Contents:

Fig. S1. Measured HNO ₃ concentrations	.S1
Fig. S2. Measured pNH ₄ /pSO ₄ Ratios	. S2
Fig. S3. Model Organic Nitrate Speciation	. S3
Table S1. USC-API Species List	. S4-S5
Table S2. USC-API Mechanism	. S6-S9
Table S3. Organic Nitrate Hydrolysis Reactions	.S10
Table S4. NOy Isotope Data Summary	.S11

Fig. S1. The measured HNO_3 concentrations for the various conducted experiments. The measurements were made using CIMS. A substantial "chamber blank" was observed before the start (time = 0) of the experiments.

Fig. S2. The measured $NH_4(mol)$:SO₄(mol) ratio for each conducted experiment from the HR-ToF-AMS. The ratios remained consistent and below 2 during the experiment indicative of minor contributions of pNO₃ derived from HNO₃.

Fig. S3. The simulated types of organic nitrate and isomers formed during the various α -pinene/NO_x oxidation experiments using the USC-API mechanism. The mechanism includes 2 pinene hydroxyl-nitrate (ONITa (tertiary) and ONITb (secondary)), pinene carbonyl nitrate (ONITc), pinene nitrooxy-hydroperoxide (ONITOOHa (tertiary) and ONITOOHb (secondary)), dimer (DIMER), and pinene dinitrate (PDN).

Species	Description	SMILES				
Inorganic						
СО	Carbon monoxide	C=O				
CO2	Carbon dioxide	O=C=O				
H2	Hydrogen	[H][H]				
H2O2	Hydrogen peroxide	00				
HNO3	Nitric acid	0=N(=0)0				
HO2	Hydroperoxy radical	[0]0				
HO2NO2	Pernitric acid	OO[N+](=O)[O-]				
HONO	Nitrous acid	O=N[O]				
N2O5	Dinitrogen pentoxide	O=[N+](=O)O[N+](=O)[O-]				
NO	Nitric oxide	[N]=O				
NO2	Nitrogen dioxide	[O-][N+](=O)				
NO3	Nitrate radical	[O-][N+](=O)O				
O1D	Excited state oxygen atom O(¹ D)	[O]				
03	Ozone	0=0=0				
O3P	Ground state oxygen atom O(₃ P)	[O]				
OH	Hydroxl radical	[OH]				
		Organic				
ACT	Acetone	CC(=O)C				
API	A-pinene	C/C1=C/CC2CC1C2(C)C				
APINAO	alpha-pinene alkoxy radical	OC1CC2CC(C1(C)[O])C2(C)C				
APINAO2	tertiary (major) peroxy radical from APIN + OH + O2	[0]0C1(C)C(0)CC2CC1C2(C)C				
APINAOOH	pinene-derived hydroxy hydroperoxide	OOC1(C)C(O)CC2CC1C2(C)C				
APINBO	alpha-pinene alkoxy radical	[0]C1CC2CC(C1(C)0)C2(C)C				
APINBO2	secondary (minor) peroxy radical from APIN + OH + O2	[0]0C1CC2CC(C1(C)0)C2(C)C				
APINBOOH	pinene-derived hydroxy hydroperoxide	OOC1CC2CC(C1(C)O)C2(C)C				
APINCO	alpha-pinene alkoxy radical	CC1=CCC(CC10)C(C)(C)[0]				
APINCO2	tertiary (minor) peroxy radical from APIN + OH + O2	[O]OC(C)(C)C1CC=C(C)C(O)C1				
APINCOOH	pinene-derived hydroxy hydroperoxide	OOC(C)(C)C1CC=C(C)C(O)C1				

Table SI. Summary of the USC-API Species Lis	Fable S1.	ecies List.
---	------------------	-------------

DIMER	Dimers from nRO ₂ +	CC3(C)C4CC(O[N+](=O)O)C(OOC1(C)C(O[N+](=O
1/02	RO_2 reactions)0)00200102(0)0)0304
MO2	Generic RO ₂	N/A
NAPINAO2	tertiary (major) peroxy radical from APIN + NO3 + O2;	[0]0C1CC2CC(C1(C)0N(=0)=0)C2(C)C
NAPINBO2	secondary (minor) peroxy radical from APIN + NO3 + O2;	[O]OC1(C)C(ON(=O)=O)CC2CC1C2(C)C
ONITa	Tertiary (major) alpha-pinene hydroxynitrate	O=N(=O)OC1(C)C(O)CC2CC1C2(C)C
ONITb	Secondary (minor) alpha-pinene hydroxynitrate	O=N(=O)OC1CC2CC(C1(C)O)C2(C)C
ONITC	Tertiary alpha-pinene carbonyl nitrate	O=N(=O)OC(C)(C)C1CC=C(C)C(O)C1
ONITOOHa	Tertiary alpha-pinene nitrate hydroperoxide	OOC1CC2CC(C1(C)ON(=O)=O)C2(C)C
ONITOOHb	Secondary alpha- pinene nitrate hydroperoxide	OOC1(C)C(ON(=O)=O)CC2CC1C2(C)C
Р	Generic Product	N/A
PAN	Peroxyacetyl nitrate	CC(=O)OON(=O)=O
PDN	Pinene dinitrate	CC1(C)C2CC(O[N+](=O)O)C(C)(O[N+](=O)O)C1C 2
PINAL	pinonaldehyde	CC(=O)C1CC(CC=O)C1(C)C
PINO3	pinonaldehyde- derived acyl peroxy radical	[0]0C(=0)CC1CC(C(=0)C)C1(C)C
PINPAN	C10 peroxyacyl nitrate	O=N(=O)OOC(=O)CC1CC(C(=O)C)C1(C)C
RO	Generic Aloxy Radical	N/A
RO3	Generic acyl peroxy radical	N/A

Label	Reaction	Reaction Rate (k)					
	Inorganic Photolysis						
R001	$O3 \rightarrow O3P + O2$	JO3P*					
R002	$O3 \rightarrow O1D + O2$	JO1D*					
R003	$H2O2 \rightarrow OH + OH$	JH2O2*					
R004	$NO2 \rightarrow O3P + NO$	JNO2*					
R005	$NO3 \rightarrow O2 + NO$	JNO3_NO [*]					
R006	$NO3 \rightarrow O3P + NO2$	JNO3_NO2*					
R007	$HONO \rightarrow OH + NO$	JHONO [*]					
R008	$HNO3 \rightarrow OH + NO2$	JHNO3*					
R009	$HO2NO2 \rightarrow 0.2 \text{ OH} + 0.2 \text{ NO3} + 0.8 \text{ HO2} + 0.8 \text{ NO2}$	JHO2NO2*					
	Inorganic Reactions						
R010	$O3 + OH \rightarrow HO2 + O2$	1.70E-12 * exp(-940 /					
		T)					
R011	$O3 + HO2 \rightarrow OH + O2 + O2$	1.00E-14 * exp(-490 /					
		T)					
R012	$O3 + NO \rightarrow NO2 + O2$	1.40E-12 * exp(-1310 /					
		T)					
R013	$NO2 + O3 \rightarrow NO3 + O2$	1.40E-13 * exp(-2470 /					
		T)					
R014	$O3P + O2 \rightarrow O3$	M * 5.60E-34 * (T /					
		300)^-2.6 * 0.21 * M					
R015	$O3P + O3 \rightarrow O2 + O2$	8.00E-12 * exp(-2060 /					
		T)					
R016	$O1D + O2 \rightarrow O3P + O2$	3.20E-11 * 0.21 * M					
R017	$O1D + N2 \rightarrow O3P + N2$	1.80E-11 * exp(107 /					
		T) * 0.78 * M					
R018	$O1D + H2O \rightarrow OH + OH$	2.20E-10 * H2O					
R019	$OH + H2 \rightarrow HO2 + H2O$	7.70E-12 * exp(-2100 /					
		T)					
R020	$OH + HO2 \rightarrow H2O + O2$	4.80E-11 * exp(250 /					
		T)					
R021	$HO2 + HO2 \rightarrow H2O2 + O2$	2.20E-13 * exp(600 /					
		T) + 1.90E-33 * M *					
		exp(980 / T)					
R022	$HO2 + HO2 + H2O \rightarrow H2O2 + H2O + O2$	(3.08E-34 * exp(2800 /					
		T) + 2.59E-54 * M *					
		exp(3180 / T)) * H2O					
R023	$H2O2 + OH \rightarrow HO2 + H2O$	2.90E-12 * exp(-160 /					
R024	$NO + O3P \rightarrow NO2$	K_O3P_NO**					
R025	$NO + OH \rightarrow HONO$	K_OH_NO**					
R026	$HO2 + NO \rightarrow OH + NO2$	3.45E-12 * exp(270 /					
		T)					
R027	$HO2 + NO \rightarrow HNO3$	K_HO2_NO_HNO3**					

Table S2.	Summary	y of the	USC-API	Mechanism

R028	$NO + NO \rightarrow NO2 + NO2$	3.30E-39 * exp(530 /				
		T) * 0.21 * M				
R029	$HONO + OH \rightarrow NO2 + H2O$	2.50E-12 * exp(260 / T)				
R030	$O3P + NO2 \rightarrow NO + O2$	5.50E-12 * exp(188 /				
R031	$O3P + NO2 \rightarrow NO3$	K O3P NO2**				
R032	$OH + NO2 \rightarrow HNO3$	K_OH_NO2_HONO2**				
R033	$OH + HNO3 \rightarrow NO3 + H2O$	K_OH_HNO3**				
R034	$OH + NO3 \rightarrow HO2 + NO2$	2.00E-11				
R035	$HO2 + NO3 \rightarrow 0.7 \text{ OH} + 0.7 \text{ NO2} + 0.3 \text{ HNO3}$	4.00E-12				
R036	$NO + NO3 \rightarrow NO2 + NO2$	1.80E-11 * exp(110 / T)				
R037	$NO2 + NO3 \rightarrow NO + NO2 + O2$	4.50E-14 * exp(-1260 / T)				
R038	$NO3 + NO3 \rightarrow NO2 + NO2 + O2$	8.50E-13 * exp(-2450 / T)				
R039	$NO2 + NO3 \rightarrow N2O5$	K_NO2_NO3**				
R040	$N2O5 \rightarrow NO2 + NO3$	K_N2O5**				
R041	$N2O5 + H2O \rightarrow HNO3 + HNO3$	2.50E-22 * H2O				
R042	$HO2 + NO2 \rightarrow HO2NO2$	K_HO2_NO2**				
R043	$HO2NO2 \rightarrow HO2 + NO2$	K_HO2NO2**				
R044	$OH + HO2NO2 \rightarrow NO2 + H2O + O2$	1.30E-12 * exp(380 / T)				
R045	$OH + CO \rightarrow HO2 + CO2$	K_OH_CO**				
	API Oxidation					
R046	$API + OH \rightarrow 0.572 APINAO2 + 0.353 APINBO2 + 0.075 APINCO2$	1.2e-11 * exp(440 / T)				
R047	$API + O3 \rightarrow RO2 + OH$	8.05e-16 * exp(-640 / T)				
R048	$API + NO3 \rightarrow 0.65 NAPINAO2 + 0.35 NAPINBO2$	$1.2e-12 * \exp(490 / T)$				
	APIO2 Rxns					
R049	APINAO2 + NO \rightarrow 0.23 ONITa + 0.77 PINAL + 0.77 HO2 + 0.77 NO2	2.70e-12 * exp(360 / T)				
R050	APINBO2 + NO \rightarrow 0.23 ONITb + 0.77 PINAL + 0.77 HO2 + 0.77 NO2	2.70e-12 * exp(360 / T)				
R051	APINCO2 + NO \rightarrow 0.125 ONITc + 0.875 ACT + 0.875 P + 0.875 NO2	2.70e-12 * exp(360 / T)				
R052	$APINAO2 + HO2 \rightarrow APINAOOH$	2.91e-13 * exp(1300 / T) * 0.914				
R053	$APINBO2 + HO2 \rightarrow APINBOOH$	2.91e-13 * exp(1300 / T) * 0.914				
R054	$APINCO2 + HO2 \rightarrow APINCOOH$	2.91e-13 * exp(1300 / T) * 0.914				
R055	$APINAO2 + NO3 \rightarrow APINAO + NO2$	KRO2NO3**				
R056	$APINBO2 + NO3 \rightarrow APINBO + NO2$	KRO2NO3**				
R057	$APINCO2 + NO3 \rightarrow APINCO + NO2$	KRO2NO3**				

	PINAL Chemistry					
R058	$PINAL + hv \rightarrow RO2 + CO + HO2$	J.JPINAL*				
R059	$PINAL + OH \rightarrow PINO3 + RO2$	5.2e-12 * exp(600 / T)				
R060	$PINAL + NO3 \rightarrow PINO3 + HNO3$	2.00E-14				
R061	$PINO3 + NO \rightarrow RO2 + NO2$	7.5E-12 * exp(290 / T)				
R062	$PINO3 + NO3 \rightarrow RO2 + NO2$	4.00E-12				
R063	$PINO3 + NO2 \rightarrow PINPAN$	K_ACO3_NO2**				
R064	$PINO3 + HO2 \rightarrow 0.44 \text{ RO2} + 0.44 \text{ OH} + 0.15 \text{ O3} + 0.55 \text{ P}$	5.20E-13 * exp(980 / T)				
R065	$PINPAN \rightarrow PINO3 + NO2$	K_PAN**				
	General RO2 Rxns					
R066	$MO2 + NO \rightarrow NO2 + RO$	2.7e-12 * exp(360 / T)				
R067	$MO2 + HO2 \rightarrow P$	2.91e-13 * exp(1300 / T)				
R068	$MO2 + NO3 \rightarrow RO + NO2$	2.30E-12				
R069	$MO2 + MO2 \rightarrow P$	1.30E-12				
R070	$MO2 + PINO3 \rightarrow P$	5.00E-12				
	ACT Chemistry					
R071	$ACT + OH \rightarrow RO2$	1.39E-13 + 3.72E-11				
D070		exp(-2044 / T)				
$RO/2 ACT + hv \rightarrow RO3 + RO2 \qquad \qquad JACT^{*}$						
PAN Chemistry						
R0/3	$RO3 + NO2 \rightarrow PAN$	K_ACU5_NU2				
R074	$PAN \rightarrow RO3 + NO2$	IDAN1*				
R075	$PAN + IV \rightarrow KO3 + NO2$ $PAN + by \rightarrow MO2 + NO2 + CO2$	JFAN1 IDAN2*				
$\frac{1}{1000} \text{ FAIN} + \frac{1}{1000} \text{ FAIN} + \frac{1}{10000} \text{ FAIN} + \frac{1}{10000000000000000000000000000000000$						
R077	$RO3 + NO \rightarrow RO2 + NO2$	8 10F-12 * exp(270 /				
R077		T)				
R078	$RO3 + HO2 \rightarrow P$	4.30E-13 * exp(1040 / T)				
R079	$RO3 + RO2 \rightarrow HO2 + P$	2.00E-12 * exp(500 / T)				
R080	$RO3 + RO3 \rightarrow P$	2.50E-12 * exp(500 / T)				
	APIOOH Chemistry					
R081	$APINAOOH + hv \rightarrow P + OH$	J.JAPINAOOH*				
R082	$APINAOOH + OH \rightarrow RO2$	1.83E-11				
R083	$APINBOOH + hv \rightarrow P + OH$	J.JAPINAOOH*				
R084	$APINBOOH + OH \rightarrow P + OH$	3.28E-11				
R085	$APINCOOH + hv \rightarrow P + OH$	J.JAPINAOOH*				
R086	$APINCOOH + OH \rightarrow RO2$	1.03E-10				
NAPINO2 Chemistry						
R087	NAPINAO2 + HO2 \rightarrow 0.37 ONITa + 0.63 PINAL + 0.63 HO2 + 0.63 OH	2.66e-13 * exp(1300 / T)				

R088	NAPINAO2 + NO \rightarrow 0.9 PINAL + 1.9 NO2 + 0.1 ONITa	2.55e-12 * exp(380 / T)		
R089	$NAPINAO2 + NO3 \rightarrow 0.1 PDN + 0.9 PINAL + 1.8 NO2$	2.30E-12		
R090	NAPINAO2 + NAPINAO2 \rightarrow 0.16 DIMER + 1.68 PINAL	1.00E-14		
	+ 1.68 NO2			
R091	NAPINAO2 + NAPINBO2 \rightarrow 0.34 ONITb + 0.08 DIMER	1.00E-14		
	+ 1.34 PINAL + 0.08 DIMER + 1.34 NO2			
R092	$NAPINBO2 + HO2 \rightarrow ONITOOHb$	2.66e-13 * exp(1300 /		
		T)		
R093	$NAPINBO2 + NO \rightarrow 0.9 PINAL + 1.9 NO2 + 0.1 ONITb$	2.55e-12 * exp(380 / T)		
R094	$NAPINBO2 + NO3 \rightarrow 0.1 PDN + 0.9 PINAL + 1.8 NO2$	2.30E-12		
R095	NAPINBO2 + NAPINBO2 \rightarrow 0.68 ONITb + 0.16 DIMER	1.00E-14		
	+ PINAL + NO2			
RO2 Cross Reactions				
R096	$APINAO2 + APINAO2 \rightarrow 2 PINAL + 2 HO2$	1.00E-14		
R097	$APINAO2 + APINBO2 \rightarrow 2 PINAL + 2 HO2$	1.00E-14		
R098	$APINAO2 + APINCO2 \rightarrow 2 PINAL + 2 HO2$	1.00E-14		
R099	$APINBO2 + APINBO2 \rightarrow 2 PINAL + 2 HO2$	1.00E-14		
R0100	$APINBO2 + APINCO2 \rightarrow 2 PINAL + 2 HO2$	1.00E-14		
R101	$APINCO2 + APINCO2 \rightarrow 2 PINAL + 2 HO2$	1.00E-14		
R102	$RO + O2 \rightarrow MO2$	1E-11 * M * 0.21		
ONIT Reactions				
R103	$ONITa + OH \rightarrow PINAL + NO2$	5.50E-12		
R104	$ONITb + OH \rightarrow P + NO2$	3.64E-12		
R105	$ONITc + OH \rightarrow ACT + P + NO2$	9.87E-11		
R106	$ONITc + hv \rightarrow ACT + RO2 + NO2$	JONIT [*]		

*The photolysis frequencies (J) were calculated inline using the F0AM Box model based on the MCMv3.2 cross-sections

**The complex reaction rate constants (K) were from the MCMv3.2

Table S3. Summary of the organic nitrate hydrolysis reactions incorporated into the USC-API ("USC-API-Hydro") mechanism that was utilized for a sensitivity simulation. Note: the DIMER and pinene dinitrate were not included in the hydrolysis scheme since the nighttime oxidation experiment exhibited low organic nitrate filter hydrolysis efficiency.

Label	Reaction	Rate (k)
Hydro-01	ONITa=HNO3+P	2.78E-04
Hydro-02	ONITb=HNO3+P	2.78E-04
Hydro-03	ONITc=HNO3+P	2.78E-04
Hydro-04	ONITOOHa=HNO3+P	2.78E-04
Hydro-05	ONITOOHb=HNO3+P	2.78E-04

	NO ₂ (‰)		HNO3 (‰)			pNO ₃ (‰)			
Exp	δ^{15} N	Δ^{17} O	δ^{18} O	δ^{15} N	$\Delta^{17}O$	δ^{18} O	δ^{15} N	Δ^{17} O	δ^{18} O
1	-67.8±1.7	13.4±0.7	43.6±1.8	-37.0±1.7	15.6±0.7	49.0±1.8	-79.6±2.4	5.2±0.8	21.7±0.7
1R	-63.3±1.7	10.8 ± 0.7	45.3±1.8	-37.7±1.7	16.6±0.7	49.0±1.8	-76.3±2.6	5.6±0.8	22.3±0.8
2	-68.3±1.7	18.9 ± 0.7	65.8±1.8	-34.3±1.7	13.4±0.7	43.7±1.8	-78.5 ± 1.1	9.2±0.7	29.2±0.6
3	-70.2 ± 1.7	32.4±0.7	92.6±1.8	-32.0±1.7	16.5±0.7	49.5±1.8	-73.1±1.8	11.1±0.8	37.7±0.8
	-71.8 ± 1.7	32.6±0.7	86.6±1.8	-20.1 ± 1.7	16.3±0.7	48.5±1.8			
	-68.7±1.7	31.2±0.7	80.6±1.8	-19.1±1.7	16.7±0.7	49.3±1.8			
4	-67.8±1.7	40.8±0.7	108.7 ± 1.8	-32.8 ± 1.7	18.1±0.7	48.1±1.8	-90.3±1.9	12.0±0.7	42.4±0.8
	-71.0 ± 1.7	39.3±0.7	107.8 ± 1.8	-47.0 ± 1.7	21.1±0.7	60.2 ± 1.8			
	-71.4±1.7	38.6±0.7	112.1±1.8	-49.7±1.7	21.7±0.7	61.3±1.8			
4R	-67.6±1.7	39.6±0.7	107.8 ± 1.8	-29.6±1.7	17.8±0.7	53.9±1.8	-87.5±4.1	11.8±0.9	40.4±1.4
	-62.9 ± 1.7	39.4±0.7	115.3 ± 1.8	-30.6 ± 1.7	18.1±0.7	55.0±1.8			
	-68.2±1.7	40.7 ± 0.7	108.5 ± 1.8	-26.8 ± 1.7	17.9 ± 0.7	52.2±1.8			
	-68.7±1.7	41.2±0.7	108.7 ± 1.8	-26.8 ± 1.7	$18.4{\pm}0.7$	54.7±1.8			
5	-5.5±1.7	39.1±0.7	103.0±1.8	-8.0±1.7	14.7±0.7	48.5±1.8	-22.5 ± 1.0	15.6±0.9	51.0±1.4
	-6.0 ± 1.7	36.9 ± 0.7	100.8 ± 1.8	-6.3 ± 1.7	15.7±0.7	48.3 ± 1.8			
	-6.0 ± 1.7	37.0±0.7	98.0±1.8	-4.0 ± 1.7	15.3±0.7	48.7±1.8			
	-7.1±1.7	38.1±0.7	$101.0{\pm}1.8$	-4.7±1.7	15.2±0.7	46.8 ± 1.8			
6	-46.0 ± 1.7	7.0 ± 0.7	31.2±1.8	-24.8 ± 1.7	14.5 ± 0.7	45.4±1.8	NA	NA	NA
	-45.8 ± 1.7	7.3±0.7	31.7±1.8	-21.6 ± 1.7	15.3±0.7	$47.0{\pm}1.8$			
	-45.5 ± 1.7	7.4 ± 0.7	32.7 ± 1.8	-24.4 ± 1.7	15.3 ± 0.7	45.8 ± 1.8			

Table S4. Summary of the measured NO_y isotope data (Δ^{17} O, δ^{18} O, and δ^{15} N) and uncertainties ($\pm \sigma$) for the various conducted experiments.