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Abstract.

The total aviation effective radiative forcing is dominated by non−CO2 effects. The largest contributors to the non−CO2

effects are contrails and contrail cirrus. There is the possibility of reducing the climate effect of aviation by avoiding flying

through ice supersaturated regions (ISSRs), where contrails can last for hours (so-called persistent contrails). Therefore, a

precise prediction of the specific location and time of these regions is needed. But a prediction of the frequency and degree5

of ice supersaturation (ISS) on cruise altitudes is currently very challenging and associated with great uncertainties because

of the strong variability of the water vapour field, the low number of humidity measurements at air traffic altitude, and the

oversimplified parameterisations of cloud physics in weather models.

Since ISS is more common in some dynamical regimes than in others, the aim of this study is to find variables/proxies that are

related to the formation of ISSRs and to use these for a regression method to predict persistent contrails. To find the best suited10

proxies for regressions, we use various methods of information theory. These include the log-likelihood ratios, known from the

Bayes’ theorem, a modified form of the Kullback-Leibler divergence and the mutual information. The variables (the relative

humidity with respect to ice RHiERA5, the temperature T , the vertical velocity ω, the divergence DIV , the relative vorticity

ζ, the potential vorticity PV , the normalised geopotential height Z and the local lapse rate γ) come from ERA5 and RHiM/I,

which we assume as the truth, comes from MOZAIC/IAGOS (commercial aircraft measurements).15

It turns out, that RHiERA5 is the most important predictor of ice supersaturation, in spite of its weaknesses, and all other

variables do not help much to achieve better results. Without RHiERA5, a regression to predict ISSRs is not successful.

Certain modifications of RHiERA5 before the regression (as suggested in recent papers) do not lead to improvements of ISSR

prediction. Applying a sensitivity study with artificially modified RHiERA5 distributions point to the origin of the problems

with the regression: the conditional distributions of RHiERA5 (conditioned on ISS and non-ISS, from RHiM/I) overlap too20

heavily in the range 70-100%, such that for any case in that range it is not clear whether it belongs to an ISSR or not. Evidently,

this renders the prediction of contrail persistence very difficult.

1 Introduction

In order to avoid persistent (warming) contrails, it is necessary that they can be reliably predicted. For this aim, three conditions

need to be fulfilled. First, the formation of contrails has to be predicted with a reasonable skill. Contrails form if (super-)25

saturation with respect to water occurs during the mixing process of the ambient air with the exhaust gases from the aircraft.
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This criterion is called the Schmidt-Appleman criterion (SAC, see Schmidt, 1941; Appleman, 1953; Schumann, 1996). Second,

contrails need ice supersaturation (ISS) to be persistent. So, this state must be represented and reliably predicted in weather

models. Third, in order to determine in advance whether a contrail will be warming or cooling, some kind of radiative transfer

calculation or a corresponding regression formula (e.g., Corti and Peter, 2009; Schumann et al., 2012; Wolf et al., 2023a) is30

required.

While the first of these conditions, the ability to predict the SAC, is generally fulfilled with a satisfying quality, this is

not the case for the prediction of ice supersaturation (Gierens et al., 2020). Predicting ice supersaturation at air traffic cruise

levels presents major difficulties. Gierens et al. (2020) compared temperature and humidity data obtained from instrumented

passenger aircraft with reanalysis data interpolated in space and time to the measurement locations. They came to the result35

that currently the forecast of ice supersaturation at given times and locations (for flight routing purposes) is almost like tossing

a coin. In contrast, the forecast of ISS is much easier for larger regions and periods of time (e.g. for planning measurement

campaigns, see Voigt et al., 2017). In the present paper, we investigate the problem of the forecast of ISS in more detail and we

will not cover the first and third condition.

There are several reasons why the prediction of persistent contrails is currently challenging. The main reason is the strong40

variability of the water vapour field in the atmosphere. This is because water substance is present in three aggregation states, it

is involved in chemical and aerosol processes and thus it varies greatly in the atmosphere. This problem is intensified by the low

number of humidity measurements at cruise levels for data assimilation. Data assimilation is necessary to keep the simulation

of a complex system close to measured reality. Therefore, more data on relative humidity at flight levels are urgently needed.

Note that satellite data cannot fill this gap since their vertical resolution is insufficient (Gierens and Eleftheratos, 2020). A third45

reason for the challenging prediction of persistent contrails is that current parameterisations of ice cloud physics in weather

models are generally kept simple enough in order to not spend too much computing time for a part of the atmosphere that so far

was usually not the main focus of weather prediction. ISS hardly affects the weather on the ground. Thus, it was not represented

in numerical weather prediction (NWP) models until about 25 years ago (Wilson and Ballard, 1999; Tompkins et al., 2007),

and its representation is still generally too crude for a reliable prediction of ice supersaturation and contrail persistence.50

However, there is nowadays growing interest in reducing the climate impact of aviation, and a relatively straightforward

possibility would be the avoidance of the formation of persistent contrails if only ice supersaturation could be predicted with

the precision necessary for flight routing. Because of the challenges mentioned before, the relative humidity field is insufficient

for this purpose and we need either corrections to the humidity field (Teoh et al., 2020, 2022) or other quantities that help

in the prediction of ISS. Gierens and Brinkop (2012) and Wilhelm et al. (2022) show that ISS is typically related to certain55

dynamical regimes, e.g. anticyclonic divergent uplift. This triggered the idea that using dynamical fields can indeed help in

contrail forecast. We pursue this idea in the present study and show how far we can get with dynamical proxies together with

modern regression methods. The results turn out to be considerably better than without such methods, but they are still not

satisfying. A sensitivity study shows what impedes better results and where the source of the problem lies.

In the present paper, we concentrate on the prediction of ice supersaturation, respectively the prediction of persistent con-60

trails. For this purpose, we use data obtained from instrumented passenger aircraft and reanalysis data, which are explained in
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section 2. We test different methods for predicting persistent contrails, which is the content of section 3 as well as the results we

obtained. Later on in section 4, we concentrate on modifying the relative humidity of ERA5 and on different sensitivity tests to

artificially separate the conditional RHi-distributions of ERA5. Finally, we summarise our results and conclude in section 5.

2 Data65

Various data sources are utilised in this study. These are briefly described in the following subsections 2.1 and 2.2.

2.1 Data from Commercial Aircraft

In this study we use pressure and relative humidity with respect to ice (RHiM/I) data collected from 16,588 flights during

10 years (2000 - 2009) of MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft, Marenco et al.

(1998)) measurements. As MOZAIC was transferred to the European infrastructure IAGOS (In-service Aircraft for a Global70

Observing System, Petzold et al. (2015)) in 2011 we refer to the data as MOZAIC/IAGOS (www.iagos.org). MOZAIC/IAGOS

operates autonomous in-situ instruments installed on long-range commercial aircraft. Due to this, it has the highest data density

in the flight corridors of the mid-latitudes, making it an ideal data set for the investigation of contrail-forming regions. For this

study we have chosen aerial boundaries of 30◦ to 70◦ latitude and −125◦ to 145◦ longitude at cruise levels between 310 and

190 hPa, thus, a region with heavy air traffic. We use these data as a basic truth to determine whether the formation of a75

persistent contrail is possible or not at a specific position and time.

2.2 Reanalysis Data

In addition to the data from commercial aircraft, hourly ERA5 reanalysis data (Hersbach et al., 2018a, b, 2020) of the relative

humidity with respect to ice RHiERA5, the temperature T , the vertical velocity ω, the divergence DIV , the relative vorticity ζ,

the potential vorticity PV and the normalised geopotential height Z for 200, 225, 250, and 300 hPa from ECMWF (European80

Centre for Medium-Range Weather Forecast) from the Copernicus Data Service (Copernicus Climate Change Service (C3S)

(2017)) is retrieved and interpolated to the exact position and time of the aircraft. The chosen pressure range from 300 to

200 hPa covers approximately the flight levels of 300 to 390 hft. With the pressure and temperatures on two adjacent levels,

also the local lapse rate γ at the aircraft positions is calculated (Gierens et al., 2022). The selection of these particular variables

comes from Wilhelm et al. (2022).85

3 Methods and Results

In this work, we consider whether it is possible to use the dynamical proxies suggested by Wilhelm et al. (2022) to improve

the forecast of ice supersaturation and contrail persistence. To quantify the success (or not) of several approaches we took,

we use the equitable thread score, ETS, as in Gierens et al. (2020). The motivation for this choice of score value, the defining

equations and interpretation of the ETS are given below in subsubsection 3.2.3.90
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The most simple way to map the values of the six dynamical proxies to probabilities for ice supersaturation or contrail

persistence is to divide the phase space into 6-dimensional rectangles/blocks (6 because of the 6 suggested dynamical proxies

by Wilhelm et al. (2022)), to count in each block the number of cases with persistent contrails and to divide it by the total

number of data in that block. The blocks should not be too large so that the probabilities are specific for certain circumstances.

Simultaneously, the blocks must not be too small, such that the number of events in each block allows one to determine the95

probability with some statistical reliability. Unfortunately, it turns out that even almost 400 thousand data points are insufficient

for this simple and most straightforward method; many blocks are either empty or do not have enough data points unless we

use quite large blocks and lose precision. Therefore, we cannot use this simple method and have to try others, like Bayesian

learning or modern non-linear regression methods.

3.1 Bayesian Learning100

3.1.1 Theory

We are interested in whether persistent contrails are possible or not, i.e. whether there is ice supersaturation or not. Unfortu-

nately, the moisture field in the models is not accurate enough for that purpose. So, how can we solve this problem?

It is known that ISS is more frequent in some dynamic situations than in others (Gierens and Brinkop, 2012; Gierens

et al., 2022; Wilhelm et al., 2022). One can try to exploit that: There are certain dynamical quantities X , whose conditional105

probability densities fX(x|ISS) and fX(x|ISS) differ more or less from each other (read: fX(x|ISS) as probability density

for a quantity X at the special value x in cases where ISS prevails. fX(x|ISS) is the analogue for cases where non-ISS (ISS)

prevails.).

Let us assume there is a value x of a variable X and this particular value is compatible with both ISS and ISS. Then the

question arises: Which statements can be made about ice supersaturation using this quantity? Is it more likely or less likely110

when X = x?

Naively, one could compare fX(x|ISS) and fX(x|ISS) and choose the larger of the two values. However, this ignores

that ISS cases are much more frequent than ISS cases when no further circumstances are considered, the so-called a priori

probability. The latter is taken into account by Bayes’ theorem in the following form:

P (ISS|X = x) =
P (x|ISS) ·P (ISS)

P (x|ISS) ·P (ISS) +P (x|ISS) ·P (ISS)
, (1)115

where P (ISS) is the a priori probability for ice supersaturation. P (x|ISS) = fX(x|ISS) dx and P (x|ISS) = fX(x|ISS) dx.

In Equation 1, the dx are canceled out and on the right side of the equation, P (x|ISS) and P (x|ISS) can be replaced by the

corresponding densities fX(x|ISS) and fX(x|ISS).

Another possibility to frame Bayes’ theorem for the present problem is to use the odds ratio:

P (ISS|x)
P (ISS|x)

=
fX(x|ISS)
fX(x|ISS)

· P (ISS)
P (ISS)

. (2)120
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The first factor on the right side of Equation 2 is the likelihood ratio, which represents the gain (> 1) or loss (< 1) in

confidence for ISS that we get by learning the current value of X . A likelihood ratio exceeding 1 does not mean that ISS is

more likely than ISS, but the probability of ISS increases. ISS is only more likely than ISS if the factor on the left side, the a

posteriori odds ratio, is > 1. The second factor on the right side is the prior odds ratio. In our case, P (ISS) is given by the

ratio of the number of data with ISS and the total number of data, which is 0.115. So, only 11.5% of our data belong to the ISS125

class. The prior odds ratio is therefore 0.115/0.885≈ 0.13. This means that the likelihood ratio has to be larger than 3.85 to

make ISS more probable than ISS. Instead of the odds ratio, one often uses its logarithm, which leads to log-likelihood ratios

(also known as logits) with values symmetric around zero (instead of values asymmetric around one). That is, positive logits

increase the probability for ISS and negative logits decrease the probability for ISS. As mentioned before, the a posteriori odds

ratio has to be > 1 to make ISS more probable than ISS. This also means that the logarithm of the a posteriori ratio has to be130

positive to make ISS more likely than ISS. As the logarithm of the prior odds ratio is ln(0.115/(1− 0.115))≈−2, the logit

must exceed 2 to make ISS more probable than ISS.

As long as there is only one special value x of a dynamical variable X , we are finished and this is already the result. Now,

assume that there are two quantities X and Y and one wants to know, which of these quantities carries more information about

the probability of ice supersaturation. Obviously, it is the quantity whose logits deviate stronger from zero in both the positive135

and negative directions, or the quantity for which the absolute values of the logits are larger on average over the ranges of x

and y. Taking the averages has to be done with a weighting that accounts for the values of the variables that actually occur in a

given situation, e.g.

EAL(fX|ISS ||fX|ISS) =
∫

fX(x|ISS) ·
∣∣∣∣ln

(
fX(x|ISS)
fX(x|ISS)

)∣∣∣∣ dx. (3)

As one does not know in advance whether a situation is ISS or not, it is the best to also use the corresponding expectation140

of the absolute logit EAL(fX|ISS ||fX|ISS) (where ISS and ISS are interchanged) and to average the two results. Let the result

for X be EAL(X). It may be called the expectation of the absolute logit. The quantity that yields the largest EAL(X) has the

largest learning effect for the question of ISS or not.

Note that EAL(.||.) has some resemblance to a quantity known as Kullback-Leibler divergence DKL(fX|ISS ||fX|ISS) (the

same expression without the absolute sign), and the corresponding symmetric form (the mean value of the two asymmetrical145

divergences DKL(fX|ISS ||fX|ISS) and DKL(fX|ISS ||fX|ISS)) is known as Jeffries divergence in information theory. For

quantities that are not related to supersaturation, fX(x|ISS) = fX(x|ISS) = fX(x), and the logit is zero. Thus, EAL(X) = 0

as well, which signifies that one cannot learn anything about the presence of ISS using such a quantity.

3.1.2 Application

The conditional probability densities of the dynamical proxies of ERA5 for ISS and ISS cases (depending on whether the150

relative humidity with respect to ice of MOZAIC/IAGOS RHiM/I is >= 1.0 or < 1.0) are calculated using the Epanech-

nikov smoothing kernel with 300 equally spaced points between the minimum and maximum of the respective proxy. The
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log-likelihood ratios for some dynamical quantities are shown in Figure 1. ISS gains in probability relative to the low prior

probability if the log-likelihood ratio is positive and vice versa (solid line in the diagrams). However, it needs to exceed 2 to

make ISS more probable than ISS (dashed lines). Obviously, this threshold is only exceeded in quite small ranges of the proxies155

or not at all. Only where RHi from ERA5 exceeds 100%, the logit exceeds 2; this says that ISS and persistent contrails are

more probable than not (the wiggles in the curve at even higher RHi are considered noise). The low values of the logits of the

other variables indicate that the dynamical proxies do not help much in predicting ice supersaturation via the Bayesian law.

Obviously, the strong separation of their conditional distributions is only a necessary but not a sufficient condition for good

proxies.160

For the calculation of the expectation of the absolute logit EAL(X) (cf. Equation 3), the absolute values of the different logit

functions are needed. These are shown in orange in Figure 2 for different proxies. The products of these functions with either

of the conditional densities are shown as well in light blue and dark purple. The integrals of these functions are given in Table 1

for the relative humidity with respect to ice RHiERA5, the temperature T , the vertical velocity ω, the divergence DIV , the

relative vorticity ζ, the potential vorticity PV , the lapse rate γ and the normalised geopotential height Z. The averages of the165

first two rows of each column are the desired EAL(X). High values for RHiERA5, ζ, and γ are noticeable for the ISS case,

and high values for RHiERA5, PV , and γ for ISS. Therefore, according to our analysis, RHiERA5, ζ, γ, and PV seem to be

the best-suited proxies for our purpose, but, as stated, they should be tried rather for regression and not for Bayesian learning.

The high value of EAL(PV ) is probably due to the fact that a high PV indicates the stratosphere where ISS hardly occurs. So,

for tropospheric situations (low PV cases) this finding is not very helpful, and accordingly, the high EAL(PV ) must not be170

over-interpreted.

To apply the Bayesian law for several proxies simultaneously, e.g. as for P (ISS|RHiERA5, ζ,γ), would need a much larger

amount of data to compute the likelihood ratios with some robustness over the whole domain. Instead, we try now to apply

non-linear regression.

Table 1. Expectation values for absolute logit of the different proxies. EAL(.) is the mean of EAL(fX|ISS ||fX|ISS) and

EAL(fX|ISS ||fX|ISS), so: EAL(.) = 1
2
·
(
EAL(fX|ISS ||fX|ISS)+ EAL(fX|ISS ||fX|ISS)

)
.

quantity RHiERA5 T ω DIV ζ PV γ Z

EAL(fX|ISS ||fX|ISS) 1.75 0.34 0.56 0.42 0.96 0.90 0.96 0.52

EAL(fX|ISS ||fX|ISS) 3.41 0.38 0.43 0.33 1.20 2.07 1.24 0.88

EAL(.) 2.58 0.36 0.50 0.38 1.08 1.49 1.10 0.70
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Figure 1. Log-likelihood ratios for dynamical quantities. Positive values raise the probability for ISS, negative values lower it. The probability

for ISS exceeds the probability for ISS only in the small ranges where the log-likelihood reaches values above 2 (marked by the dashed lines).
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Figure 2. The absolute logarithm of the quotient of the densities for ISS and ISS cases (orange), the absolute logarithm of the quotient of

the densities for ISS and ISS cases times the density for ISS cases (light blue), and the absolute logarithm of the quotient of the densities for

ISS and ISS cases times the density for ISS cases (dark purple) (cf. Equation 3).
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3.2 Non-linear Regression175

The dynamical candidate proxies are not independent quantities, and one has to take care that a regression is not formulated

with redundant information. But, of course, a variable that has some relation with (i.e. information on) the relative humidity

is welcome. Above we have seen that RHiERA5, ζ, and γ are promising in this respect. Also, PV has a quite large absolute

logit, but that comes mainly from the ISS cases, where it is an expression of the fact that dry stratospheric air (with PV > 3.5)

is rarely found in a supersaturated state (Neis, 2017; Petzold et al., 2020). Here we will apply another measure. Usually, one180

uses the linear correlation between the input data, but this does not work if the quantities are related in a non-linear fashion.

Therefore, it is necessary to use a more general measure of correlation, namely the mutual information from information theory.

3.2.1 Mutual Information

The mutual information is a measure of information that one variable, X , can provide about another, Y . Its formulation uses

the joint distribution of X and Y and both marginal distributions:185

I(X;Y ) =
∫∫

fX∩Y (x,y) · log
(

fX∩Y (x,y)
fX(x) · fY (y)

)
dxdy, (4)

where fX∩Y (x,y) is the joint probability density for X and Y . In case that X and Y are independent, the joint density equals

the product of the marginal densities and the logarithm is zero. Then the mutual information between X and Y is zero as well.

In all other cases, it is positive and it is the expected value of log( fX∩Y

fXfY
) with the joint distribution as the weight function.

Since we assume the humidity of MOZAIC/IAGOS (RHiM/I) is the truth, we calculate the mutual information of RHiM/I190

with other quantities and compare them with each other. The results of the computed mutual information I(RHiM/I;Y )

for different variables Y are shown in the first row in Table 2. The highest values of the mutual information are reached

by RHiERA5 (1.26 bits), PV (0.57 bits), γ (0.38 bits) and ζ (0.37 bits). This means, according to the mutual information,

RHiERA5, PV , γ and ζ seem well-suited as proxies for regressions.

To be a good proxy for a regression, it must not only be well correlated with RHiM/I (i.e. have a high value of mutual195

information I(RHiM/I;Y ), but at the same time, it should not be correlated with other variables (i.e. a low value of mutual

information with the other proxies I(X;Y )) to avoid redundant information. The values of the individual mutual information

I(X;Y ) can be found on the right side in Table 2. The matrix is symmetrical, so for a better overview only one side is filled .

As mentioned before, from all quantities, RHiERA5, PV , γ and ζ have the highest mutual information with RHiM/I.

However, PV and γ are themselves quite strongly correlated (1.07 bits). So, because I(RHiM/I;PV ) > I(RHiM/I;ζ), but200

I(PV ;ζ) is also very high, ζ should be omitted when using PV as a proxy.
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Table 2. Mutual information matrix I(X;Y ) to identify the correlations of the variables with each other. The first row of the matrix,

I(RHiM/I;Y ), shows the correlation of RHiM/I and the other proxies and the columns the correlations between the variables among

themselves.

I(X;Y ) in bits RHiM/I RHiERA5 T ω DIV ζ PV γ Z

RHiM/I 1.26 0.29 0.06 0.04 0.37 0.57 0.38 0.23

RHiERA5 0.35 0.08 0.06 0.43 0.61 0.43 0.25

T 0.02 0.02 0.12 0.16 0.05 0.36

ω 0.21 0.04 0.09 0.10 0.06

DIV 0.03 0.04 0.04 0.03

ζ 0.73 0.43 0.19

PV 1.07 0.54

γ 0.54

Z

3.2.2 Generalised Additive Model

A generalised additive model (GAM) is a regression method for predicting a response Y based on non-linear functions of

several predictors X = (X1,X2, ...,Xp). In meteorology, for instance, it has been successfully used for the prediction of thun-

derstorms (Rädler et al., 2018). The general formula for GAMs is:205

log
(

P (ISS|X)
1−P (ISS|X)

)
= β0 + s1(X1) + s2(X2) + ... + sp(Xp). (5)

P (ISS|X)
1−P (ISS|X) is the posterior odds ratio P (ISS|X)/P (ISS|X). The GAM thus constructs a relation between the (posterior)

odds ratio and a linear combination of functions of the predictors X . For the functions we use smoothing splines s(X). Here,

we test six different GAMs with combinations of various dynamical proxies (input parameters) to predict whether persistent

contrails are possible:210

– GAM0 with RHiERA5,

– GAM1 with T,RHiERA5,

– GAM2 with PV,T,RHiERA5,

– GAM3 with PV,T,ζ,RHiERA5,215

– GAM4 with γ,T,Z,PV,ζ, and

– GAM5 with γ,T,Z,PV,ζ,RHiERA5 .

10
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The procedure is as follows: For the tests, 395,576 independent data points are used. First, we divide the data set (MOZA-

IC/IAGOS and ERA5 data) into a training and test data set (training data set ∼ 80% and test data set ∼ 20% of the whole

data set). The presence of persistent contrails is known from the MOZAIC/IAGOS data, as described in subsection 2.1. Next,220

we train the model, which means, we find the best coefficients for the relationships between the proxies and prediction using

the training data set and a software environment for statistical computing called R (R. Ihaka and R. Gentleman, 1993). Then

we use the gained best coefficients and functions to predict the presence of persistent contrails in the test data set. At the end,

we validate the forecast by comparing the predictions with the truth and calculating the so-called equitable threat score (see

subsubsection 3.2.3).225

3.2.3 Equitable Threat Score

In this study, the equitable threat score (ETS) is used to validate and compare the prediction accuracy of the different GAMs

(with varied input parameters) and of the raw data. For the calculation of the ETS (Gierens et al., 2020), the events are

summed up according to the contingency table (see Table 3), where a distinction is made between "potential persistent contrails

predicted" yes/no and "persistent contrails observed" yes/no.230

Table 3. Contingency table for predicting and observing persistent contrails.

potential persistent contrails predicted

yes no

persistent contrails observed
yes correct (a) false negative (b)

no false positive (c) correct (d)

The sum of the events is labeled as a (contrails are predicted and observed), b (no contrails are predicted but observed), c

(contrails are predicted but not observed), and d (contrails are neither predicted nor observed). For the calculation of the ETS,

the numbers of the events a, b, c, and d and the following equation are used:

ETS =
a− r

a + b + c− r
(6)

with235

r =
(a + b) · (a + c)
a + b + c + d

. (7)

If the prediction agrees perfectly with the observation, ETS = 1. For a completely inverse relation, ETS is negative, and for

a random relation, ETS = 0. The advantage of using ETS instead of another skill score is that the influence of a predominant240

no/no case (large value of d) is minimised, which we have here, since ISS is much more probable than ISS.
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In order to fill the contingency table, it is necessary to decide on a conditional probability threshold P (ISS|X) up to which

ISS and from which on ISS is predicted. To determine the threshold, one generally uses the value that gives the best ETS. In

the present case, this threshold probability is 0.34. That is, with a given vector X of proxies, we predict contrail persistence or

ice supersaturation if P (ISS|X) > 0.34 (and vice versa).245

3.2.4 Regression Results

Table 4 shows the results of the application of six different general additive models (GAM0 to GAM5). Note that β0 is different

for every GAM even if it is abbreviated in the same way in all GAMs. In the first (white) row, the ETS value of 0.198 is given,

which is obtained when only RHiERA5 and RHiM/I are compared (without applying a GAM to it). In that case, we only

check how well the prediction of ISS in ERA5 matches the observation of ISS of MOZAIC/IAGOS. So, it is only examined250

how often RHiERA5 >= 1.0 matches RHiM/I >= 1.0. The SAC is not taken into account.

In GAM0, we only use RHiERA5 and get an ETS value of 0.337. In GAM1, we also take T into account, since the temper-

ature and the humidity are the two important variables to compute whether contrails form (using the SAC). With these proxies

we get an ETS of 0.372, which is a little bit higher than in GAM0, but not significantly.

As we saw in subsubsection 3.2.1, when calculating the mutual information, RHiERA5, PV , ζ and γ show particularly255

high values with RHiM/I (I(RHiM/I;RHiERA5) = 1.26 bits, I(RHiM/I;PV ) = 0.57 bits, I(RHiM/I;γ) = 0.38 bits and

I(RHiM/I;ζ) = 0.37 bits) and are therefore very suitable as proxies. But when looking at the mutual information among these

proxies, then it is noticeable that in particular PV and γ correlate strongly (1.07 bits). That is why γ can be omitted when using

PV . I(PV ;ζ) is also very high (0.73 bits), which is why we only use the PV in GAM2 (in addition to T and RHiERA5). The

resulting ETS value is also 0.372.260

For GAM3 we use PV , T , ζ and RHiERA5 because we want to take even more proxies into the GAM as inputs according to

the mutual information. So, we do the same GAM as before but we also use ζ, because I(RHiM/I;ζ) is also very high and

I(PV ;ζ) < I(PV ;γ). The ETS in this case is 0.373. We see, that GAM2 and GAM3 hardly differ from GAM1 in terms of

their ETS values. The reason for this is, even if I(RHiM/I;PV ) is very high, the PV is already very strongly correlated with

RHiERA5 (I(RHiERA5;PV ) = 0.61 bits).This means that not much more additional information is provided by PV (and the265

other variables even provide less).

Next, we use all proxies that show separate distributions in their probability density functions (PDFs, not shown) P (X|ISS)

vs. P (X|ISS), but, as an experiment, we omit RHiERA5 in GAM4. So, we use as inputs: γ, T , Z, PV and ζ. The ETS only

reaches a value of 0.197. This shows us two important things:

i) Even if we supposedly put more information into the GAM by using more proxies, the ETS does not increase.270

ii) The relative humidity can not be ignored as an input variable. This indicates that even if the relative humidity is an imprecise

variable, it must not be excluded, otherwise, the ETS value will drastically decrease.

These two new insights may be explained by the log-likelihood ratios (Figure 1): Only RHiERA5 shows values above 2 for a

large range, so ISS is more probable in this range. This is probably the reason why RHiERA5 has to be used as an input for the

GAMs. All other quantities either show no values above 2 at all or only for a very small range.275
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By using the same proxies as before and adding RHiERA5 (GAM5), the corresponding ETS reaches a value of 0.378.

It seems that the use of dynamical proxies in the GAMs does not outperform by much a simple GAM that uses only relative

humidity and temperature. At least, the ETS values obtained via the GAMs (that is, for prediction of potential persistent con-

trails) distinctively exceed those obtained from a simple check of the ISS prediction, as from the study of Gierens et al. (2020,

ETS = 0.08 for a relatively small set of data from 2014) and from the present much larger data set (ETS = 0.198). This means280

that even if a value of 0.378 seems small at first glance, it is still larger than if the prediction of ice supersaturation is purely

based on the relative humidity with respect to ice from the ERA5 data.

Note that despite T is not particularly prominent, neither in the EAL nor in its mutual information with RHiM/I, we use it in

GAM1 to GAM5 because it is such an important quantity in the SAC and we use the proxies to provide further information (in

addition to T and RHiERA5). So, when running our best GAM (GAM5), but this time without T , the ETS reaches a value of285

0.357. T does not increase the ETS significantly, but we leave it in for the reasons mentioned above.

Since, as we have seen, the relative humidity should definitely be used as an input for a GAM, although it is not very precise,

the questions arise: Is it possible to improve the regression results using corrections to the relative humidity field from the

weather forecast models and what is the reason why even the most advanced regression methods are not able to yield better

ETS values? These questions are dealt with in the next section.290

Table 4. Results of comparing RHiERA5 and RHiM/I with each other and of different GAMs.

Comparison of raw data (assessment of the ISS-prediction; without using a GAM) ETS

RHiERA5 and RHiM/I 0.198

Prediction of potential persistent contrails using proxies and GAMs: log
(

p(X)
1−p(X)

)
= ETS

GAM0 β0 + s(RHiERA5) 0.337

GAM1 β0 + s(T ) + s(RHiERA5) 0.372

GAM2 β0 + s(PV ) + s(T ) + s(RHiERA5) 0.372

GAM3 β0 + s(PV ) + s(T ) + s(ζ) + s(RHiERA5) 0.373

GAM4 β0 + s(γ) + s(T ) + s(Z) + s(PV ) + s(ζ) 0.197

GAM5 β0 + s(γ) + s(T ) + s(Z) + s(PV ) + s(ζ) + s(RHiERA5) 0.378

4 Sensitivity Tests

If weather forecasts were perfect, contrail persistence could easily be predicted using temperature and relative humidity alone

and it would not be necessary to use any proxies. Unfortunately, it seems that in particular the predicted humidity field (at

least from ERA5, but certainly from other weather models as well) is not good enough to allow such a forecast for single

flights, that is, waypoint to waypoint (Gierens et al., 2020). There are plausible reasons for this, in particular a lack of in-295

situ observations of humidity at cruise levels and outdated cirrus parameterisations in numerical weather prediction models

(Sperber and Gierens, 2023). In the following we perform regression tests with artificially changed distributions of relative
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humidity. We first assume that the two conditional RHiERA5 distributions P (RHiERA5|ISS) and P (RHiERA5|ISS) were

more separated (less overlap) than they are (ideally the overlap should be very small, including only sublimating contrails in

the ISS-conditioned PDF and supersaturated, but too warm cases in the ISS-conditioned PDF). Second, we test two different300

methods of humidity corrections to see whether they help to reach higher ETS values in the regression models.

4.1 Separating the probability density functions conditioned on persistence

We guess that the root of the problem of predicting ice supersaturation and contrail persistence is the too strong overlap of the

two conditional humidity PDFs, namely fRHiERA5(r|ISS) and fRHiERA5(r|ISS), where r is a special value of RHiERA5.

This substantial overlap can be seen in panel f) of Figure 3. Now we artificially separate these two distributions using a perfectly305

separated pair of distributions, a log-normal distribution fPC cut-off at 0.8 and 1.5 for cases that allow persistent contrails

(PC), and a second one, fnoPC ranging from 0.0 and 0.8 for cases that do not (no PC). Then we mix the original conditional

probability distributions of all data, both in the training and test data set, more and more into the artificial distributions, namely

using a weighting factor 0≤ a≤ 1 as follows:

f(r|ISS,a) = afnoPC + (1− a)fRHiERA5(r|ISS),310

f(r|ISS,a) = afPC + (1− a)fRHiERA5(r|ISS). (8)

Some examples of these artificial distributions are shown in Figure 3. From these distributions, we draw random humidity

values and replace the original ones with them keeping their ISS and ISS label (i.e. either persistent contrail, RHia drawn

from f(r|ISS,a), or non-persistent or no contrail drawn from f(r|ISS,a)). This data set is then again divided into a training

(80%) and test data (20%) set and GAMs (with T and RHia, like in GAM1) and the corresponding ETS are computed for315

every value of a.

The results are shown in Table 5. It is noticeable that even with a small shift in the relative humidity data, the ETS value

increases drastically. This can be observed especially for small values of a, which means that if the original RHiERA5 data

were just slightly more separated, the results would be drastically improved. This is good news since it shows that the model

prediction of RHiERA5 does not need to be perfect. Very good ETS values already appear for conditional distributions that are320

a little less separated than they actually are. Note that the further increase of ETS for a > 0.5 is quite weak since ETS (a = 0.5)

already exceeds 0.9.
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Figure 3. Conditional probability density functions f(r|ISS,a) (blue) and f(r|ISS,a) (red) for different values of a. Note that the original

distributions fRHiERA5(r|ISS) and fRHiERA5(r|ISS) are retained with a = 0.0 in panel f).

Table 5. Results of the sensitivity test

a 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

ETS 1.0 0.996 0.989 0.976 0.956 0.921 0.863 0.765 0.639 0.484 0.372
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4.2 Correction Formulas

As subsection 4.1 shows, there is a strong increase in the ETS for decreasing overlap. For this reason, two different methods are

being tested to further separate the two conditional distributions, fRHiERA5(r|ISS) and fRHiERA5(r|ISS), using corrections325

to the modelled relative humidity values. These correction methods are quantile mapping based on the present data sets (e.g.

Gierens and Eleftheratos, 2017; Wolf et al., 2023b) and the RHi-modification used by Teoh et al. (2022).

4.2.1 Quantile Mapping

The quantile mapping procedure uses the two cumulative distributions of RHi, the one from the MOZAIC/IAGOS data and

the corresponding one from ERA5, see Figure 4. Evidently, the two distributions differ, in particular around saturation. This330

is therefore the range of values, where corrections have the greatest effect. The procedure is quite simple: for each RHiERA5

the corresponding quantile value (the value on the y-axis) is looked up and the the corresponding RHiM/I, that has the same

quantile value, is taken as the corrected RHiQM. This is illustrated by the black arrows in Figure 4. We note that saturation

(RHiQM = 1) is already reached at the predicted (i.e. ERA5) relative humidity of RHiERA5 = 0.934, using this method.

Figure 4. Illustration of quantile mapping for RHiERA5. The red curve illustrates the cumulative distribution function (CDF) of RHiERA5

and the blue one the CDF of RHiM/I.

4.2.2 RHi-modification by Teoh et al. (2022)335

In a study by Teoh et al. (2022), the ERA5 ice supersaturation over the North Atlantic was adjusted to the corresponding

MOZAIC/IAGOS supersaturation by introducing two factors with whom the RHiERA5 is scaled:
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RHiTEOH =
RHiERA5

a
if

RHiERA5

a
≤ 1

RHiTEOH = min

[(
RHiERA5

a

)b

,1.65

]
if

RHiERA5

a
> 1, (9)

with a = 0.9779 and b = 1.635. Here we try whether this modification can lead to improvements in our regression models.340

4.2.3 Results using corrections

Table 6 shows the results of comparing the observed ice supersaturation RHiM/I with the modified relative humidities with

respect to ice, RHiQM and RHiTEOH, and the results of using these corrected humidities in the best GAM we have found

before (see subsubsection 3.2.4). To recall the results to be compared, which we have already described, the ETS of the

comparison of RHiERA5 and RHiM/I and also the original GAM5 have been added to the table.345

We check how good the prediction of ice supersaturation is, using the corrected versions of RHiERA5. When comparing the

data of RHiM/I with the modified relative humidity with respect to ice using the quantile mapping method, RHiQM, the ETS

reaches a value of 0.344. If the relative humidity with respect to ice is modified according to the formula of Teoh RHiTEOH

and compared to RHiM/I, than the ETS is 0.284.

Table 6. Results of comparing RHiM/I and the modified humidities RHiQM and RHiTEOH and of GAMs using RHiQM and RHiTEOH.

Comparison of raw data (assessment of the ISS-prediction; without using a GAM) ETS

RHiERA5 and RHiM/I 0.198

RHiQM and RHiM/I 0.344

RHiTEOH and RHiM/I 0.284

Prediction of potential persistent contrails using proxies and GAMs: log
(

p(X)
1−p(X)

)
= ETS

GAM5 β0 + s(γ) + s(T ) + s(Z) + s(PV ) + s(ζ) + s(RHiERA5) 0.378

GAM5,QM β0 + s(γ) + s(T ) + s(Z) + s(PV ) + s(ζ) + s(RHiQM) 0.377

GAM5,TEOH β0 + s(γ) + s(T ) + s(Z) + s(PV ) + s(ζ) + s(RHiTEOH) 0.376

Now, we use the same proxies as in GAM5 but we replace RHiERA5 with RHiQM gained by quantile mapping, and for the350

other case with RHiTEOH using the formula by Teoh. The relative humidity of the whole data set is adapted. When RHiERA5

is modified by quantile mapping, we get an ETS value of 0.377 and for a change in humidity according to Teoh, the ETS value

is 0.376.

Unfortunately, it turns out that neither a GAM produced with quantile-mapped ERA5 humidity values nor a GAM where the

Teoh et al. (2022) corrections have been applied, leads to larger ETS values than a GAM without the corrections (reminder:355

the ETS of the original GAM5 with the original RHiERA5 is 0.378). In comparison to the ETS of 0.344 (quantile mapping)
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and 0.284 (Teoh) mentioned above, when only the modified humidities are compared with RHiM/I, the GAMs with the best

suited proxies and the modified humidities affect the ETS values hardly.

The probable reason for this negative result is seen in Figure 5, which shows the original conditional PDFs (red and blue)

together with those obtained when the corrections are applied. Evidently, there is some shift in particular for the PDFs condi-360

tioned on ISS, but the overlap between the distribution pairs still remains considerable, too substantial for a better result.

Another reason for the insensitivity of the GAMs to these corrections may be that they absorb such modifications in the

coefficients of the non-linear smooth functions. This may become clearer, if one thinks of a linear regression (Y = β0+β1X+ε)

where a linear correction of the predictor X , that is X ′ = a+ bX , would also be simply absorbed in the regression coefficients

β0,β1. That is, they would simply take different values but the form of the regression and the ETS would not change.365

Figure 5. The conditioned PDFs P (RHi|ISS) (blue) and P (RHi|ISS) (red) of different RHi distributions are shown. The solid curves

are the PDFs of the original RHiERA5 of the whole data set for ISS and ISS. The other curves represent RHi-corrections: The dashed

lines are the conditioned PDFs of RHiQM modified by the quantile mapping method. The dotted curves represent the conditioned PDFs of

RHiTEOH modified by the Teoh formula.

5 Summary and Conclusions

There are various approaches to minimise the climate impact of aviation. One of these approaches is to prevent the formation

of persistent contrails by avoiding flying through ice supersaturated regions where contrails can last for hours. For implement-

ing such aircraft diversions, these regions have to be predicted accurately in terms of time and location, which is currently

associated with difficulties and uncertainties. This is mainly due to the inaccurate forecast of the relative humidity. Since ice370
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supersaturation (ISS) is more common in some dynamical regimes than in others, we use different dynamical proxies (in ad-

dition to the relative humidity with respect to ice RHiERA5 and to the temperature T ) as inputs for various approaches and

methods to improve the prediction of these regions. These methods include a Bayesian approach and different regression mod-

els. The data of the variables/proxies come from ERA5, the observation comes from MOZAIC/IAGOS, which we assume as

the truth. With the data of MOZAIC/IAGOS we can make the distinction between ISS and ISS. The evaluation of the different375

methods is carried out with a score value (ETS) that checks how well the prediction matches the observation.

To find out which dynamical variables are best suited for the regressions and which do not provide redundant information,

we use various methods of information theory and test them. These include the log-likelihood ratios, known from the Bayes’

theorem, a modified form of the Kullback-Leibler divergence, which we call the expectation of the absolute logit, and the

mutual information.380

Log-likelihood ratios with values > 2 indicate that ISS is more likely than ISS. Only RHiERA5 delivers values above 2 in a

larger range, which indicates that ISS is more likely there than ISS. The vertical velocity ω and the relative vorticity ζ show

also values above 2, but in a very small range. All other log-likelihood ratios are always below 2, which means that their effect

on updating the prior odds ratio is quite small.

Particularly high values of the expectation for absolute logits are found for RHiERA5, the lapse rate γ and the relative vorticity385

ζ, which means that these proxies have the greatest learning effect when assessing whether ISS or ISS.

Furthermore, to estimate the suitability of a proxy for a regression, we use the mutual information, which is a measure of how

much information one variable X can provide about another variable Y . To be a good predictor of ISS, it is important that

the variable is both very well correlated with the relative humidity of the MOZAIC/IAGOS data, RHiM/I (which we assume

as the truth), and at the same time as uncorrelated as possible with the other variables. RHiERA5, PV , γ and ζ have the390

highest mutual information to RHiM/I but especially PV and γ are themselves quite strongly correlated, so it is sufficient for

a regression to use PV and omit γ because of the higher mutual information of PV with RHiM/I.

We use the most promising variables in several regression models to predict ISS. Through the regressions we find out that no

matter which and how many dynamical proxies are added as an input, they do only provide little new information regarding

ISS. With only the raw RHiERA5 and T data of ERA5, Gierens et al. (2020) could achieve an ETS value of 0.08 for the395

prediction of ice supersaturation. For the present data set it is 0.198. The best regression that we can find, achieves an ETS of

0.378. We consider this as not satisfying for flight routing.

It turns out that the dynamical proxies hardly provide information to the question of ISS or ISS, although the mutual

information between in particular RHiERA5 and RHiM/I and between PV and RHiM/I is quite large. Furthermore, we see

that of all variables only RHiERA5 has a range of values with the logit function exceeding the critical level of 2 and that a400

regression without RHiERA5 is not successful. Thus, it turns out that the relative humidity RHiERA5 at flight level is essential

in our regressions in spite of its weaknesses. We suspect, that the main problem with predicting ISS is the strong overlap of the

conditional probability density functions P (RHiERA5|ISS) and P (RHiERA5|ISS), especially in the critical region around

RHiERA5 = 70% to 100%. Sensitivity tests show that the ETS increases strongly with a decrease in the overlap, which means

that if P (RHiERA5|ISS) and P (RHiERA5|ISS) were just slightly more separated, the results would drastically improve.405
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While corrections of RHiERA5 lead to better predictions of ice supersaturation (increase in the ETS values) for comparing

RHiM/I with the modified relative humidities, they only slightly improve the forecast of potential persistent contrails (based

on the ETS of the ISS-prediction) using regression methods, the proxies that turned out to be the most suitable ones and

the modified relative humidities. This is due to the fact that also the overlap of the conditional PDFs P (RHi|ISS) and

P (RHi|ISS) of the modified relative humidities is hardly reduced, and probably also because the corrections are absorbed by410

the regressions and thus they do not become effective.

In the present paper we have used the meteorological data only at the point and time where the prediction of ice super-

saturation is required. One can increase the effort and use additionally forecast data from earlier points in time and locations

upstream of the location of interest (e.g. Duda and Minnis, 2009a, b). Wang et al. (2022) report that the humidity forecast of the

ECMWF model can be improved by application of a random forest fed with data from previous atmospheric states (a couple415

of hours) and covering about 100 hPa in vertical distance, in order to account for the past vertical motion that led to the current

state. While this is certainly a possibility to improve the predicted humidity field per se, it is not clear whether the methods

are fast and accurate enough for flight planning. Duda and Minnis (2009b) conclude that "reductions in the uncertainties of

meteorological variables to a point where acceptable contrail forecasts are produced would be a good goal for NWA (numerical

weather analysis) modelers".420

We conclude that the representation of RHi in models of numerical weather prediction need to be improved. There are

several ways to do this, but it will take some time to realise it. Cloud physics in numerical weather models is greatly simplified.

This was justified for a long time because of the constraints of computing time and because the processes at flight level were

not in the focus of weather prediction. However, as aviation needs to reduce its climate impact, avoidance of contrails gets

interesting for airlines and thus the prediction of ice supersaturation needs improvement. Furthermore, computer power is425

rising and additional resources can be used to improve the description of physical processes. A recent example is the concept

of a one-moment scheme by Sperber and Gierens (2023). Furthermore, we think that more aircraft need to be equipped with

hygrometers to measure humidity at flight altitudes for data assimilation. This would enable numerical weather models to

improve the prediction of relative humidity for flight routing.
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