Evaluating NO_x Fate and Organic Nitrate Chemistry from α -Pinene Oxidation Using Stable Oxygen and Nitrogen Isotopes Evaluating Nitrogen Oxide and α -pinene Oxidation Chemistry: Insights from Oxygen and Nitrogen Stable Isotopes - Wendell W. Walters^{1,2}, Masayuki Takeuchi^{3,a}, Danielle E. Blum⁴, Gamze Eris⁵, David Tanner⁶, Weiqi Xu^{5,7}, Jean Rivera-Rios^{5,b}, Fobang Liu^{5,8}, Tianchang Xu⁵, Greg Huey⁶, Justin B. Min⁶, Rodney Weber⁶, Nga L. Ng ^{3,5,6}, and Meredith G. Hastings^{2,9} - ¹Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, SC 29208, USA ²Institute at Brown for Environment and Society, Brown University, 85 Waterman St, Providence, RI 02912, USA - 3 School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA - ⁴Department of Chemistry, Brown University, 324 Brook Street, Providence, RI 02912, USA - ⁵School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA - 6School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA 7State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China - ⁸Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China - ⁹Department of Earth, Environmental, and Planetary Sciences, Brown University, 324 Brook Street, Box 1846, Providence, RI 02912, USA Correspondence to: Wendell W. Walters (wendellw@mailbox.sc.edu) 25 ^aNow at Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO, 80309, USA ^bNow at Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ, 08854, USA **Abstract.** The oxidation of biogenic volatile organic compounds (BVOCs) such as α-pinene in the presence of nitrogen oxides (NO_x = NO + NO₂) initiates complex photochemical processes that produce organic nitrates (RONO₂) and influence atmospheric oxidation capacity, air quality, and the fate of reactive nitrogen. However, tracking the chemical fate of RONO₂ remains challenging as it includes pathways such as renoxification, aerosol partitioning, deposition, and/or hydrolysis to nitric acid (HNO₃). Stable oxygen (Δ^{17} O, δ^{18} O) and nitrogen (δ^{15} N) isotope measurements can provide a unique tool to probe these processes, as NO₂ species can exhibit distinct isotopic signatures due to characteristic oxygen-transfer dynamics and isotope fractionation. Here, we present chamber experiments of α-pinene oxidation in the presence of NO₂ under a range of oxidant and photochemical conditions, reporting the Δ^{17} O, δ^{18} O, and δ^{15} N values of simultaneously collected NO₂, HNO₃, and particulate nitrate (pNO₃), the latter of which derived predominantly from RONO₂ in the conducted experiments. A strong linear relationship between δ^{18} O and Δ^{17} O across all NO₂ species (r = 0.992; p < 0.01) supports a two-endmember mixing model, in which oxygen atoms are transferred from isotopically distinct sources that include ozone (O₃) with high δ^{18} O/ Δ^{17} O and peroxy/hydroxyl radicals (RO₂/HO₂/OH) with lower values. Nitrogen isotope fractionation, quantified as the difference in δ^{15} N values ($\Delta\delta^{15}$ N), revealed consistently positive $\Delta\delta^{15}$ N(HNO₃ – NO₂) values ($\pm 28.9 \pm 13.4$ % in daytime experiments: $\pm 22.2 \pm 1.4$ % at night) and negative $\Delta \delta^{15} N(pNO_3-NO_2)$ values (-13.6 ± 5.8 % in daytime experiments). This reflected distinct formation pathways and isotope effects including NO_x photochemical cycling, thermal dinitrogen pentoxide (N₂O₅)-nitrate radical (NO₃)-NO₂ equilibrium, and HNO₃ production mechanisms. Box model simulations based on Δ^{17} O values as a constraint were conducted using a newly developed gas-phase mechanism, which reproduced $\Delta^{17}O(NO_2)$ and $\Delta^{17}O(pNO_3)$ (compared to simulated $\Delta^{17}O(RONO_2)$) accurately, with an average model bias of 0.9 ± 2.4 % ($R^2 = 0.98$) and -1.4 ± 2.4 % $(R^2 = 0.55 \text{ and } R^2 = 0.97 \text{ when excluding one outlier})$, respectively. We further empirically derived important isotopic parameters such as the Δ^{17} O value transferred from O₃ through comparison of model-simulated oxygen atom source contributions with observed Δ^{17} O values for NO₂ and pNO₃ across experiments. This yielded best-fit slopes of 39.4 ± 0.6 % for NO_x photochemical cycling and 41.7 ± 1.2 % for RONO₂ formation, consistent with near-surface observations of Δ^{17} O in the terminal oxygen atom of O_3 . Despite the agreement with NO_2 and $RONO_2$, accurately simulating $\Delta^{17}O(HNO_3)$ proved challenging. Sensitivity tests revealed that model biases likely stemmed from a combination of factors including background HNO₃ chamber blanks affecting low-NO₃ experiments, missing N₂O₅ heterogeneous hydrolysis under nighttime conditions, and an overestimation in the $\Delta^{17}O(HNO_3)$ mass balance resulting from the NO₂ + OH reaction, which was improved by adjusting the contribution from $(2/3)\Delta^{17}O(NO_2)$ to $(1/2)\Delta^{17}O(NO_2)$. These adjustments reduced the average model bias in Δ^{17} O(HNO₃) from 6.7 ± 3.3 % (R^2 = 0.39) in the base mechanism to 1.6 ± 1.3 % (R^2 = 0.48) in the modified mechanism. These findings demonstrate the utility of Δ^{17} O and δ^{15} N for disentangling nitrate formation mechanisms, while also highlighting critical gaps in our understanding of the isotope dynamics involving HNO₃ formation. Future experimental work targeting isolated HNO₃ pathways is essential to refine isotopic mass-balance assumptions and nitrogen isotope fractionation. The chemical interaction between nitrogen oxides (NO_x = NO + NO₂) and α pinene plays a critical role in air quality and climate. However, uncertainties remain regarding their coupling in NO_x loss, renoxification, and oxidation chemistry. To address these gaps, we conducted controlled chamber experiments, analyzing nitric acid (HNO₂), NO₂, and particulate nitrate (pNO₂) for their oxygen and nitrogen stable isotope variations (Δ^{17} O, δ^{18} O, and δ^{15} N). A strong linear relationship between δ^{18} O and A^{17} O across experiments revealed contributions of oxygen from ozone (O₁) and atmospheric oxygen (O₂) in forming reactive radicals. The δ^{15} N values followed the order δ^{15} N(pNO₂) \leq NO₂ \leq HNO₂, reflecting isotope fractionation during NO₃ exidation A new chemical mechanism accurately predicted acrosol precursor decay and simulated $\Delta^{45}O$ and $\delta^{45}N$ values. Simulations showed NO, photochemical cycling and pNO₂ formation, primarily from organic nitrate, with $\Delta^{47}O(NO_2)$ simulations achieving a root mean square error (RMSE) of 1.7 %. Improved 515N(NO₃) and pNO₃ simulations used a nitrogen isotope fractionation factor (⁴⁵α) of 0.997 for NO₂ + OH reactions. However, modeling Δ⁴⁷O and δ⁴⁵N of HNO₂ proved challenging. the role of NO. BVOC chemistry in air quality, highlighting the potential of $\Delta^{12}O$ and $\delta^{15}N$ as tools for evaluating complex atmospheric processes. 45 55 60 ### 1 **H**ntroduction The oxidation of biogenic volatile organic compounds (BVOCs) in the presence of nitrogen oxides (NO_x = NO + NO₂) plays 75 a central role in atmospheric chemistry, linking anthropogenic emissions to the formation of ozone (O₃), secondary organic aerosols (SOA), and the cycling of reactive nitrogen (Hoyle et al., 2011; Ng et al., 2017; Romer et al., 2016; Sato et al., 2022; Takeuchi and Ng, 2019; Xu et al., 2015b, 2020; Zare et al., 2018). A key product of this interaction is organic nitrate (RONO₂), which can be produced both during daytime and nighttime oxidation reactions involving monoterpenes (Ng et al., 2017). The RONO₂ product can act either as a temporary NO₃ reservoir or a permanent sink, depending on its atmospheric fate (Fisher et 80 al., 2016).(Alexander et al., 2020) Once formed, gas-phase RONO₂ can either photolyze or oxidize, leading to the release of NO_x ("renoxification"), partition into the particle phase, resulting in particulate RONO₂ (pRONO₂) (Beaver et al., 2012; Browne et al., 2014; Browne and Cohen, 2012; Fisher et al., 2016; Wang et al., 2023), and/or undergo dry and wet deposition, leading to the removal of reactive nitrogen from the atmosphere. Hydrolysis has emerged as an important pathway that directly converts RONO₂ into HNO₃, which acts as a permanent sink of NO₃, but the efficiency of this process remains challenging to 85 constrain. Model investigations have suggested a lifetime of RONO2 with respect to hydrolysis on the order of a few hours (Fisher et al., 2016; Zare et al., 2018). Experimental measurements have indicated a complex picture, in which not all monoterpene-derived RONO₂ hydrolyze, and that the lifetime of α -pinene derived RONO₂ due to hydrolysis ranges on the order of minutes to hours and even days (Rindelaub et al., 2015; Takeuchi and Ng, 2019; Wang et al., 2021). (Romer et al., 2016; Takeuchi and Ng, 2019)(Day et al., 2010; Rindelaub et al., 2016; Takeuchi and Ng, 2019; Wang et al., 2021; Zare et al., 90 2018) Due to these complexities, the contributions of RONO₂ to HNO₃ and particulate nitrate (pNO₃) budgets remain poorly constrained. These uncertainties hinder our ability to predict NO_x lifetime and oxidant budgets, particularly in regions where high BVOC emissions coincide with anthropogenic NO_x such as forested areas near urban locations. Here, we develop new tools aimed at tracking RONO₂ contributions to HNO₃ and
pNO₃ budgets using stable isotope measurements (Δ^{17} O, δ^{18} O, δ^{15} N) in controlled α -pinene + NO_x chamber experiments, providing mechanistic insights into RONO₂ formation and loss 95 pathways. The oxidation of biogenic volatile organic compounds (BVOCs) in the presence of nitrogen oxides (NO_x = NO + NO₂) constitutes an important mechanism of coupled biogenic anthropogenic interactions. This interplay bears significant consequences for air quality, climate, global reactive nitrogen budget, and secondary organic aerosols (SOA) (Hoyle et al., 2011; Ng et al., 2017; Romer et al., 2016; Sato et al., 2022; Takeuchi and Ng, 2019; Xu et al., 2015b, 2020; Zare et al., 2018). Monoterpenes (C₁₀H₁₆) are a major class of BVOCs that, upon exidation, can lead to significant organic nitrate and SOA formation both during daytime and nighttime (Aschmann et al., 2002; Bates et al., 2022; Bell et al., 2022; Fry et al., 2014; 100 Hallquist et al., 1999; Nah et al., 2016; Nozière et al., 1999; Rindelaub et al., 2015). (Beaver et al., 2012; Fisher et al., 2016; Fry et al., 2014; Wang et al., 2023)(Fisher et al., 2016; Zare et al., 2018)(Rindelaub et al., 2016; Takeuchi and Ng, 2019) However, significant gaps exist in our comprehension of monoterpene and NO_{*} coupled chemistry, including the fate of organic nitrogen and its influence on NO_{*} and oxidant budgets. Once formed, gas phase organic nitrogen can either photolyze or oxidize, leading to the release of NO_{*} ("renoxification"), partition into the particle phase, resulting in particulate organic nitrogen production (Beaver et al., 2012; Browne et al., 2014; Browne and Cohen, 2012; Fisher et al., 2016; Wang et al., 2023), and/or undergo dry and wet deposition, leading to the removal of reactive nitrogen from the atmosphere. An important loss process for organic nitrate is hydrolysis in the particle phase, leading to the production of nitric acid (HNO₃) (Day et al., 2010; Rindelaub et al., 2016; Russell et al., 2011; Takeuchi and Ng, 2019; Wang et al., 2021; Zare et al., 2018). Understanding the fates of organic nitrogen and the feedback in oxidation chemistry arising from BVOC/NO_{*} interactions is critical for accurately assessing their roles in NO_{*} loss and recycling, O₃-formation, and SOA generation. To address these fundamental uncertainties and advance our understanding, it is imperative to employ methodologies that can be used to deduce the reaction mechanisms governing the formation and fate of organic nitrogen. The natural variations of stable oxygen and nitrogen isotopes in various reactive nitrogen ($NO_y = NO_x + HNO_3 + alkyl nitrate (RONO_2) + peroxy nitrate (RO_2NO_2) + etc.$) molecules offer a powerful diagnostic tool to investigate NO_x and oxidation chemistrymay be a promising analytical tool to enhance our insight into the intricate connections between NO_x and BVOC chemistry and their implications for atmospheric composition (Michalski et al., 2012; Walters et al., 2018). Stable isotope approaches offer novel avenues to probe and refine our understanding of complex atmospheric processes, unravel the dynamics of BVOC/ NO_x interactions, and ultimately contribute to formulating informed air quality management strategies. Stable isotope constraints may also serve as quantitative tracers to distinguish daytime (e.g., $RO_2 + NO$) versus nighttime (e.g., $NO_3 + BVOC$) RONO₂ production, quantify the extent of RONO₂ hydrolysis to HNO₃, and constrain the relative contributions of organic versus inorganic pathways to the pNO₃ budget. Variations in oxygen (O) isotope ratios (i.e., $^{18}\text{O}/^{16}\text{O}$ and $^{17}\text{O}/^{16}\text{O}$), commonly quantified using isotope delta notation ($\Delta^{17}\text{O}$ and $\delta^{18}\text{O}$), offer a powerful proxy for assessing oxidation pathways involving NO_x photochemical cycling and nitrate formation (Albertin et al., 2021; Alexander et al., 2020; Michalski et al., 2003; Morin et al., 2011; Walters et al., 2024b). This is owing to distinct $\Delta^{17}\text{O}$ and $\delta^{18}\text{O}$ values exhibited by key atmospheric oxidants, which are proportionally transferred to NO_x during oxidation in the atmosphere (Hastings et al., 2003; Michalski et al., 2003). For instance, tropospheric O₃ has an elevated $\Delta^{17}\text{O}$ with a mean value near 26_‰, and the transferable terminal oxygen atom of O₃ (O₃^{term}) exhibiting a $\Delta^{17}\text{O}$ of $39 \Rightarrow \pm 2$ _‰ and elevated $\delta^{18}\text{O}$ near 126 ± 12 _‰ based on recent near-surface observations (Ishino et al., 2017; Vicars and Savarino, 2014). In contrast, other atmospheric oxidants such as RO₂/HO₂ and OH have $\Delta^{17}\text{O}$ values assumed to be at or near 0_‰ (Lyons, 2001; Walters et al., 2024a). The δ^{18} O values of RO₂/HO₂ and OH have not been directly determined but are anticipated to be lower than the δ^{18} O(O₃^{term}) (Michalski et al., 2012). The A¹⁷O isotopic differences provide quantitative measures to evaluate NO_{*} photochemical eyeling and nitrate formation processes. Notably, 4¹⁷O has been frequently utilized to assess atmospheric nitrate formation pathways, as different pathways vield distinct 4¹⁷O values based on oxygen isotope mass balance assumptions (Alexander et al., 2020; Michalski et al., 2003; Morin et al., 2011; Walters et al., 2024b), More recent advancements include the first reliable in situ measurements of ϕ^{18} O(NO₂) and Δ^{17} O(NO₂), which enable an evaluation of NO₂ formation pathways (i.e., NO + O₂ vs NO + RO₂/HO₂) (Albertin et al., 2021; Walters et al., 2018, 2024b). Further, we have recently developed a chemical mechanism that can explicitly model A¹⁷O of numerous NO₂ components, termed InCorporating Oxygen Isotopes of Oxidized Reactive Nitrogen (ICOIN) based on the Regional Atmospheric Chemistry Mechanism, Version 2 mechanism (RACM2) (Walters et al., 2024a). These new tools offer exciting opportunities for probing NO exidation branching ratios, assessing organic nitrogen yields from NO + RO2 reactions under various NO_x/BVOC conditions, and evaluating nitric acid formation mechanisms including both inorganic and organic reaction pathways. The Δ^{17} O isotopic composition provides a quantitative framework to evaluate NO_x photochemical cycling and the formation pathways of nitrate-containing species. This tracer has been widely used to assess NO_x oxidation and secondary product formation, as different atmospheric reactions impart distinct Δ^{17} O signatures based on mass-balance relationships (Alexander et al., 2020; Michalski et al., 2003; Morin et al., 2011; Walters et al., 2024b) (Table 1). For instance, mass-balance calculations predict that Δ^{17} O should differ between HNO₃ produced via the daytime NO₂ + OH reaction and that derived from the hydrolysis of daytime formed RONO₂, where the Δ^{17} O of the nitrooxy (-NO₃) functional group reflects a combination of NO + RO₂ oxidation. These differences make Δ^{17} O a potentially powerful diagnostic tool for quantifying RONO₂ contributions to HNO₃ formation. Moreover, substantial Δ^{17} O differences are expected between RONO₂ formed through daytime RO₂ + NO reactions and those formed via nighttime NO₃ + BVOC reactions. Thus, Δ^{17} O could also be a useful tool for distinguishing between daytime and nighttime formation pathways of RONO₂, potentially aiding in our ability to accurately predict the atmospheric burden of RONO₂. Despite major advances in applying Δ^{17} O to constrain atmospheric nitrogen oxidation chemistry, a significant limitation remains: most Δ^{17} O pathway estimates rely on theoretical mass-balance assumptions that have only been empirically validated for a limited number of reactions (e.g., $NO + O_3$ and $NO_2 + O_3$) (Berhanu et al., 2012; Savarino et al., 2008). Further, we have yet to have measured the \triangle^{17} O of RONO₂ directly. Expanding direct \triangle^{17} O measurements of key NO_v compounds under various oxidant conditions is critical for testing these assumptions. Table 1. Expected Δ^{17} O values for reactive nitrogen species formed via different oxidation pathways based on oxygen isotope mass-balance. Each pathway is expressed as a weighted average of the Δ^{17} O values of precursor oxidants, based on the proposed reaction mechanism. Species include NO₂, HNO₃, and RONO₂. | Formation Pathway | Expected Δ^{17} O | |--------------------------|--------------------------| | | <u>NO</u> ₂ | 140 145 150 155 160 | $1/2 \left(\Delta^{17}O(NO) \right) + 1/2 \left(\Delta^{17}O(O_3^{\text{term}}) \right)$ | | | | | |--|--|--|--|--| | $1/2(\Delta^{17}O(NO)) + 1/2(\Delta^{17}O(RO_2))$ | | | | | | $1/2 (\Delta^{17}O(NO)) + 1/2(\Delta^{17}O(HO_2))$ | | | | | | HNO ₃ | | | | | | $2/3(\Delta^{17}O(NO_2)) + 1/3(\Delta^{17}O(OH))$ | | | | | | $\Delta^{17}O(NO_3)$ | | | | | | $1/3(\Delta^{17}O(NO))+2/3(\Delta^{17}O(HO_2))$ | | | | | | $\frac{5/6(\Delta^{17}O(N_2O_5))+1/6(\Delta^{17}O(H_2O))}{}$ | | | | | | $\frac{5/6(\Delta^{17}O(N_2O_5))+1/6(\Delta^{17}O(O_3^{term}))}{}$ | | | | | | $2/3(\Delta^{17}O(NO_2)) + 1/3(\Delta^{17}O(H_2O))$ | | | | | | $\Delta^{17}O(NO_3)$ | | | | | | $\Delta^{17}O(RONO_2))$ | | | | | | RONO ₂ *- | | | | | | $1/3(\Delta^{17}O(NO))+2/3(\Delta^{17}O(RO_2))$ | | | | | | $\Delta^{17}O(NO_3)$ | | | | | | | | | | | ^aO₃^{term} = terminal oxygen in ozone ${}^{b}RO_{2}$ = organic peroxy radical $^{c}HO_{2} = hydroperoxyl radical$ $170 \quad \frac{dHC = hydrocarbon}{dHC}$ * Δ^{17} O calculated from the nitrooxy (-NO₃) functional group. 175 180 The stable nitrogen (N) isotope ratio variations (δ^{15} N) of NO_x and atmospheric nitrate have conventionally long served as a valuable proxy for evaluating
precursor emission sources, because of the preserved N mass between the precursor and oxidized end-products (Elliott et al., 2019; Hastings et al., 2013). However, it is essential to consider that NO_x photochemical cycling and atmospheric nitrate formation processes can also induce significant mass-dependent fractionation effects (Freyer et al., 1993; Li et al., 2020; Walters et al., 2016; Walters and Michalski, 2015, 2016a). Field δ^{15} N observations of NO₂ and nitrate have demonstrated the potential of these fractionation effects to offer additional valuable information concerning NO_x photochemical cycling and atmospheric nitrate formation (Albertin et al., 2021; Bekker et al., 2023; Li et al., 2021; Walters et al., 2018). Recently, a novel chemical mechanism was devised to model the nitrogen isotope fractionation associated with NO_x chemistry, called incorporating ¹⁵N into the Regional Atmospheric Chemistry Mechanism (i_NRACM) -(Fang et al., 2021). Leveraging these advancements, we may utilize δ^{15} N to gather supplementary quantitative insights into BVOC/NO_x interactions and their impact on organic nitrogen fates RONO₂ and contributions to HNO₃ formation. Importantly, nitrogen isotope fractionation may lead to distinct δ^{15} N values in HNO₃ and RONO₂ due to differences in their formation pathways. If characterized, these δ^{15} N signatures could offer an additional tracer for quantifying RONO₂ contributions to the overall HNO₃ budget. While strides have been made in understanding δ^{15} N fractionation during NO_x oxidation and equilibrium partitioning (Freyer et al., 1993; Li et al., 2020; Walters et al., 2016; Walters and Michalski, 2015), the specific nitrogen fractionation factors associated with HNO₃ and RONO₂ formation remain poorly constrained. Targeted laboratory and field studies are needed to directly measure these values and validate their use as diagnostic tools in atmospheric reactive nitrogen chemistry. This study presents the first simultaneous measurements of Δ^{17} O, δ^{18} O, and δ^{15} N in key NO₂ species that included NO₂, HNO₃, and RONO₂ that were generated under controlled laboratory conditions involving α -pinene oxidation. By varying oxidant regimes to probe distinct RO₂ fates, we aimed to (1) determine the Δ^{17} O and δ^{15} N values of simultaneously collected HNO₃, NO₂, and RONO₂ under a range of atmospheric oxidation conditions; (2) evaluate the validity of oxygen isotope mass-balance assumptions used in the formation of NO₂, HNO₃, and RONO₂; (3) characterize nitrogen isotope fractionation patterns across NO₂ species; and (4) assess whether stable isotope measurements can provide meaningful constraints on the fate of RONO₂ in the atmosphere. Further, by incorporating recent isotope modeling frameworks (Walters et al., 2024a) we simulated the Δ^{17} O values of various NO₂ components and compared them against observations, yielding insights into the oxidative formation and Δ^{17} O transfer dynamics during NO₂ oxidation. This study presents the first Δ^{47} O, δ^{48} O, and δ^{45} N values of several simultaneously collected NO_y species, including NO₂₅ HNO₃, and pNO₃, from controlled laboratory experiments involving α pinene, the most abundant monoterpene. These experiments were conducted under diverse oxidant conditions to investigate distinct RO₂ fates, enabling a comprehensive evaluation of the impact of BVOC/NO_x interactions on atmospheric oxidant budgets, organic nitrogen fates, and NO_x loss and/or recycling. The Δ^{47} O and δ^{45} N of the various NO_y components were simulated utilizing recently developed isotope mechanism frameworks (Fang et al., 2021; Walters et al., 2024a), yielding invaluable insights into the formation mechanisms and fates of NO_x, HNO₃, and organic nitrogen under varying oxidant conditions. Additionally, this approach tremendously aids in our understanding of Δ^{47} O transfer dynamics as well as δ^{45} N fractionation patterns associated with NO_x oxidation chemistry. ### 2 Methods 215 220 225 230 ## 2.1 Chamber Experiments Photochemical and nighttime oxidation chamber experiments were conducted involving α -pinene, NO_x, and oxidant precursors at the Georgia Institute of Technology Environmental Chamber Facility that houses two 12 m³ Teflon reactors (Boyd et al., 2015). A total of six different initial experimental conditions were targeted, including five photochemical and one nighttime condition as previously reported (Blum et al., 2023) (Table 42). The experiments varied in their precursor concentrations and oxidant types, which were utilized to probe different α -pinene oxidation reactions involving OH, O₃, and nitrate radical (NO₃) and alkylperoxy radical (RO₂) fates. Replicates were conducted in two of the targeted experimental conditions. The conducted chamber experiments follow well-established previous laboratory protocols and experimental conditions (Boyd et al., 2015; Nah et al., 2016; Takeuchi and Ng, 2019; Tuet et al., 2017). Briefly, photochemical experiments were conducted by injecting dry ammonium sulfate seed aerosol and precursor (i.e., α-pinene (99 % Sigma-Aldrich)), NO (Matheson), hydrogen peroxide (H_2O_2) , or nitrous acid (HONO)) into the chamber, where either H_2O_2 or HONO was used as an OH precursor to simulate different extents of RO₂+NO pathway. Once the levels of precursors stabilized, the chamber lights were turned on, signifying the start of the photochemical experiments. The procedure used to generate HONO (e.g., the reaction of sodium nitrite with sulfuric acid) also leads to the generation of significant NO and NO₂ as a reaction by-product (Kroll et al., 2005; Tuet et al., 2017). For simulated nighttime conditions, dry ammonium sulfate seed aerosol and α -pinene were injected into the chamber, followed by flowing dinitrogen pentoxide (N₂O₅) for fifteen minutes (Boyd et al., 2015; Takeuchi and Ng, 2019). The N₂O₅ injection corresponded to the start of the nighttime experiments. The N₂O₅ was generated by reacting NO₂ from a gas cylinder (Matheson) with O_3 in a flow tube prior to the introduction to the chamber at a ratio of 2:1 to minimalize O_3 concentrations in the chamber to avoid ozonolysis. All experiments were conducted at a relative humidity (RH) and temperature of 30 % and 22 °C, respectively. Before each experiment, the chamber was flushed with zero air and irradiated for at least 24 hours. Table 21. Summary of measured NO_y precursor concentrations and targeted H₂O₂ concentrations for the chamber experiments. All experiments were conducted using dry ammonium sulfate seed at a fixed temperature (22_°C) and relative humidity (30_%). The experiments were conducted using two different chambers designated as A and B. | Experiment | α-pinene (ppb) | NO _y (ppb) | Oxidant (ppb) | |------------|----------------|---|------------------| | 1 | 298 | $NO^{\pm} = 55.3$
$HNO_3^{\pm} = 5.1$ | $H_2O_2 = 9,000$ | | 1R | 297 | NO ^a = 49.5
HNO ₃ ^d = 3.5 | $H_2O_2 = 9,000$ | | 2 | 290 | $NO^a = 112$
$HNO_3^d = 3.18$ | $H_2O_2 = 6,000$ | | 3 | 286 | $NO^{a} = 338$ $HNO_{3}^{d} = 4.77$ | $H_2O_2 = 6,000$ | |----|------------------|---|------------------| | 4 | <mark>293</mark> | $NO^{a} = 615$ $HNO_{3}^{d} = 5.74$ | $H_2O_2 = 4,500$ | | 4R | 316 | $NO^{\circ} = 655$ $HNO_3^{\circ} = 5.51$ | $H_2O_2 = 4,500$ | | 5 | 306 | $HONO^{b} = 210$
$NO^{b} = 320$
$NO_{2}^{b} = 460$ | N/A | | 6 | 100 | NO2 ^{ea} , NO3 ^{ea} ,
N2O5 ^{ea} , HNO3 ^{ea} , O3
-deal
HNO3=10.0 | N/A | The starting NO was assumed to have a $\Delta^{17}O = 0\%$ and $\delta^{15}N = -70.0\%$ The starting HONO, NO, and NO₂ were assumed to have $\Delta^{17}O = 0\%$ and $\delta^{15}N = -5.9\%$ ^eThe chamber HNO₃ "blank" was assumed to have $\Delta^{47}O = 26$ % and $\delta^{45}N = -35$ %. The emission rate of NO₂, NO₃, N₂O₅, HNO₃, and O₃ into the chamber for a 20 minute injection period were modeled based on a flow tube simulation of the reaction of NO₂ with O₃ with a residence time of 70 s. The initial NO₂ was assumed measured 245 to have a $\Delta^{17}O = 0\%$ and $\delta^{15}N = 40.5\%$ 240 250 255 260 Continuous online measurements of NO, NO₂, and O₃ were conducted using chemiluminescence (Teledyne 200EU), cavity-attenuated phase shift (CAPS), and an O₃ monitor (Teledyne T400). A chemical ionization mass spectrometer (CIMS) was used for various NO₂ measurements including HONO and HNO₃ (Huey et al., 1998). The α-pinene decay was monitored using gas-chromatography flame ionization detector (GC-FID; Agilent 7890A). Gaseous Oorganic nitrate were monitored using a filter inlet for gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight iodide chemical ionization mass spectrometer (HR-ToF-I-CIMS) with particles collected on a Teflon filter (Lopez-Hilfiker et al., 2014; Nah et al., 2016; Takeuchi et al., 2022; Takeuchi and Ng, 2019; Wang et al., 2023). Aerosol composition was measured using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) that included measurement of non-refractory organics (Org), sulfate (SO₄), nitrate (NO₃), and ammonium (NH₄) (DeCarlo et al., 2006; Farmer et al., 2010). Water-soluble aerosol components were also measured using a particle-into-liquid sampler (PILS) coupled to ion chromatography (IC) (Orsini et al., 2003). This method differs from the HR-ToF-AMS measurements, which quantify total aerosol composition, including both water-soluble and water-insoluble components. For example, nitrate measured by the AMS represents total pNO₃, whereas nitrate measured by the PILS-IC system corresponds only to the water-soluble fraction of
pNO₃. Collections of various NO_y gaseous and aerosol components, including HNO₃, NO₂, and pNO₃ were conducted using a modified version of the ChemComb Speciation Cartridge (CCSC) with an extended denuder body for offline concentration and isotope composition analysis (Blum et al., 2020, 2023). Briefly, the CCSC collections began when the aerosol mass spectrometer data indicated the nitrate and secondary organic aerosol mass concentrations had peaked. The CCSC samples were collected at 8 L min⁻¹ for up to 4 h. To maintain the chamber integrity, zero-air was used to dilute at 25 L min⁻¹ once aerosol peak was reached and CCSC sample collection initiated. The CCSC denuder bodies were replaced one to four times depending on the concentration of NO_x in the chamber. For each experiment, a single filter was used in the CCSC. In addition to the chamber experiments, samples were collected directly from the NO₂ tank (Matheson), which was used in the generation of N₂O₅ for the nighttime oxidation experiments. Honeycomb denuders were coated for the selective collection of HNO₃ (captured as nitrate (NO₃-)) and NO₂ (captured as nitrite (NO₂)). A detailed description of the coating solutions, denuder preparation, and denuder extraction was previously described. and the pooled isotope reproducibility for both HNO₃ and NO₂ was ± 1.7 ‰, ± 1.8 ‰, and ± 0.7 ‰, for δ^{15} N, δ^{18} O, and Δ^{17} O (Blum et al., 2023) for these chamber experiments (Blum et al., 2023). The collection of PM_{2.5} was conducted using a quartz filter (Cytiva Whatman, Grade QM-A; 47 mm diameter) that was housed in the ChemComb filter cartridge positioned downstream of the denuders. Prior to use, filters were pre-combusted at 550 °C overnight and stored in an airtight container. Quartz filters were selected because they facilitate efficient water-based extraction of collected material and tolerate hightemperature pre-cleaning to remove organic contaminants. Before use, the quartz fiber filters were placed in a furnace at 550 $^{\circ}$ C overnight and stored in an airtight container. The filter samples were extracted in 20 mL of Milli-Q water (>18.2 M Ω) and allowed to leach for at least one week at room temperature. This method was conducted to enable hydrolysis of collected organic nitrate particles as previous studies have shown organic nitrate derived from α -pinene oxidation to hydrolyze to NO₃⁻ in water with a lifetime of 8.8 h at pH = 6.9 (Rindelaub et al., 2016) and 2.5 h at pH = 7.44 (Wang et al., 2021). Other types of organic nitrate, such as secondary nitrates, have been reported to be stable in water, especially at a neutral pH (Wang et al., 2021). The efficiency of our filter extraction technique for facilitating organic nitrate hydrolysis was evaluated using the online AMS and PILS data. After the filters were leached, the filters were removed, and the samples were shipped to Brown University where they were placed in a freezer until subsequent concentration and isotope analysis. For all sample media types, including denuders and filters, lab blanks were frequently taken. These blanks were prepared, handled, and analyzed the same way as all samples. ### 2.2 Concentration and Isotope Analysis 265 270 275 280 285 290 The denuder and filter extracts were analyzed for their NO_2^- and NO_3^- content using a standardized colorimetric technique (e.g., EPA Methods 353.2) or ion chromatography, as previously described (Blum et al., 2020, 2023). The limits of detection (LOD) were approximately 0.1 μ mol L⁻¹ and 0.3 μ mol L⁻¹ for NO_2^- and NO_3^- via colorimetric analysis and 3.0 μ mol L⁻¹ for NO₂⁻ via ion chromatography. For all analyses, the average percent relative standard deviation was below 5_{_}%. The NO₂⁻ and NO₃⁻ concentrations from denuder blank extractions used for NO₂ (n = 5) and HNO₃ (n = 5) collection were below detection limits. Significant blanks were observed in the quartz filter extracts (1.5_±0.2 μ mol L⁻¹; n = 5), which we refer to hereinafter as a method blank. 300 The δ^{15} N, δ^{18} O, and Δ^{17} O isotope compositions were analyzed using the denitrifier method for NO₃⁻ samples (e.g., from HNO₃ denuder and aerosol filter extracts) following (Casciotti et al., 2002; Kaiser et al., 2007; Sigman et al., 2001) and the sodium azide/in an acetic acid buffer method for NO₂ samples (from NO₂ denuder extracts), following (McIlvin and Altabet, 2005; Walters and Hastings, 2023) (Casciotti et al., 2002; McIlvin and Altabet, 2005; Sigman et al., 2001; Walters and Hastings, 2023). Briefly, 20 nmol of NO₃ or NO₂ samples were converted to these methods produce N₂OO from NO₃ and/or NO₂. 305 which is extracted, purified, concentrated, and injected into a continuous flow isotope ratio mass spectrometer for δ^{15} N and δ^{18} O determination from m/z measurement at 44, 45, and 46. In a separate batch analysis, 50 nmol of NO₃ or NO₂ were converted to the generated N₂O, is decomposed to O₂ using a gold tube heated at 770 °C, and analyzed for A¹⁷O determination from at m/z measurement at 32, 33, and 34 for Δ^{17} O determination (Kaiser et al., 2007; Walters and Hastings, 2023). To minimize potential memory effects from residual O₂ gold tube and headspace trapping system, samples were grouped and 310 analyzed in separate batches based on their expected Δ^{17} O values. Specifically, NO₂ samples (high Δ^{17} O), HNO₃ (moderate Δ^{17} O), and pNO₃ (low Δ^{17} O) were each analyzed in separated dedicated batches. Analytical blanks associated with the conversion of NO₃ and/or NO₂ to N₂O or O₂ for subsequent IRMS analysis were assessed for each batch and were always below detection limit (~0.2 nmol). These blanks are not anticipated to affect the analytical precision of the reported isotope values. The samples were calibrated with respect to internationally recognized NO₃- standards (IAEA-NO-3, USGS35, USGS34) or NO₂- reference 315 materials (RSIL-N7373 and RSIL-10219) (Böhlke et al., 2003, 2007). In line with the identical treatment principle, the reference materials are treated the same as samples, including matching concentrations, sample amounts, and reagent additions to ensure analytical consistency. The pooled standard deviations of the standards-reference materials were ± 0.1 % and ± 0.6 % for δ^{15} N and δ^{18} O of the NO₃⁻ standards (n = 78) and ± 0.3 % and ± 0.3 % for δ^{15} N and δ^{18} O of the NO₃⁻ reference materials (n = 15), respectively. The Δ^{17} O had a pooled standard deviation of $\pm 0.6 \%$ (n = 53). All isotope measurements were reported relative to reference standards using delta (δ) notation (Eq. 1): $$\delta = \left(\frac{R_x}{R_{std}}\right) \frac{R_{sample}}{R_{rotorence}} - 1$$ (Eq. 1) 320 325 where x refers to the heavy isotope (i.e., 15 N, 18 O, or 17 O) and where R refers to the is the ratio of the abundance of the heavy to the light isotope (i.e., 15 N/ 14 N, 18 O/ 16 O, or 17 O/ 16 O), x denotes the sample, and std is an abbreviation for standard (Sharp, 2017) for the sample or the reference material. The nitrogen and oxygen reference material includes atmospheric air and Vienna Standard Mean Ocean Water (VSMOW), respectively. Oxygen isotope mass-independence (Δ^{17} O) was quantified using the linear definition with a mass-dependent coefficient of 0.52, which is approximately representative of oxygen mass-dependent coefficients expected and observed in nature (Young et al., 2002) (Eq. 2): $$\Delta^{17} \frac{0}{0} = \delta^{17} \frac{0}{0} - 0.52 \times \delta^{18} \frac{0}{0}$$ (Eq. 2) 330 The linear Δ¹⁷O approximation is commonly used to describe large mass-independent effects-fractionation such as those related to O₃ reactions, and this definition is commonly used in the atmospheric chemistry community to track the influence of O₃ oxidation and Δ¹⁷O propagation into reactive components (Alexander et al., 2020; Kim et al., 2022; Michalski et al., 2003; Savarino et al., 2013). ### 335 2.3 Data Reduction and Corrections Due to significant NO₃⁻ blanks found in the pNO₃ filter extracts (i.e., method blank), the measured nitrate isotope values (δ^{15} N, δ^{18} O, and Δ^{17} O) were corrected using a mass-balance approach based on mass-balance to isolate the isotopic composition of NO₃⁻ generated within the chamber experiments (Eq. 3-4): $$\delta(\text{corrected}, pNO_3) = \frac{\delta(\text{measure}) - (f(\text{blank}) \times \delta(\text{blank}))}{1 - f(\text{blank})}$$ (Eq. 3) 340 $$f(\text{blank}, \text{pNO}_3) = \frac{[\text{NO}_3^-(\text{blank})]}{([\text{NO}_3^-(\text{blank})] + [\text{NO}_3^-(\text{sample})])}$$ (Eq. 4) where [NO₃⁻], corresponds to the concentration of NO₃⁻ in either the blank or sample, and f(blank) corresponds to the fraction of NO₃⁻ that corresponds to the blank corresponds to the NO₃⁻ method blank fraction. The quartz filter extracts method blanks had measured δ^{15} N, δ^{18} O, and Δ^{17} O values of $1.6\pm1.1\pm0.1.2$ %, $16.6\pm1.4\pm0.1.2$ %, and $3.4\pm0.5\pm0.1.2$ %, respectively (n=3). Blank corrections were made for all samples when f(blank) was less than 30.%. Samples with an f(blank) that exceeded 30.% were not reported for their isotope compositions, which included 1 out of 8 quartz filter extracts. The uncertainty in the blank corrected isotope deltas was calculated using a Monte-Carlo simulation for 10,000 iterations and assuming a normal distribution using Matlab. For the quality assurance criterion of an f(blank) < 30.%, the uncertainties were calculated to be less than $4.1\pm0.1.2$ %, $1.4\pm0.1.2$ %, and $0.9\pm0.1.2$ % for δ^{15} N, δ^{18} O, and δ^{17} O, respectively. These values are small compared to the observed ranges for pNO₃, which spanned δ^{17} 8.% for δ^{15} N, 29.3 % for
δ^{18} O, and 10.4 % for δ^{17} O, and thus do not significantly affect the interpretation of isotope patterns. These uncertainties reflect the standard deviation of the 10,000 Monte Carlo iterations for each pNO₃ sample, which account for uncertainty in both the sample and method blank concentrations and isotope values. These reported uncertainties for chamber-derived pNO₃ isotope values represent total propagated error after blank correction, not the raw instrumental precision. ### 2.4 Aerosol Nitrate Composition 345 350 The relative contribution of organic aerosol nitrate (pNO₃(Org)) to the total pNO₃ was determined from two approaches. First, the relative proportion of pNO₃(Org), was calculated based on NO⁺ and NO₂⁺ HR-ToF-AMS fragmentation as previously described (Farmer et al., 2010; Fry et al., 2009; Kiendler-Scharr et al., 2016; Xu et al., 2015a) (Eq. 5): $$f(pNO_3, Org) = \frac{(R_{obs} - R_{AN})(1 + R_{ON})}{(R_{ON} - R_{AN})(1 + R_{obs})}$$ (Eq. 5) where $f(pNO_3, Org)$ refers to the fraction of pNO₃(Org) to the total pNO₃, R refers to NO⁺/NO₂⁺ fragments, and obs, AN, and ON refers to the observed, ammonium nitrate, and organic nitrate, respectively. The R_{AN} was obtained from routine ionization efficiency calibration of the HR-ToF-AMS using 300 nm ammonium nitrate aerosols and was 1.37. The R_{ON} was calculated based on the measured R_{AN} and the ratio of R_{ON}/R_{AN} previously reported for similar conducted experiments (Takeuchi and Ng, 2019), resulting in an R_{ON} of 2.70_±0.29 and 3.86_±0.34 for photochemical and nighttime oxidation experiments, respectively. The second method for qualitatively determining $f(pNO_3, Org)$ involved evaluating the relative change in the molar ratio of NH₄/SO₄, as an increase in NH₄/SO₄ has been observed to be associated with inorganic pNO₃ formation (Takeuchi and Ng, 2019). ### 2.5 Box Model Simulations The chamber experiments were simulated using the Framework for 0-D Atmospheric Modeling (F0AM) box model (Wolfe et al., 2016). The conducted model simulations primarily focus on accurately representing initial precursor oxidation (i.e., NO, α -pinene) and simulation of Δ^{17} O observations. We chose not to include δ^{15} N model simulations in this study due to several key uncertainties. These include incomplete knowledge of the δ^{15} N values of all initial NO_{ν} sources, limited constraints on isotope effects during NO_{ν} oxidation and photolysis reactions, and the potential for unquantified, species-specific fractionation due to chamber wall interactions, and potential for chamber blanks with unknown δ^{15} N values. Given these limitations, δ^{15} N modeling will be deferred to future work focused specifically on nitrogen isotope dynamics. The model was initiated for each experiment using the measured precursor concentrations for NO, NO₂, HONO, and α -pinene before chamber lights were turned on or N₂O₅ was injected and using the targeted H₂O₂ concentrations. Additionally, a "chamber blank" of HNO₃, based on the CIMS measurements, was present before the start of the experiment (Fig. S1). To accurately reflect this condition in the model, an initial concentration of HNO₃ was included in the experimental simulations based on the observed CIMS measurements (Table 1). The pressure, temperature, and relative humidity were fixed at 1013 mbar, 295 K, and 30 %, respectively. The measured chamber light flux data was used. The model was run in two parts for the photochemical reactions, including from lights on to peak SOA mass concentration (part 1) and from aerosol decay and chamber dilution to the end of NO₂ collections (part 2). For the nighttime experiments, the model simulations were conducted in three parts, including from the start of N₂O₅ injection to the end of N₂O₅ injection (part 1), from the end of N₂O₅ injection to peak SOA mass concentrations (part 2) and from the decay of organic aerosol and chamber dilution to the end of NO₂ collection (part 3). The N₂O₅ injection was simulated by first modeling the NO₂ reaction with O₃ in the flow tube, considering a flow tube residence time of 70 s. The nighttime experiment was then simulated by allowing the flow tube products (i.e., NO₂, O₃, NO₃, HNO₃, and N₂O₅) to emit into the chamber for 20 minutes (part 1). Next, the experiment was modeled without the flow tube emission to the start of aerosol decay and chamber dilution (part 2) and from aerosol decay and chamber dilution to the end of NO_y collections (part 3). For both photochemical and nighttime experiments, the model simulations from the decay of organic aerosol to the end of NO_y collection included a chamber dilution rate constant (k_{dii}) of 3.47 × 10⁻⁵ s⁻¹, which was calculated based on the dilution flow rate (25 LPM) and chamber volume (12 m³). Sensitivity tests were performed to assess the impact of the selected k_{dil} on model results by evaluating a range of values from 1×10⁻⁵ s⁻¹ to 1×10⁻⁴ s⁻¹. For both photochemical and nighttime experiments, the model simulations from the decay of organic aerosol to the end of NO_y collection included a chamber dilution rate of k_{dil} = 8.00 × 10⁻⁵ s⁻¹, which was determined based on accurately matching the decay of NO for the photochemical experiments with the highest levels of initial starting NO_y (i.e., Exp. 4, and 5). k_{dil} values. 400 405 410 415 420 A new chemical mechanism was developed, termed NO_x - α -pinene (NO_x -API), to accurately model the oxidation of NO_x and α -pinene (Table S1-S6). This mechanism was developed due to difficulties in simulating the initial decay of the aerosol precursors including α -pinene, NO, NO₂, and HONO for the various experimental conditions using either the Regional Atmospheric Chemical Mechanism, v2 (RACM2) (Goliff et al., 2013) or the Master Chemical Mechanism v3.3.1 (Jenkin et al., 1997; Saunders et al., 2003). The NO_x -API mechanism focuses on simulating α -pinene and NO decay along with NO_x oxidation but does not intend to accurately simulate SOA production and later-generation chemistry. The mechanism has the inorganic reactions in RACM2, including 16 species and 45 reactions. It also incorporates 29 organic species and 61 reactions to detail organic chemistry up to one generation past pinonaldehyde formation as well as the formation of pinonaldehyde derived peroxyacetyl nitrate formation, with subsequent chemistry represented by a lumped approach. The α -pinene oxidation pathways involving OH, O₃, and NO₃, along with specific reactions of the resulting RO₂ with HO₂, NO, NO₃, and other RO₂ radicals, are also included. The photochemical oxidation of α -pinene largely follows the MCMv3.3.1 (Saunders et al., 2003), incorporating two hydroxyl-nitrate isomers from OH/O₂/NO, including one tertiary (ONITa) and one secondary (ONITb) and the formation of a tertiary pinene carbonyl nitrate (ONITc). Nighttime oxidation chemistry integrates a recent mechanism for organic nitrate formation, producing pinene nitrate hydroperoxide, including one tertiary (ONITOOHa) and one secondary (ONITOOHb) via HO₂ reactions and dimer/pinene dinitrate (PDN) through RO₂ interactions (Bates et al., 2022). The boxmodel simulation is a gas-phase mechanism that does not explicitly model heterogeneous reactions or aerosol chemistry, such as organic nitrate hydrolysis. The impact of heterogenous reactions are considered in the evaluation of the Δ^{17} O model simulation results compared to observations. A new chemical mechanism was developed, termed University of South Carolina a pinene (USC API), to accurately model the oxidation of NO_r and α pinene (Table S1 S2). This mechanism was developed due to difficulties in simulating the initial decay of the aerosol precursors including α pinene. NO, NO₂, and HONO for the various experiment experimental conditions using either the Regional Atmospheric Chemical Mechanism, v2 (RACM2); (Goliff et al., 2013) or the Master Chemical Mechanism v3.3.1 (Jenkin et al., 1997; Saunders et al., 2003). The USC API mechanism focuses on simulating α pinene and NO decay along with NO, oxidation but does not intend to accurately simulate SOA production and later generation chemistry. The mechanism includes the inorganic reactions included in RACM2, including 16 species and 45 reactions. It also incorporates 29 organic species and 61 reactions to detail organic chemistry up to one generation past pinonaldehyde formation as well as the formation of pinonaldehyde derived peroxyacetyl nitrate formation, with subsequent chemistry represented by a lumped approach. The α pinene oxidation pathways involving OH, O₃₅ and NO₃₅ along with specific reactions of the resulting RO₂ with HO₂₅, NO, NO₃₅, and other RO₂ radicals, are included. The photochemical oxidation of α pinene largely follows the MCMv3.3.1 (Saunders et al., 2003), incorporating two hydroxyl nitrate isomers from OH/O₂/NO, including one teritary (ONITa) and one secondary (ONITb) and the formation of a tertiary pinene carbonyl nitrate (ONITe). Nighttime oxidation chemistry integrates a recent mechanism for organic nitrate formation, producing pinene nitrate hydroperoxide, including one tertiary (ONITOOHa) and one secondary (ONITOOHb) via HO₂-reactions and dimer/pinene dinitrate (PDN) through RO₂ interactions (Bates et al., 2022). The box model simulation is a gas phase mechanism that does not explicitly model heterogeneous reactions or aerosol chemistry, such as organic nitrate hydrolysis. Product yields for organic nitrate were adjusted based on experimental isotope data, accounting for OH/O₂/NO and NO₃ pathways, which can be elucidated based on a comparison to Δ¹⁷O (Walters et al., 2024b). The Δ^{17} O of NO_y compounds were simulated using the newly developed USCNO_x-API mechanism modified using the InCorporating Oxygen Isotopes of oxidized reactive Nitrogen in
the Regional Atmospheric Chemistry Mechanism, Version 2 (ICOIN-RACM2) model framework (Walters et al., 2024a). Briefly, the model framework tracks the transfer and propagation of Δ^{17} O from O₃ into NO_y and O_x species. This mechanism tags the oxygen atoms transferred from O₃ into NO_y and O_x considering mass-balance and reaction stoichiometry and enables the offline calculation of Δ^{17} O based on the output of concentrations of various NO_y and HO_x isotopologues (Eq. 6): 45 $\Delta^{17}O(X) = f(Q) \times \Delta^{17}O(O_3^{term})$ (Eq. 6) 450 455 where X refers to the various NO_y and O_x molecules and f(Q) is the fractional number fraction of oxygen-atoms deriving from O_3^{term} for a particular molecule. The $\Delta^{17}O(O_3^{\text{term}})$ represents the $\Delta^{17}O$ value of the terminal and transferrable O atom of O_3 , which was assumed to be $39_{\pm}2_{-}\%$ based on recent near-surface collections of O_3 (Ishino et al., 2017; Vicars and Savarino, 2014) and O_3 generated from O_2/NO_x photochemical experiments conducted under normal temperature and pressure conditions (Michalski et al., 2014). As a model sensitivity test, $\Delta^{17}O(O_3)$ was also estimated from the modeled f(O) values and measured $\Delta^{17}O$ of the NO_x species. The initial $\Delta^{17}O(NO)$ and $\Delta^{17}O(NO_2)$ was set to 0%, while the initial $\Delta^{17}O(HNO_3)$ from the "chamber blank" was set to 26%, representing 2/3 O atoms derived from O_3 . This value was not measured but assumed based on the measured $\Delta^{17}O(HNO_3)$ for Exp. 1 and 2, in which the HNO₃ "chamber blank" significantly contributed to the total produced experimental HNO₃, up to approximately 20% (Fig. S1). All d^{17} O model simulations were conducted without considering chamber wall losses. The potential impact of wall loss was evaluated through sensitivity tests that involved comparing simulated Δ^{17} O values. The sensitivity tests included a no wall loss case, wall loss involving O₃, NO, NO₂, HNO₃, N₂O₅, and organic nitrate based on previous reports from chamber experiments (Morales et al., 2021; Wang et al., 2014), and an elevated wall loss scenario, in which the wall loss rate constants were increased by ×10 scenario to account for uncertainty since wall loss rates were not determined in this work (Table S7). 465 470 475 480 485 490 460 Additionally, 815N of NO, molecules were also simulated by adapting the framework from the recently developed isotope variant of the RACM2 mechanism, termed is:RACM: incorporating 15N into the Regional Atmospheric Chemistry Mechanism (Fang et al., 2021). The model framework explicitly tracks the 15N and 14N abundance of various NO, molecules and includes nitrogen isotope fractionation associated with NO_x oxidation. The δ^{15} N of various NO_x components is then calculated using a $^{15}N/^{14}N$ ratio of 0.003677 for air (Coplen et al., 1992). The $\delta^{15}N$ chamber simulations were initiated with starting concentrations for the nitrogen isotopologues depending on the initial NO, source. The δ^{15} N chamber simulations were initiated with starting concentrations for the nitrogen isotopologues depending on the initial NO_v source. The δ^{15} N chamber simulations were initiated with starting concentrations for the nitrogen isotopologues depending on the initial NO₂ source. For the nighttime oxidation experiments that used NO₂ as the initial NO₂ source (Exp. 6), the starting δ^{15} N(NO₂) was set to 40.5 %, which was the measured value from the NO₂ source (Matheson NO₂ tank) (40.5 ± 0.5 %; n=3). For the experiments that initialize experiments using NO (Exp. 1-4), a δ^{15} N(NO) value of 70.0±1.4 % was assumed based on previous measurements from a commercially available tank of NO (Fibiger et al., 2014). Finally, for the HONO experiments (Exp. 5), a δ^{45} N(HONO) value of 5.9±0.5 % was assumed based on the lab generation of HONO in a previous study, following a similar methodology as utilized in this study (Chai and Hastings, 2018). For the nighttime oxidation experiments that used NO₂ as the initial NO₄ source (Exp. 6), the starting $\delta^{15}N(NO_2)$ was set to 40.5%, which was the measured value from the NO_2 -source (Matheson NO_2 tank) (40.5±0.5%; n = 3). For the experiments that initialize experiments using NO (Exp. 1.4), a $\delta^{15}N(NO)$ value of 70.0±1.4\% was assumed based on previous measurements from a commercially available tank of NO (Fibiger et al., 2014). Finally, for the HONO experiments (Exp. 5), a δ¹⁵N(HONO) value of 5.9±0.5‰ was assumed based on the lab generation of HONO in a previous study, following a similar methodology as utilized in this study (Chai and Hastings, 2018). Additionally, the "chamber blank" δ15N(HNO₃) was set to 35%, which was the average of the photochemical experiments using H₂O₂ and a high initial NO concentration (Exp. 4). The base chemistry in all of the model simulations is identical and the tagging of the isotope tracers does not impact the model chemistry (Fang et al., 2021; Walters et al., 2024a). All model simulations were conducted without considering chamber wall losses. The potential impact of wall loss was evaluated through sensitivity tests that involved comparing simulated HNO emeritations and Δ^{17} O values. The sensitivity tests included a no wall loss case, wall loss based on previous estimates (Wang et al.) (Morales et al., 2021; Wang et al., 2014), and a wall loss ×10 scenario to account for uncertainty since wall loss rates were not determined in this work (Table S1). All model simulations were conducted without considering chamber wall loss. Additionally, these are gas-phase mechanisms and do not explicitly model heterogeneous reactions or acrosol chemistry. Further, given the low relative humidity conditions and dry acrosol seed conditions, organic nitrate hydrolysis was not included in the initial model. The chemical mechanism performance in simulating Δ^{17} O and δ^{15} N values and thus oxidation chemistry was evaluated using the RMSE metric (Eq. 7): $$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\Delta^{17} O_{\theta} \delta_{\theta} - \Delta^{17} O_{m} \delta_{m})^{2}}$$ (Eq. 7) where $\underline{A}^{17}\underline{O}\delta_0$ are the isotope observations, $\underline{A}^{17}\underline{O}\delta_m$ are the model simulated values, and n is the number of observations. Adjustments to the model chemistry and/or oxygen isotope mass balance were conducted to reduce the RMSE values. ### 3. Results and Discussion 495 500 505 510 515 520 ### 3.1 Isotope Observations The Δ^{17} O, δ^{18} O and δ^{15} N measurements of NO_y species offer insight into the oxidation pathways and sources contributing to their formation. In this study, we focus on interpreting the Δ^{17} O, δ^{18} O, and δ^{15} N of NO₂, HNO₃, and pNO₃ collected under a range of controlled experiments involving NO_x/ α -pinene oxidation. These observations provide constraints on the relative importance of different oxidants (e.g., O₃, OH, RO₂) and reaction mechanisms, and they also allow us to test our understanding of oxygen isotope mass-balance assumptions, O-isotope transfer dynamics, and nitrogen isotope fractionation associated with NO_x oxidation. Below, we first discuss the observed patterns in oxygen isotopes (Δ^{17} O and δ^{18} O), followed by an examination of nitrogen isotope (δ^{15} N) trends, and their implications. The $A^{17}O$, $\delta^{18}O$ and $\delta^{15}N$ measurements of NO_2 species offer insight into the oxidation pathways and sources contributing to their formation. In this study, we focus on interpreting the $A^{17}O$, $\delta^{18}O$, and $\delta^{15}N$ of NO_2 , HNO_3 , and PNO_3 collected under a range of controlled chamber conditions. These observations provide constraints on the relative importance of different oxidants (e.g., O_3 , OH, RO_2) and reaction mechanisms, and they also allow us to test our understanding of oxygen isotope mass balance assumption, O isotope transfer dynamics, and nitrogen isotope fractionation associated with NO_2 oxidation. Below, we first discuss the observed patterns in oxygen isotopes ($A^{17}O$ and $\delta^{18}O$), followed by an examination of nitrogen isotope ($\delta^{15}N$) trends and their implications. # 3.1.1 Δ^{17} O and δ^{18} O of NO_{ν} The observations indicate a significant relationship between $\delta^{18}O$ and $\Delta^{17}O$ across NO_y species ($\delta^{18}O = 11.1(\pm 1.0) + 2.42(\pm 0.04) \times \Delta^{17}O$; r = 0.992; p < 0.01) (Fig. 1A). The strong linear relationship between $\delta^{18}O$ and $\Delta^{17}O$ indicates that the oxygen isotopes of the various collected NO_y compounds derived from two dominant pools of O-sources, with high and low $\delta^{18}O$ and \triangle^{17} O values that were consistent across all experimental conditions. The observed \triangle^{17} O and δ^{18} O values of NO_v species are anticipated to reflect a balance between oxygen atom transfer from O_3 , which has high \triangle^{17} O and δ^{18} O values, and oxygen atom transfer from RO_2 , HO_2 , OH, and H_2O which have lower \triangle^{17} O and δ^{18} O values. Assuming a \triangle^{17} O(O_3^{term}) value of O_3^{term} to the O_3^{term} to the O_3^{term} to the O_3^{term} value of O_3^{term} to the O_3^{term} value of O_3^{term} to the O_3^{term} value of approximately O_3^{term} value likely reflects oxygen transfer from oxidants such as O_3^{term} and O_3^{term} value of approximately O_3^{term} value likely reflects oxygen transfer from oxidants such as O_3^{term} and O_3^{term} value of
O_3^{term} value of O_3^{term} value of approximately O_3^{term} value likely reflects oxygen transfer from oxidants such as O_3^{term} and O_3^{term} value of $O_3^$ 525 530 535 550 The derived low-end δ^{18} O oxidant value is consistent with a scenario in which these radicals are sourced from atmospheric O_2 (δ^{18} O ≈ 23 %; (Craig, 1957), but undergo isotopic fractionation during their formation and subsequent oxygen atom transfer to NO_y . Although the exact δ^{18} O enrichment factors for RO_2/HO_2 or OH formation and reaction are not well-constrained, a net isotope enrichment factor ~ -12 % is plausible, particularly for unidirectional reactions involving 18 O fractionation (Walters and Michalski, 2016). Additionally, contributions from OH could further influence the low δ^{18} O endmember, especially if oxygen atom exchange with ambient water vapor occurs (Dubey et al., 1997). Altogether, the inferred δ^{18} O of 11.1 % for the low- Δ^{17} O oxidant endmember likely represents a composite signal from multiple oxidants (RO_2 , HO_2 , OH) originating from O_2 and/or O_2 and/or O_3 modified by kinetic and equilibrium isotope effects. Despite these uncertainties, the consistent δ^{18} O- Δ^{17} O trend across O_3 products supports a two-endmember mixing model governed by oxidants with distinct isotopic values. The $\Delta^{17}O$ and $\delta^{18}O$ values increased in the order pNO₃ ($\bar{x} \pm \sigma$; $\Delta^{17}O = 10.0 \pm 3.4$ %); $\delta^{18}O = 35.0 \pm 10.1$ %); n = 7) < HNO₃ ($\Delta^{17}O = 16.7 \pm 2.0$ %); $\delta^{18}O = 50.2 \pm 4.5$ %); n = 20) < NO₂ ($\Delta^{17}O = 29.6 \pm 12.8$ %); $\delta^{18}O = 84.1 \pm 29.6$ %); n = 20]. The $\Delta^{17}O$ and $\delta^{18}O$ of NO₂, HNO₃, and pNO₃ were sensitive to the types of experiments and thus oxidant conditions (Fig. 1B). For example, NO₂ samples collected during the photochemical experiments (i.e., Exp. 1-5) indicated that $\delta^{18}O(NO_2)$ and $\Delta^{17}O(NO_2)$ increased with the initial [NO_y], the ratio of initial [NO_y]:[BVOC], and with decreasing initial [H₂O₂]. These sensitivities of $\delta^{18}O(NO_2)$ and $\Delta^{17}O(NO_2)$ reflect the balance between NO branching ratios involving O₃ versus RO₂/HO₂ (Albertin et al., 2021; Walters et al., 2018). Thus, the relative branching ratios of NO+O₃ and NO+RO₂/HO₂ changed with experimental photochemical conditions, favoring a greater proportion of NO+O₃ reactions for higher initial NO_y and lower [H₂O₂] conditions. For the nighttime oxidation experiment (Exp. 6), the $\Delta^{17}O$ and $\delta^{18}O$ reflected the initial production of N₂O₅ from the oxidation of NO₂ (from a gas cylinder) with O₃. The expected $\Delta^{17}O$ and $\delta^{18}O$ values can be calculated assuming N₂O₅ equilibrium between NO₃ and NO₂ (i.e., N₂O₅ \rightleftharpoons NO₂ + NO₃) and using O isotope mass balance (Eq. 7): $\delta(NO_2) = \frac{1}{\pi} \left(\delta(O_3^{term})\right) + \frac{4}{\pi} \left(\delta(NO_2^{tenk})\right)$ (Eq. 7) where δ refers to either Δ^{17} O or δ^{18} O, O_3^{term} refers to the O-atom at the terminal end of O_3 and O_2^{tank} refers to the O_2 from the tank source with measured Δ^{17} O and δ^{18} O values of -0.1 ± 0.1 % (n = 3) and 13.1 ± 0.2 % (n = 3), respectively. Using the assumed Δ^{17} O(O_3^{term}) of 39 ± 2 %, and the calculated δ^{18} O(O_3^{term}) incorporated into O_2^{term} (O_3^{term}) we estimate the Δ^{17} O and δ^{18} O of NO₂ for the nighttime oxidation experiment to be 7.7 \pm 0.4 % and 31.7 \pm 1.0 %, respectively, which was near their measured values from the nighttime chamber experiments of $(7.2 \pm 0.2 \%)$ and $(31.9 \pm 0.7 \%)$ (n = 3), respectively. The observations indicate a There was a significant relationship between δ¹⁸O and Δ¹⁷O across NO₄ species (δ¹⁸O = (11.1±1.0) 555 $+(2.42\pm0.04)\times\Delta^{17}$ O; r=0.992; p<0.01) (Fig. 1). The strong linear relationship between δ^{18} O and Δ^{17} O indicates that the oxygen isotopes of the various collected NO₂ compounds derived between two dominant pools of O sources, with high and low δ^{18} O and Δ^{17} O values that were consistent across all experimental conditions. The observed Δ^{17} O and δ^{18} O values of NO. species are anticipated to reflect a balance between oxygen atom transfer from O_3 , which has high $A^{17}O$ and $\delta^{18}O$ values, and oxygen atom transfer from RO₂-HO₂, OH, and H₂O which have lower $4^{17}O$ and $\delta^{18}O$ values. The high-end member $\delta^{18}O$ and 560 A¹⁷O source can reasonably be assumed to derive from O₃ term. Assuming a 4¹⁷O(O₃ term) value of 39.3±2.0 % (Ishino et al., 2017; Vicars and Savarino, 2014), would indicate a δ¹⁸O transferred from O₂ term to the NO₂ products of 106±5.0 ‰.(Craig. 1957)(Dubey et al., 1997). Assuming the low-end member O-source to have a A^{17} O of 0 %., indicates a δ^{18} O value of 11.1±1.0 ‰ transferred into the NO₂ products that could be reasonably be expected to derive from RO₂. HO₂, and OH radicals. The δ¹⁸O 565 of RO2 and HO2 has previously been assumed to be equal to that of O2 (~23 %), based on oxygen mass balance considerations and the absence of experimentally determined enrichment factors for O2-transfer during the formation of RO2/HO2-and subsequent NO oxidation to NO₂ (Michalski et al., 2012). The δ^{18} O of RO₂/HO₂ radicals has previously been suggested to be near δ¹⁸O(O₂) (Michalski et al., 2012). The derived low-endmember δ¹⁸O value of 11.1±1.0 ‰ may reflect contributions from atmospheric $O_2(\delta^{18}O \approx 23\%)$ that has undergone isotope fractionation during its incorporation to RO_2/HO_2 and subsequently 570 to NO₂ during NO oxidation, leading to a lower δ^{18} O signature incorporated into NO₂. The δ^{18} O enrichment factors for these processes remains uncertain, as to the best of our knowledge, no direct experimental or theoretical constraints exist for the ¹⁸O/¹⁶O fractionation associated with RO₂/HO₂ formation and transfer into NO₂ species. However, an enrichment factor on the order of ~ 10% is plausible for unidirectional radical transfer processes, consistent with similar magnitudes observed for reactions involving O transfer, such as NO \pm O₂, which has been theoretically calculated to be on the order of $\sim 20\%$ (Walters 575 and Michalski, 2016). In addition, the low δ^{18} O value may reflect contributions from other oxidants, such as OH. Nonetheless, the consistent $\delta^{48}O$ $\Delta^{47}O$ relationship observed across NO₄ species implies that two dominant O containing pools are driving their formation in the conducted chamber experiments. Indeed, the derived δ^{18} O value of 11.8±1.0‰ is near the atmospheric ∂¹⁸O(O₂) value of 23.2 % (Craig, 1957), which should be near the O₂ in the chamber that was from a zero-air generator. Slight differences between these values could be due to kinetic isotope effects associated RO2/HO2 reactions. In addition to RO2/HO2 580 radicals, the OH radical plays an important role in the photochemical formation of HNO2 and would be expected to proportionally transfer its O atom to the HNO₂ product. The $\Delta^{17}O$ and $\delta^{18}O$ values increased in the order pNO₂ \leq HNO₂ \leq NO₂. The $\Delta^{17}O$ and $\delta^{18}O$ of NO₂, HNO₃, and pNO₃ were sensitive to the types of experiments and their oxidant conditions. For example, NO₂ samples collected during the photochemical experiments (i.e., Exp. 1-5) indicated that $\delta^{18}O(NO_2)$ and $\Delta^{17}O(NO_2)$ increased with the initial [NO_x], the ratio of initial [NO_x]; BVOC], and with decreasing initial [H₂O₂]. These sensitivities to $\delta^{18}O(NO_2)$ and $\Delta^{17}O(NO_2)$ reflect the balance between NO branching ratios involving O_3 versus RO_2/HO_2 (Albertin et al., 2021; Walters et al., 2018). Thus, the relative branching ratios of $NO+O_3$ and $NO+RO_2/HO_2$ changed with experimental photochemical conditions, favoring a greater proportion of $NO+O_3$ reactions for higher initial NO_y and lower $[H_2O_2]$ conditions. For the nighttime oxidation experiment (Exp. 6), the $\Delta^{17}O$ and $\delta^{18}O$ reflected the initial production of N_2O_5 from the oxidation of NO_2 (from a gas cylinder) with O_3 . The expected $\Delta^{17}O$ and $\delta^{18}O$ values can be calculated assuming N_2O_5 equilibrium between NO_3 and NO_2 (i.e., N_2O_5 $\Rightarrow NO_2 + NO_3$) and using O isotope mass balance (Eq. 8): $$\frac{\delta(NO_2) = \frac{1}{\epsilon} \left(\delta(O_2^{term}) \right) + \frac{4}{\epsilon} \left(\delta(NO_2^{tank}) \right)}{(Eq. 8)}$$ where δ refers to either Δ^{17} O or δ^{18} O, O_3^{term} refers to the O atom at the terminal end of O_3 and O_2^{term} refers to the NO₂ from the tank source with measured Δ^{17} O and δ^{18} O values of 0.1 ± 0.1 % (n=3) and 13.1 ± 0.2 % (n=3), respectively. Using the assumed Δ^{17} O(O_3^{term}) of 39.3 ± 2.0 %, and the calculated δ^{18} O(O_3^{term}) incorporated into NO₂ (106 ± 5.0 %) we would estimate the Δ^{17} O and δ^{18} O of NO₂ for the nighttime oxidation experiment to be 7.7 ± 0.4 % and 31.7 ± 1.0 %, respectively, which was near their measured values from the nighttime chamber experiments of (7.2 ± 0.2 %) and (31.9 ± 0.7 %) (n=3), respectively. Fig. 1. The observed oxygen isotope delta values of various NO_y species (i.e., HNO₃, NO₂, and pNO₃) from the α -pinene/NO_y oxidation experiments-including, (A) linear regression between δ^{18} O and Δ^{17} O and (B) Δ^{17} O values of NO_y
species sorted by experiment. A strong linear correlation (blue line) was observed between δ^{18} O and Δ^{17} O. # 3.1.2 δ^{15} N of NO_y 605 610 The observed δ^{15} N of all NO₂ species exhibited a large range from -90.3 to -4.0 % (n = 47) (Fig. 2A). This large range of δ^{15} N values were significantly influenced by the δ^{15} N values of the various initial NO₂ sources that included tank-NO (Exp. 1-4), HONO (Exp. 5), and tank-NO₂ (Exp. 6). The experiments using tank-NO had the lowest δ^{15} N ($\bar{x} \pm \sigma$) of (-56.1 ± 21.3 %; n = 15). 32), followed by tank-NO₂ of $(-34.7 \pm 12.2 \%)$; n = 6), and the highest average was for the HONO experiments of $(-7.8 \pm 5.7 \%)$; n = 9). The differences in the observed δ^{15} N values by NO_y source likely reflect the isotopic composition of the initial NO_y used in each experiment. The trend in observed δ^{15} N across experiments is consistent with either measured or literature-based reports of the δ^{15} N values of the initial NO_y species. For example, the δ^{15} N of laboratory generated HONO, prepared using a similar methodology as in this study, has been reported to be $-5.9 \pm 0.5 \%$ (Chai and Hastings, 2018). This value is relatively high compared to the δ^{15} N(NO₂) from tank-NO₂ used in these experiments that was measured to be $-40.9 \pm 0.2 \%$, which is higher than the δ^{15} N(NO) of tank-NO previously reported at $-70.0 \pm 1.4 \%$ (Fibiger et al., 2014). In addition to the source δ^{15} N effects, the experiments also indicate large δ^{15} N fractionation between the various NO_y species. Overall, δ^{15} N(HNO₃) averaged $-25.9 \pm 13.0 \%$ (n = 20), which was significantly higher than both δ^{15} N(NO₂) ($-52.5 \pm 25.2 \%$; n = 20) and δ^{15} N(pNO₃) ($-72.6 \pm 22.9 \%$; n = 7) based on a two-sample t-test (p < 0.01). While δ^{15} N(NO₂) values were higher than those of δ^{15} N(pNO₃), this difference was not statistically significant based on a two-sample t-test (p > 0.05). This trend suggests that the produced HNO₃ was generally associated with a positive nitrogen isotope enrichment factor ($^{15}\varepsilon$) favoring preferential incorporation of 15 N relative to NO₂, whereas pNO₃ formation involved a negative ε , favoring incorporation of 14 N. 625 630 635 640 645 620 615 We quantified the δ^{15} N enrichment of HNO₃ and pNO₃ relative to NO₂, as $\Delta\delta^{15}$ N, (defined as δ^{15} N(product) – δ^{15} N(NO₂)) (Fig. 2B). Among the photochemical experiments initiated with NO and H₂O₂ (Exp 1-4), the average Δδ¹⁵N(HNO₃-NO₂) was consistently high averaging 33.7 ± 7.1 ‰, while the HONO experiment (Exp. 5) had a much smaller enrichment value of 0.4 \pm 1.7 %. This difference is somewhat surprising, given that both systems are expected to involve NO₂ + OH as a major pathway for HNO₃ production. The $^{15}\varepsilon$ associated with NO₂ + OH has yet to be directly measured but has been predicted in the literature with large differences in the suggested value. For example, the $^{15}\varepsilon$ for the NO₂+ OH has been suggested to be -3 % based on the reduced masses of the transition complex (Freyer et al., 1993), while it has been predicted to be +40 ‰ in the i_NRACM mechanism based on the assumption that NO₂ and the excited HNO₃ intermediate formed during the NO₂ + OH reaction achieve isotopic equilibrium prior to collisional deactivation (Fang et al., 2021). The relatively low $\Delta \delta^{15}$ N(HNO₃–NO₂) observed in the HONO experiment is more consistent with the former, while the higher $\Delta \delta^{15} N(HNO_3-NO_2)$ values in the NO/H₂O₂ experiments support the latter interpretation. The cause of this discrepancy remains unclear but may reflect differences in reaction kinetics and environmental conditions. For example, in the HONO experiment, the aerosol formation peak (Fig. 3) and HNO₃ production (Fig. S1) occurred relatively rapidly compared to the NO/H₂O₂ experiments. This timing shift may potentially alter the influence of nitrogen isotope fractionation effects such as NO_x photochemical equilibrium. Additional isotope effects may also contribute, such as fractionation during HONO photolysis, unknown mass-dependent processes, or experimental artifacts including wall loss or residual background levels. Further investigation is needed to isolate and quantify the influence of these factors. In the nighttime experiment (Exp. 6), $\Delta \delta^{15}$ N(HNO₃–NO₂) was also elevated with an average value of 22.2 ± 1.4 ‰. The cause of the nighttime ¹⁵N enrichment in the generated HNO₃ relative to NO₂ is likely due to isotopic effects associated with the NO₂ \pm NO₃ \rightleftharpoons N₂O₅ equilibrium, which has been predicted to have $^{15}\varepsilon$ of 25.5 % at 300 K (Walters and Michalski, 2016b) falling near the observed value for the nighttime experiments (Fig. 2B). The $\Delta\delta^{15}$ N(pNO₃–NO₂) values were consistently negative, averaging -13.6 ± 5.8 % across the photochemical experiments. This value suggests that pNO₃ formation involved reactions that preferentially favored 14 N. Before speculating on the cause of the low observed $\Delta\delta^{15}$ N(pNO₃–NO₂), it is essential to first determine the chemical composition of the produced pNO₃ and whether it originates primarily from inorganic or organic nitrate. 650 655 660 665 670 675 The observed $\delta^{15}N$ of all NO, species exhibited a large range from 90.3 to 4.0 % (n = 47) (Fig. 2A). This large range of $\delta^{15}N$ values were significantly influenced by the δ¹⁵N values of the various initial NO₄ sources that included tank NO (Exp. 1-4), HONO (Exp. 5), and tank NO₂ (Exp. 6) ($p \le 0.01$). The experiments using tank NO had the lowest δ^{15} N ($\bar{x}\pm s$) of (56.1±21.3 $\frac{1}{100}$ %: n = 32), followed by tank NO₂ of ($\frac{34.7 \pm 12.2}{100}$ %: n = 6), and the highest average was for the HONO experiments of ($7.8\pm5.7\%$; n=9). (Chai and Hastings, 2018)(Fibiger et al., 2014) This trend of δ^{15} N values tracks with the initial measured or assumed δ^{15} N source value, in which δ^{15} N of the generated HONO (assumed to be -5.9 ± 0.5 ‰) (Chai and Hastings, 2018) was higher than the measured NO₂ tank ($40.9\pm0.2\%$; n=3), and the NO tank (assumed to be $70.0\pm1.4\%$) (Fibiger et al., 2014). This finding provides evidence that old No. and be used as a qualitative tracer to track NO. emissions for sources with large differences in their emission δ^{15} N signatures. However, the experiments also demonstrate large δ^{15} N fractionation between the various NO₄ species for each experiment and initial NO₄ source. Overall, 6¹⁵N(HNO₄) averaged 25.9±13.0 % (n = 20) and was significantly higher than both $\delta^{15}N(NO_2)$ (52.5 ±25.2 %); n = 20) and $\delta^{15}N(pNO_2)$ (72.6±22.9 %); n = 7) based on a twosample t test $(p \le 0.01)$. While $\delta^{15}N(NO_2)$ values were higher than those of $\delta^{15}N(pNO_2)$, this difference was not statistically significant based on a two sample t test (p > 0.05). This trend suggests that the produced HNO₃ was generally associated with a positive isotope fractionation (c) that favored the preferential formation of 15N into HNO₃-relative to NO₂-This difference compared to HNO₂ provides support that the generated pNO₂ did not derive from HNO₂ and instead derived from another source such as organic nitrate. Conversely, the hydrolysis of pNO₂ is likely not a main contributor to HNO₂ due to their large δ¹⁵N differences. Overall, there were significant differences in the δ^{15} N of the various NO₂ species (p < 0.01). Overall, δ^{15} N(HNO₃) that averaged $-25.9\pm13.0\%$ (n = 20) were higher than δ^{15} N(NO₂) that averaged $-52.5\pm25.2\%$ (n = 20), which were higher than δ^{15} N(pNO₃) that averaged $-72.6\pm22.9\%$ (n = 7). This trend suggests that the produced HNO₃ was associated with a positive isotope fractionation (c) that favored the preferential formation of 15 N into HNO₃ relative to NO₂. We quantified the δ^{15} N enrichment of HNO₃ and pNO₃ relative to NO₂, as $\Delta\delta^{15}$ N, (defined as δ^{15} N(product) $-\delta^{15}$ N(HNO₃)) (Fig. 2B). Among the photochemical experiments initiated with NO and H₂O₂ (Exp 1 4), the average $\Delta\delta^{15}$ N(HNO₃ NO₂) was consistently high (value XX), while the HONO experiment (Exp. 5) deviated significantly with a much smaller enrichment (value). This difference is somewhat surprising, given that both systems likely involve NO₂ + OH as a major pathway for HNO₃ production. (Freyer et al., 1993)(Fang et al., 2021)Previous work has estimated a wide range of enrichment factors (^{15}c) for this reaction: Freyer et al. calculated a small inverse isotope effect of -3% based on reduced mass assumptions, whereas more recent studies suggest a 680 large positive enrichment up to +40 \, attributed to equilibrium partitioning between NO2 and an excited HNO1 intermediate. The low enrichment observed in the HONO experiment is more consistent with the former, while the higher values in the NO/H₂O₂-experiments support the latter interpretation. The cause of this discrepancy remains unclear but may reflect differences in reaction conditions or competing reaction pathways. In the nighttime experiment (Exp. 6), 46^{15} N(HNO₃-NO₂) was also elevated (+22.2 %), suggesting that even under nocturnal oxidation conditions, a positive enrichment in ¹⁵N occurred. 685 This may be due to isotopic effects associated with the $N_2O_5 \rightleftharpoons NO_2 + NO_3$ equilibrium (Walters and Michalski, 2016b). While N₂O₅ has been estimated to be enriched in 15N by several per mil relative to NO₂. NO₃ is predicted to be depleted relative to NO2. However, uncertainty remains in
quantifying this equilibrium effect due to challenges in accurately modeling NO2 vibrational frequencies (cite). In contrast, $\Delta \delta^{15} N(pNO_3 NO_2)$ values were consistently negative, averaging 13.6 ± 6.2 % across experiments. These values suggest that pNO, formation involved reactions that preferentially excluded 15N. One likely 690 explanation is the influence of NO₂/NO equilibrium, which enriches NO₂ in ¹⁵N relative to NO (Frever et al., 1993; Li et al., 2020: Walters et al., 2016)(cite), followed by NO reactions with RO₂ to form RO₂NO₂ intermediates that carry a lower δ¹⁵N signature. This kinetic isotope effect pathway likely drives the observed depletion in pNO₃ relative to NO₂. (Here talk about Dd15N). The isotope fractionation (¹⁵α) associated with NO₂ + OH has yet to be directly measured but has been precited in the literature with large differences in the suggested value. For example, ¹⁵α(NO₂+OH) has been suggested to be 0.997 based on the reduced masses of the transition complex (Freyer, 1991), while it has been predicted to be 1.040 in the i_NRACM mechanism_based on the assumption that NO₂ and the excited HNO₃ intermediate formed during the NO₂ + OH reaction achieve isotopic equilibrium prior to collisional deactivation. (Fang et al., 2021). The higher precited ¹⁵α(NO₂+OH) value of 1.040 would be consistent with the trend of elevated ¹⁵N in HNO₃ relative to NO₂. The δ¹⁵N(pNO₃) values were lower than δ¹⁵N(NO₂). This difference compared to HNO₃ provides support that the generated pNO₃ did not derive from HNO₃ and instead derived from another source such as organic nitrate. Conversely, the hydrolysis of pNO₂ is likely not a main contributor to HNO₂ due to their large δ^{15} N differences. The low δ^{15} N(pNO₃) values would reflect the influence of NO₃ isotope exchange, which depletes NO in ¹⁵N relative to NO₂ (Freyer et al., 1993; Li et al., 2020; Walters et al., 2016). The ¹⁵N depleted NO can then react with α -pinene derived peroxy radicals leading to organic nitrate production with a low δ^{15} N value relative to δ^{15} N(NO₂). This trend in δ^{15} N(NO₃) followed all experiments except for the HONO experiments (Exp. 5), in which δ^{15} N(NO₂) (5.8±1.8 %; n = 4) were insignificantly different from the δ^{15} N(HNO₃) (6.2±0.7 ½%; n = 4) (p>0.05). Fig. 2. (A) The observed δ^{15} N of various NO_y species (i.e., HNO₃, NO₂, and pNO₃) collected during the various conducted α -pinene/NO_y oxidation experiments. The measured δ^{15} N were sorted by the various starting NO_y sources, including HONO (δ^{15} N = 5.9±0.5%), tank-NO (δ^{15} N = 70.0±1.4%), and tank-NO₂ (δ^{15} N = 40.9±0.2%). (B) Calculated $\Delta\delta^{15}$ N values for each experiment, defined as the δ^{15} N difference between HNO₃ and NO₂, and between pNO₃ and NO₂. Data represent experiment-specific averages, with error bars reflecting the propagated standard deviation. ### 3.2 Particle Nitrate Composition The generated pNO₃ could have both inorganic (i.e., HNO₃ condensation) and organic (i.e., organic nitrate condensation) contributions. The δ^{15} N data qualitatively indicates that the pNO₃ derived from a separate source than HNO₃ due to their large δ^{15} N differences, which would suggest that pNO₃ was derived primarily from organic nitrate. For example, the observed δ^{15} N difference between HNO₃ and pNO₃ that averaged 46.7 ‰ suggests that these species may originate from distinct sources. Given that inorganic nitrate would typically equilibrate isotopically between HNO₃ and NO₃ with an expected offset of only ~1–3 ‰, and often slightly enriched in pNO₃ (Bekker et al., 2023), the substantially lower δ^{15} N values observed in pNO₃ imply that the collected nitrate may originate from organic nitrate species or NO_y formation pathways unique from HNO₃ production. 730 735 740 725 We utilized the HR-ToF-AMS NO⁺ and NO₂⁺ data to evaluate the contributions of pNO₃ for the experiments. The f(pNO₃, Org) was calculated according to Eq. 5 for each of the conducted experiments (Table 3). Overall, f(pNO₃, Org) was calculated to have a mean of $(1.25 \pm 0.04; n=8)$, indicating that the generated pNO₃ derived from organic nitrate. The calculated $f(pNO_3, n=8)$ Org) was higher than 1 even when considering uncertainty estimates. This could be due to calculating $R_{\rm ON}$ values from reported $R_{\rm ON}/R_{\rm AN}$ ratios from previously conducted α -pinene oxidation experimental conditions conducted utilizing substantially lower $(\sim \times 10)$ initial precursor concentrations (Takeuchi and Ng, 2019). Thus, due to the potential uncertainty in our approach in estimating f(pNO₃, Org), the composition of the generated pNO₃ was also investigated using a qualitative approach involving evaluating the relative change in the molar ratio of NH₄/SO₄ from the HR-ToF-AMS (Fig. S2). For each type of experiment, we found the NH₄/SO₄ molar ratio to be consistently near 1.5. This type of NH₄/SO₄ profile is consistent with the generated pNO₃ deriving from organic nitrate, as the dissolution of HNO₃ into aqueous aerosol followed by neutralization with available NH₃ would be expected to lead to an abrupt increase in the molar ratio of NH₄/SO₄ (Takeuchi and Ng, 2019). Furthermore, the acidic nature of the particles and limited availability of NH₄⁺ likely inhibited HNO₃ uptake, suppressing condensation pathways and reinforcing the interpretation that pNO₃ originated predominantly from organic nitrate formation. Overall, both the quantitative and qualitative analysis of pNO₃ composition utilizing the AMS data as well as our δ^{15} N data indicates that pNO₃ was mainly derived from organic nitrate. Hereafter, we assume that the NO₃ extracted from the filter collections derived from organic nitrate. 745 750 The generated pNO₃-could have both inorganic (i.e., HNO₃-condensation) and organic (i.e., organic nitrate condensation) contributions. The δ¹⁵N data would <u>qualitatively</u> indicate that the pNO₃ appeared to derive from a separate source than HNO₃ due to their large δ¹⁵N differences, suggesting that pNO₃-was derived primarily from organic nitrate. For example, the observed δ¹⁵N difference between HNO₃ and pNO₃ that averaged 46.7 ‰ suggests that these species may originate from distinct sources. Given that inorganic nitrate would typically equilibrate isotopically between HNO₃ and NO₃-with an expected offset of only 1-3 ‰, and often slightly enriched in pNO₃ (Bekker et al., 2023), the substantially lower δ¹⁵N values observed in pNO₃ imply that the collected nitrate may originate from organic nitrate species or NO₄ formation pathways unique from HNO₃ production. We also utilized the HR ToF AMS NO⁺ and NO₂⁺ data to evaluate the contributions of pNO₃ for the experiments. The f(pNO₃, Org) was calculated according to Eq. 5 for each of the conducted experiments (Table 2). Overall, f(pNO₃, Org) was calculated to have a mean of (1.25 ± 0.04; n=8), indicating that the generated pNO₃ derived from organic nitrate. The calculated f(pNO₃, Org) was higher than 1 even when considering uncertainty estimates. This could be due to deriving calculating RoN values from previously reported RoN/RAN ratios from previously conducted α pinene oxidation experimental conditions conducted utilizing substantially lower initial precursor concentrations by approximately a factor of 10 (Takeuchi and Ng, 2019). Thus, due to the potential uncertainty in our approach in estimating f(pNO₃, Org), the composition of the generated pNO₃ was also investigated using a qualitative approach involving evaluating the relative change in the molar ratio of NH₄/SO₄ from the HR ToF AMS (Fig. S2). For each type of experiment, we found the NH₄/SO₄ molar ratio to be consistently near 1.5. This type of NH₄/SO₄ profile is consistent with the generated pNO₃ deriving from organic nitrate, as the dissolution of HNO₃ into aqueous aerosol followed by neutralization with available NH₃ would be expected to lead to an abrupt increase in the molar ratio of NH₄/SO₄ (Takeuchi and Ng, 2019). Overall, both the quantitative and qualitative analysis of pNO₃-composition utilizing the AMS data as well as our δ^{15} N data indicates that pNO₃-was mainly derived from organic nitrate. Further, while gas-phase organic nitrates (e.g., RONO₂-RO₂-NO₂) can be present and were detected by CIMS measurements, the strong agreement between filter based and AMS based pNO₃-measurements supports that the nitrate extracted from acrosol filters was primarily derived from particle-phase organic nitrate rather than from gas phase organic nitrate contributions. Hereinafter, we will assume that the NO₃-extracted from the filter collections derived from organic nitrate. 775 Table 32. Summary of the HR-ToF-AMS data including NO⁺/NO₂⁺ fragmentation data (*Robs*), calculated *f*(pNO₃, Org)-, maximum pNO₃ (Max(pNO₃)). Additionally, we quantified the amount of pNO₃ from the PILS (PILS/AMS) and the filter collection relative to the HR-ToF-AMS (Filter/AMS). <u>Uncertainties for pNO₃ quantification and intercomparison ratios are reported in parentheses.</u> | Exp. | $R_{obs}(\bar{\mathbf{x}} \pm \mathbf{\sigma})$ | f(pNO ₃ , Org) | Max(pNO ₃) | PILS/AMS | Filter/AMS | |------|---|--|------------------------|----------|-----------------------| | | | $(\bar{\mathbf{x}}_{\underline{-}}\pm\underline{\boldsymbol{\sigma}})$ | (µg m ⁻³) | (%) | (%) | | | | | (±14_%) | (±24 %) | (± 1724 %) | | 1 | 3.36_±_0.30 | 1.26_±_0.10 | 13.8 | 41.8 | 97.8 | | 1R | 3.16_±_0.21 | 1.19_±_0.08 | 13.3 | 37.8 | 83.5 | | 2 | 3.36_±_0.13 | 1.27_±_0.05 | 25.9 | 33.2 | 105.3 | | 3 | 3.32 _± 0.21 | 1.25_±_0.09 | 27.4 | NA | 80.5 | | 4 | 3.18_±_0.32 | 1.20_±_0.13 | 25.5 | 42.1 | 75.8 | | 4R
 3.40_±_0.33 | 1.27_±_0.14 | 15.0 | NA | 76.1 | | 5 | 3.49_±_0.25 | 1.31_±_0.11 | 24.7 | NA | 59.5 | |---|-------------|-------------|------|----|------| | 6 | 5.63_±_0.49 | 1.25_±_0.11 | 38.6 | NA | 7.6 | The pNO₃ measured by the HR-ToF-AMS indicated similar profiles for the various types of conducted experiments, in which pNO₃ concentrations peaked and subsequently decayed due to wall loss and chamber dilution (Fig. 3). Overall, the maximum pNO₃ concentrations ranged from 13.3 to 38.6 µg m⁻³, depending on the experiment across the various experiments (Table 23). The typical measurement uncertainty for pNO₃ quantification using the HR-ToF-AMS is approximately ±14 % (Bahreini et al., 2009; Takeuchi et al., 2024). Given that we assume 100% of the particulate nitrate is organic nitrate (i.e., f(pNO₃, Org) = 1, the uncertainty in pNO₃ concentration is based solely on the AMS nitrate measurement error, estimated at ±14 %. The lowest maximum pNO₃ -corresponded to the experimental conditions with low initial NO_x relative to H₂O₂ and BVOC conditions (i.e., Exp 1). In contrast, the highest maximum pNO₃ occurred during the nighttime oxidation experiments (i.e., Exp 6). The pNO₃ concentrations determined from the HR-ToF-AMS were compared with additional measurement techniques, including the PILS and the filter collections for offline analysis (Fig. 3; Table 2). The PILS pNO₃ measurements were available for 4 out of the 8 conducted experiments and indicated a similar time profile as the HR-ToF-AMS; however, the PILS pNO₃ observations were always lower than the HR-TOF-AMS with the amount of pNO₃ determined from PILS relative to the HR-ToF-AMS (PILS/AMS) ranging between 33.2 % to 53.8 %. The uncertainty associated with pNO₃ quantification by the PILS system is approximately ±20 % (Guo et al., 2016). Accordingly, the propagated uncertainty for the PILS/AMS ratio is approximately ±24 %%. -The pNO₃ quantified using filter collection and extraction technique was higher than the PILS and in closer agreement with the HR-ToF-AMS for most of the photochemical experiments. For the photochemical experiments (Exp. 1-5), the pNO₃ determined using the filter collection relative to the HR-ToF-AMS (Filter/AMS) for the photochemical experiments ranged between 59.5 to 105.3% and averaged 86.5±12.354% (n=7). The filter collection technique has an estimated uncertainty for pNO₃ quantification of approximately ±420%, based on the average relative percent difference-standard deviations from side-by-side ChemComb filter pack measurements of ambient air using Nylon filters (Blum et al., 2020). Although different filters were used in this study, the same collection system and mass flow controllers were employed, and we therefore expect a comparable difference between system replicates. Accordingly, the propagated uncertainty for the Filter/AMS ratio of ±4724%. However, the filter collection resulted in nearly negligible pNO₃ for the nighttime oxidation experiments (i.e., Exp. 6). The pNO₃-concentrations determined using the PILS were always lower than that determined by the HR ToF AMS and the offline filter collection technique, which would indicate that that not all the collected pNO₃, which were shown to mainly derive from organic nitrate, were hydrolyzed to NO₃-(aq) within the PILS chamber before quantification via Ion Chromatography. The filter collection and extraction method (i.e., leach in MQ water for 1 week), enabled the successful hydrolysis of the collected pNO₃-to NO₃-(aq) from the photochemical experiments, an important pre-requisite for subsequent isotope analysis. The filter collection technique, however, resulted in near negligible pNO₃ for the nighttime oxidation experiments, limiting our ability to measure the isotope composition of pNO₃ from this experiment. This difference in the efficacy of the offline filter collection technique for pNO₃ characterization between the photochemical and nighttime oxidation experiments could be related to the type of organic nitrate formed during the conducted experiments. The photochemical α-pinene oxidation experiments have been suggested to result in higher relative production of tertiary organic nitrate, while nighttime oxidation leads to a relatively lower fraction of tertiary organic nitrate with estimated values of 62_% and 15_%, respectively (Zare et al., 2018). Recent work has suggested a hydrolysis lifetime of no more than 30 minutes and a hydrolyzable portion of particulate organic nitrate from α pinene oxidation experiments between 23-32_% and 9-17_% for α pinene + OH and α pinene + NO₃ reactions, respectively (Takeuchi and Ng, 2019). The offline filter collection and extraction technique follows the observed trend of a greater proportion of pNO₃ hydrolyzed to NO₃-toul in photochemical experiments (82.6 ± 14 %; n = 7) compared to nighttime conditions (7.6 %; n = 1). This is inferred based on the relative amount of quantified NO₃-toul from the filter extraction solution to the total pNO₃ measured by HR Tof-AMS. However, the filter based method suggests a higher proportion of potentially hydrolyzable pNO₃ in the photochemical experiments than previously reported estimates. The offline filter collection and extraction technique matches the trend in which more pNO₃ hydrolyzed for the photochemical experiments compared to the nighttime; however, the filter technique would indicate a higher proportion of potential hydrolysable pNO₃ from photochemical experiment than these previous estimates, though with a different timescale. From these results and comparisons, we speculate conclude that the pNO₃ offline filter measurements to encompass the hydrolysable portion of pNO₃ within a week (as the filter samples were extracted and leached in MQ for at least one week), while the HR ToF AMS measurements represent the total pNO₃, and the PILS measurements correspond to the readily hydrolysable portion of pNO₃. Further, the box model simulations of organic nitrate speciation indicate that the nighttime organic nitrate was dominated by the formation of dimer, pinene dinitrate, as well as secondary hydroxyl nitrate (Fig. S3). If this speciation is correct, the results imply that these organic nitrate compounds are effectively non-hydrolyzable under aqueous conditions. If this speciation is correct, the results would suggest that these types of organic nitrate were not readily hydrolysable. Our results demonstrate that organic nitrate aerosols (pRONO₂) can hydrolyze and contribute to the NO₃⁻ measured in aerosol extracts. While our chamber experiments were conducted under controlled conditions with relatively low relative humidity (~30 %) and dry aerosol seeds, they highlight the need to consider that NO₃⁻ collected on filters may originate from both inorganic nitrate (derived from HNO₃-uptake) and hydrolyzed organic nitrate. However, we caution that these findings do not imply that all pNO₃ observed in ambient field measurements is organic in origin. Further, while gas phase organic nitrates (e.g., RONO₂, RO₂NO₂) can be present and were detected by CIMS measurements, the strong agreement between filter based and AMS based pNO₃-measurements supports that the nitrate extracted from aerosol filters was primarily derived from particle-phase organic nitrate rather than from gas phase organic nitrate contributions. (Li et al., 2020; Walters et al., 2016) The pNO₃ concentrations determined using the PILS were always lower than that determined by the HR-ToF-AMS and the offline filter collection technique, which would indicate that that not all collected pNO₃, which were shown to mainly derive from organic nitrate, were hydrolyzed to NO₃- $\tau_{(aq)}$ within the PILS chamber before quantification via Ion Chromatography. The filter collection and extraction method (i.e., leach in MQ water for 1 week), enabled the successful hydrolysis of the collected pNO₃ to NO₃- $\tau_{(aq)}$ from the photochemical experiments, an important pre-requisite for subsequent isotope analysis. The filter collection technique, however, resulted in near negligible pNO₃ for the nighttime oxidation experiments, limiting our ability to measure the isotope composition of pNO₃ from this experiment. This difference in the efficacy of the offline filter collection technique for pNO₃ characterization between the photochemical and nighttime oxidation experiments could be related to the type of organic nitrate formed during the conducted experiments. The photochemical α -pinene oxidation experiments have been suggested to result in higher relative production of tertiary organic nitrate, while nighttime oxidation leads to a relatively lower fraction of tertiary organic nitrate with estimated values of 62 % and 15 %, respectively (Zare et al., 2018). Recent work has suggested a hydrolysis lifetime of no more than 30 minutes and a hydrolyzable portion of particulate organic nitrate from α -pinene oxidation experiments between 23-32 % and 9-17 % for α -pinene + OH and α -pinene + NO₃ reactions, respectively (Takeuchi and Ng, 2019). The offline filter collection and extraction technique follows the observed trend of a greater proportion of pNO₃ hydrolyzed to NO₃ (aq) in photochemical experiments (82.6 ± 14 %; n = 7) compared to nighttime conditions (7.6 %; n = 1). This is inferred based on the relative amount of quantified NO₃ (aq) from the filter extraction solution to the total pNO₃ measured by HR-ToF-AMS. However, the filter-based method suggested a higher proportion of potentially hydrolyzable pNO₃ in the photochemical experiments than previously reported estimates. From these results and comparisons, we conclude that the pNO₃ offline filter measurements encompass the hydrolysable portion of pNO₃ within 1 week, while the HR-ToF-AMS measurements represent the total pNO₃, and the PILS measurements correspond to the readily hydrolysable portion of pNO₃. Further, the box model simulations (see below) of organic nitrate
speciation indicate that the nighttime organic nitrate had a high fraction of dimer and pinene dinitrate (Fig. S3). If this assignment is correct, the results imply that these organic nitrate compounds are effectively non-hydrolyzable under aqueous conditions. Our results demonstrated that organic nitrate aerosols (pRONO₂) can hydrolyze and contribute to the NO₃⁻ measured in aerosol extracts. While our chamber experiments were conducted under controlled conditions with low relative humidity (~30 %) and dry aerosol seeds, they highlight the need to consider that NO₃⁻ collected on filters may originate from both inorganic nitrate (derived from HNO₃ uptake) and hydrolyzed organic nitrate. However, we caution that these findings do not imply that all pNO₃ observed in ambient field measurements is organic in origin. The extent to which organic nitrate contributes to pNO₃ in field settings will depend on regional BVOC emissions, which govern precursor availability, as well as environmental factors such as aerosol pH and relative humidity, which influence the lifetime and hydrolysis rates of pRONO₂ prior to filter collection. Further, while gas-phase organic nitrates (e.g., RONO₂, RO₂NO₂) can be present and were detected by CIMS measurements during the experiments, the strong agreement between filter-based and AMS-based pNO₃ measurements supports that the nitrate extracted from aerosol filters was primarily derived from particle-phase organic nitrate rather than from gas-phase organic nitrate contributions. Finally, given that the collected pNO₃ was predominantly derived from RONO₂, the negative $\Delta \delta^{15}$ N(pNO₃ – NO₂) values (Fig. 2B) suggest a preferential incorporation of ¹⁴N into the RONO₂ product. This is consistent with a NO₂ photochemical equilibrium in which ¹⁵N is enriched in NO₂, leaving NO relatively depleted in ¹⁵N (Li et al., 2020; Walters et al., 2016). Subsequent reaction of this ¹⁵N-depleted NO with RO₂ forms RONO₂, thereby transferring the isotopically lighter nitrogen signature into RONO₂ that then condenses to the particle phase and is hydrolyzed to NO₃⁻. 880 The extent of pRONO₂ hydrolysis in the atmosphere will depend on environmental factors such as aerosol liquid water content, relative humidity, and aerosol acidity. Fig. 3. The observed pNO₃ concentration data are shown for each of the conducted experiments. Concentrations were determined using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), a particle-into-liquid sampler (PILS), and filter collection (Filter). The start of chamber dilution is indicated by the dashed vertical lines, corresponding to the abrupt decrease in pNO₃, The lighter shaded regions correspond to the measurement uncertainty for the various analytical techniques. The observed pNO₂ concentration data are shown for each of the conducted experiments. Concentrations were determined using a High-Resolution Time of Flight Acrosol Mass Spectrometer (HR-ToF-AMS), a particle-into-liquid sampler (PILS), and filter collection (Filter). The start of chamber dilution is indicated by the dashed vertical lines, corresponding to the abrupt decrease in pNO₃. The lighter colored shaded region corresponds to the measurement uncertainty for the various analytical techniques. The observed pNO₃ concentrations are faceted by the various experiments conducted. The concentrations were determined using the High Resolution Time of Flight Acrosol Mass Spectrometer (HR-ToF-AMS), particle into liquid sampler (PILS), and filter collection (Filter). The start of the chamber dilution is indicated by the dashed vertical lines, corresponding to the abrupt decrease in pNO₂. ### 3.3 Model Simulations 895 900 905 910 920 925 To further interpret the experimental results, we employed a box model to simulate the formation and evolution of NO_y species and their $\Delta^{17}O$ values. We begin by examining the developed gas-phase chemical mechanism (NO_x -API) simulation of the initial aerosol precursor decay including α -pinene and NO. For comparison, simulations were also conducted using established gas-phase chemical mechanisms that included RACM2 and the MCM to evaluate the treatment of α -pinene oxidation and organic nitrate formation oxidation chemistry across different chemical frameworks for a range of experimental conditions. Model sensitivity tests were then conducted to assess the impact of key physical parameters that included chamber dilution rate and wall loss rates on simulated $\Delta^{17}O$ values. Finally, we compare the modeled $\Delta^{17}O$ values of NO_y species with experimental observations to evaluate the model's ability to reproduce isotopic values under different photochemical and nighttime oxidation conditions. ### 915 3.3.1 Precursor Decay Box model simulations were conducted to evaluate the oxidation and decay of precursors used in the experiments, ensuring that the correct amount of oxidant was accurately simulated. For all the photochemical experiments, the box model utilizing The MCM, RACM2, and NO_x-API chemical the USC API mechanisms were used to was able to well simulate the decay of α-pinene and NO_x with results compared against experimental observations (Fig. 4-5). Model performance was evaluated by comparing measured and modeled concentrations of NO and α-pinene using one-to-one plots, with corresponding R² values and quantification of model biases (Figs. S4–S5) and Table 4 summarizes these results. The model fit for α pinene decay using the NO_x-API mechanism had an average R² of 0.97±0.03 with an average absolute residual of for all experiments 8.6±3.8 ppb (Fig. SX). For NO decay, the NO_x (Fig. 4-5). ThAPI mechanism had an average R² of 0.97±0.03, with an average absolute residual of 9.6±10.7 ppb (Fig. SX). Comparatively, the MCM mechanism had slightly lower performance, with an average R² of 0.84±0.19 for α pinene (average absolute residual: 21.7±12.9 ppb) and had an average R² of 0.86±0.21 for NO (average absolute residual: 21.2±24.4 ppb). The RACM2 mechanism also showed slightly weaker performance with an average R^2 of 0.89±0.16 for α -pinene (average absolute residual: 17.7±13.5 ppb) and had an average R^2 of 0.92±0.03 for NO (average absolute residual: 17.6±23.9 ppb). Experiment 6 (nighttime oxidation) was excluded from the NO model measurement comparison because NO was not used as an initial reactant in that experiment. Overall, the NO₁-API mechanism provided improved model performance, evidenced consistently higher R^2 values (averaging 0.97 ±0.03) and lower absolute residuals for both a-pinene and NO decay compared to the other mechanisms. is comparison indicates that the developed mechanism well represents the exidation of α pinene and formation of exidents under a wide range of experimental conditions. The simulations using the USC API mechanism was a vast improvement compared to using the RACM2 or the MCM subset for α pinene chemistry for simulating NO and α pinene decay for the photochemical experiments (Exp. 1-5). We attribute this enhanced model performance to the simplified treatment of higher-generation products in the NO_x-API mechanism. Unlike MCM and RACM2, which allow continued gas-phase reactions of all products through extensive reaction propagation, the NO_x-API mechanism terminates the chemistry of these products after a limited number of steps. which allow continued gasphase reactions of secondary and tertiary products, the NO. API mechanism does not propagate these products. Given that the box-model simulatessimulations does not include an explicit aerosol-phase treatment, continued gas-phase reactivity of condensable species (as implemented in MCM and RACM2) may unrealistically distributed isrupt the oxidant budget. Therefore, the NO_x-API mechanism as employed in the box model is better aligned with the experimental design and will be used for subsequent Δ^{17} O simulations of the chamber experiments. 930 935 940 945 Fig. 4. The observed (orange data points) and the modeled (lines) α-pinene decay for the various conducted experiments. The modeled results are based on three chemical mechanisms: MCM (black), RACM2 (grey), and USCNO_x-API (light blue). Insets highlight the initial decay period from 0 to 100 minutes. Fig. 5. The observed (orange data points) and the modeled (lines) NO decay for the various conducted photochemical experiments. The NO observations for Experiment 6 were not available. The modeled results are based on three chemical mechanisms: MCM (black), RACM2 (grey), and USCNO_x—API (light blue). Experiment 6 (nighttime oxidation) was omitted from the analysis as NO was not among the initial reactants. Insets highlight the initial decay period from 0 to 50 minutes. Table 4. Summary of model performance for α-pinene and NO using the NO_x-API, RACM2, and MCM mechanisms. Values represent the average coefficient of determination (R²) and average mean residuals (in ppb) across all experiments, with associated standard deviations. | Mechanism | <mark>α-pi</mark> | <mark>nene</mark> | NO | | | | |----------------------|------------------------|-------------------|------------------------|-----------------|--|--| | | Average R ² | Average | Average R ² | <u>Average</u> | | | | | | Mean | | <u>Mean</u> | | | | | | Residual | | Residual | | | | | | (ppb) | | (ppb) | | | | NO _x -API | 0.97 ± 0.03 | 8.6 ± 3.8 | 0.97 ± 0.03 | 9.6 ± 10.7 | | | | RACM2 | 0.89 ± 0.16 | 17.7 ± 13.5 | 0.92 ± 0.03 | 17.6 ± 23.9 | | | | MCM | 0.84 ± 0.19 | 21.7 ± 12.9 | 0.86 ± 0.21 | 21.2 ± 24.4 | | | ## 980 3.3.2 <u>A¹⁷O Model Sensitivity to Dilution and Wall Loss Model Sensitivity Tests</u> 985 990 Before comparing modeled Δ^{17} O values to observations, we first evaluated the model's sensitivity to our treatment of key physical parameters, including chamber dilution and wall loss,
and their potential impact on the simulated Δ^{17} O (Fig. 6). These sensitivity tests focused on Experiment 1, one of the longest-duration experiment, where dilution and wall loss would be expected to exert the strongest influence on gas-phase chemistry and Δ^{17} O values. The impact of chamber dilution was assessed using four scenarios: no dilution, and first-order dilution rate constants (k_{dil}) of 1×10^{-5} , 5×10^{-5} , and 1×10^{-4} s⁻¹ (Fig. 6A). Dilution was initiated at t = 208 minutes in the model to match the experimental protocol. Across all scenarios, simulated Δ^{17} O of the total organic nitrate (ONIT = ONITa + ONITb + ONITc + ONITOOHa + ONITOOHb + DIMER + PDN) values were minimally impacted by dilution. For instance, Δ^{17} O(ONIT) varied by only 0.06 % between the no-dilution and highest dilution rate constant scenario ($k_{\text{dil}} = 1 \times 10^{-4} \text{ s}^{-1}$), corresponding to a relative difference of -1.1 %. This insensitivity reflects the fact that organic nitrate chemistry was largely completed by the time dilution began. In contrast, simulated Δ^{17} O values for HNO₃ and NO₂ were more sensitive to the dilution rate. Between the no-dilution and lowest dilution rate constant scenario ($k_{\text{dil}} = 1 \times 10^{-5} \text{ s}^{-1}$), Δ^{17} O(HNO₃) and Δ^{17} O(NO₂) changed by only -0.01 % (corresponding to a relative difference of -0.2 %) and -0.11 % (-0.7 %), respectively. However, increasing the dilution rate constant from 1 × 10⁻⁵ to 5 × 10⁻⁵ s⁻¹ led to additional decreases of 0.32 ‰ (-5.0 %) for HNO₃ and 0.88 ‰ (-5.6 %) for NO₂. The most extreme dilution rate constant scenario (k_{dil} = 1 × 10⁻⁴ s⁻¹) reduced △¹⁷O by a total of 0.50 ‰ (-7.9 %) for HNO₃ and 1.62 ‰ (-10.3 %) for NO₂ relative to the no-dilution case. For the main box model simulations, we adopted a dilution rate constant of 3.47 × 10⁻⁵ s⁻¹, corresponding to a measured flow rate of 25 LPM in a 12 m³ chamber. Assuming no more than ±20 % uncertainty in the actual flow rate, we estimate that the resulting uncertainty in simulated △¹⁷O values due to dilution would be approximately ±2.5 % for HNO₃, ±3 % for NO₂, and less than ±1 % for ONIT. These estimates are based on the observed △¹⁷O variation between the 1 × 10⁻⁵ and 5 × 10⁻⁵ s⁻¹ scenarios. 005 010 015 020 changes 4¹⁷O values for Exp. 1 conditions (Fig. 6). Next, we evaluated the potential influence of chamber wall loss on the simulated △17O values (Fig. 6B). Three scenarios were tested: (1) no wall loss, (2) a wall loss scenario incorporating NO_v and O₃ loss rates from previous studies (Morales et al., 2021; Wang et al., 2014), and (3) an extreme case in which wall loss rate constants were increased by a factor of 10 (Table S7). In the base comparison between the no-wall-loss and reported wall loss scenario, the effect on modeled Δ^{17} O values was minimal. Specifically, Δ^{17} O changed by -0.02 % for HNO₃ (-0.3 %), -0.37 % for NO₂ (-2.3 %), and +0.03 % for ONIT (+0.5 %). These small differences suggest that moderate wall loss rates, consistent with literature values, would not substantially alter the Δ^{17} O simulations. However, the extreme wall loss scenario revealed a much stronger impact. In this case, Δ^{17} O decreased by 2.5 % for NO₂ (-15.8 %) and increased by 0.50 % for HNO₃ (+7.8 %) and 0.69 % for ONIT (+11.4 %) relative to the no-wall-loss case. The drop in $\Delta^{17}O(NO_2)$ arises from the altered oxidant concentrations and rapid photochemical cycling of NO_x, which can reset its Δ^{17} O values on short timescales. Conversely, the rise in Δ^{17} O for HNO₃ and ONIT reflects preferential removal of early-formed products with lower Δ^{17} O, allowing later-formed, products with higher Δ^{17} O values to dominate. Because we lacked experimental constraints on wall loss during the chamber experiments, the box model simulations presented in this study did not include wall loss. Based on our sensitivity analysis, omitting wall loss introduces an estimated uncertainty of ± 0.3 % for HNO₃, ± 2.3 % for NO₂, and ± 0.5 % for ONIT assuming moderate wall loss scenario. If actual wall loss rates in the chamber were significantly higher than those reported in the literature, the model is anticipated to overestimate Δ^{17} O in NO₂ and underestimate it in HNO₃ and ONIT. The impact of the parameterization of physical processed impacting the simulated 4¹⁷O values were first evaluated from a series of sensitivity test focsed on chamber dilution and wall loss. The impact of dilution rate was assessed through sensitivity tests using three dilution scenarios with varying dilution rate coefficients ($k_{\text{dil}} = 1 \times 10^{-5} \text{ s}^{-1}$, $5 \times 10^{-5} \text{ s}^{-1}$, and $1 \times 10^{-4} \text{ s}^{-1}$) to evaluate The HNO₃ concentrations exhibiting relative mean biases of +8.6 %, +28.5 %, and +48.9 % for the 1×10⁻⁵ s⁻¹, 5×10⁻⁵ s⁻¹, and 1×10⁻⁴ s⁻¹ k_{dif} scenarios relative to X?, respectively (Fig. SX). The maximum relative mean bias for A^{17} O across NO₂, HNO₃, and pNO₃ was +1.8 % at 1×10⁻⁵ s⁻¹, increasing to +8.0 % at 1×10⁻⁴ s⁻¹ (Fig. SX). HNO₃ concentrations were highly sensitive to chamber loss, with relative mean biases of -10 % considering the base wall loss and 49 % under wall loss ×10 scenarios (Fig. SX). The maximum relative mean bias observed for A^{17} O was +2.3 % under base wall loss and +7.2% under wall loss ×10 scenarios (Fig. SX). Overall, based on the results of the model sensitivity tests, we estimate that the propagated uncertainty in the simulated A^{17} O values due to chamber dilution and wall loss is approximately ±2.5 % for HNO₃, ±3.8 % for NO₂, and ±1.1 % for ONIT. These values reflect the combined effects of plausible variation in dilution rate (±20 %) and the difference in simulated A^{17} O values from literature-based estimates of NO₂ and O₃ wall loss compared to a case of no wall loss. Further, considering the uncertainty in the measured A^{17} O (O₃^{term}) is approximately ±5 % (Vicars and Savarino, 2014), we calculate an overall model uncertainty of A^{17} O of ±5.6 %, ±6.3 %, and ±5.1 % for HNO₃, NO₂, and ONIT, respectively. Clearly, the uncertainty in the A^{17} O (O₃^{term}) is expected to be the largest source of uncertainty in the modeled A^{17} O values as opposed to our treatment of dilution and chamber wall loss. Still, we conservatively apply these propagated uncertainty estimates when presenting and interpreting the model results. Overall, while HNO₃-concentrations were highly sensitive to chamber wall loss and dilution, the modeled isotope ratios were more robust. Based on sensitivity tests, the combined model uncertainty is estimated to be approximately ±11 % for A^{17} O, reflecting the maximum relative mean biases Fig. 6. Dilution Rate Sensitivity = D17O? Fig. 7: Wall Loss Fig. 6. Modeled Δ^{17} O sensitivity to physical chamber parameters. (A) Model simulations testing the sensitivity of Δ^{17} O in NO₂, HNO₃, and ONIT to chamber dilution rates, including scenarios with no dilution and with first-order dilution constants of 1×10^{-5} , 5×10^{-5} , and 1×10^{-4} s⁻¹. (B) Model simulations testing the impact of wall loss, comparing a no-wall-loss case, a wall loss scenario using reaction rates from (Wang et al., 2014) and (Morales et al., 2021), and a high-loss case in which wall loss rates were increased by a factor of 10. All simulations were performed under the conditions of Experiment 1. The gray dashed line in A corresponds to the start of chamber dilution. 3.3.2-3 \(\alpha^{17}\)O Base Model Simulations B(Better Intro)-uilding on the results of the sensitivity analyses, we next evaluate the performance of the base box model in simulating the Δ^{17} O values of key NO₂ species, including NO₂, HNO₃, and ONIT under the various experimental conditions. These simulations incorporate the best-estimate physical parameters (e.g., dilution rate) and chemical mechanism inputs, including a representative $\triangle^{17}O(O_3^{\text{term}})$ value of $39 \pm 2 \%$ (Fig. 7). Overall, tThe model simulations for the photochemical experiments indicate a substantial temporal change in Δ^{17} O for all considered NO₂ compounds (NO₂) (Fig. 68). The Δ^{17} O(NO₂) initially starts at 0 % and begins to increase due to the production of O_3 that elevate $\Delta^{17}O(NO_2)$ as NO is oxidized by O_3 . For the nighttime experiment, the box model predicts $\Delta^{17}O(NO_2)$ to remain steady with a value near 7.6 %, due to N₂O₅ thermal equilibrium with NO₂ and NO₃ resulting in the $\Delta^{17}O(NO_2) \approx \Delta^{17}O(N_2O_5)$. Generally, the $\Delta^{17}O$ simulation of NO₂ were in excellent agreement with the observations, as indicated by an RMSE average model bias of $4.70.9 \pm 2.4$ % (n = 8; Table 5) and a strong correlation indicated by a regression R^2 value of 0.98 (Table 3). Considering the range of observed $\Delta^{17}O(NO_2)$ values that spanned 34.2%, the model RMSE value is quite exceptional. This strong agreement indicates that the box model and employed chemical mechanism well represented accurately simulated the NO_x photochemical cycling and NO₂/NO₃/N₂O₅ thermal equilibrium. The simulation of $\Delta^{17}O(NO_2)$ is inherently sensitive to the assumed value of $\Delta^{17}O(O_3^{\text{term}})$, which represents the isotopic signature transferred from the terminal O atom of O₃ to NO₂ during oxidation. The relationship between measured $\Delta^{17}O(NO_2)$ and the modelled fraction of O atoms in NO₂ deriving from O₃ (denoted as f(O)) indicates that Δ^{17} O(O₃ term) is 39.4 ± 0.6 % (Fig. S $\frac{8}{10}$), which is in excellent agreement with recent independent measurements of tropospheric O_3 reporting values of
39 ± 2 % (Ishino et al., 2017; Vicars and Savarino, 2014). Further, our model analysis would indicate that an assumed $A^{17}O(O_1^{\text{term}})$ value of 39%, well-simulated the $A^{17}O(NO_2)$ values across a range of experimental conditions. The strong agreement between the model and observations supports the robustness of our chemical mechanism in representing the critical exidation processes and isotope transfer within the NO system. Additionally, the model's capability to simulate $\Delta^{17}O(NO_2)$ under both photochemical and nighttime conditions highlights its effectiveness in capturing the transition between photochemical and thermal equilibrium pathways in NO, chemistry. For the nighttime experiment, the steady $\Delta^{17}O(NO_2)$ further confirms the model's accurate deniction of the equilibrium between NO2, NO2, and N2O5, an essential aspect of nighttime NO, processing. This result indicates that the model is well suited to describe isotope dynamics in environments with varying NO levels and oxidant influences. 075 080 085 090 095 100 The measured $\Delta^{17}O(pNO_3)$ was compared with the simulated $\Delta^{17}O$ of organic nitrate (ONIT), based on our understanding that pNO_3 was apparently dominated by $RONO_2$ contributions (ONIT = ONITa + ONITb + ONITc + ONITOOHa + ONITOOHb + DIMER + PDN). The temporal evolution of the simulated $\Delta^{17}O(ONIT)$ closely followed that of $\Delta^{17}O(NO_2)$ but remained lower due to dilution effects associated with the dominant formation pathway of organic nitrates via NO + RO₂ reactions during the photochemical experiments, resulting in ONIT dominated by ONITa, ONITb, and ONITc compounds (Fig. SX3). During nighttime oxidation experiments, ONIT formation primarily proceeded via $R\alpha$ -pinene + NO₃ reactions, leading to ONIT with higher contribution of dominated by DDIMER and PDN compounds (Fig. SX). Due to NO₂/NO₃/N₂O₅ thermal equilibrium that resulted in 1105 110 115 120 125 130 135 The bias for simulated $\Delta^{17}O(ONIT)$ compared to the $\Delta^{17}O(pNO_3)$ observations was within 1.4 % for all experiments except Exp. 5, where a substantially higher bias of -7.0 % was observed. Excluding this outlier increased the correlation to $R^2 = 0.97$. Based on Cook's Distance and the Studentized Residual, Experiment 5 was identified as an outlier in the linear regression analysis. The larger model-data difference for Exp. 5 may reflect different oxidation dynamics or, more likely, uncertainty in the extraction of pNO₃, Specifically, Exp. 5 resulted in the lowest Filter/AMS ratio for the photochemical experiments, suggesting potential under recovery or sampling issues, such that the measured $A^{47}O(pNO_3)$ from this experiment may not be representative of the pNO₃ formed during the chamber experiment (Table X). Specifically, Experiment 5 yielded the lowest Filter/AMS ratio among the photochemical experiments, with the ratio falling below the quantitative range when accounting for propagated uncertainty. This suggests potential under-recovery or sampling artifacts, indicating that the measured Δ^{17} O(pNO₃) in this experiment may not accurately represent the pNO₃ formed during the chamber experiment (Table 3). Thus, the larger model-measurement $\Delta^{17}O(ONIT)$ disagreement for Exp. 5 likely reflects uncertainty in the extracted NO₃ rather than model misrepresentation of ONIT formation pathways. The measured $\Delta^{17}O(pNO_3)$ was also evaluated relative to the modeled f(Q) for ONIT formation. A linear regression constrained through the origin, excluding Exp. 5, yielded a slope of $41.7 \pm 1.2 \%$ ($R^2 = 0.996$; Fig. S7X). This derived $\Delta^{17}O(Q)$ value is in close agreement with the assumed $\Delta^{17}O(Q_3^{\text{term}})$ value of 39 ± 2 -\infty, and is consistent with the value determined from the measured $\Delta^{17}O(NO_2)$ comparison with the modeled f(Q) of NO₂. The excellent agreement between model and observation indicates that the developed chemical mechanism generally well reproduced organic nitrate formation pathways involving α pinene for the conducted photochemical experiments. Overall, the excellent agreement between model and observation for $\Delta^{47}O(pNO_2)$ provides confidence in the model's representation of organic nitrate formation involving a pinene across diverse photochemical conditions. It suggests that the model's parameterization of α pinene exidation pathways and the resulting isotope fractionation effects on pNO₂ is wellcalibrated, supporting its utility for simulating organic nitrate formation and its impact on acrosol chemistry. The simulated dynamics of $\Delta^{17}O(HNO_3)$ closely follow the temporal evolution of $\Delta^{17}O(NO_2)$, initially starting at 0 % and increasing as O₃ production occurs in the chamber during the photochemical experiments (i.e., Exp 1-5) (Fig. 67). The simulated $\Delta^{17}O(HNO_3)$ for the photochemical experiments was always lower than $\Delta^{17}O(NO_2)$ for the photochemical experiments, as the model simulation predicts HNO₃ is predominantly produced through the NO₂ + OH pathway (Fig. S8X). Based on the conventional oxygen isotope mass-balance calculations, this pathway results in a dilution factor of 2/3 relative to $\Delta^{17}O(NO_2)$ (Table 1). For the nighttime experiment, $\Delta^{19}O(HNO_2)$ is also predicted to be lower than $\Delta^{19}O(NO_2)$, driven by INO: production from N-O:→ H≥O(s), with an expected dilution factor of 5/6 relative to 4¹²O(NO₂) (since 4¹²O(NO₂): 3 O(NO₃) due to thermal equilibrium). For the nighttime experiment (Exp. 6), Δ^{17} O(HNO₃) is predicted to be slightly lower than $\Delta^{17}O(NO_2)$, primarily due to the contributions from two formation pathways; NO₃ + pinonaldehyde and N₂O₅ + H₂O(g), representing approximately 60 % and 40 % of nighttime HNO₃ production, respectively. Since $\Delta^{17}O(NO_3) \approx \Delta^{17}O(NO_3)$ under nighttime conditions due to rapid thermal equilibrium, the NO₃ + pinonaldehyde should result in $\Delta^{17}O(HNO_3) \approx \Delta^{17}O(NO_2)$. However, the N₂O₅ hydrolysis pathway incorporates one oxygen atom from water, which has $\Delta^{17}O \approx 0$ %, resulting in an effective dilution of the product $\Delta^{17}O(HNO_3)$ relative to $\Delta^{17}O(NO_2)$. Overall, the model exhibits poor agreement with observed Δ^{17} O(HNO₃) values with a model bias that ranged from -11.5 to 7.9 % (Table 4X) and a weak correlation ($R^2 = 0.39$). The model underpredicts $\Delta^{17}O(\text{HNO}_3)$ for the low-NO_x photochemical experiments (Exp. 1 and 2) and the nighttime oxidation experiment (Exp. 6), but overpredicts $\Delta^{17}O(HNO_3)$ for the high-NO₂ photochemical experiments (Exp. 3, 4, and 5). If the isotope mass-balance assumptions are correct, this pattern suggests that a missing or underrepresented source of high- Δ^{17} O HNO₃ may exist under low-NO_x conditions, and a missing low- Δ^{17} O HNO₃ source may exist under high-NO_x conditions. 140 145 150 Fig. 7. Comparison between the modeled (base and modified) and observed $\Delta^{17}O(NO_2)$, $\Delta^{17}O(ONIT)$, and $\Delta^{17}O(HNO_3)$ values sorted by the various conducted experiments. The data points represent the average time of each sample collection, and the black line spans the duration of the collection period. The measurement uncertainty ($\pm \sigma$) is included as the shaded region. The modeled $\Delta^{17}O(ONIT)$ is compared to the observed $\Delta^{17}O(pNO_3)$. Table 5. Summary of the calculated average bias ($\Delta^{17}O(Model) - \Delta^{17}O(Observed)$) for the $\Delta^{17}O$ model simulations using the NO_x-API base and modified (Mod) mechanisms. For experiments with multiple observations, the bias is reported as the mean \pm standard deviation. | | | NO ₂ | | <u>ONIT</u> | | | HNO ₃ | | | |-----------|-------------------------|-----------------|----------|-------------|-------------|----------|------------------|---------------|----------| | Exp | Base | Mod | <u>n</u> | Base | Mod | <u>n</u> | Base | Mod | <u>n</u> | | 1 | 1.7 | 1.7 | 1 | 0.8 | 0.8 | 1 | <u>-9.4</u> | 2.7 | 1 | | <u>1R</u> | 2.6 | 2.6 | 1 | <u>-0.4</u> | <u>-0.4</u> | 1 | <u>-11.5</u> | 0.0 | 1 | | 2 | 5.3 | <u>5.3</u> | 1 | <u>-0.1</u> | <u>-0.1</u> | 1 | <u>-0.7</u> | 0.8 | 1 | | <u>3</u> | $\underline{1.2\pm0.7}$ | 1.1 ± 0.8 | <u>3</u> | <u>-0.7</u> | <u>-0.7</u> | 1 | 5.5 ± 0.7 | 2.7 ± 0.7 | <u>3</u> | | 4 | <u>-2.1 ± 0.9</u> | <u>-2.1 ± 0.9</u> | <u>3</u> | <u>-1.4</u> | <u>-1.4</u> | <u>1</u> | 5.2 ± 1.1 | <u>-1.4 ± 1.1</u> | <u>3</u> | |-----------|-------------------|---------------------------|----------|-------------|-------------|----------|--------------------------|-------------------|----------| | <u>4R</u> | -2.6 ± 0.7 | -2.6 ± 0.9 | <u>4</u> | <u>-1.0</u> | <u>-1.0</u> | 1 | 7.9 ± 0.3 | 1.4 ± 0.3 | 4 | | <u>5</u> | 0.7 ± 1.1 | 0.7 ± 1.3 | 4 | <u>-7.0</u> | <u>-7.0</u> | 1 | 5.3 ± 0.3 | <u>-0.3 ± 0.3</u> | 4 | | <u>6</u> | 0.2 ± 0.2 | $\underline{0.2 \pm 0.2}$ | <u>3</u> | NA | NA | NA | $\underline{-8.0\pm0.4}$ | -3.7 ± 0.7 | <u>3</u> | ## 3.3.4 \(\Delta^{17}\)O(HNO₃) Model Sensitivity Tests 175 180 185 190 195 To investigate the causes of the observed discrepancies between modeled and measured $\Delta^{17}O(HNO_3)$ values, we conducted a series of model sensitivity tests focused on modifying HNO₃ formation pathways. These tests aimed to assess whether adjustments to reaction pathways or rate constants could reconcile the overprediction of $\Delta^{17}O(HNO_3)$ during the high-NO_x photochemical experiments (Exp. 3, 4, and 5) and the underprediction during low-NO_x and nighttime experiments. The following sections describe these targeted evaluations and their implications for understanding the $\Delta^{17}O(HNO_3)$ produced under different chemical regimes. Fintro statement here. We first investigated
the potential causes of the model overprediction in $A^{17}O(\text{HNO}_3)$ during the high-NO₂ photochemical experiments (Exp. 3, 4, and 5). Two alternative HNO₃ production pathways that were identified that could may yield lower $A^{17}O(\text{HNO}_3)$ values than the assumed predominant daytime HNO₃-production pathway involving NO₂ + OH reactions was evaluated based on oxygen isotope mass-balance assumptions (Table 1). One such pathway is the reaction of NO with HO₂, which can form HNO₃ with a $A^{17}O$ transfer factor of $(1/3)A^{17}O(\text{NO})$ (Alexander et al., 2020; Table 1). However, an underestimation of this pathway in the model is unlikely to account for the observed model—measurement discrepancy across all experiments. For instance, HO₂ concentrations in Exp. 5 are expected to be low due to the absence of significant amount of HO₂ precursors, unlike Exp. 3 2-and 34, which had elevated HO₂ precursors from the initial injected H₂O₂. Moreover, Exp. 1 and 2, which had the highest initial H₂O₂ concentrations and thus the greatest potential for HO₂ formation, exhibited model $A^{17}O(\text{HNO}_3)$ values that were too low, further suggesting that this pathway cannot explain the observed discrepancies. Still, Aas a sensitivity test, we increased the rate constant for the NO + HO₂ \rightarrow HNO₃ reaction (R027 in the NO₃-API mechanism; Table S3) by an order of magnitude (Fig. SX9). Despite this adjustment in the NO + HO₂ \rightarrow HNO₃ reaction rate constant, the impact on modeled $A^{17}O(\text{HNO}_3)$ remained small with a change in $A^{17}O(\text{HNO}_3)$ of less than 1.6 ‰, and as little as 0.3 ‰ for Exp. 5. This change in model $A^{17}O(\text{HNO}_3)$ is too small to account for the observed model bias of 5.2 to 7.9 ‰ across Exp. 3 to 5 (Table 4). Next, the hydrolysis of organic nitrates to HNO₃ was evaluated as a potential low- $\Delta^{17}O(\text{HNO}_3)$ source, since hydrolysis of photochemically produced RONO₂ (R + OH/O₂/NO) could produce HNO₃ with a $\Delta^{17}O$ transfer factor of (1/3)($\Delta^{17}O(\text{NO})$) (Table 1) considering that $\Delta^{17}O(\text{RO}_2)$ is presumably 0 ‰. -Based on simulation results (Fig. S10X), 21.8 %, 14.8 %, and 13.4 % of the total NO₂ was present as HNO₃ for Exp. 3, 4, and 5, respectively, compared to only 11.0 %, 6.8 %, and 4.0 % as organic nitrates RONO (defined as ONIT in our model simulations; ONIT = ONITa + ONITb + ONITc + ONITOOHa + ONITOOHb + PDN + DIMER). Thus, it is unlikely that organic nitrate hydrolysis could account for the observed lower 4¹⁷O(HNO₃) compared to model predictions, unless a large proportion of organic nitrate hydrolyzed to HNO₃ and if the model 205 had a substantial underestimate of organic nitrate production. Nonetheless, as a sensitivity test, we added organic nitrate ONIT hydrolysis with an assumed lifetime of 30 minutes (Table S78), consistent with recent experimental determinations (Takeuchi and Ng. 2019); however, this study showed that only 23–32 % of organic nitrates derived from α -pinene + OH and 9–17% from α -pinene + NO₃ are susceptible to hydrolysis (Takeuchi and Ng, 2019), suggesting that this sensitivity test should overestimate the impact of ONIT hydrolysis as a production route for HNO₃. The inclusion of organic nitrate ONIT hydrolysis in the model reduced $\Delta^{17}O(\text{HNO}_3)$ by 1.4–3.4 \(\infty\) relative to the base model, partially improving agreement with observations 1210 (Fig. S11X). However, even under the unrealistic assumption of complete organic nitrate hydrolysis, the bias between the model and observed Δ¹⁷O(HNO₃) values remained between 1.7 ‰ and 4.6 ‰ across experiments, indicating that hydrolysis alone cannot fully explain the model-observation discrepancy. Furthermore, while organic nitrate hydrolysis modestly improved the $\Delta^{17}O(HNO_3)$ comparison, it worsened the agreement for $\Delta^{17}O(ONIT)$ (Fig. SX12). The bias for the simulated Δ^{17} O(ONIT) relative to the observed Δ^{17} O(pNO₃) increased substantially, ranging from 5.1 ‰ to 15.0 ‰. Overall, 4These 215 results suggest that organic nitrate hydrolysis is unlikely to be the primary cause of the observed lower $\Delta^{17}O(\text{HNO}_3)$ values relative to model simulations. Overall, we were unable to identify a missing or underrepresented HNO₃ production pathway that could reconcile the observed Δ¹⁷O(HNO₃) values within the bounds of ourthe conventional assumed Δ¹⁷O mass-balance framework (Table I). This suggests that current assumptions regarding oxygen atom sources and transfer during HNO₃ formation may need to be revisited. For the high-NO₃ photochemical experiments (Exp. 3–5), plotting measured Δ¹⁷O(HNO₃) against the modeled fraction of O₃-derived oxygen atoms (f(O)(HNO₃)) gave a slope of 28.9 ± 0.5 ‰, representing the Δ¹⁷O of the O₃^{term} (Fig. S13). When plotting the fraction of HNO₃ derived from the NO₂ ± OH pathway, f(O), against the measured Δ¹⁷O(HNO₃), we observed a slope corresponding to a Δ¹⁷O(O₂-term) of 28.9 ± 0.5 ‰ (Fig. SX). This slope is notably-lower than the ~39-401 ‰ slope obtained from similar analyses of Δ¹⁷O(NO₂) and Δ¹⁷O(pNO₃) (Fig. S6-S7X), which are more consistent with recent near-surface observations of Δ¹⁷O(O₃-term) (Ishino et al., 2017; Vicars and Savarino, 2014). The lower slope in the f(O) versus Δ¹⁷O(HNO₃) relationship potentially implies that not all oxygen atoms from NO₂ are retained during HNO₃ formation in the dominant NO₂ ± OH reaction under high-NO₃ photochemical conditions. Traditionally, it is assumed that two-thirds of the oxygen atoms in HNO₃ are inherited from NO₂ and one-third from OH (with Δ¹⁷O ~ 0 ‰) (Table 1), but this oxygen mass-balance may need adjustment. Adjusting the slope for $\Delta^{17}O(HNO_3)$ versus f(O) to match that for NO₂, would require to adjustment of the oxygen mass-balance in the NO₂ + OH reaction. Specifically, scaling the NO₂ contribution by ~0.74 lowers its O atom fractional contribution in HNO₃ from 66.7 % to ~49 %, resulting in an effective relationship of Δ^{17} O(HNO₃) $\approx \frac{1}{2}\Delta^{17}$ O(NO₂). However, the comparison between slopes for HNO₃ (~28.9 %) and NO₂ (~39%) suggests that this assumption may require scaling. Specifically, a factor of ~ 0.74 would adjust the NO2 contribution from 66.7% to approximately 49 %, yielding an empirical mass balance relationship of 4¹⁷O(HNO₃) ≈ (1/2)∆¹⁷O(NO₂). This deviation from the expected 2/3 to an effective 1/2 contribution of $\Delta^{17}O(NO_2)$ may reflect partial oxygen atom exchange or isotopic scrambling during the formation of an excited HNO₃ intermediate, prior to collisional stabilization. Such processes could result in the effective loss or redistribution of the oxygen atoms originally inherited from NO2 in the HNO3 product. Indeed, This deviation could reflect partial oxygen atom exchange or isotopic scrambling during the formation of an excited HNO3 intermediate prior to collisional stabilization, leading to the effective loss or redistribution of approximately one sixth (~0.167) of the oxygen atoms originally associated with NO₂-previous experimental studies using isotopically labeled ¹⁸OH in reactions with NO₂ have demonstrated that the O atoms in the HNO₃ reactive intermediate product can undergo rapid intramolecular scrambling (Donahue et al., 2001). While this specific mechanism alone cannot easily explain the observed loss of approximately one-sixth of the original NO2-derived oxygen atoms in the final HNO3 product, it does suggest that interesting O isotope dynamics occur during the NO₂ + OH reaction. Previous experimental work has suggested XXXWhile the exact mechanism that could explain the redistribution of ~1/6 of O atoms derived from NO₂ in the HNO₃ product remains uncertain and warrants further investigation, we conducted a sensitivity test by , Still, as a sensitivity test, we updated updating the NO_x-API mechanism to reflect the potential modified mass balance for the NO₂ + OH reaction, assuming $\Delta^{17}O(HNO_3) = \frac{1}{2}\Delta^{17}O(NO_2)$ (Fig. S14X). This adjustment substantially improved the model performance for Exp. 3-5, yielding biases that ranged from -2.6 % to +1.0 % relative to the observations. 235 240 245 250 255 260 Next, we examine the cause of the low model bias in $\Delta^{17}O(HNO_3)$ relative to observations during the nighttime oxidation experiment. In this experiment, the measured $\Delta^{17}O(HNO_3)$ exceeded that of $\Delta^{17}O(NO_2)$, implying greater O_3 incorporation into HNO_3 than is represented in the model. The dominant modeled pathway for HNO_3 formation at night was the reaction of NO_3 with pinaldehyde (Fig. S8X). However, this route yields $\Delta^{17}O(HNO_3) \approx \Delta^{17}O(NO_3)$, because NO_2 , NO_3 , and N_2O_5 rapidly equilibrate thermally overnight leading to $\Delta^{17}O(NO_2) \approx \Delta^{17}O(NO_3) \approx \Delta^{17}O(NO_2O_5)$. Therefore, this pathway alone cannot account for the elevated observed $\Delta^{17}O(HNO_3)$ relative to the model simulation. To explain this discrepancy, an additional source of high- $\Delta^{17}O$ external to the NO_{29} reservoir must be involved. One possibility is that the heterogeneous uptake of N_2O_5 on aerosol surfaces could involve incorporation of an oxygen atom from O_3 rather than liquid water. $$\Delta^{17}O(HNO_3) = (5/6) * \Delta^{17}O(N_2O_5) + (1/6) * \Delta^{17}O(O_3^{term})$$ (Eq. 8X) Since $\Delta^{17}O(NO_2) \approx \Delta^{17}O(N_2O_5)$ for our nighttime oxidation experiment conditions, this expression simplifies to: $$\Delta^{17}O(HNO_3) = (5/6) * \Delta^{17}O(NO_2) + (1/6) * \Delta^{17}O(O_3^{term})$$ (Eq. 9X) 280 285 290 This mass-balance equation is similar to that assumed for N_2O_5 heterogenous reaction involving particulate Cl⁻ (Table 1). While, we did not initiate our experiment with a Cl⁻ source, we must have a source of $\Delta^{17}O(O_3^{\text{term}})$ external to
NO_x to explain the underestimate of simulated $\Delta^{17}O(HNO_3)$ relative to observations. To test the potential impact of this mechanism, we incorporated N_2O_5 heterogeneous uptake into the model Table S9X). The uptake rate coefficient (k_{het}) was estimated assuming an aerosol seed number and volume concentration upon atomization of 2×10^4 cm⁻³ and 2×10^{10} nm³ cm⁻³, respectively, which was taken from previously reported values from similarly conducted α -pinene + NO₃ nighttime experiments (Takeuchi and Ng, 2019), and an N₂O₅ uptake coefficient (γ) of 1.5×10^{-4} for organic carbon with RH \geq 30 % (Escorcia et al., 2010)(Holmes et al., 2019), Due to uncertainty in these parameters, we performed a sensitivity analysis across a range of k_{het} values from 0.6×10^{-4} to 6×10^{-4} s⁻¹, corresponding to N₂O₅ lifetimes between approximately 0.46 and 4.6 hours. Model results show that increasing the N₂O₅ heterogeneous reaction rate systematically reduces the $\Delta^{1/7}$ O(HNO₃) model bias. Specifically, the bias decreased from 8.1 ‰ in the base case (no heterogeneous uptake) to 3.5 ‰ for the highest assumed k_{het} (Fig. S15X). This supports the hypothesis that N₂O₅ heterogeneous reactions incorporating O₃-derived oxygen significantly influence the isotopic composition of HNO₃ produced under nighttime conditions. However, the highest assumed k_{het} rate led to an increase in the overall model bias for $\Delta^{1/7}$ O(HNO₃) simulations the high-NO₂ photochemical experiments (Exp 3-5), shifting from -0.8 ± 1.5 ‰ in the modified mass-balance simulation to $+1.8 \pm 2.5$ ‰ (Fig. S16X). To avoid overcorrection, we selected a k_{het} rate of 9.11 × 10⁻⁵ s⁻¹, which improved agreement in the nighttime oxidation experiments without negatively impacting the $\Delta^{1/7}$ O(HNO₃) predictions under high-NO₃ photochemical conditions. Lastly, we sought to diagnose the potential underprediction of $\triangle^{17}O(HNO_3)$ in the model relative to observations from the low-NO₈ photochemical experiments (Exp. 1–2). We observed a relatively large amount of HNO₃ present before the experiments began, ranging from 3.2 to 5.1 ppb, which represented 20.1 %, 18.0 %, and 7.9 % of the maximum HNO₃ concentrations measured during Exp. 1, 1R, and 2, respectively (Table S10; X; Fig. S1X). This suggested the possibility of a substantial chamber blank influencing the $\triangle^{17}O(HNO_3)$ measurements. Unfortunately, we did not directly quantify chamber blanks during these experiments. Thus, to evaluate the potential impact, we conducted a sensitivity analysis by introducing a new model tracer, HNO_3^{blank} , which was initialized using pre-experiment CIMS measurements. This tracer was treated identically to HNO_3 in the model, undergoing the same reactions and loss processes as HNO_3 (Table S11X). We then used an isotope mass-balance framework to infer the $\Delta^{17}\text{O}$ of the blank component required to reproduce the observed $\Delta^{17}\text{O}(\text{HNO}_3)$ (Eq. 10): $$1295 \quad \Delta^{17}O(HNO_3^{blank}) = \frac{\Delta^{17}O(HNO_3^{obs}) - (1 - f_{blank})\Delta^{17}O(HNO_3^{prod})}{f_{blank}}$$ (Eq. 10) where $\Delta^{17}O(HNO_3^{obs})$ is the observed value, $\Delta^{17}O(HNO_3^{prod})$ is the value for photochemically produced HNO_3 in the model, and f_{blank} is the fractional contribution of the chamber blank from the model simulation: $$f_{blank} = \frac{[HNO_3^{blank}]}{[HNO_3^{blank}] + [HNO_3^{prod}]}$$ (Eq. 11) 310 315 Using this approach, we calculated an average △17O(HNO₃^{blank}) of 36.1 ± 4.0 ‰ (n = 3). While elevated, this value is plausible if HNO₃ formation occurred predominantly through nighttime N₂O₅ heterogeneous uptake under dark chamber conditions prior to the start of the experiment, and if the precursor NO₂ had a high △17O value. Such conditions could arise from residual NO₂ in the chamber either from previous experiments or background air that underwent oxidation while the chamber remained dark and inactive before the conducted experiments were initiated. While elevated, this value is plausible if HNO₃ formation occurred predominantly through nighttime N₂O₅ heterogeneous uptake under dark chamber conditions before lights were turned on. It is also important to note that the CIMS HNO₃ measurements are subject to a relatively large uncertainty of approximateely ±20 ‰, which may further influence the inferred blank correction. Overall, to improve the accuracy of simulated $\Delta^{17}O(\text{HNO}_3)$, we implemented a series of modifications to the NO_x-API mechanism based on the conducted sensitivity tests, term NO_x-API (Modified). First, we revised the oxygen mass balance for $\Delta^{17}O(\text{HNO}_3)$ formation via the NO₂ + OH reaction, to $(1/2)\Delta^{17}O(\text{NO}_2)$. Second, we included a chamber-derived HNO₃ background using a fixed $\Delta^{17}O$ value of 36.1 %. This background was initialized in all simulations based on CIMS-derived HNO₃ concentrations prior to photolysis onset (Table S10X). Finally, we added a heterogeneous N₂O₅ hydrolysis pathway with a first-order loss rate of 9.11 × 10⁻⁵ s⁻¹, using a $\Delta^{17}O(\text{HNO}_3)$ formation mass balance of $(5/6) \times \Delta^{17}O(\text{N}_2\text{O}_5) + (1/6) \times \Delta^{17}O(\text{O}_3^{\text{term}})$. As shown in Fig. 76, while these modifications had a minor effect on $\Delta^{17}O(\text{NO}_2)$ and $\Delta^{17}O(\text{ONIT})$, in which the base NO_x-API mechanism were already in strong agreement with the observations, they substantially improved the model's performance for $\Delta^{17}O(\text{HNO}_3)$. The average absolute bias across all experiments decreased from 6.7 ± 3.3 % in the base mechanism to 1.6 ± 1.3 % in the modified mechanism (Table 5X) and with an improved correlation ($R^2 = 0.48$). These results demonstrate the difficulty of accurately simulating $\Delta^{17}O(\text{HNO}_3)$ across diverse experimental conditions, highlighting the need for future experiments that more directly constrain oxygen isotope mass-balance assumptions in HNO₃ formation pathways. At the same time, careful attention to HNO₃ collection methods and blank corrections is essential to ensure meaningful comparisons between models and observations. 325 330 335 340 345 350 The simulated Δ^{17} O of HNO₃ (Fig. 8) begins at 26%, reflecting the assumed Δ^{17} O value of an HNO₃ chamber blank. This initial value was not directly measured but was estimated to achieve agreement with the measured $\Delta^{17}O$ of HNO₃ in Exp. 1 and Exp. 2, where HNO₃ production was relatively low (Fig. S1). At the onset of the experiment, $\Delta^{17}O(HNO_3)$ decreases as newly formed HNO₃, which has a Δ^{17} O lower than the chamber blank value, begins to dominate. For Exp. 1, 2, and 6, Δ¹⁷O(HNO₂) continues to decrease over time, eventually reaching a plateau as HNO₂ production ceases. In contrast, for Exp. 3, 4, and 5, after an initial decline in Δ¹⁷O(HNO₃), the values begin to rise. This increase is driven by the production of HNO₃ with higher Δ^{17} O values, resulting from elevated Δ^{17} O(NO₂) associated with the buildup of O₃. Overall, the simulated $\Delta^{47}O(HNO_3)$ is proportional to the maximum $\Delta^{47}O(NO_2)$, reflecting the dilution of $\Delta^{47}O(NO_2)$ in additional NO₂ products due to the incorporation of O atoms from exidents other than O₃. Overall, the model does a poor job of capturing Δ^{17} O(HNO₃) relative to observations, with an average RMSE of 4.6% compared to an observed range of 8.2%. The model reasonably aligns with observations for the Exp. 1 and 2, where measurements were influenced by a chamber blank or HNO3 carry over effect, assumed to have a $\Delta^{17}O(HNO_2)$ value of 26%. However, for the high initial NO₂ concentration experiments (Exp. 3, 4, and 5), the simulated Δ¹⁷O(HNO₃) was consistently too high. In the high HNO₃ production experiments (Exp. 4 and 5), the influence of a potential chamber HNO2 blank was negligible due to the large amount of HNO2 produced (Fig. S1). Here, the discrepancies between measured and modeled A¹⁷O(HNO₃) suggest a missing or under accounted HNO₃ production pathway. Based on oxygen isotope mass balance expectations, we identified two potential pathways that could yield a lower Δ¹⁷O(HNO₃) than the dominant NO₂+OH channel, which has a Δ¹⁷O transfer factor of (2/3)(Δ¹⁷O(NO₂)) (Alexander et al., 2020). First, the NO + HO₂ reaction was considered as a possible source of low Δ¹⁷O(HNO₃), with a Δ¹⁷O transfer factor of (1/3)(Δ¹⁷O(NO)) (Alexander et al., 2020). However, this reaction is unlikely to explain the model mismatch since HO₂ levels were low in Exp 5. Second, organic nitrate hydrolysis could be a possible source of low Δ¹⁷O HNOs, especially if derived from +OH/NO reactions with a Δ^{17} O transfer factor of (1/3)(Δ^{17} O(NO)) (Walters et al., 2024a). This source of HNO₃ would not be consistent with the of 15N data of HNO2 and pNO3, which indicated large differences suggesting that these molecules were not related (Fig. 2). Still, to test this hypothesis, we conducted a sensitivity analysis allowing pinene hydroxyl nitrate, pinene carbonyl nitrate, and pinene nitrooxy hydroperoxide to hydrolyze with a lifetime of 2 hours (Table S3). We did not enable the dimer or pinene dinitrate to hydrolyze since these were dominant organic nitrate formed during nighttime oxidation, which we found minimal hydrolysis to occur from the filter extracts (Fig. 3). This modified simulation, "USC API Hydro," slightly improved the $\Delta^{47}O(HNO_3)$ agreement for Exp. 3, 4, and 5, reducing the average RMSE from 5.5% in the base model to 3.8% in the updated model (Table 3). However, for experiments with low medium initial NO, concentration (Exp. 1 and 2), organic nitrate hydrolysis resulted in a higher RMSE (6.3%) compared to the base
model (1.9%). Organic nitrate hydrolysis had minimal impact on $\Delta^{17}O(NO_2)$ but did affect $\Delta^{17}O(pNO_3)$, particularly in high initial NO_x concentration experiments. Specifically, including this pathway decreased model performance for $\Delta^{17}O(pNO_3)$ in Exp. 3 and 4, though it improved the fit for Exp. 5. Overall, despite considering hydrolysis of organic nitrate to HNO₃, the simulated Δ¹⁷O(HNO₃) for Exp. 4 and 5 remained too high to match observations and was not improved by decreasing the hydrolysis lifetime. Therefore, based on our oxygen isotope mass balance framework, we were unable to identify a suitable missing or under constrained HNO₃ production source in the model to explain the relatively low observed Δ¹⁷O(HNO₃) in high NO₂ experiments. Thus, we speculate that the collected HNO₃ in high initial NO₂ experiments (Exp. 4 and 5) may not fully represent HNO₃ produced under experimental conditions. While we would not expect Δ¹⁷O fractionation if HNO₃ were incompletely collected by the denuder system, our results may be biased toward HNO₃ produced earlier in the experiments when Δ¹⁷O(HNO₃) is expected to be lower (Fig. 8). Although our collection method yielded consistent and precise Δ¹⁷O(HNO₃) values across repeat experiments (Blum et al., 2023), the accuracy of these values remains uncertain. These findings suggest that an alternative HNO₃ collection method may be necessary to more accurately characterize Δ¹⁷O(HNO₃) in chamber experiments. Overall, the results of the $\Delta^{17}O$ model simulations offer detailed insights into the oxidation chemistry dynamics associated with NO_x and α pinene under varied photochemical and nighttime conditions. The model effectively captured the oxidation dynamics associated with NO₂-photochemical cycling and nighttime equilibrium as well as captured the chemistry associated with organic nitrate formation. However, the model displayed limitations in simulating $\Delta^{17}O(\text{HNO}_3)$, particularly for experiments with high initial NO_x-conditions where the observed values were lower than predicted. Sensitivity analyses suggested that inclusion of additional HNO₃-formation pathways such as organic nitrate hydrolysis could partially improve the model's accuracy though further refinement is necessary and suggesting a potential artifact associated with HNO₃-collection. Table 3. Summary of the calculated average RMSE_{average} bias (Δ¹⁷O(Model) — Δ¹⁷O(Observed) for the 4 17 O model simulations using the USC-API chemistry and inclusion of organic nitrate hydrolysis (USC-API-Hydro) mechanism. NOx-API base and modified mechanisms. | 4 ¹⁷ O(N | <mark>4</mark> ¹⁷ ⊖(| 4 ¹⁷ O(HNO ₃) (‰) | | |----------------------|---------------------------------|--|--| | O ₂) (‰) | pNO₃) | | | | | (‰) | | | | Exp | USC | 72 | USC-
API | Ħ | USC API | USC-API-
Hydro | Ħ | |----------------|----------------|----|----------------|---|----------------|-------------------|---| | | API | | | | | | | | 1 | 1.1 | 1 | 0.6 | 1 | 1.4 | 7.0 | 4 | | 1R | 2.0 | 1 | 0.8 | 1 | 3.7 | 9.3 | 1 | | 2 | 3.9 | 1 | 0.4 | 1 | 0.5 | 2.7 | 1 | | 3 | 0.6 | 3 | 0.6 | 1 | 5.5 | 3.0 | 3 | | 4 | 2.5 | 3 | 1.2 | 1 | 5.0 | 2.2 | 3 | | 4 R | 3 <u>.1</u> | 4 | 0.8 | 1 | 7.8 | 5.0 | 4 | | 5 | 1.2 | 4 | 7.1 | 1 | 5.6 | 3.5 | 4 | | 6 | 0.3 | 3 | NA | 1 | 3.1 | 3.7 | 3 | | AVG | 1.8 | | 1.6 | | 4.1 | 4.6 | | | | NO ₂ | | | ONIT | | | HNO ₃ | | | |-----------|-----------------|-----------------|----------|-----------------|-----------------|----------|------------------|-----------------|----------| | Exp | Base | Mod | <u>#</u> | Base | Mod | <u>#</u> | Base | Mod | <u>#</u> | | <u>±</u> | <u>1.7</u> | <u>1.7</u> | <u>1</u> | 0.8 | 0.8 | <u>1</u> | <u>-9.4</u> | 2.7 | <u>1</u> | | <u>1R</u> | <u>2.6</u> | 2.6 | <u>1</u> | <u>-0.4</u> | <u>-0.4</u> | <u>1</u> | <u>-11.5</u> | <u>0.0</u> | <u>1</u> | | <u>2</u> | <u>5.3</u> | <u>5.3</u> | <u>1</u> | <u>-0.1</u> | <u>-0.1</u> | <u>1</u> | <u>-0.7</u> | 0.8 | <u>1</u> | | <u>3</u> | <u>1.2±0.7</u> | 1.1±0.8 | 3 | <u>-0.7</u> | -0.7 | <u>1</u> | <u>5.5±0.7</u> | 2.7±0.7 | 3 | | 4 | -2.1±0.9 | <u>-2.1±0.9</u> | 3 | <u>-1.4</u> | 1.4 | <u>1</u> | 5.2±1.1 | -1.4±1.1 | 3 | | <u>4R</u> | -2.6±0.7 | -2.6±0.9 | 4 | <u>-1.0</u> | <u>-1.0</u> | <u>±</u> | 7.9±0.3 | 1.4±0.3 | 4 | | <u>5</u> | 0.7±1.1 | 0.7±1.3 | 4 | _7.0 | -7.0 | <u>±</u> | <u>5.3±0.3</u> | <u>-0.3±0.3</u> | 4 | | <u>6</u> | 0.2±0.2 | 0.2±0.2 | 3 | NA | NA | NA | <u>-8.0±0.4</u> | <u>-3.7±0.7</u> | 3 | Fig. 6. Comparison between the modeled (base and modified) and observed $4^{17}O(NO_2)$, $4^{17}O(ONIT)$, and $4^{17}O(HNO_3)$ values sorted by the various conducted experiments. The data points represent the average time of each sample collection, and the black line spas the duration of the collection period. The data points represent the average experiment time for each denuder collection, with the black line span the collection time range (from start to stop). The measurement uncertainty ($\pm\sigma$) is included as the lighter grey shaded region. For the modeled $4^{17}O(ONIT)$ is compared to the observed $4^{17}O(pNO_3)$. The model simulations include both the base model (USC API) and considering the potential role of organic nitrate hydrolysis (USC API Hydro). The inclusion of organic hydrolysis had a near negligible impact on $\Delta^{17}O(NO_2)$. 390 Fig. 7. Comparison between the modeled and observed $\Delta^{17}O(pNO_3)$ values sorted by the various conducted experiments. The data points represent the average experiment time for each denuder collection, with the black line span the collection time range (from start to stop). The measurement uncertainty ($\pm \sigma$) is included as the lighter grey shaded region. The model simulations include both the base model (USC API) and considering the potential role of organic nitrate hydrolysis (USC API Hydro). 1400 Fig. 8. Comparison between the modeled and observed Δ¹⁷O(HNO₃) values sorted by the various conducted experiments. The data points represent the average experiment time for each denuder collection, with the black line span the collection time range (from start to stop). The measurement uncertainty (±σ) is included as the lighter grey shaded region. The model simulations include both the base model (USC API) and considering the potential role of organic nitrate hydrolysis (USC API Hydro). The Δ¹⁷O(HNO₃) is initially set at 26‰, based on the assumption that the HNO₃ "chamber blank" had this value. Overall, the δ^{15} N(NO₂) simulation using the base chemistry model had decent agreement with the observed of 8.9%; however, large disagreements were observed for photochemical experiments with elevated in 4). For these experiments (Exp. 3-5), the simulated δ^{15} N(NO₂) were much lower than observed and substantial decrease in δ^{15} N(NO₂) as the experiment progresses which was not observed. The photoche NO₂ was well simulated using the model chemistry as evidenced by a strong concentration and Δ^{1} observations and model. It is inherently more challenging to model δ^{15} N compared to Δ^{17} O of NO₂ cormass dependent fractionation that can have a significant impact on δ^{15} N values, which is largely a δ^{15} N mechanism (Fang et al., 2021). Therefore, we speculate that the δ^{15} N(NO₂) model disagree. as the experiments progressed due to the large nitrogen isotope fractionation factor or KIE associated with the NO₂ + OI eaction assumed in the i_N RACM mechanism to be 1.040 (Fang et al., 2021), defined as (Eq. 9): $$KIE = \frac{15}{12} \alpha = \frac{15}{12} NO_2 + OH$$ (Eq. 9) Previously, the KIB associated with this reaction has been estimated to be 0.997 based on the reduced masses in the transition complex (Freyer, 1991). Therefore, we also conducted additional $\delta^{15}N$ simulations using a KIE (or $^{15}\alpha$) for the NO₂ + OF reaction of 0.997 (Fig. 6), noted as the USC API KIE. The modified $\delta^{15}N(NO_2)$ simulations, using the adjusted NO₂ + OF KIE, resulted in a better agreement with the observations decreasing the RMSE from 8.9 to 2.6 % (Table 4). Considering the large range of $\delta^{15}N(NO_2)$ observations that spanned 72.2%, the modified $\delta^{15}N(NO_2)$ simulations are in close agreement (within 4%) of the observations. Further, the modified simulations indicated that $\delta^{15}N(NO_2)$ temporal simulation better matched the observations for the photochemical experiments with high initial NO concentrations (Exp 3-5) (Fig. 9). Overall, based on a comparison of measured to simulated $\delta^{15}N(NO_2)$, the NO₂ + OH KIE was best approximated using a value of 0.997, enabling the accurate simulation of $\delta^{15}N(NO_2)$. Generally, the simulated $\delta^{15}N(pNO_3)$ values were in close agreement with the observations with an RMSE of 5.0% for the base simulations (Fig. 10; Table 4), especially considered the measurement uncertainty that was as high as 4.1% due to a significant filter NO_3 -blank. The modified $\delta^{15}N$ simulations using the adjusted $NO_2 + OH^{15}\alpha$ of 0.997 slightly decreased the RMSE of $\delta^{15}N(pNO_3)$ to 4.5%. The simulated $\delta^{15}N(pNO_3)$ were insensitive to the adjustments for $NO_2 + OH$ KIE because the organic nitrate formed relatively quickly under the experimental conditions before significant influence of the $NO_2 + OH$ isotope effect on the residual $\delta^{15}N(NO_4)$. Overall, this excellent $\delta^{15}N$ comparison indicates that the adapted i_NRACM mechanism well describes the fractionation associated with $NO +
\alpha$ pinene derived peroxy radicals. This result validates the 480 Table 4. Summary of the calculated average RMSE for the δ¹⁵N model simulations using the base chemistry (USC API) and the KIE mechanism (USC API KIE), which includes an updated ¹⁵α for the NO₂+OH reaction of 0.997. | | δ^{15} N | (NO ₂) (‰) | | δ ¹⁵ N(pNO₃) (‰) | | | δ ¹⁵ N(HNO ₃) (‰) | | | |---------------|-----------------|------------------------|---|-----------------------------|-----------------|---|--|-----------------|---| | Exp | USC- | USC-API- | Ħ | USC- | USC- | Ħ | USC- | USC- | Ħ | | | API | KIE | | API | API-KIE | | API | API-KIE | | | 1 | 5.8 | 0.7 | 1 | 1.1 | 3.2 | 1 | 2.0 | 18.5 | 1 | | 1R | 9.4 | 3.7 | 1 | 2.0 | 0.1 | 1 | 1.1 | 18.9 | 1 | | 2 | 6.1 | 1.9 | 1 | 3.7 | 0.9 | 1 | 5.2 | 29.5 | 1 | | 3 | 15.0 | 1.6 | 3 | 14.9 | 12.7 | 1 | 19.1 | 44.2 | 3 | | 4 | 11.3 | 1.8 | 3 | 4.1 | 5.9 | 1 | 7.8 | 23.6 | 3 | | 4R | 15.7 | 2.5 | 4 | 0.0 | 1.7 | 1 | 8.1 | 37.9 | 4 | |-----|-----------------|-----|---|----------------|-----|---|------|-----------------|---| | 5 | 3.0 | 4.0 | 4 | 9.2 | 6.8 | 1 | 38.8 | 2.2 | 4 | | 6 | 4.8 | 4.8 | 3 | N/A | N/A | 1 | 18.0 | 18.1 | 3 | | AVG | 8.9 | 2.6 | | 5.0 | 4.5 | | 12.5 | 24.1 | | Fig. 9. Comparison between the modeled and observed δ¹⁵N(NO₂) values sorted by the various conducted experiments. The data points represent the average experiment time for each denuder collection, with the black line span the collection time range (from start to stop). The model simulations include both the base model (USC API) and an update to the NO₂ ± OH nitrogen isotope fractionation factor (¹⁵α = 0.997) (USC API-KIE) as opposed to the base model with ¹⁵α = 1.040. For Exp. 6, a nighttime experiment, the δ¹⁵N simulation using USC API and USC API-KIE were similar due to the limited role of the NO₂±OH reaction under those conditions. Fig. 10. Comparison between the modeled and observed δ^{15} N(pNO₃) values sorted by the various conducted experiments. The data points represent the average experiment time for each denuder collection, with the black line span the collection time range (from start to stop). The model simulations include both the base model (USC API) and an update to the NO₂ + OH nitrogen isotope fractionation factor ($^{15}\alpha = 0.997$) (USC-API-KIE) as opposed to the base model with $^{15}\alpha = 1.040$. For Exp. 6, a nighttime experiment, the δ^{15} N simulation using USC API and USC API-KIE were similar due to the limited role of the NO₂+OH reaction under those conditions. Fig. 11. Comparison between the modeled and observed δ¹⁵N(HNO₃) values sorted by the various conducted experiments. The data points represent the average experiment time for each denuder collection, with the black line span the collection time range (from start to stop). The model simulations include both the base model (USC API) and an update to the NO₂ ± OH nitrogen isotope fractionation factor (¹⁵α = 0.997) (USC API KIE) as opposed to the base model with ¹⁵α = 1.040. For Exp. 6, a nighttime experiment, the δ¹⁵N simulation using USC API and USC API KIE were similar due to the limited role of the NO₂±OH reaction under those conditions. ## 55. Conclusion 495 500 505 510 This study presents the first chamber experiments combining comprehensive NO_y and α -pinene oxidation chemistry with stable isotope constraints. Using a suite of observations and box model simulations, we demonstrate how multi-isotope analyses of $\Delta^{17}O$, $\delta^{18}O$, and $\delta^{15}N$ can yield novel insights into atmospheric oxidation pathways, including the formation and transformation of gas-phase and pNO₃ species. We observed a strong linear relationship between $\Delta^{17}O$ and $\delta^{18}O$ values across all collected NO_y species. We derived a $\delta^{18}O$ value of 106 ± 5 % for oxygen atoms transferred into NO_y from O_3 term, and a value of 11.1 ± 1.0 % for oxygen atoms transferred from other oxidants with an assumed $\Delta^{17}O \sim 0$ %, such as RO_2 , RO_2 , and RO_3 of the optimization of the provide a new isotopic constraint for disentangling multi-oxidant systems in both chamber and ambient settings. Nitrogen isotope fractionation was evaluated from the observations, which indicated $\Delta\delta^{15}N(HNO_3 - NO_2)$ values were generally enriched, while $\Delta\delta^{15}N(pNO_3 - NO_2)$ values were negative, reflecting preferential ¹⁵N incorporation into HNO₃, and ¹⁴N incorporation into pNO₃. However, large differences in the observed $\Delta\delta^{15}N(HNO_3 - NO_2)$ between H₂O₂/NO (33.7 ± 7.1 %₀) and HONO (0.4 ± 1.7 %₀) photochemical experiments remain unresolved, particularly since these experiments should have produced HNO₃ from a similar pathway, namely the NO₂ + OH reaction. These discrepancies make it challenging for us to recommend a fractionation value associated with the NO₂ + OH reaction and indicate the need for future targeted studies of the isotope effects during the NO₂ + OH reaction. Importantly, isotope observations revealed stark differences between HNO₃ (medium-high Δ^{17} O and high δ^{15} N) and pNO₃ (low Δ^{17} O and low δ^{15} N), with the later predominately derived from organic nitrate. These isotope differences between HNO₃ and organic nitrate could serve as a useful qualitative constraint to evaluate inorganic and organic nitrate contributions to HNO₃ and pNO₃ budgets. 515 520 525 530 535 540 545 Model simulations of Δ^{17} O were conducted and indicated our model captured Δ^{17} O(NO₂) and Δ^{17} O(ONIT) (compared with observed $\Delta^{17}O(pNO_3)$ values) well. Simulating $\Delta^{17}O(HNO_3)$, however, proved more challenging. The model tended to overestimate Δ^{17} O under high-NO_x conditions, underestimate it in low-NO_x experiments, and underpredict nighttime values. A series of sensitivity tests suggest this mismatch likely arises from multiple contributing factors, including potential HNO₃ measurement biases (e.g., chamber blank), missing heterogeneous pathways (e.g., N₂O₅ hydrolysis), and the need to revisit assumptions in the isotopic mass balance of the NO₂ + OH reaction. This study provides a comprehensive investigation of NO₂ and BVOC exidation chemistry using stable isotope analyses and chemical modeling. Through A¹⁷O and S¹⁵N observations compared to model simulation, we gained critical insights into $\Delta^{47}O$ transfer dynamics involved NO, exidation chemistry and nitrogen isotope fractionation. By adopting a Δ^{17} O value for O_3^{term} of 39 %, our model utilizing a recently developed Δ^{17} O transfer framework successfully reproduced Δ^{17} O values for NO₂ across diverse environmental conditions, affirming the robustness of the photochemical understanding of Δ¹⁷O transfer dynamics. Furthermore, under the experimental conditions, we derived a δ⁴⁸O value of 106±5 ‰ for oxygen atoms transferred into NO₄ from the O₃ term, and a value of 11.8±1.0 ‰ for oxygen atoms transferred from other oxidants, such as RO₂, HO₂, and OH. Moreover, we found that the recently developed $I_{N}RACM$ model framework for simulating $\delta^{15}N$ was significantly improved by adopting a $^{15}\alpha$ = 0.997 for the NO_2+OH reaction, leading to better agreement with 515N(NO2). This result highlights the importance of refining fractionation assumptions in isotope based chemical mechanisms. However, the updated fractionation factor introduced challenges in accurately simulating δ^{15} N values for HNO₂, highlighting persistent uncertainties in the sampling and modeling of HNO₂ under the experimental conditions. From these experiments, it is evident that we have a solid understanding of oxygen isotope transfer associated with NO_x photochemical cycling, and the formation of organic nitrates. However, our understanding of the oxygen and nitrogen isotope dynamics of HNO₃ remains more uncertain. Our findings indicate the need for future experiments specifically designed to probe the formation pathways of HNO₃ and their associated isotope dynamics. This includes chamber studies that isolate individual pathways as well as targeted flow tube experiments. Such efforts are essential to refine oxygen isotope mass-balance assumptions and are critical if $\Delta^{17}O$ and $\delta^{15}N$ is to be used quantitatively to track HNO₃ chemistry in both laboratory and ambient environments. Our development of the USC-API mechanism marked a substantial advancement over existing frameworks such as RACM2 and MCM for describing NO_x and BVOC oxidation. This mechanism not only captured NO_x photochemical cycling and α pinene decay dynamics but also provided accurate simulations of organic nitrate production. One of the major implications of this mechanism is that the weighted branching ratio of α pinene+OH+NO leading to organic nitrate versus NO₂ production was set to 0.222 based on the MCM, which led to the correct photochemical dynamics involving NO_x, which was evaluated using Δ¹⁷O. The mechanism further clarified the roles of daytime α pinene+OH+NO reactions versus nighttime α pinene+NO₃ reactions contributing to organic nitrate production. Our model and result comparisons indicate instances where the α pinene+NO₃+ HO₂ pathway significantly contributed to organic nitrate production during photochemical experiments. This nuanced understanding of organic nitrate formation has implications for atmospheric NO_x budgets and SOA production. Isotope observations and model simulation revealed stark differences between HNO₃ (medium high Δ¹⁷O and high δ¹⁵N) and particulate nitrate (pNO₃; low Δ¹⁷O and low δ¹⁵N), indicating distinct formation pathways. Our findings strongly suggest that pNO₃ in these
experiments originated exclusively from organic nitrate, a conclusion supported by online AMS data. Furthermore, the Δ¹⁷O and δ¹⁵N evidence demonstrated that organic nitrate hydrolysis was not a major source of HNO₃ under the studied conditions, which predominantly involved low relative humidity. These insights offer new opportunities to probe pNO₃ hydrolysis and its implications for nitrate chemistry under varying environmental conditions. Despite these advances, limitations in accurately modeling Δ¹⁷O and δ¹⁵N values for HNO₃ highlighting the need for improved collection methodologies. Experimental artifacts, potentially linked to the use of long sampling lines and HNO₃ losses in chamber experiments, may have biased the collected data. These methodological challenges indicate the importance of refining sampling techniques for HNO₃ in chamber experiments to ensure representative measurements in future studies. The implications of this work extend beyond the laboratory setting. Stable isotope techniques demonstrated their potential as powerful tools for probing complex NO_x and BVOC interactions and atmospheric oxidation chemistry. Future research should aim to expand these methodologies to other BVOC systems under a wider array of conditions, including variations in relative humidity, acrosol seed composition, and oxidant availability. Furthermore, integrating isotope techniques into field campaigns could provide invaluable constraints on NO_x oxidation and organic nitrate formation processes in real world atmospheric environments. Overall, this study not only advances our understanding of the oxygen and nitrogen stable isotope dynamics involved in NO_x oxidation chemistry, but also provide insights into NO_x and BVOC chemistry. Addressing the limitations identified here and applying these techniques across broader contexts will enhance the predictive power of atmospheric chemistry models, aiding in the development of more effective air quality management strategies and climate policies. Code and Data availability. The box model simulations, including model mechanisms, input files, and output files have been made publicly available at: 10.5281/zenodo.15615851https://zenodo.org/records/14241585. The experimental data and figure eodes—scripts have been made publicly available at: -10.5281/zenodo.15616525https://zenodo.org/records/14241591. The chemical mechanism and isotope data are provided in the Supplementary Material. Author contributions. WWW, MT, NLN, MGH designed the conducted experiments. WWW, MT, DEB, GE, PT, WX, JR, FL, GH, JBM conducted the experiments. WWW and DEB conducted the offline data analysis. WWW conducted the chamber simulations with input from MGH, MT and NLN. WWW wrote the manuscript with input from all authors. WWW and MGH secured funding. Competing interests. The contact author has declared that none of the authors has any competing interests. 1595 *Acknowledgements*. We thank Ruby Ho for laboratory assistance. *Financial Support.* This research has been supported by NOAA's Climate Program Office's Atmospheric Chemistry, Carbon Cycle, and Climate Program (NOAA AC4 NA18OAR4310118). ## 600 References 1610 585 590 Albertin, S., Savarino, J., Bekki, S., Barbero, A., and Caillon, N.: Measurement report: Nitrogen isotopes (δ^{15} N) and first quantification of oxygen isotope anomalies (Δ^{17} O, δ^{18} O) in atmospheric nitrogen dioxide, Atmospheric Chemistry and Physics, 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, 2021. Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations, Atmospheric Chemistry and Physics, 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, 2020. Bahreini, R., Ervens, B., Middlebrook, A. M., Warneke, C., de Gouw, J. A., DeCarlo, P. F., Jimenez, J. L., Brock, C. A., Neuman, J. A., Ryerson, T. B., Stark, H., Atlas, E., Brioude, J., Fried, A., Holloway, J. S., Peischl, J., Richter, D., Walega, J., Weibring, P., Wollny, A. G., and Fehsenfeld, F. C.: Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas, Journal of Geophysical Research: Atmospheres, 114, https://doi.org/10.1029/2008JD011493, 2009. Bates, K. H., Burke, G. J., Cope, J. D., and Nguyen, T. B.: Secondary organic aerosol and organic nitrogen yields from the nitrate radical (NO₃) oxidation of alpha-pinene from various RO₂ fates, Atmospheric Chemistry and Physics, 22, 1467–1482, https://doi.org/10.5194/acp-22-1467-2022, 2022. - Beaver, M. R., Clair, J. S., Paulot, F., Spencer, K. M., Crounse, J. D., LaFranchi, B. W., Min, K. E., Pusede, S. E., Wooldridge, P. J., and Schade, G. W.: Importance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX 2009, Atmospheric Chemistry and Physics, 12, 5773–5785, https://doi.org/10.5194/acp-12-5773-2012, 2012. - Bekker, C., Walters, W. W., Murray, L. T., and Hastings, M. G.: Nitrate chemistry in the northeast US Part 1: Nitrogen isotope seasonality tracks nitrate formation chemistry, Atmospheric Chemistry and Physics, 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023, 2023. - Berhanu, T. A., Savarino, J., Bhattacharya, S. K., and Vicars, W. C.: 17O excess transfer during the $NO_2 + O_3 \rightarrow NO_3 + O_2$ reaction, The Journal of Chemical Physics, 136, 044311, https://doi.org/10.1063/1.3666852, 2012. - Blum, D. E., Walters, W. W., and Hastings, M. G.: Speciated Collection of Nitric Acid and Fine Particulate Nitrate for Nitrogen and Oxygen Stable Isotope Determination, Anal. Chem., 92, 16079–16088, https://doi.org/10.1021/acs.analchem.0c03696, 2020. - Blum, D. E., Walters, W. W., Eris, G., Takeuchi, M., Huey, L. G., Tanner, D., Xu, W., Rivera-Rios, J. C., Liu, F., Ng, N. L., and Hastings, M. G.: Collection of Nitrogen Dioxide for Nitrogen and Oxygen Isotope Determination—Laboratory and Environmental Chamber Evaluation, Anal. Chem., 95, 3371–3378, - 1630 https://doi.org/10.1021/acs.analchem.2c04672, 2023. - Böhlke, J. K., Mroczkowski, S. J., and Coplen, T. B.: Oxygen isotopes in nitrate: New reference materials for ¹⁸O: ¹⁷O: ¹⁶O measurements and observations on nitrate-water equilibration, Rapid Communications in Mass Spectrometry, 17, 1835–1846, https://doi.org/10.1002/rcm.1123, 2003. - Böhlke, J. K., Smith, R. L., and Hannon, J. E.: Isotopic analysis of N and O in nitrite and nitrate by sequential selective bacterial reduction to N₂O, Analytical chemistry, 79, 5888–5895, https://doi.org/10.1021/ac070176k, 2007. - Boyd, C. M., Sanchez, J., Xu, L., Eugene, A. J., Nah, T., Tuet, W. Y., Guzman, M. I., and Ng, N. L.: Secondary organic aerosol formation from the β-pinene+ NO₋₃ system: effect of humidity and peroxy radical fate, Atmospheric Chemistry and Physics, 15, 7497–7522, https://doi.org/10.5194/acp-15-7497-2015, 2015. - Browne, E. C. and Cohen, R. C.: Effects of biogenic nitrate chemistry on the NO_x lifetime in remote continental regions, Atmospheric Chemistry and Physics, 12, 11917–11932, https://doi.org/10.5194/acp-12-11917-2012, 2012. - Browne, E. C., Wooldridge, P. J., Min, K.-E., and Cohen, R. C.: On the role of monoterpene chemistry in the remote continental boundary layer, Atmospheric Chemistry and Physics, 14, 1225–1238, https://doi.org/10.5194/acp-14-1225-2014, 2014. - Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Analytical Chemistry, 74, 4905–4912, https://doi.org/10.1021/ac020113w, 2002. - Chai, J. and Hastings, M. G.: Collection Method for Isotopic Analysis of Gaseous Nitrous Acid, Anal. Chem., 90, 830–838, https://doi.org/10.1021/acs.analchem.7b03561, 2018. - Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide, Geochimica et Cosmochimica Acta, 12, 133–149, https://doi.org/10.1016/0016-7037(57)90024-8, 1957. - DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., and Docherty, K. S.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Analytical chemistry, 78, 8281–8289, https://doi.org/10.1021/ac061249n, 2006. - Donahue, N. M., Mohrschladt, R., Dransfield, T. J., Anderson, J. G., and Dubey, M. K.: Constraining the Mechanism of OH + NO₂ Using Isotopically Labeled Reactants: Experimental Evidence for HOONO Formation, The Journal of Physical Chemistry A, 105, 1515–1520, https://doi.org/10.1021/jp0035582, 2001. - Dubey, M. K., Mohrschladt, R., Donahue, N. M., and Anderson, J. G.: Isotope specific kinetics of hydroxyl radical (OH) with water (H₂O): Testing models of reactivity and atmospheric fractionation, The Journal of Physical Chemistry A, 101, 1494–1500, https://doi.org/10.1021/jp962332p, 1997. - Elliott, E. M., Yu, Z., Cole, A. S., and Coughlin, J. G.: Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing, Science of The Total Environment, 662, 393–403, https://doi.org/10.1016/j.scitotenv.2018.12.177, 2019. - Escorcia, E. N., Sjostedt, S. J., and Abbatt, J. P. D.: Kinetics of N2O5 Hydrolysis on Secondary Organic Aerosol and Mixed Ammonium Bisulfate—Secondary Organic Aerosol Particles, J. Phys. Chem. A, 114, 13113–13121, https://doi.org/10.1021/jp107721v, 2010. - Fang, H., Walters, W. W., Mase, D., and Michalski, G.: i_NRACM: incorporating ¹⁵N into the Regional Atmospheric Chemistry Mechanism (RACM) for assessing the role photochemistry plays in controlling the isotopic composition of NO_x, NO_y, and atmospheric nitrate, Geoscientific Model Development, 14, 5001–5022,
https://doi.org/10.5194/gmd-14-5001-2021, 2021. - Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J., and Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry, Proceedings of the National Academy of Sciences, 107, 6670–6675, https://doi.org/10.1073/pnas.0912340107, 2010. - Fibiger, D. L., Hastings, M. G., Lew, A. F., and Peltier, R. E.: Collection of NO and NO₂ for Isotopic Analysis of NO₃ Emissions, Analytical Chemistry, 86, 12115–12121, https://doi.org/10.1021/ac502968e, 2014. - Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan Miller, C., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., and others: Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene-and monoterpene-rich atmosphere: constraints from aircraft (SEAC-4 RS) and ground-based (SOAS) observations in the Southeast US, Atmospheric Chemistry and Physics, 16, 5969–5991, https://doi.org/10.5194/acp-16-5969-2016, 2016. - Freyer, H. D., Kley, D., Volz-Thomas, A., and Kobel, K.: On the interaction of isotopic exchange processes with photochemical reactions in atmospheric oxides of nitrogen, Journal of Geophysical Research, 98, 14791–14796, https://doi.org/10.1029/93JD00874, 1993. - Fry, J. L., Kiendler-Scharr, A., Rollins, A. W., Wooldridge, P. J., Brown, S. S., Fuchs, H., Dubé, W., Mensah, A., Dal Maso, M., and Tillmann, R.: Organic nitrate and secondary organic aerosol yield from NO₃ oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model, Atmospheric Chemistry and Physics, 9, 1431–1449, https://doi.org/10.5194/acp-9-1431-2009, 2009. - Goliff, W. S., Stockwell, W. R., and Lawson, C. V.: The regional atmospheric chemistry mechanism, version 2, Atmospheric Environment, 68, 174–185, https://doi.org/10.1016/j.atmosenv.2012.11.038, 2013. - Guo, H., Sullivan, A. P., Campuzano-Jost, P., Schroder, J. C., Lopez-Hilfiker, F. D., Dibb, J. E., Jimenez, J. L., Thornton, J. A., Brown, S. S., Nenes, A., and Weber, R. J.: Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States, Journal of Geophysical Research: Atmospheres, 121, 10,355-10,376, https://doi.org/10.1002/2016JD025311, 2016. - Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for source changes of nitrate in rain at Bermuda, Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2003JD003789, 2003. - Hastings, M. G., Casciotti, K. L., and Elliott, E. M.: Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts, Elements, 9, 339–344, https://doi.org/10.2113/gselements.9.5.339, 2013. - Hoyle, C. R., Boy, M., Donahue, N. M., Fry, J. L., Glasius, M., Guenther, A., Hallar, A. G., Huff Hartz, K., Petters, M. D., and Petäjä, T.: A review of the anthropogenic influence on biogenic secondary organic aerosol, Atmospheric Chemistry and Physics, 11, 321–343, https://doi.org/10.5194/acp-11-321-2011, 2011. - Huey, L. G., Dunlea, E. J., Lovejoy, E. R., Hanson, D. R., Norton, R. B., Fehsenfeld, F. C., and Howard, C. J.: Fast time response measurements of HNO₃ in air with a chemical ionization mass spectrometer, Journal of Geophysical Research: Atmospheres, 103, 3355–3360, https://doi.org/10.1029/97JD02214, 1998. - Ishino, S., Hattori, S., Savarino, J., Jourdain, B., Preunkert, S., Legrand, M., Caillon, N., Barbero, A., Kuribayashi, K., and Yoshida, N.: Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica, Atmos. Chem. Phys., 17, 3713–3727, https://doi.org/10.5194/acp-17-3713-2017, 2017. - Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development, Atmospheric Environment, 31, 81–104, https://doi.org/10.1016/S1352-2310(96)00105-7, 1997. - Kaiser, J., Hastings, M. G., Houlton, B. Z., Röckmann, T., and Sigman, D. M.: Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier Method and Thermal Decomposition of N₂O, Anal. Chem., 79, 599–607, https://doi.org/10.1021/ac061022s, 2007. - Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prévôt, A. S., Äijälä, M., Allan, J., Canonaco, F., and Canagaratna, M.: Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol, Geophysical research letters, 43, 7735–7744, https://doi.org/10.1002/2016GL069239, 2016. - Kim, H., Walters, W. W., Bekker, C., Murray, L. T., and Hastings, M. G.: Nitrate Chemistry in the Northeast US Part II: Oxygen Isotopes Reveal Differences in Particulate and Gas Phase Formation, Atmospheric Chemistry and Physics Discussions, 2022, 1–33, https://doi.org/10.5194/acp-2022-622, 2022. - Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from isoprene photooxidation under high-NO_x conditions, Geophysical Research Letters, 32, - 1725 https://doi.org/10.1021/es0524301, 2005. - Li, J., Zhang, X., Orlando, J., Tyndall, G., and Michalski, G.: Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO₂: implications for δ^{15} N in tropospheric reactive nitrogen, Atmospheric Chemistry and Physics, 20, 9805–9819, https://doi.org/10.5194/acp-20-9805-2020, 2020. - Li, J., Davy, P., Harvey, M., Katzman, T., Mitchell, T., and Michalski, G.: Nitrogen isotopes in nitrate aerosols collected in the remote marine boundary layer: Implications for nitrogen isotopic fractionations among atmospheric reactive nitrogen species, Atmospheric Environment, 245, 118028, https://doi.org/10.1016/j.atmosenv.2020.118028, 2021. - Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz, A., Hallquist, M., and Worsnop, D.: A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO), Atmospheric Measurement Techniques, 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, 2014. - Lyons, J. R.: Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere, Geophysical Research Letters, 28, 3231–3234, https://doi.org/10.1029/2000GL012791, 2001. - McIlvin, M. R. and Altabet, M. A.: Chemical Conversion of Nitrate and Nitrite to Nitrous Oxide for Nitrogen and Oxygen Isotopic Analysis in Freshwater and Seawater, Anal. Chem., 77, 5589–5595, https://doi.org/10.1021/ac050528s, 2005. - Michalski, G., Scott, Z., Kabiling, M., and Thiemens, M. H.: First measurements and modeling of Δ^{17} O in atmospheric nitrate, Geophys. Res. Lett., 30, 1870, https://doi.org/10.1029/2003GL017015, 2003. - Michalski, G., Bhattacharya, S. K., and Mase, D. F.: Oxygen isotope dynamics of atmospheric nitrate and its precursor molecules, in: Handbook of environmental isotope geochemistry, Springer, New York, 613–635, 2012. - Michalski, G., Bhattacharya, S. K., and Girsch, G.: NOx cycle and the tropospheric ozone isotope anomaly: an experimental investigation, Atmospheric Chemistry and Physics, 14, 4935–4953, https://doi.org/10.5194/acp-14-4935-2014, 2014. - Morales, A. C., Jayarathne, T., Slade, J. H., Laskin, A., and Shepson, P. B.: The production and hydrolysis of organic nitrates from OH radical oxidation of β-ocimene, Atmospheric Chemistry and Physics, 21, 129–145, https://doi.org/10.5194/acp-21-129-2021, 2021. - Morin, S., Sander, R., and Savarino, J.: Simulation of the diurnal variations of the oxygen isotope anomaly (△⁻¹⁷ O) of reactive atmospheric species, Atmospheric Chemistry and Physics, 11, 3653–3671, https://doi.org/10.5194/acp-11-3653-2011, 2011. - Nah, T., Sanchez, J., Boyd, C. M., and Ng, N. L.: Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation, Environ. Sci. Technol., 50, 222–231, https://doi.org/10.1021/acs.est.5b04594, 2016. - Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., - Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, 2017. - Orsini, D. A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., and Weber, R. J.: Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition, Atmospheric Environment, 37, 1243–1259, https://doi.org/10.1016/S1352-2310(02)01015-4, 2003. - Rindelaub, J. D., McAvey, K. M., and Shepson, P. B.: The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis, Atmospheric Environment, 100, 193–201, http://dx.doi.org/10.1016/j.atmosenv.2014.11.010, 2015. - Rindelaub, J. D., Borca, C. H., Hostetler, M. A., Slade, J. H., Lipton, M. A., Slipchenko, L. V., and Shepson, P. B.: The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact, Atmospheric Chemistry and Physics, 16, 15425–15432, https://doi.org/10.5194/acp-16-15425-2016, 2016. - Romer, P. S., Duffey, K. C., Wooldridge, P. J., Allen, H. M., Ayres, B. R., Brown, S. S., Brune, W. H., Crounse,
J. D., De Gouw, J., and Draper, D. C.: The lifetime of nitrogen oxides in an isoprene-dominated forest, Atmospheric Chemistry and Physics, 16, 7623–7637, https://doi.org/10.5194/acp-16-7623-2016, 2016. - Sato, K., Ikemori, F., Ramasamy, S., Iijima, A., Kumagai, K., Fushimi, A., Fujitani, Y., Chatani, S., Tanabe, K., and Takami, A.: Formation of secondary organic aerosol tracers from anthropogenic and biogenic volatile organic compounds under varied NO_x and oxidant conditions, Atmospheric Environment: X, 14, 100169, https://doi.org/10.1016/j.aeaoa.2022.100169, 2022. - Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003. - | Savarino, J., Bhattacharya, S. K., Morin, S., Baroni, M., and Doussin, J.-F.: The NO+ O₃ reaction: A triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly, The Journal of chemical physics, 128, 194303, https://doi.org/10.1063/1.2917581, 2008. - Savarino, J., Morin, S., Erbland, J., Grannec, F., Patey, M. D., Vicars, W., Alexander, B., and Achterberg, E. P.: Isotopic composition of atmospheric nitrate in a tropical marine boundary layer, PNAS, 110, 17668–17673, https://doi.org/10.1073/pnas.1216639110, 2013. - Sharp, Z.: Principles of Stable Isotope Geochemistry, 2nd Edition, Open Textbooks, https://doi.org/https://doi.org/10.25844/h9q1-0p82, 2017. - Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J. K.: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, Analytical chemistry, 73, 4145–4153, https://doi.org/10.1021/ac010088e, 2001. - Takeuchi, M. and Ng, N. L.: Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of α -pinene and β -pinene, Atmospheric Chemistry and Physics, 19, 12749–12766, https://doi.org/10.5194/acp-19-12749-2019, 2019. - Takeuchi, M., Berkemeier, T., Eris, G., and Ng, N. L.: Non-linear effects of secondary organic aerosol formation and properties in multi-precursor systems, Nat Commun, 13, 7883, https://doi.org/10.1038/s41467-022-35546-1, 2022. - Takeuchi, M., Wang , Yuchen, Nault ,Benjamin A., Chen ,Yunle, Canagaratna, Manjula R., and and Ng, N. L.: Evaluating the response of the Aerodyne aerosol mass spectrometer to monoterpene- and isoprene-derived organic nitrate standards, Aerosol Science and Technology, 58, 1371–1388, - 1805 https://doi.org/10.1080/02786826.2024.2389183, 2024. - Tuet, W. Y., Chen, Y., Xu, L., Fok, S., Gao, D., Weber, R. J., and Ng, N. L.: Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds, Atmospheric Chemistry and Physics, 17, 839–853, https://doi.org/10.5194/acp-17-839-2017, 2017. - Vicars, W. C. and Savarino, J.: Quantitative constraints on the 17 O-excess (△¹-¹¹-O) signature of surface ozone: Ambient measurements from 50° N to 50° S using the nitrite-coated filter technique, Geochimica et Cosmochimica Acta, 135, 270–287, http://dx.doi.org/10.1016/j.gca.2014.03.023, 2014. - Walters, W. W. and Hastings, M. G.: Triple oxygen stable isotope analysis of nitrite measured using continuous flow isotope ratio mass spectrometry, Methods X, 11, 102413, https://doi.org/10.1016/j.mex.2023.102413, 2023. - Walters, W. W. and Michalski, G.: Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NO_y molecules, Geochimica et Cosmochimica Acta, 164, 284–297, https://doi.org/10.1016/j.gca.2015.05.029, 2015. - Walters, W. W. and Michalski, G.: Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O₃ reaction, The Journal of Chemical Physics, 145, 224311, https://doi.org/10.1063/1.4968562, 2016a. - Walters, W. W. and Michalski, G.: Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NO_y molecules, OH, and H₂O and its implications for isotope variations in atmospheric nitrate, Geochimica et Cosmochimica Acta, 191, 89–101, https://doi.org/10.1016/j.gca.2016.06.039, 2016b. - Walters, W. W., Simonini, D. S., and Michalski, G.: Nitrogen isotope exchange between NO and NO₂ and its implications for δ^{15} N variations in tropospheric NO_x and atmospheric nitrate, Geophys. Res. Lett., 43, 2015GL066438, https://doi.org/10.1002/2015GL066438, 2016. - Walters, W. W., Fang, H., and Michalski, G.: Summertime diurnal variations in the isotopic composition of atmospheric nitrogen dioxide at a small midwestern United States city, Atmospheric Environment, 179, 1–11, https://doi.org/10.1016/j.atmosenv.2018.01.047, 2018. - Walters, W. W., Takeuchi, M., Ng, N. L., and Hastings, M. G.: Incorporating Oxygen Isotopes of Oxidized Reactive Nitrogen in the Regional Atmospheric Chemistry Mechanism, version 2 (ICOIN-RACM2), Geoscientific Model Development, 17, 4673–4687, https://doi.org/10.5194/gmd-17-4673-2024, 2024a. - Walters, W. W., Pye, H. O. T., Kim, H., and Hastings, M. G.: Modeling the Oxygen Isotope Anomaly (△¹¹O) of Reactive Nitrogen in the Community Multiscale Air Quality Model: Insights into Nitrogen Oxide Chemistry in the Northeastern United States, ACS EST Air, https://doi.org/10.1021/acsestair.3c00056, 2024b. - Wang, X., Liu, T., Bernard, F., Ding, X., Wen, S., Zhang, Y., Zhang, Z., He, Q., Lü, S., and Chen, J.: Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation, Atmospheric Measurement Techniques, 7, 301–313, https://doi.org/10.5194/amt-7-301-2014, 2014. - Wang, Y., Piletic, I., Takeuchi, M., Xu, T., France, S., and Ng, N. L.: Synthesis and hydrolysis of atmospherically relevant monoterpene-derived organic nitrates, Environ Sci Technol, 55, 14595–14606, https://doi.org/10.1021/acs.est.1c05310, 2021. - Wang, Y., Takeuchi, M., Wang, S., Nizkorodov, S. A., France, S., Eris, G., and Ng, N. L.: Photolysis of Gas-Phase Atmospherically Relevant Monoterpene-Derived Organic Nitrates, J. Phys. Chem. A, 127, 987–999, https://doi.org/10.1021/acs.jpca.2c04307, 2023. - Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D Atmospheric Modeling (F0AM) v3.1, Geoscientific Model Development, 9, 3309–3319, https://doi.org/10.5194/gmd-9-3309-2016, 2016. - Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates, Atmospheric Chemistry and Physics, 15, 7307–7336, https://doi.org/10.5194/acp-15-7307-2015, 2015a. - Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., and others: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States (vol 112, pg 37, 2015), PROCEEDINGS OF THE - NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 112, E4509–E4509, https://doi.org/10.1073/pnas.1417609112, 2015b. | Xu, L., Tsona, N. T., You, B., Zhang, Y., Wang, S., Yang, Z., Xue, L., and Du, L.: NO _x enhances secondary | |---| | organic aerosol formation from nighttime γ-terpinene ozonolysis, Atmospheric Environment, 225, 117375, | | https://doi.org/10.1016/j.atmosenv.2020.1173752020. | Young, E. D., Galy, A., and Nagahara, H.: Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance, Geochimica et Cosmochimica Acta, 66, 1095–1104, https://doi.org/10.1016/S0016-7037(01)00832-8, 2002. Zare, A., Romer, P. S., Nguyen, T., Keutsch, F. N., Skog, K., and Cohen, R. C.: A comprehensive organic nitrate chemistry: insights into the lifetime of atmospheric organic nitrates, Atmospheric Chemistry and Physics, 18, 15419–15436, https://doi.org/10.5194/acp-18-15419-2018, 2018.