et al. (2011) 328 
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 329 

Figure 3. Mean model efficiencies plotted against the values for the six parameters in the GLUE analysis 330 

(only simulations with model efficiencies larger than zero are shown in the plots). 331 
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 332 
Figure 4. Inter-relationships between four model parameters regulating organic matter decomposition in 333 

the model for the 30 best parameter sets. 334 

3.2 Steady-state calculations 335 

A qualitative comparison with soil survey data for agricultural land in east-central Sweden (production area PO4) 336 

suggests that despite its simplicity the model gives reasonably realistic predictions of steady-state SOC and bulk 337 

density in the soil profile (Fig. 5 and Fig.6). As a further “reality check”, Figure 7 shows distributions of the mean 338 

residence times of SOM calculated for the four horizons in the soil profile. Median values (ca. 20 years) and 339 

distributions of residence times estimated for the topsoil are similar to those estimated by Poeplau et al. (2021) for 340 

German agricultural soils, and they also lie well within the ranges estimated for boreal-temperature climates in the 341 

global analysis presented by Chen et al. (2020). This gives us confidence that the results of the sensitivity analysis 342 

presented in the following should be reasonably well grounded in reality. As also shown by Coucheney et al. 343 

(2024), the model simulates much longer mean residence times in the subsoil horizons, due to microbial energy 344 

limitation and physical protection, with median values of ca. 300 years (Figure 7).   345 
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 346 
Figure 5. Comparison of the distributions of SOC contents measured at three depths for soil profiles located 347 

in east-central Sweden (production area PO4; Eriksson et al., 2010) with distributions calculated in the 348 

model sensitivity analysis. Horizontal lines show median values, the box defines the inter-quartile range, 349 

error bars define 10th and 90th percentiles and solid symbols indicate 5th and 95th percentiles. Note the 350 

differences in the y-axis scales. 351 

 352 
Figure 6. Comparison of the distributions of soil bulk density measured at two depths in soil profiles located 353 

in east-central Sweden (production area PO4) with the distributions calculated in the model sensitivity 354 

analysis. Horizontal lines show median values, the box defines the inter-quartile range, error bars define 355 

10th and 90th percentiles and solid symbols indicate 5th and 95th percentiles. 356 

Table 5 shows that the most sensitive parameters in the model are those determining decomposition rates of SOM, 357 

especially the rate constant for microbial-processed OM, ko, the parameter regulating microbial energy limitation, 358 

Aa, and the parameter regulating the degree of physical protection of OM stored in micropores, Fp. The soil clay 359 

content, which strongly affects the extent to which physical protection is expressed in soils of contrasting texture, 360 

is also a relatively sensitive model parameter (Table 5). Not surprisingly, along with the OM retention coefficient, 361 

, the two parameters determining total OM inputs (i.e. crop yields and harvest index) also exert a strong control 362 

on SOM stocks in the soil profile (Table 5). The results of the sensitivity analysis also illustrate the importance of 363 

below-ground production for soil profile C stocks calculated by the model (parameter fbg, fraction of NPP allocated 364 

below-ground; Table 5), reflecting the assumptions in the model concerning the greater persistence of root-derived 365 

OM discussed earlier. An increase of 25% in the fraction of net primary production allocated to roots, fbg, increases 366 

steady-state SOM stocks by ca. 8%. Transient simulations run with the USSF model for winter wheat grown on 367 

Ultuna clay soil presented by Coucheney et al. (2024) illustrate what might be achievable in a 30-year time 368 

perspective in the context of climate change mitigation: for the same 25% increase in below-ground C allocation, 369 
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the USSF model simulated increases in C stocks of ca. 1.4%. In contrast to below-ground production, the 370 

sensitivity analysis suggests that root depth and distribution would have little impact on soil profile stocks of OM 371 

(Table 5). However, in comparison with soil-crop models such as USSF, the limitations of the simpler model 372 

described here should be borne in mind, in particular the lack of any feedback between root system development 373 

and crop growth, and thus residue production. In reality, root depth and distribution may play a larger role for soil 374 

C stocks. Thus, the transient simulations performed with the full USSF soil-crop model for winter wheat on Ultuna 375 

clay soil by Coucheney et al. (2024) suggested that deeper rooting would increase water uptake and crop growth 376 

in dry summers, leading to 3-5% increases in SOM stocks in a 30-year perspective. Table 5 suggests that tillage is 377 

one of the least sensitive factors affecting SOM stocks: doubling the tillage intensity parameter in the model, ktill, 378 

only reduces SOM stocks by 4 to 5%. It must be admitted, however, that the simple description of tillage effects 379 

in the model is yet to be rigorously and systematically tested. Nevertheless, in a meta-analysis of long-term 380 

experiments in boreal/temperate climates, Haddaway et al. (2017) and Meurer et al. (2018) only found larger SOC 381 

stocks under no-till compared with conventional tillage in the topsoil, while no overall significant effect of tillage 382 

system on SOC stocks was detected for soil profiles to 60 cm depth. 383 

 384 

Figure 7. Distributions of mean residence times for SOM calculated in the sensitivity analysis for four depths 385 

in the soil profiles of production area PO4 in east-central Sweden. Horizontal lines show median values, the 386 

box defines the inter-quartile range, error bars define 10th and 90th percentiles and solid symbols indicate 387 

5th and 95th percentiles.  388 

  389 
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Table 5. Parameter sensitivity (NRC = normalized regression coefficients)  390 

Parameter NRC 

ko Decomposition rate constant (old OM) -0.833 

Fp Physical protection factor -0.695 

Aa Microbial energy limitation factor 0.606 

HI Harvest index -0.513 

Y Crop Yield 0.401 

 OM retention coefficient 0.329 

fbg Fraction of NPP allocated below-ground 0.291 

ky Decomposition rate constant (young OM) -0.174 

fclay Clay content 0.128 

finc Fraction of above-ground residues incorporated 0.127 

ktill Tillage transfer coefficient -0.045 

ws Factor for soil strength effects on root distribution 0.035 

D95 Root depth -0.023 

mic Pressure head defining micropore region -0.015 

c Root depth distribution factor -0.009 

4 Concluding remarks 391 

We presented here a novel parsimonious or “minimalist” model that simulates the emergent effects of soil texture 392 

and soil structure on C stocks and turnover rates in soil profiles by mimicking two of the key processes involved 393 

in C stabilization (i.e. physical protection and microbial energy limitation). Parameters controlling these processes 394 

were also found to be among the most sensitive in the model. However, the decomposition rate constant for old 395 

microbial-processed OM, ko was the most sensitive parameter in the model. Although ko should be considered as 396 

a lumped parameter reflecting the influence of various processes, the available experimental evidence suggests 397 

that the strength of adsorption and OM-mineral interactions controlling the bioavailability of the substrate (i.e. 398 

chemical protection) should be the most important factor underlying its variation (e.g. Lehmann and Kleber, 2015; 399 

Mathieu et al., 2015; Doetterl et al., 2015). The development of pedotransfer approaches (van Looy et al., 2017) 400 

to estimate ko using soil properties such as clay content and clay mineralogy, pH and Al and Fe oxides (e.g. Mathieu 401 

et al., 2015; Rasmussen et al., 2018; Fukumasu et al., 2021) would therefore be helpful in supporting predictive 402 

model applications at larger scales.   403 

The comparisons of model predictions with local- and regional-scale data confirm that it shows promise. Despite 404 

equifinality, the parameters regulating decomposition in the model could be identified within reasonably narrow 405 

ranges using data from a long-term field experiment with three treatments characterized by strongly contrasting 406 

OM inputs for more than 50 years. Ideally, the model should now be further tested at multiple sites using data from 407 

long-term field experiments, including comparisons of alternative cropping systems and tillage management (i.e. 408 

no-till vs. conventional systems). 409 
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5 Complementary information 570 

Highlights 571 

 We outline a simple phenomenological model of soil organic carbon (SOC) turnover in a soil profile 572 

 The model predicts effects of soil aggregation and microbial energy limitation on SOC persistence 573 

 The model is tested using SOC data from treatments with varying C input in a long-term field trial 574 

 The most influential parameters were identified in a sensitivity and uncertainty analysis 575 

Running title: A simple model of SOC turnover in a soil profile 576 
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