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Abstract. Simulation models are potentially useful tools to test our understanding of the processes involved in the 

turnover of soil organic carbon (SOC) and to evaluate the role of management practices in maintaining stocks of 

SOC. We describe here a simple model of SOC turnover at the soil profile scale that accounts for two key processes 

determining SOC persistence (i.e. microbial energy limitation and physical protection due to soil aggregation). We 10 
tested the model and evaluated the identifiability of key parameters using topsoil SOC contents measured in three 

treatments with contrasting organic matter inputs (i.e. fallow, mineral fertilized and cropped, with and without 

straw addition) in a long-term field trial. The estimated total input of organic matter (OM) in the treatment with 

straw added was roughly three times that of the treatment without straw addition, but only 12% of the additional 

OM input remained in the soil after 54 years. By taking microbial energy limitation and enhanced physical 15 
protection of root residues into account, the model could explain the differences in C persistence among the three 

treatments, whilst also accurately matching the time-courses of SOC contents using the same set of model 

parameters. Models that do not explicitly consider microbial energy limitation and physical protection would need 

to adjust their parameter values (either decomposition rate constants or the retention coefficient) to match this data. 

We also performed a sensitivity analysis to identify the most influential parameters in the model determining soil 20 
profile stocks of OM at steady-state. Input distributions for soil and crop parameters in the model were defined for 

the agricultural production region in east-central Sweden that includes Uppsala. This analysis showed that model 

parameters affecting SOC decomposition rates, including the rate constant for microbial-processed SOC and the 

parameters regulating physical protection and microbial energy limitation, are more sensitive than parameters 

determining OM inputs. The development of pedotransfer approaches to estimate SOC decomposition rates from 25 
soil properties would therefore support predictive applications of the model at larger spatial scales. 
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1 Introduction 30 

Adopting soil and crop management practices that increase stocks of soil organic carbon (SOC) is one promising 

way to mitigate climate change, whilst simultaneously improving soil health (Paustian et al., 2016; Baveye et al., 

2020). In conjunction with long-term field experiments, simulation models are useful tools for testing our 

understanding of the processes involved in the turnover of SOC and for evaluating the potential of management 

practices to enhance SOC sequestration. Most model applications to date have focused on cultivated topsoil, which 35 
is clearly of major importance with respect to the effects of soil management on SOC and soil health. However, 

subsoils contain a large proportion of the total stock of SOC (Batjes, 1996; Jobbágy and Jackson, 2000; Poeplau 

et al., 2020) and residence times are also much longer (Rumpel and Kögel-Knabner, 2011; Sierra et al., 2024; 

Button et al., 2022). This may indicate a significant potential for long-term C sequestration of root-derived OM in 

subsoils, which could be of substantial benefit in mitigating climate change.  40 

Several detailed mechanistic models have been developed that describe a wide range of processes affecting C 

stocks at the scale of the entire soil profile, including soil water flow, transport of dissolved organic carbon by 

advection-diffusion and bioturbation, as well as descriptions of SOC decomposition explicitly accounting for 

microbial processes (e.g. Izaurralde et al., 2006; Braakhekke et al., 2011; Riley et al., 2014; Ahrens et al., 2015; 

Camino-Serrano et al., 2018; Hicks Pries et al., 2018; Keyvanshokouhi et al., 2019; Yu et al., 2020). Such 45 
mechanistic models are useful tools for improving process understanding (Smith et al., 2018; Derrien et al., 2023), 

but parameter uncertainty and the ever-present likelihood of equifinality means that predictive model applications 

may be problematic (Braakhekke et al., 2013). Simpler empirical (phenomenological) models of SOC turnover 

and storage may have an advantage in this respect because they require fewer parameters (Derrien et al, 2023). 

Although simple models are in principle well suited to policy and management applications, their validation status 50 
is generally poor: many have been extensively calibrated against field observations, but their reliability in 

extrapolation (i.e. prediction of independent data) has not yet been convincingly demonstrated (Garsia et al., 2023; 

Le Noë et al., 2023). This is because these models have often been tested against limited datasets (i.e. observations 

of topsoil C dynamics at a single site and treatment) which increases the likelihood of equifinality despite the small 

number of parameters (e.g. Juston et al., 2010; Luo et al., 2017). This may be overcome by simultaneous 55 
calibration of the model against data for two or more contrasting treatments, for example with respect to the 

type and quantity of organic matter inputs (e.g. Meurer et al., 2020) or by multi-site calibration at larger scales 

using data from long-term field trials at locations with contrasting soils and management practices (e.g. Juston 

et al., 2010; Dechow et al., 2019). Testing model predictions for entire soil profiles remains however difficult and 

is therefore rarely done, because fewer measurements are made in subsoils and the turnover of organic C in subsoil 60 
is very slow, so datasets will rarely be long enough to detect any changes (Balesdent et al., 2018). Additional data 

sources may also help to alleviate problems arising from equifinality. One possibility is to make use of 14C 

concentrations as a measure of SOC age (e.g. Braakhekke et al., 2014; Ahrens et al., 2015; Sierra et al., 2018) or 

concentrations of natural stable isotopes of C (Balesdent and Mariotti, 1987), their ratio 12C/13C in C3-C4 

vegetation chronosequences (Schiedung et al., 2017; Balesdent et al., 2018) or labelled material (Sanaullah et al., 65 
2011). If such data is missing, an alternative approach to model validation is to compare model predictions against 

spatial (soil survey) datasets either at catchment, regional or national scales. This has often been done for the 

topsoil (e.g. Sleutel, et al., 2006; Yagasaki and Shirato, 2014), but to our knowledge there are no examples of this 

approach in the published literature dealing with total stocks of organic C in the profile. 
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Ideally, a model that is intended for predictive management applications at the soil profile scale should combine 70 
the advantages of simplicity with descriptions that adequately capture or mimic the most important processes 

determining SOC stocks (Campbell and Paustian, 2015). In this respect, using a more complex process-oriented 

model, Sierra et al. (2024) recently concluded that DOC transport and bioturbation are generally only of limited 

importance for subsoil SOC stocks, which are instead largely determined by the balance between root-derived 

inputs and decomposition rates. In turn, experimental evidence suggests that decomposition rates of SOC are 75 
affected mostly by bioavailability (i.e. soil properties controlling adsorption; Mathieu et al., 2015), physical 

protection (e.g. Killham et al., 1993; Strong et al., 2004; Salomé et al., 2010) and the amount of SOC as it provides 

energy for microbial biomass growth, maintenance and activity (e.g. Fontaine et al., 2007; Don et al., 2013; 

Wutzler and Reichstein, 2013). We are not aware of any relatively parsimonious (or minimalist) model that has 

been shown to capture the effects of these key processes on SOC stocks at the scale of an entire soil profile.  80 

The overall aim of this study is to demonstrate the utility of a simple soil C turnover model that that is specifically 

designed to fill this gap by accounting for the nexus of soil management, soil structure and microbial activity that 

critically determines C mineralization and stabilization at the scale of a soil profile. The model structure is based 

on ICBM (Introductory Carbon Balance Model; Andrén and Kätterer, 1997), which contains two C pools (young 

particulate and old microbial processed SOC). This simple model based on first-order kinetics was further 85 
developed by Meurer et al. (2020) to account for the interactions of soil organic matter (SOM) with soil physical 

properties to enable simulation of physical protection due to soil aggregation. More recently, Coucheney et al. 

(2024) further developed the model to account for the effects of SOC stocks on decomposition rates due to 

microbial energy limitation (i.e. positive and negative priming) following an approach originally proposed by 

Wutzler and Reichstein (2013). Compared with the original ICBM model (Andrén and Kätterer, 1997), this new 90 
model only requires two additional parameters, one to account for physical protection and one for microbial energy 

limitation.  

Coucheney et al. (2024) introduced this simple model of SOC turnover into the new soil-crop model USSF 

(Uppsala model of Soil Structure and Function; Jarvis et al., 2024) and used it to evaluate the potential of winter 

wheat ideotypes with improved root system characteristics to enhance SOC stocks in a structured clay soil in 95 
Uppsala. In doing so, Coucheney et al. (2024) parameterized the SOC model from literature information, as the 

available site data was thought to be insufficient to unequivocally identify the model parameters. Here, we first 

describe the SOC model. Secondly, we present a test of model predictions and an analysis of parameter 

identifiability using organic C concentrations measured in the topsoil of three treatments with strongly contrasting 

OM inputs in a long-term field experiment in Uppsala. Finally, we perform a Monte Carlo sensitivity analysis to 100 
identify the most influential parameters in the model determining estimates of total stocks of SOC in the soil profile 

at steady-state. Input distributions for soil and crop parameters were defined for an agricultural production area in 

east-central Sweden that encompasses Uppsala. Geo-referenced data that would enable a spatially explicit test of 

the model for this region was not available. Instead, aggregated regional-scale soil survey data was used as a 

qualitative “reality-check”, assuming that profiles of SOC are approximately at steady-state.  105 

2 Materials and Methods 

In the following, we first describe a new parsimonious model of OM turnover applicable to a single topsoil horizon, 

which we test using data from three contrasting cropping and fertilization treatments in the Ultuna Long-Term Soil 
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Organic Matter Experiment. We then derive a steady-state solution of the model and also show how it can be 

extended to describe OM storage and turnover in a complete soil profile. Finally, these profile-scale steady-state 110 
solutions are used to support a regional-scale sensitivity analysis and reality-check. 

2.1 Model description  

2.1.1 SOM turnover and storage in a single soil horizon 

A dual-porosity model describing the two-way interactions between soil physical properties and SOM stocks and 

turnover was described by Meurer et al. (2020). In this model, SOM contents influence the total porosity and its 115 
partitioning between two pore regions in the soil (i.e. mesopores and micropores) using a simple model that 

describes how SOM affects aggregation. In turn, the pore size distribution determines the partitioning of root-

derived inputs of OM between the two pore regions. This means that compared with a sandy soil, a larger 

proportion of the root OM input will enter the micropore region in a clay soil, as it predominantly consists of 

smaller pores. The soil pore size distribution also regulates decomposition rates with slower decomposition rates 120 
of OM stored in microporous regions of the soil. Compared with sandy soils, clay soils therefore have a greater 

potential for physical protection of soil C. Coucheney et al. (2024) introduced a description of the effects of 

microbial energy limitation according to the “LimUptake” variant of the model suite described by Wutzler and 

Reichstein (2013) into the SOM model described by Meurer et al. (2020). They also simplified the description of 

the transfer of SOM between the two pore regions by tillage, making the assumption that there is always a net 125 
transfer of SOM from micropore to mesopore regions. This should give more realistic simulations of the effects 

of tillage on SOM and also has the added benefit of allowing a straightforward solution of the model for steady-

state conditions.  
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Figure 1. Schematic diagram of the organic matter (OM) pools (M = mass, Y = young; O = old) and fluxes 

and the main external factors affecting OM inputs to the soil (for definitions see equations 1 to 6, 10 to 13 

and 20 to 24). The grey boxes with dashed lines indicate tilled and subsoil horizons in the soil profile, both 

partitioned between two pore regions (micropores and mesopores). This partitioning is estimated from the 

soil clay content using pedotransfer functions (equations 10 to 13). OM located in the micropores is partially 

physically protected from decomposition (by a factor Fp see equations 3 and 4). In tilled horizons, OM from 

the above-ground crop residues is added only to the mesopore region and a fraction of OM located in the 

micropores is transferred by tillage. Root-derived OM is added to both pore regions as a function of pore 

size distribution and soil strength through effects on root distribution in the soil profile (see equations 21-

24). The sizes of the boxes and arrows illustrate that OM contents and fluxes are generally smaller in subsoil 

as a result of lower OM inputs, which, in turn, leads to greater energy limitation (equations 5 and 6).   
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The model tracks four pools of SOM, two pools of young OM (MY(mic) and MY(mes)) and two pools of older 

microbial-processed SOM (MO(mic) and MO(mes)) (see Fig. 1). For both types, one part is stored in microporous 130 
regions of the soil (subscript “mic”) where it is partially protected from decomposition, while the remainder is 

stored in regions of the soil in contact with larger mesopores (subscript “mes”), which facilitates faster 

decomposition (see Fig. 1). Changes in the mass of SOM in the four pools (kg m-2) in a horizon are given by: 

𝑑𝑑𝑑𝑑𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑑𝑑𝑑𝑑
= 𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑟𝑟�1 − 𝑓𝑓𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚� − 𝑘𝑘𝑌𝑌𝑘𝑘𝑢𝑢(𝑚𝑚𝑚𝑚𝑚𝑚)𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)        (1) 

𝑑𝑑𝑑𝑑𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑑𝑑𝑑𝑑
= �𝜀𝜀 𝑘𝑘𝑌𝑌𝑘𝑘𝑢𝑢(𝑚𝑚𝑚𝑚𝑚𝑚)𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)� − �(1 − 𝜀𝜀) 𝑘𝑘𝑂𝑂𝑘𝑘𝑢𝑢(𝑚𝑚𝑚𝑚𝑚𝑚)𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)� + 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)        (2) 135 

𝑑𝑑𝑑𝑑𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑑𝑑𝑑𝑑
= 𝐼𝐼𝑟𝑟𝑓𝑓𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑘𝑘𝑌𝑌𝑘𝑘𝑢𝑢(𝑚𝑚𝑚𝑚𝑚𝑚)𝐹𝐹𝑝𝑝𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)       (3) 

𝑑𝑑𝑑𝑑𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)

𝑑𝑑𝑑𝑑
= �𝜀𝜀 𝑘𝑘𝑌𝑌𝑘𝑘𝑢𝑢(𝑚𝑚𝑚𝑚𝑚𝑚)𝐹𝐹𝑝𝑝𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)� − �(1 − 𝜀𝜀) 𝑘𝑘𝑂𝑂𝑘𝑘𝑢𝑢(𝑚𝑚𝑚𝑚𝑚𝑚)𝐹𝐹𝑝𝑝𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)� − 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)  (4) 

where Ia and Ir (kg m-2 yr-1) are the supply of OM from above-ground residues and roots respectively, fr,mic (-) is 

the proportion of the root-derived OM added to the micropore region, ε (-) is the SOM retention coefficient, kY and 

kO (yr-1) are reference rate constants for the decomposition of young and old SOM. ktill (yr-1) is a rate constant 140 
regulating the transfer of SOM between pore regions by tillage, Fp (-) is a factor varying from zero to unity that 

reduces OM decomposition rates in the micropore region to account for physical protection and ku(mes)  and ku(mic) 

(-) are microbial energy limitation factors given by the simple model described by Wutzler and Reichstein (2013), 

which they derived from a simplified steady-state solution of a microbial growth model: 

𝑘𝑘𝑢𝑢(𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑚𝑚𝑚𝑚𝑚𝑚 �0;�1 − 𝐴𝐴𝑎𝑎

𝜀𝜀�𝑘𝑘𝑌𝑌�
𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)

Δ𝑧𝑧 �+𝑘𝑘𝑜𝑜�
𝑀𝑀𝑜𝑜(𝑚𝑚𝑚𝑚𝑚𝑚)

Δ𝑧𝑧 ��
��  (5) 145 

𝑘𝑘𝑢𝑢(𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑚𝑚𝑚𝑚𝑚𝑚 �0;�1 − 𝐴𝐴𝑎𝑎

𝜀𝜀𝐹𝐹𝑝𝑝�𝑘𝑘𝑌𝑌�
𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)

Δ𝑧𝑧 �+𝑘𝑘𝑜𝑜�
𝑀𝑀𝑜𝑜(𝑚𝑚𝑚𝑚𝑚𝑚)

Δ𝑧𝑧 ��
��  (6) 

where Aa (kg m-3 yr-1) is a composite microbial parameter that represents a minimum C uptake flux that can support 

an active microbial biomass and ∆z is the horizon thickness (m). It can be seen from equations 1 and 3 that 

ploughed-down above-ground crop residues are presumed to lack physical protection, being incorporated into the 

young OM pool in contact with the larger mesopores. In contrast, some roots will grow through microporous soil 150 
regions, thereby supplying OM to the young pool on root death, as well as by root exudation. 

Soil bulk density, γb (kg m-3) and OM content fsom (kg kg-1) are calculated from the stocks of OM as inter-linked 

variables (Meurer et al., 2020): 

𝛾𝛾𝑏𝑏 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡+�Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾𝑚𝑚(1−𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚)�
Δ𝑧𝑧

 (7) 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡
Δ𝑧𝑧 𝛾𝛾𝑏𝑏

 (8) 155 

where Mtot (kg m-2) is the total OM stock (= MY(mes) + MO(mes) + MY(mic) + MO(mic)), γm (kg m-3) is the density of mineral 

matter in soil and φmin is the textural porosity in soil (m3 m-3). The horizon thickness in equations 5 to 8 varies due 

to soil aggregation (Meurer et al., 2020):  
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Δ𝑧𝑧 = Δ𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 + ��1 + 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎� �
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 
𝛾𝛾𝑜𝑜
�� (9) 

where fagg (m3 m-3) is the aggregation factor, γo (kg m-3) is the density of SOM and ∆zmin (m) is the minimum layer 160 

thickness in a soil without SOM and aggregation porosity. 

Meurer et al. (2020) equated fr,mic in equations 1 and 3 with the micropore fraction of the soil pore space, which 

varied with changes in OM stocks in each pore region. Here, in order to derive a solution for OM stocks at steady-

state (see “Steady-state solution for SOM stocks”), the fraction of the root-derived OM added to the micropore 

region (fr,mic in equations 1 and 3) is assumed to be a constant and is calculated from a micropore fraction of the 165 

pore space fmic (-) estimated from the soil clay content, weighted by a dimensionless constant w (0 ≤ w ≤ 1) to 

account for the effects of soil strength on the distribution of roots between the two pore regions. Using a power 

law function for the pore size distribution gives: 

𝑓𝑓𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤 � 𝜓𝜓𝑎𝑎𝑎𝑎
𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚

�
𝜆𝜆
 (10) 

where ψae and ψmic are the air-entry pressure head (m) and the pressure head (m) equivalent to the largest micropore 170 

in the soil respectively and λ (-) is the pore size distribution index (Brooks and Corey, 1964), which is here 

estimated from soil clay content fclay (kg kg-1) using the pedotransfer functions for field capacity θfc and wilting 

point θw (m3 m-3) derived from a database of water retention curves for Swedish agricultural soils by Kätterer et 

al. (2006): 

𝜆𝜆 =
𝑙𝑙𝑙𝑙𝑙𝑙�𝜃𝜃𝑤𝑤𝜃𝜃𝑓𝑓𝑓𝑓

�

𝑙𝑙𝑙𝑙𝑙𝑙� 0.5
150�

 (11) 175 

𝜃𝜃𝑓𝑓𝑓𝑓 = 0.27 + 0.325 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (12) 

𝜃𝜃𝑤𝑤 = 0.004 + 0.5𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (13) 

Thus, in this simpler version of the model described by Meurer et al. (2020), changes in SOM contents affect the 

porosity and bulk density but not the pore size distribution. 

2.1.2 Steady-state solution for SOM stocks  180 

From equations 1 to 4, steady-state SOM stocks in the four pools are given as: 

𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) =  � 𝐼𝐼𝑟𝑟 𝑓𝑓𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚
�𝑘𝑘𝑌𝑌𝐹𝐹𝑝𝑝𝑘𝑘𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚�+𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� (14) 

𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) = �
𝐼𝐼𝑎𝑎+𝐼𝐼𝑟𝑟�1−𝑓𝑓𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚�+�𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)�

𝑘𝑘𝑌𝑌𝑘𝑘𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚
� (15) 

𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚) =  �
𝜀𝜀𝑘𝑘𝑌𝑌𝑘𝑘𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝑝𝑝𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)

�(1−𝜀𝜀)𝑘𝑘𝑂𝑂𝐹𝐹𝑝𝑝𝑘𝑘𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚�+𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
� (16) 

𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚) =  �
�𝜀𝜀𝑘𝑘𝑌𝑌𝑘𝑘𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚)�+𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚

(1−𝜀𝜀)𝑘𝑘𝑂𝑂𝑘𝑘𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚
� (17) 185 

Equations 14 to 17 show that the steady-state stocks depend on ku, while ku, in turn, depends on the stocks 

(equations 5 and 6). An iterative procedure is first used to derive a value of ku(mic) at steady-state that simultaneously 

satisfies equations 6, 14 and 16. The steady-state stocks in the mesopore region (equations 15 and 17) depend on 
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the value of ku,mes at steady-state. This can now be calculated directly by substituting equations 15 and 17 into 

equation 5: 190 

𝑘𝑘𝑢𝑢,𝑚𝑚𝑚𝑚𝑚𝑚 = 1

1+

⎩
⎪
⎨

⎪
⎧

𝐴𝐴𝑎𝑎 Δ𝑧𝑧

𝜀𝜀�𝑖𝑖∗+�
𝜀𝜀𝑖𝑖∗+𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚)

1−𝜀𝜀 ��
⎭
⎪
⎬

⎪
⎫
   (18)  

where i* is the input of OM to the mesopore region given by:  

𝑖𝑖∗ = 𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑟𝑟�1 − 𝑓𝑓𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚� + 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑀𝑀𝑌𝑌(𝑚𝑚𝑚𝑚𝑚𝑚) (19) 

2.1.3 Application of the model to a soil profile 

The model can be applied to a soil profile consisting of two or more soil horizons by expressing ktill, Ia, Ir, and w 195 
as a function of soil depth, keeping all the other parameters constant. For the sake of simplicity, the textural 

porosity φmin (equation 7) could also vary with depth in the soil, but it is assumed to take a constant value in the 

following,. Tillage is here assumed to affect SOM turnover only in the uppermost horizon, with ktill set to zero for 

all other horizons. Above-ground crop residues Ia are given by: 

𝐼𝐼𝑎𝑎 = 𝑌𝑌 � 1
𝐻𝐻𝐻𝐻
− 1� 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 (20) 200 

where Y is the yield (kg m-2), HI (-) is the harvest index (the ratio of yield to total above-ground biomass) and finc 

is the proportion of the above-ground residues incorporated into soil. The partitioning of Ia among the soil horizons 

can be defined by the user, but should reflect tillage systems and depths of cultivation. The total input of root-

derived OM, Ir is given by: 

𝐼𝐼𝑟𝑟(𝑡𝑡𝑡𝑡𝑡𝑡) =
𝑌𝑌 𝑓𝑓𝑏𝑏𝑏𝑏

𝐻𝐻𝐻𝐻�1−𝑓𝑓𝑏𝑏𝑏𝑏�
 (21) 205 

where fbg is the proportion of net primary production that is allocated below-ground, including both root growth 

and exudates. Root-derived OM is added to the soil horizons in the profile according to a two-parameter logistic 

function, which represents the distribution of roots with depth in the soil (e.g. Schenk and Jackson, 2002; Fan et 

al., 2016): 

𝑃𝑃 = 1

1+� 𝑧𝑧
𝐷𝐷50

�
𝑐𝑐 (22) 210 

where P is the fraction of the total root biomass found above a depth z, representing the lower boundary of the 

horizon in question, c is a root distribution parameter and D50 is the depth above which 50% of the root biomass 

is recovered, which is given by: 

𝐷𝐷50 = 𝐷𝐷95

� 1
0.95−1�

1
𝑐𝑐
 (23) 

where D95 is the depth (m) above which 95% of the total root biomass is recovered. With this function, a small 215 
fraction of the root biomass is found below the depth of the soil profile. This additional fraction of the root biomass 

is added to the upper two horizons in equal amounts. 
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Finally, the weighting function to account for the effects of soil strength on the distribution of roots between the 

two pore regions is given by: 

𝑤𝑤 = 𝐸𝐸𝐸𝐸𝐸𝐸�−𝑤𝑤𝑠𝑠(𝑧𝑧 − 𝑧𝑧1)� (24) 220 

where the constant ws (m-1) reflects the effects of increasing soil strength with depth on the distribution of roots 

between soil micropore and mesopore regions and z1 is the depth to the lower boundary of the uppermost soil 

horizon. It can be seen from equation 24 that w = 1 for the uppermost horizon, so that the root-derived OM in this 

layer is partitioned between the pore regions directly proportional to their estimated respective partial volumes. 

 

Figure 2. Map of Sweden (in white) showing the location of the Ultuna Long-term Soil Organic Matter 225 
Experiment (Uppsala, Sweden) and the extent of the production area PO4 (shaded area in grey). Drawn by 

Anna Lindahl, SLU, from Esri, TomTom, Garmin, FAO, NOAA, and USGS 

2.2 Model applications  

2.2.1 Long-term transient simulations of SOC under contrasting cropping and fertilization    

We performed a test of the model described by equations 1 to 13 using data from the Ultuna Long-Term Soil 230 
Organic Matter Experiment located at Uppsala, east-central Sweden (59.8° N, 17.7° E; Fig. 2; Pold et al., 2025). 
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The mean annual temperature at Ultuna is 7 °C and the mean annual precipitation is 570 mm. The texture in the 

uppermost 20 cm of soil is clay loam (37 % clay, 41 % silt and 22 % sand). In this study, we make use of SOC 

contents measured in the topsoil (0-20 cm depth) from the start of the trial in 1956 until 2010 in three treatments 

with contrasting inputs of organic matter: an uncropped fallow treatment (“Fallow”) and two cropped treatments 235 
(“N fertilized” and “N fertilized + straw”), both of which are supplied with Ca(NO3)2 every year at the time of 

sowing at a rate of 80 kg N ha-1 year-1. Most (ca. 95%) of the above-ground crop residues are removed at harvest 

in autumn and straw is applied biennially to the treatment “N fertilized + straw” after harvest at an equivalent 

annual rate of 4.2 t ha-1. Maize (Zea mays) has been grown on the cropped plots since 2000. Before 2000, the crop 

rotation included barley (Hordeum vulgare), oats (Avena sativa), beets (Beta vulgaris) (prior to 1967) and rape 240 
(Brassica napus). All the plots are dug by hand after harvest each year to a depth of 20 cm to simulate ploughing 

as the plots are too small (4 m2) to be managed in the same way as a farmer’s field. We refer readers to Persson 

and Kirchmann (1994) and Kätterer et al. (2011) for more details of the design of the field experiment.  

Inputs of OM from above-ground crop residues and root-derived OM were estimated following Kätterer et al. 

(2011), who made use of the allocation functions dependent on crop yields derived by Bolinder et al. (2007), 245 
together with a Michaelis-Menten function to estimate the proportion of the root-derived OM that was presumed 

to have been input to the topsoil (0-20 cm). Here, we simplified this method by using average OM inputs in each 

treatment for the experimental period (1956-2010) based on annual values calculated for the different crops in the 

rotation.  

The model was simultaneously calibrated to the measurements of total SOC from the three treatments using the 250 
Generalized Likelihood Uncertainty Estimation (GLUE) method (Beven, 2006; Beven and Binley 2014; Juston et 

al., 2010). This is because we wanted to critically test the model to see if it was possible to obtain acceptable 

parameterizations common to all three of the treatments. Inspection of the model equations led us to expect to 

encounter significant equifinality. Therefore, only six of the fifteen parameters were included in the GLUE 

analysis, with their prior uncertainty ranges shown in Table 1. The OM supply prior to the start of the experiment 255 
and the fraction of this OM supplied as straw, were included in the calibration process to help initialize the SOM 

pools during a common 5000-year spin-up period. The four other parameters, which were considered difficult to 

identify “a priori” from experimentation, but which were expected to be sensitive and therefore potentially 

identifiable by calibration, were treated as uncertain (Table 1). We ran 12000 simulations using Latin Hypercube 

Sampling to sample uniform distributions between the minimum and maximum values for the six uncertain 260 
parameters (Table 1). The remaining nine parameters were set to fixed values (Table 2) as they could be 

estimated from measurements (e.g. fclay, fagg, Fp) or they were not expected to be sensitive (e.g. ky, Andrén and 

Kätterer, 1997; Juston et al., 2010; Meurer et al., 2020), or both (e.g. ψae, ψmic, φmin, γo, γm).  These fixed 

parameters included the soil physical properties, since an analysis of soil structure dynamics was not the main 

focus of this modelling study, which employs a slightly simplified description of the interactions between soil 265 
aggregation and SOM. It can be noted that the final bulk densities for the 30 best simulations (see below) derived 

varied between 1.2 and 1.3 g cm-3 using the fixed parameter values shown in Table 2 (with ”N fertilized + straw” 

< ”N fertilized” < “Fallow”). This matched reasonably well the magnitude and order of the measured values 

reported for the three treatments in Kätterer et al. (2011), which were 1.43, 1.28 and 1.21 g cm-3 respectively.   
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Table 1. Six model parameters selected for the calibration to the Ultuna Long-Term Soil Organic Matter 270 
Experiment and their initial parameter uncertainty ranges 

Parameter Symbol Units 
Prior uncertainty 
ranges  

Total OM input during spin-up Ia + Ir kg m-2 y-1 0.25-0.45 

Straw fraction of OM input during spin-up Ia/(Ia + Ir) - 0.65-0.85 

Rate constant for OM transfer by tillage between pore regions ktill y-1 0.00- 0.01 

Reference decomposition rate constant for old OM ko y-1 0.06- 0.10 

OM retention coefficient ε - 0.20- 0.45 

Microbial energy limitation factor Aa kg m-3 y-1 0.10- 0.30 
 

Table 2. Nine model parameters fixed at constant values during the calibration based on field 

measurements at Ultuna or literature data 

Parameter Symbol Units Value  Source 

Clay content fclay kg kg-1 0.36 Persson and Kirchmann (1994); 
Pold et al. (2025) 

Density of organic matter γo kg m-3 1200 Meurer et al. (2020);  
Coucheney et al. (2024) 

Density of mineral matter γm kg m-3 2700 Meurer et al. (2020);  
Coucheney et al. (2024) 

Textural porosity φmin m3 m-3 0.5 Coucheney et al. (2024) 

Aggregation factor fagg m3 m-3 3 Meurer et al. (2020) 

Physical protection factor Fp - 0.2 Kravchenko et al. (2015) 

Air-entry pressure head ψae m - 0.2 Coucheney et al. (2024) 

Pressure head equivalent to the largest 
micropore in soil  ψmic m - 6.0 

Killham et al. (1993);  
Strong et al. (2004);  
Ruamps et al. (2011) 

Reference decomposition rate constant 
for young OM ky y-1 0.8 Andrén and Kätterer (1997) 

 

The model efficiency EF was used as the likelihood function in GLUE: 

𝐸𝐸𝐸𝐸 = 1 − ∑ (𝑂𝑂𝑖𝑖−𝑃𝑃𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑛𝑛
𝑖𝑖=1

 (25) 275 

where O and P are observed and predicted values, Ō is the mean of the observations and n is the number of 

observations. The maximum value of EF is one, when predictions and observations are identical, while a negative 

value implies a poor model, since it means that taking the average of the observations would give a better 

prediction. For each simulation, individual model efficiencies were calculated for each treatment and the mean EF 

value for the three treatments was used as a metric to identify acceptable parameters sets. This was done to obtain 280 
a robust parameterization by selecting parameter sets that simultaneously fitted all three treatments well. The 
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number of acceptable parameter sets was determined such that the range of variation of their predictions 

approximately covered the variations observed in the measurements. With this criterion, 30 of the 12000 

parameter sets were identified as acceptable. Note that this low acceptance rate is a consequence of the 

inefficient sampling inherent to the GLUE method and says nothing about the quality of the model. 285 

2.2.2 Steady-state calculations: sensitivity analysis and reality-check 

We performed a Monte Carlo sensitivity and uncertainty analysis to assess the relative importance of the model 

parameters for predictions of the steady-state stocks of SOM in the soil profile (equations 7 to 24; Table 3). The 

analysis was based, to the extent possible, on data and information available for the Ultuna field site as well as soil 

survey and cropping data (e.g. crop yields, soil clay content) for the agricultural production area number 4 in east-290 
central Sweden (i.e. the region in which Ultuna is located; Fig. 2). Literature information was used to determine 

parameter distributions in the absence of data at the local or regional scale (Table 3). Of all the model parameters, 

only ψae was fixed at a constant value, as there is no ‘a priori’ physical reason to expect that its value should vary 

among different soils. We assumed normal distributions when the data was considered sufficient to support such 

a distribution. Uniform distributions were used otherwise (Table 3). One thousand parameter sets were generated 295 
from these distributions by random sampling.  

Calculations were performed for a soil profile 120 cm in depth, divided into four soil horizons (0-20, 20-40, 40-

60 and 60-120 cm). We added 80% of the above-ground residues Ia (equation 20) to the uppermost horizon in the 

soil profile and the remaining 20% to the horizon below. For all 1000 parameter sets, we calculated the SOM stock 

in each horizon and in the whole soil profile at steady-state. For each soil horizon, we also calculated the steady-300 
state bulk density and SOM contents as well as the mean residence time of SOM as the steady-state SOM stock 

divided by the input/output flux.  

We used a multiple linear regression model to characterize variations in the steady-state SOM stocks in the profile 

(y), such that the normalized coefficients (β1, β2 … βn) can be used as a metric of sensitivity to variation in the 

parameters (x1, x2 … xn) (Saltelli and Annoni, 2010): 305 

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 +  … .𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 (26)  

Aggregated data for SOC contents measured at three depth intervals (0-20, 20-40 and 40-60 cm depth) for soils in 

production area number 4 (Figure 2; n = 611, 100 and 100 respectively) were extracted from the national soil and 

crop inventory carried out from 2001 to 2007 (Eriksson et al., 2010) and used as a qualitative ”reality-check” for 

the model calculations. Note that, as a consequence of simulating links to soil physical properties, the model 310 
calculates SOM contents, whereas SOC was measured. In converting from one to the other, we assumed that 

organic C constituted 50% of the SOM. Likewise, calculated bulk densities at zero to 20 cm and 40 to 60 cm depth 

were compared with data available for soil profiles (n = 54) located in production area 4 (Klöffel et al., 2024). The 

model parameters required to convert calculated SOM stocks to estimates of SOM contents using equations 7 to 9 

were set to the fixed values used in the model calibration (Table 2), with the exception of the textural porosity 315 
which was reduced from 0.5 to 0.4, as the latter value was considered to be more representative for most soils 

(Klöffel et al., 2024). Note that the textural porosity was also assumed to be constant with depth in the soil. 
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Table 3. Parameter input distributions in the sensitivity analysis. In the case of  uniform distributions,  
minimal and maximal values are shown (Min.; Max.) while in the case of normal distribution the mean and 
standard deviation are shown (Mean; St. dev.). 

Group Parameters (symbol, unit) Distribution Source 

Crop 
growth 
and 
residue 
inputs 

Yield (Y, kg m-2) 
Normal 
(0.50; 0.05) 

SCB, Statistics Sweden: 
https://www.statistikdatabasen.scb.se/ 
pxweb/en/ssd/START__JO__JO0601/ 
SkordarL2/ 

Harvest index (HI, -) 
Normal 
(0.40; 0.05) 

Hay (1995); Kätterer et al. (1997); 
Coucheney et al. (2024) 

Fraction of net primary 
production allocated 
belowground (fbg, -) 

Normal 
(0.200; 0.025) 

Bolinder et al. (2007); Kätterer et al. 
(2011) 

Fraction of aboveground crop 
residues incorporated (finc, -) 

Normal 
(0.65; 0.10) 

Smerald et al. (2023) 

Root depth (D95, m) 
Uniform 
(0.8; 1.2) 

Jackson et al. (1996); Kätterer et al. 
(2011); Fan et al. (2016) 

Root distribution factor (c, -) 
Uniform 
(-1.2; -0.9) 

Fan et al. (2016) 

Tillage Rate constant for OM transfer 
between pore regions (ktill, y-1) 

Uniform 
(0.000; 0.006) 

This study 

Organic 
matter 
turnover 

Reference decomposition rate 
constant for young organic 
matter (kY, y-1) 

Uniform 
(0.6; 1.0) 

Andrén and Kätterer (1997) 

Reference decomposition rate 
constant for old organic matter 
(kO, y-1) 

Uniform 
(0.06; 0.10) 

This study 

OM retention coefficient (ε, -) 
Uniform 
(0.30; 0.35) 

This study 

Physical protection factor (Fp, -) 
Uniform 
(0.1; 0.3) 

Kravchenko et al. (2015) 

Microbial energy limitation 
factor (Aa, kg m-3 y-1) 

Uniform 
(0.1; 0.3) 

This study 

Soil 
physical 
properties 

Clay content (fclay, kg kg-1) 
Normal 
(0.3; 0.1) 

Eriksson et al. (2010) 

Factor for soil strength effects 
on root distribution between 
pore regions (ws, m-1) 

Uniform 
(2; 4) 

This study 

Pressure head defining the 
largest micropore (ψmic, m) 

Uniform 
(-30; -6) 

Killham et al. (1993); Strong et al. 
(2004); Ruamps et al. (2011) 

  

https://www.statistikdatabasen.scb.se/%20pxweb/en/ssd/START__JO__JO0601/%20SkordarL2/
https://www.statistikdatabasen.scb.se/%20pxweb/en/ssd/START__JO__JO0601/%20SkordarL2/
https://www.statistikdatabasen.scb.se/%20pxweb/en/ssd/START__JO__JO0601/%20SkordarL2/
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3 Results and Discussion 320 

3.1 Long-term transient simulations 

Figure 3 shows that the model could be calibrated to match simultaneously the changes in SOC contents measured 

in the three treatments at the Ultuna Long-Term Soil Organic Matter Experiment during the 50 year period, with 

the spread of the simulations from the 30 best parameter sets approximately matching the observed variation in 

SOC among the four replicate plots. Table 4 shows simulated SOM balances for the three treatments. The total 325 
input of crop residues in the “N fertilized + straw” treatment is roughly three times that of the “N-fertilized” 

treatment without straw addition. The calculated inputs of OM derived from roots were similar (Table 4), so that 

larger inputs of straw accounted for almost all of the difference in OM inputs between these two treatments. 

However, according to the simulations, almost 88% of the additional OM input in the “N fertilized + straw” 

treatment was lost as a consequence of enhanced mineralization, with only 12% remaining in the soil. While above-330 
ground crop residues are thought to be less persistent in soil than root-derived residues, the relative importance of 

several potential underlying mechanisms that could explain this finding is still unclear (e.g. Rasse et al., 2005; 

Kätterer et al., 2011). It can be noted here that the model does not consider any differences in the quality of root- 

and straw-derived OM. Instead, the model suggests that the comparatively small difference in OM stocks at the 

end of the experiment in the two treatments in relation to the large difference in OM inputs is a result of two 335 
processes: firstly, straw incorporated in the “N fertilized + straw” treatment is solely added to the mesopore region, 

which does not afford any physical protection. In contrast, a certain proportion, fmic, of root-derived OM is added 

to the physically-protected micropore region. Secondly, mineralization rates in the “N-fertilized” treatment without 

straw addition are reduced by microbial energy limitation as a consequence of an overall decrease in OM stocks 

due to the near total removal of above-ground crop residues. Taking both these processes into account (physical 340 
protection and microbial energy limitation; see equations 1 to 6) enabled the model to reproduce the time-courses 

of SOC contents in the two treatments with identical parameterizations. Models that do not consider these 

processes would need to adjust their parameter values (either decomposition rate constants or the retention 

coefficient) to match this data (e.g. Poeplau et al., 2015). 

Figure 4 shows that only one of the parameters included in the calibration procedure (the OM retention coefficient, 345 

ε) was well constrained by the data, with acceptable values lying within a narrow range (ca. 0.30 to 0.35). In 

contrast, for the other five parameters, simulations with large model efficiencies could be found across almost the 

entire prior uncertainty ranges (Fig. 4). An inspection of the mathematical structure of the model suggests that 

such a high degree of equifinality should be expected, as many of the key parameters should be strongly correlated 

(Coucheney et al., 2024). For the 30 best parameter sets, Fig. 5 demonstrates that this is indeed the case for the 350 

four parameters regulating decomposition rates in the model (ε, ko, Aa and ktill). These strong correlations of ko, Aa 

and ktill with ε mean that, in practice, all four parameters are well constrained by the calibration. The acceptable 

ranges for these four parameters shown in Fig. 5 were utilized in the sensitivity analysis (Table 3). 
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Figure 3. Comparisons of measured SOC contents (symbols are the means of four replicates and the bars 

are standard deviations) with the 30 best simulations from the GLUE analysis (the dashed lines indicate 355 
ranges) 

Table 4. Simulated mass balances (kg m-2) for SOM for the 55-year experimental period (1956 to 2010) at 

the Ultuna Long-Term Soil Organic Matter Experiment. Values shown for mineralization are the means 

and standard deviations (in brackets) for the 30 best simulations. Values for change of stocks in brackets 

are the percentage changes in relation to the original stock of SOM. 360 

Component 
Treatment 

Fallow N fertilized N fertilized + straw 
Inputs: 

- Below-ground residues1 
 

0.44 
 

9.85 
 

10.67 
- Above-ground residues 0.00 1.82 22.94 
- Total crop residue input 0.44 11.67 33.61 

Outputs: 
- Mineralization in soil 

 
3.01 

(0.18) 

 
12.53 
(0.16) 

 
31.75 
(0.20) 

Change of SOM stock: -2.57 
(-35.1%) 

-0.86 
(-11.7%) 

1.86 
(+25.4%) 

1 estimated using the algorithms presented by Bolinder et al. (2007) and Kätterer et al. (2011) 
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Figure 4. Mean model efficiencies for each parameter set (only simulations with model efficiencies larger 

than zero are shown) plotted against the values for the six parameters in the GLUE analysis (refer to table 

1 for parameter definitions and descriptions; OM = organic matter, AG = above-ground). 

 

3.2 Steady-state calculations 365 

A qualitative comparison with soil survey data for agricultural land in east-central Sweden (production area 

number 4) suggests that despite its simplicity the model estimates of steady-state SOC and bulk density in the soil 
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profile lie mostly within the range of variation encountered in the region (Fig. 6; Fig. A1). Nevertheless, quantile-

quantile plots show that the distributions of simulated and measured values of SOC and bulk density are different; 

especially at the tails, due to the much larger spread in the measurements compared with the calculations and 370 
especially the occurrence of a number of outliers with large values of organic carbon contents and small values of 

bulk density. This is not surprising because the calculations do not include the effects of all factors affecting SOC 

and bulk density. The large values of SOC content (and small values of bulk density) almost certainly correspond 

to locations in the region with wet soils due to topography (i.e. flood plains, depressions). The model, as it is 

formulated here, does not include the effects of excess soil moisture on decomposition rates. As a further 375 
qualitative “reality check”, Fig. 7 shows distributions of the mean residence times of SOM calculated for the four 

horizons in the soil profile. Median values (ca. 20 years) and distributions of residence times estimated for the 

topsoil are similar to those estimated by Poeplau et al. (2021) for German agricultural soils, and they also lie at the 

high end of the range in the global analysis reported by Chen et al. (2020) for croplands (mean = 9.5 years, standard 

deviation = 6 years, n = 217). Taken together with Fig. 6, this gives us confidence that the results of the sensitivity 380 
analysis presented in the following should be reasonably well grounded in reality. As also shown by Coucheney 

et al. (2024), the model simulates much longer mean residence times in subsoil horizons, due to microbial energy 

limitation and physical protection, with median values of ca. 300 years (Fig. 7). These model estimates of mean 

OM residence times in the subsoil are also similar to the median age of soil organic carbon estimated from isotope 

data in the global analysis of Balesdent et al. (2018) for tropical forests and grasslands. 385 

Figure 5. Inter-

relationships among four of the six model parameters included in the calibration procedure (Aa is the 

microbial energy limitation factor, ko is the reference rate constant for decomposition of old OM, ε is the 

OM retention co-efficient and ktill is the rate constant for OM transfer by tillage between pore regions). 

Relationships are shown for the 30 best parameter sets identified in the GLUE analysis (refer to table 1 

for parameter definitions and descriptions). 
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Figure 6. Comparison of the distributions of SOC contents (a to c) and soil bulk density (d and e) measured 

at three and two depths respectively, for soil profiles located in east-central Sweden (production area 

number 4; Eriksson et al., 2010) with distributions calculated in the model sensitivity analysis. Horizontal 

lines show median values, the box defines the inter-quartile range, error bars define 10th and 90th percentiles 

and solid symbols indicate 5th and 95th percentiles. Note the differences in the y-axis scales for soil organic 390 
carbon contents. 

Table 5 shows that the most sensitive parameters in the model are those determining decomposition rates of SOM, 

especially the rate constant for microbial-processed OM, ko, the parameter regulating microbial energy limitation, 

Aa, and the parameter regulating the degree of physical protection of OM stored in micropores, Fp. The soil clay 

content, which together with Fp, determines the extent to which physical protection is expressed in soils of 395 
contrasting texture, is also a relatively sensitive model parameter (Table 5). Along with the OM retention 

coefficient, ε, the three parameters determining inputs of above-ground crop residues (i.e. the fraction 

incorporated, finc, and crop yields and harvest index) also exert a strong control on SOM stocks in the soil profile 

(Table 5). The results of the sensitivity analysis also illustrate the importance of below-ground production for soil 

profile C stocks calculated by the model (parameter fbg, fraction of NPP allocated below-ground; Table 5), 400 
reflecting the assumptions in the model concerning the greater persistence of root-derived OM discussed earlier. 

An increase of 25% in the fraction of NPP allocated to roots, fbg, increases steady-state SOM stocks by ca. 8%. 

Transient simulations run with the USSF model for winter wheat grown on Ultuna clay soil presented by 

Coucheney et al. (2024) illustrate what might be achievable in a shorter 30-year time perspective in the context of 

climate change mitigation: for the same 25% increase in below-ground C allocation, the USSF model simulated 405 
increases in C stocks of ca. 1.4%. In contrast to below-ground production, the sensitivity analysis suggests that 

root depth and distribution would have little impact on soil profile stocks of OM (Table 5). However, in comparison 

with soil-crop models such as USSF, the limitations of the simpler model described here should be borne in mind, 
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in particular the lack of any feedback between root system development and crop growth, and thus residue 

production. In reality, root depth and distribution may play a larger role for soil C stocks. Thus, the transient 410 
simulations performed with the full USSF soil-crop model for winter wheat on Ultuna clay soil by Coucheney et 

al. (2024) suggested that deeper rooting would increase water uptake and crop growth in dry summers, leading to 

3-5% increases in SOM stocks in a 30-year perspective. Table 5 suggests that tillage is one of the least sensitive 

factors affecting SOM stocks at steady-state: doubling the tillage intensity parameter in the model, ktill, only 

reduces SOM stocks by 4 to 5%. It must be admitted, however, that the simple description of tillage effects in the 415 
model is yet to be rigorously and systematically tested. Nevertheless, in a meta-analysis of long-term experiments 

in boreal/temperate climates, Haddaway et al. (2017) and Meurer et al. (2018) found larger SOC stocks under no-

till compared with conventional tillage in the topsoil, but no significant differences in total SOC stocks in these 

two tillage systems in soil profiles to 60 cm depth. 

 

Figure 7. Distributions of mean residence times for SOM calculated in the sensitivity analysis for four depths 

in the soil profiles of production area 4 in east-central Sweden. Horizontal lines show median values, the 

box defines the inter-quartile range, error bars define 10th and 90th percentiles and solid symbols indicate 

5th and 95th percentiles.  

420 
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Table 5. Parameter sensitivity ((βi = normalized regression coefficients, see equation 26) 

Parameter βi 

ko Decomposition rate constant (old OM) -0.833 

Fp Physical protection factor -0.695 

Aa Microbial energy limitation factor 0.606 

HI Harvest index -0.513 

Y Crop Yield 0.401 

ε OM retention coefficient 0.329 

fbg Fraction of NPP allocated below-ground 0.291 

ky Decomposition rate constant (young OM) -0.174 

fclay Clay content 0.128 

finc Fraction of above-ground residues incorporated 0.127 

ktill Tillage transfer coefficient -0.045 

ws Factor for soil strength effects on root distribution 0.035 

D95 Root depth -0.023 

ψmic Pressure head defining micropore region -0.015 

c Root depth distribution factor -0.009 
 

4 Conclusions 

We presented here a novel parsimonious or “minimalist” model that simulates the emergent effects of soil texture 

and soil structure on C stocks and turnover rates in soil profiles by mimicking two of the key processes involved 425 
in C stabilization (i.e. physical protection and microbial energy limitation). Parameters controlling these processes 

were also found to be among the most sensitive in the model. However, the decomposition rate constant for old 

microbial-processed OM, ko was the most sensitive parameter in the model. Although ko should be considered as 

a lumped parameter reflecting the influence of various processes, the available experimental evidence suggests 

that the strength of adsorption and OM-mineral interactions controlling the bioavailability of the substrate (i.e. 430 
chemical protection) should be the most important factor underlying its variation (e.g. Lehmann and Kleber, 2015; 

Mathieu et al., 2015; Doetterl et al., 2015). The development of pedotransfer approaches (van Looy et al., 2017) 

to estimate ko using soil properties such as clay content and clay mineralogy, pH and Al and Fe oxides (e.g. Mathieu 

et al., 2015; Rasmussen et al., 2018; Fukumasu et al., 2021) would therefore be helpful in supporting predictive 

model applications at larger scales.   435 

The comparisons of model simulations with local- and regional-scale data confirm that it shows promise. Despite 

equifinality, the parameters regulating decomposition in the model could be identified within reasonably narrow 

ranges using data from a long-term field experiment with three treatments characterized by strongly contrasting 

OM inputs for more than 50 years. Ideally, the model should now be further tested at multiple sites using data from 

long-term field experiments, including comparisons of alternative cropping systems and tillage management (i.e. 440 
no-till vs. conventional systems). 
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Appendices 

Appendix A1:  

 

Figure A1: Q-Q plots for SOC contents (upper row) and soil bulk density (lower row) measured at three 445 
and two depths respectively, for soil profiles located in east-central Sweden (production area number 4; 

Eriksson et al., 2010) with calculated values obtained in the model sensitivity analysis. Note the differences 

in the y-axis scales for soil organic carbon contents. 
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