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Abstract. Ensemble Lagrangian simulations aim to capture the full range of possible outcomes for particle dispersal. How-

ever, single-member Lagrangian simulations are most commonly available and only provide a subset of the possible particle

dispersal outcomes. This study explores how to generate the variability inherent in Lagrangian ensemble simulations by cre-

ating variability in a single-member simulation. To obtain a reference for comparison, we performed ensemble lagrangian

simulations by advecting the particles from the surface of the Gulf Stream, around 35.61◦N, 73.61◦W, in each member of5

theensemble to obtain trajectories capturing the full ensemble variability. Subsequently, we performed single-member simula-

tions with spatially and temporally varying release strategies to generate comparable trajectory variability and dispersal. We

studied how these strategies affected the number of surface particles connecting the Gulf Stream with the eastern side of the

subtropical gyre.

We used an information theory approach to define and compare the variability in the ensemble with the single-member10

strategies. We defined the variability as the marginal entropy or average information content of the probability distributions of

the position of the particles. We calculated the relative entropy to quantify the uncertainty of representing the full-ensemble

variability with single-member simulations. We found that release periods of 12 to 20 weeks most effectively captured the full

ensemble variability, while spatial releases with a 2.0◦ radius resulted in the closest match at timescales shorter than 10 days.

Our findings provide insights to improve the representation of variability in particle trajectories and define a framework for15

uncertainty quantification in Lagrangian ocean analysis.

1 Introduction

The ocean’s dynamics, driven by atmospheric fluxes of energy and momentum at the surface, are characterized by phenomena

that mutually interact across different spatiotemporal scales, including eddies, internal waves, zonal jets, and mixing processes,

up to decadal and basin-scale fluctuations (Vallis, 2017). These multi-scale interactions are non-linear and difficult to model,20

presenting a significant source of uncertainty in Ocean General Circulation Models (OGCMs) and our understanding of ocean
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circulation. Even under constant atmospheric forcing conditions, ocean models can produce divergent states from minimally

perturbed initial conditions (Penduff et al., 2014). This intrinsic variability becomes particularly prominent in eddy-permitting

models where small initial differences can cascade towards multi-decadal and basin scales (Grégorio et al., 2015; Leroux et al.,

2018; Zhao et al., 2023). To address these inherent uncertainties in OGCMs, researchers have increasingly adopted probabilistic25

ensemble models, running multiple simulations with small perturbations to initial conditions or parameter values to capture

a broad range of possible ocean states (Penduff et al., 2018; Zanna et al., 2019). The ultimate goal of ensemble models is to

predict the probability density of the system’s state at a future time (Leutbecher and Palmer, 2008).

Lagrangian particle tracking provides a powerful tool for studying ocean transport, mixing, and connectivity, with applica-

tions ranging from search and rescue operations (Breivik et al., 2013) to climate and environmental research (Bower et al.,30

2019; Van Sebille et al., 2018). In these simulations, virtual particles are typically advected by velocity fields derived from

OGCMs, with their dispersal patterns intimately linked to the underlying ocean state. These advected particle trajectories are

chaotic, in which small perturbations in initial conditions or noise along their trajectories can lead to significant divergences

in particle trajectories (Koshel and Prants, 2006). The sensitivity to initial conditions is often used to generate variability in

particle trajectories to predict the drift of the particles when there is uncertainty in their initial conditions (Breivik et al., 2013).35

An alternative approach to generating variability in the trajectories is to advect particles using a full ensemble of vector fields

or ensemble models, an approach followed from Melsom et al. (2012), in which they advected particles using an ensemble

of 100 members from the TOPAZ forecasting system. They found that ensemble average trajectories, calculated as the center

of gravity (mean position) of all ensemble members at each time step, are generally closer (on a straight line distance) to the

observed drifter trajectories than that from a deterministic single-member simulation. However, the study did not compare how40

small perturbations in initial conditions in the single-member simulation performed relative to the trajectories advected by the

ensemble.

While ensemble Lagrangian simulations can capture a more complete spectrum of possible outcomes, single-member sim-

ulations, which sample only a subset of the possible outcomes, remain more prevalent due to computational constraints. In

operational oceanography, data assimilative models are commonly used to improve trajectory predictions by combining ob-45

servations with model dynamics to find an optimal solution (Castellari et al., 2001). However, while assimilation can reduce

systematic biases and improve the mean state representation, it may not fully capture the underlying uncertainty and variability

in particle trajectories, particularly in regions with sparse observations (Jacobs et al., 2018). Our study addresses these limi-

tations by exploring ways of generating ensemble-like variability within single-member simulations. We assess performance

based on a connectivity analysis and dispersion patterns using a novel information theory approach. Our approach consists50

of quantifying the variability in trajectories through the marginal entropy of particle position distributions and evaluating the

uncertainty in representing full-ensemble variability with single-member simulations.

We focused on the region east of Cape Hatteras in the North Atlantic Ocean, implementing spatially and temporally varying

release strategies to generate variability comparable to that observed in full ensemble simulations. This region was chosen to

study the connectivity of water parcels at the surface of the Gulf Stream with the Eastern North Atlantic and the subtropical55

gyre. It was previously thought that the salty and warm surface water of the Gulf Stream feeds directly to the subpolar gyre.
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However, recent Lagrangian studies have shown that the water parcels originating at the surface of the Gulf Stream recirculate

within the subtropical gyre, becoming part of the subtropical mode water, and enter the subpolar gyre via sub-surface connec-

tions (Rypina et al., 2011; Burkholder and Lozier, 2014; Foukal and Lozier, 2016; Berglund et al., 2022). Our study builds

upon these findings by quantifying how intrinsic ocean variability affects this connectivity pattern within the subtropical gyre,60

providing insights into the robustness and variability of these recirculation pathways.

2 Methodology

2.1 Model Set-Up

Lagrangian particles were advected offline using six years (2010-2015) of daily surface velocity fields produced by the North

Atlantic NATL025-CJMCYC3 50-member ensemble simulation. This regional ensemble simulation was performed in the65

context of the OceaniC Chaos – ImPacts, strUcture, predicTability project (OCCIPUT), described in Penduff et al. (2014)

and Bessières et al. (2017). This ensemble was performed using the NEMO v3.5 ocean/sea-ice model over the North Atlantic

between 20◦S and 81◦N, with an eddy-permitting resolution of 1/4◦ and 46 vertical levels. The 50 ensemble members were

initialized by the final state of a 15-year one-member spin-up that ended in December 1992. The inter-member dispersion was

generated by activating a small stochastic perturbation in the equation of state during 1993 and deactivating it for the remaining70

simulation time. All ensemble members were driven by the same atmospheric forcing between 1993 and 2015, derived from

the DRAKKAR Forcing Set 5.2 (DFS5.2; see Dussin et al. (2016)). The NATL025-CJMCYC3 1993-2025 simulation used

here is similar to the NATL025-GSL301 1993-2012 simulation presented in Narinc et al. (2024), with one difference: tropical

cyclones were enhanced in the forcing of NATL025-CJMCYC3 since they were too weak in DFS5.2. More details about the

model setup are provided in Narinc et al. (2024).75

These velocity fields were used to advect particles, where particle trajectories in each ensemble member were integrated

using the Parcels framework v.3.0.2 (Delandmeter and van Sebille, 2019). Trajectories were integrated in three dimensions

using a fourth-order Runge-Kutta scheme with a time step of 1 hour, storing the output with a daily timestep. We modeled

passive particles (that is, particles that instantly adjust their velocity to that of the ambient flow) by only considering three-

dimensional advection and ignoring all buoyant or diffusive forces. Additionally, particles that escaped the domain through the80

surface were placed back to a depth of 1 m. We chose the region off the coast of Cape Hatteras as a study location because it

is an important region where the Gulf Stream separates from the continental shelf and becomes a free jet (Mao et al., 2023;

Buckley and Marshall, 2016).

This study explores methods to recreate the trajectory variability typically obtained from ensemble ocean simulations using

only a single ensemble member. Figure 1 illustrates both the challenge and our proposed approaches. When particles are85

released from a fixed point (35.61◦N, 73.61◦W; yellow square) and tracked using different ensemble members, their trajectories

(shown in black) diverge due to variations in the velocity fields. Our goal is to reproduce this dispersion using just one ensemble

member.
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We tested two approaches to achieve ensemble-like variability with single-member simulations by leveraging the sensitivity

to initial conditions. The first strategy varies the release locations spatially (shown in purple in Figure 1), creating a cloud of90

initial positions centered around 35.61◦N and 73.61◦W. The purple circles indicate the varying release locations, while the

purple arrows show their subsequent trajectories. The second strategy (shown in orange) maintains the fixed release location

(yellow square) but varies the release timing, with particles released continuously over a time period. Both methods generate

substantial trajectory spreading that qualitatively resembles the full ensemble variation, though with distinct spatial patterns.

The single-member simulations were performed using velocity fields from individual members of the NATL025-CJMCYC395

ensemble. To ensure robust statistics, we repeated each strategy (spatial and temporal variation) with all 50 ensemble members

rather than arbitrarily selecting one. For the ensemble simulations, rather than running new simulations where all ensemble

members simultaneously advect particles, we selected and joined trajectories from our existing single-member simulations to

create a ‘synthetic’ mixture-of-all-member simulation. This mixture simulation contains the full ensemble variability and is

our benchmark for comparing both single-member strategies. The following subsections further detail the two single-member100

release strategies and the ensemble simulations, which we refer to as mixture simulations.

2.2 Spatially Varying Release

We performed Lagrangian simulations by releasing a cloud of particles around (35.71◦N,73.61◦W), at 1 meter depth, on

2 January 2010. We evenly spaced the particles in concentric rings around the coordinates, where each ring was placed at a

constant radial separation (δr) from the prior ring, forming a circle of particles. We varied the radius of this cloud of particles;105

the larger the radius, the less correlated the velocity vectors of the particles are expected to be, creating more variability in the

trajectories. We created three sets of simulations, with 50 simulations per set (one per ensemble member). The three sets of

simulations were performed with 7,500 particles, with an initial cloud varying δr ∈ {0.1◦,1.0◦,2.0◦}.

At the release point, the initial cloud radiuses are approximately 9 km, 90 km, and 180 km. As a reference, we computed the

ensemble average spatial autocorrelation function of the initial particle velocities at the release location on the same release110

day (2 January 2010). The spatial autocorrelation function describes the average agreement between the particle velocities of

particles separated by a distance L. The larger the separation distance L, the more likely their velocities will be decorrelated

(LaCasce, 2008). Assuming that the spatial correlation decays exponentially, we defined the decorrelation length scale LL as

the e-folding length scale of the exponential that describes the autocorrelations functions (Xia et al., 2013). The analysis is

shown in Appendix A and Figue A1B.115

In this region, the average decorrelation length scale for the NATL025-CJMCYC3 ensemble is LL = 0.41◦, approximately

37 km. This LL is slightly larger than the local Rossby deformation radius, approximately 30 km in this region (Chelton et al.,

1998). Both spatial scales indicate that the velocities of all the particles released from an initial cloud of δr = 0.1◦ should be

correlated, while for the larger clouds δr ∈ {1.0◦,2.0◦}, only a fraction of the particle velocities may be correlated, leading to

more variability in the trajectories.120
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Figure 1. Schematic representation of the experiment design, east of Cape Hatteras, showing three approaches to generate variability in the

particle trajectories. The black lines show 50 trajectories of particles released from a single point (35.61◦N, 73.61◦W; yellow square) and

advected using velocity fields from all 50 members of the NATL025-CJMCYC3 ensemble. Purple trajectories show 50 randomly selected

particles, out of 7,500, released from spatially varying locations (purple circles) within a 1◦ radius of the central point, all advected using

ensemble member 3. Orange trajectories represent 50 randomly selected particles, out of 7,500, released uniformly over a 20-week period

from the central point (35.61◦N, 73.61◦W; yellow square), also using ensemble member 3. All trajectories are shown 14 days after their

respective release times.

2.3 Temporally Varying Release

We also created variability by releasing particles from the same location (35.71◦N,73.61◦W) at different times. We tested

three release time windows: 4, 12, and 20 weeks, all starting from 2 January 2010. For each window length, we performed

50 simulations (one per ensemble member), with each simulation releasing 7,500 particles. Within each time window, we

distributed the 7,500 particles evenly across the days, resulting in multiple particles being released each day. To ensure particles125

released on the same day followed different trajectories, we added small random perturbations to their release locations using

uniform noise with an amplitude of 0.01◦. We kept this noise amplitude small because larger values would introduce significant

spatial variability, making it difficult to isolate the effects of the temporal release strategy alone.

We computed the average decorrelation timescale for all ensemble members to better understand how the particles’ initial

velocities are correlated for different time lags at the release location. Similar to spatial autocorrelation, the temporal autocor-130

relation timescale describes the average agreement between the velocities of particles at the same location but with a delay
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or lag of t days. The longer t, the more likely the velocities will be decorrelated (LaCasce, 2008). Assuming that temporal

autocorrelation decays exponentially, we defined the decorrelation timescale τL as the e-folding timescale, after which there

is a 69% probability for the velocities to be decorrelated (Xia et al., 2013). The full analysis is shown in Appendix A and

Figure A1C.135

We found that the local average decorrelation timescale was τL = 41 days, almost 6 weeks. Therefore, it is expected that

almost all the particles are correlated for a release period of 4 weeks, and for the larger release periods of 12 and 20 weeks,

only a fraction of the particles will be correlated, creating more variability in the trajectories.

2.4 Domain Partition and Two-Dimensional Probability Distributions

For the analysis, we created probability distributions from two-dimensional histograms of the positions of particles (Van Sebille140

et al., 2018). To construct the two-dimensional histograms, we partitioned the domain into hexagonal bins by using the H3

Uber hexagonal hierarchical spatial indexing system (Brodsky, 2018). The H3 grid has the advantage that the area of the

hexagons is better preserved across the low and high latitudes compared to a square grid in a Mercator projection (O’Malley

et al., 2021; Manral et al., 2023). Additionally, each bin is uniquely indexed, facilitating the reproduction of the analysis. We

used a resolution of h = 3 for the hexagons, where the distance between the centroids of two neighboring hexagons measures145

approximately 100 km. We acknowledge that using a square grid projection for the analysis presented here will not significantly

change the results if particles do not drift to high latitudes.

With the hexagonal domain partitioning, we constructed a time series of histograms, where we binned the positions of the

particles by counting the number of particles in each bin at timesteps of 1 day. We binned the particle trajectories according to

their particle age, which is defined as the drift time since release. For each day in the time series, we created a two-dimensional150

probability distribution by normalizing the number of particles in each bin by the total number of particles in the domain on a

specific day. The probability distributions, or likelihood distributions, indicate the most likely bins where there are particles at

a certain particle age (Pierard et al., 2022). This distribution allows us to define the conditional probability Pm = P (X|m,t)

of finding particles in the domain given the ensemble member m used to advect the particles at a particular particle age t.

2.5 Mixture Probability Distributions155

To evaluate how well single-member strategies can reproduce the full ensemble variability, we constructed mixture probability

distributions that capture the dispersal patterns across all ensemble members. Using a bootstrapping approach, we randomly

selected 150 particles from each of the 50 members and combined their trajectories to create a mixture simulation. We repeated

this procedure 50 times to generate a robust set of mixture simulations. From these simulations, we computed mixture prob-

ability distributions Pmix by binning particle positions in a hexagonal grid. To assess the effectiveness of our single-member160

strategies, we computed mixture distributions for each release strategy: three spatial variations (δr ∈ {0.1◦,1.0◦,2.0◦}) and

three temporal variations (4 weeks, 12, and 20 weeks). Computing separate mixture distributions for each strategy was neces-

sary because we could not predict a priori how the spatial or temporal release variations might affect the ensemble variability

represented in these distributions.
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The optimal number of particles per ensemble member was determined by analyzing the convergence of the distribution’s165

entropy. For our chosen grid cell resolution (h = 3), we demonstrate in Appendix B and Figure B1 that the entropy converges

with 150 particles per ensemble member, with additional particles providing no significant change in entropy. Therefore, each

mixture simulation subset comprises 7,500 trajectories (150 particles × 50 members). We maintained this total particle count

(7,500) in our single-member simulations, both for spatial and temporal release strategies, to ensure direct comparability

between mixture and single-member distributions.170

2.6 Connectivity Analysis

The connectivity between regions is a useful and powerful analysis performed with Lagrangian simulations (Rypina et al.,

2011; Rühs et al., 2013), assessing how many particles originating from one region enter other regions. Within this analysis,

we explored if the number of particles reaching each region differs significantly when using mixture simulations instead

of single-member simulations. We also compared how connectivity patterns vary across different mixture strategies (spatial175

variations with δr ∈ {0.1◦,1.0◦,2.0◦} and temporal variations of 4, 12, and 20 weeks). Additionally, we investigated whether

single-member simulations with spatially and temporally varying release strategies can reproduce the connectivity statistics of

the mixture distributions.

We focused on the connectivity between the surface of the Gulf Stream and the region east of 40◦W. The 40◦W longitude

defines the easternmost boundary where the near-surface waters from the Labrador Current join the Gulf Stream to form the180

North Atlantic Current (Buckley and Marshall, 2016). This limit also assesses how many particles cross to the easternmost

side of the subtropical gyre when released from the surface of the Gulf Stream. In Appendix C, we see this limit in maps

showing all places particles drifted to during the six years of simulations. In Figure C1, we present particle dispersion maps

for each of the six release strategies (three spatial and three temporal variations) across all 50 ensemble members. Figure C2

shows corresponding dispersion patterns for the 50 subsets of mixture simulations, allowing direct comparison between single-185

member and mixture approaches. We compared how many particles crossed the 40◦W longitude from the surface of the Gulf

Stream in a simulation period of 6 years. We also measured the median time that it took particles to cross 40◦W and the depth

at which the particles cross 40◦W.

2.7 Marginal Entropy and Relative Entropy Calculation

To compare the dispersion patterns between ensemble members, we took an information theory approach, similar to Cerbus190

and Goldburg (2013), where we treat each probability distribution as a message. Here, the bins represent the ‘alphabet,’ and the

occurrence of the particles in each bin makes the message, with a probability given by P . Each bin xi contains log2(1/P (xi))

information, where P (xi) is the probability of a character or outcome occurring in a message. The less probable the outcome,

the more information it contains; therefore, the less redundant it is. The information can be thought of as the optimal ‘length’

that the bin xi has to be encoded to transmit the message, costing the least amount of bits. Shannon (1948) developed this into195

a theory of communications in which the fundamental problem is reproducing at one point either exactly or approximately

a message selected at another point transmitted over a noisy channel. In this theory, each probability distribution contains
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an average amount of information measured by the entropy. The marginal entropy, H , measures the intricacy or randomness

contained in a distribution and measures the average information content of the distribution (Cover, 1999). The marginal

entropy for the probability distribution is defined as200

H(X,t) =
n∑

i=1

P (xi, t) log2

1
P (xi, t)

, (1)

where X is the ensemble of bins xi of the grid, P is the probability distribution associated with the grid, n is the number of

bins in X , and t is the particle age of the distribution. Marginal entropy measures the minimum number of bits to which the

distribution can be compressed or encoded. A distribution with ‘more’ randomness has less redundancy; therefore, its entropy

is higher. This definition of entropy is equivalent to the definition of entropy in statistical thermodynamics, where entropy is a205

measure of the number of possible microstates or possible configurations of the system (Shannon, 1948; Cover, 1999). Thus,

we define the variability in the dispersal of particles of a simulation as the marginal entropy of its corresponding probability

distribution.

The marginal entropy measures the variability of a distribution, but it does not measure how well two distributions match

bin by bin. As illustrated by Olah (2015), consider two probability distributions PA(X) = (1/2,1/4,1/8,1/8) and PB(X) =210

(1/8,1/2,1/4,1/8), both defined over X = (x1,x2,x3,x4). Both distributions are different when comparing them element by

element, that is, PA(xi) ̸= PB(xi). However, if we compute their marginal entropy, we see that they have the same marginal

entropy HPA
(X) = HPB

(X) = 1.75 bits. Hence, while two distributions may have equivalent marginal entropies, this does

not imply that the distributions are equivalent or similar.

Cross-entropy and relative entropy provide better measures for quantifying the difference between two distributions. The215

cross-entropy measures the average amount of information of a distribution Q(X,t) compared to a reference distribution

P (X,t). It is defined as

HP (Q,t) =
n∑

i=1

Q(xi, t) log2

1
P (xi, t)

, (2)

where each bin probability Q(xi, t) is weighted with the information of the reference distribution P (xi, t), summed over all

bins xi at time t. The cross-entropy tells us the average information content of Q using the encoding of P . From the previous220

example, the cross-entropy of PA with respect to PB , or HPB
(PA) = 2.25 bits is larger than its marginal entropy H(Q).

Therefore, if we would send messages described by Q with P ’s encoding, it would be 0.5 bits more expensive than using its

own encoding. The difference between the cross entropy and the marginal entropy is called the relative entropy or Kullback-

Leibler Divergence (Kullback and Leibler, 1951) and is defined as

D(Q||P,t) = HP (Q,t)−H(Q,t), (3)225

where HP (Q,t) is the cross-entropy of Q with respect to P , minus the marginal entropy of Q. Eq. (3) is equivalent to the most

common definition (Cover, 1999; MacKay, 2003):

D(Q||P,t) =
n∑

i=1

Q(xi, t) log2

Q(xi, t)
P (xi, t)

. (4)
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The relative entropy measures the cost of assuming that the distribution is Q when the true distribution is P (Cover, 1999)

and is used to quantify the uncertainty between two distributions.230

One of the objectives of this study is to quantify the difference between the mixture distributions Pmix and single-member

distributions Pm, where the variability is created following spatial and temporal release patterns. Given the sparsity of the

trajectories sampling the domain, computing the relative entropy between the distributions Pmix and Pm implies comparing

two-dimensional distributions with zeros in most of the domain. Figure 2A and Figure 2B illustrate this by showing Pmix

and Pm at a particle age of t = 15 days. We see that the probability of finding particles is non-zero in a localized area for235

both distributions. Therefore, when computing the relative entropy for some bins, it is unavoidable to have terms in which

q log2(q/p)→∞ as p→ 0. To numerically represent the infinity and compute the relative entropy, we replaced the zeros with

a double precision machine epsilon in Pm and Pmix. The machine epsilon (ϵ) is the smallest number that a computer can

represent. For double precision, it is equivalent to ϵ = 2−52, so that the information content of p = ϵ is equal to log2(1/ϵ) =

52 bits.240

The relative entropy is non-symmetric, D(Q||P ) ̸= D(P ||Q), and the order in which we compare distributions is crucial. In

this study, we calculated the relative entropy as

D(Pmix||Pm, t) =
n∑

i=1

Pmix(xi, t) log2

Pmix(xi, t)
Pm(xi, t)

, (5)

where Pmix is the full probabilistic model we aim to reproduce with Pm, the reduced-order approximate model computed from

a single member. The relative entropy is computed for the particle age t of the probability distribution. The relative entropy245

can be interpreted as total information loss (or lack of information) when representing Pmix with Pm (Chen et al., 2024;

Kleeman, 2002). Figure 2C illustrates computing D(Pmix||Pm, t) with the distributions shown in Figures 2A and 2B, where

each bin shows the ‘information loss’, pmix log2(pmix/pm). We note that the bins with information loss coincide with the bins

where Pm fails to have particles, but Pmix does have particles. Conversely, there is no information loss in bins where there

are no particles for Pmix, but there are for Pm. Therefore, Pm having more bins with particles than Pmix is not quantified as250

information loss. This is more evident when computing D(Pm||Pmix, t), in Figure 2D. In contrast, there is information loss

in the bins where both distributions have particles but not the same number. There is no information loss if the bins have the

same number of particles. By summing over all the bins in D(Pmix||Pm, t), we obtain a single value that quantifies the total

information loss between the two distributions.

Figure 2D illustrates the opposite case, computing D(Pm||Pmix, t) in which the relative entropy measures how well Pmix255

approximates Pm. In this case, there is only information loss in the bins where Pm and Pmix have particles, although Pmix

covers more bins. This again shows that there is no information loss for having a wider probability that covers a larger area,

containing the bins of the distribution to represent. By summing over all bins in D(Pm||Pmix), we get a relative entropy of

2.8 bits, which is far less than D(Pmix||Pm, t) described previously.

To summarize, because of the asymmetry in the relative entropy, it is important to evaluate the full probabilistic model with260

the encoding of the reduced-order model, D(Pmix||Pm, t), in Eq. (5). In that case, the relative entropy quantifies the uncertainty

when using the simplified probabilistic model (Pm) to approximate the full model (Pmix) (Chen et al., 2024).
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Figure 2. Comparison of probability distributions and their relative entropy. (A) Mixture distribution Pmix(X|δr = 0.1◦) at 15 days after

release, representing the full probabilistic model. (B) Single-member distribution Pm(X|δr = 0.1◦) at 15 days after release, representing

the reduced-order approximate model. (C) Information loss map showing the contribution of each grid cell to the total relative entropy

D(Pmix||Pm) when approximating the mixture distribution with the single-member distribution. (D) Information loss map showing the

contribution of each grid cell to the total relative entropy D(Pm||Pmix) when approximating the single-member distribution with the mixture

distribution. Gray hexagons represent land. Color scales show probability values (A and B) and information loss in bits (C and D). The zero-

bit value falls within the second color bin from the left in the information loss color scale.

3 Results

3.1 Connectivity

This section compares mixture simulations (containing the full ensemble variability) and single-member distributions for par-265

ticles crossing the 40◦W line. Throughout this analysis, we use the mixture distribution with δr = 0.1◦ as our reference, as it

represents the closest approximation to a point release while still containing the full ensemble variability. This allows us to con-

sistently evaluate how increasing spatial or temporal variability in single-member simulations compares to this baseline case.

We employed Empirical Cumulative Distribution Functions (ECDFs) to assess the likelihood of single-member distributions

matching the average particle counts in mixture distributions. Figure 3 shows the ECDFs for the number of particles crossing270

40◦W and the median particle age at which they cross that longitude. Figures 3A and 3B compare spatially varying releases,

whereas Figures 3C and 3D compare temporally varying release simulations. In all panels, the ECDF curves represent the

single-member distributions, and the vertically shaded lines show the 99 % confidence interval of their corresponding mixture

distributions. The mixture distributions are depicted as vertically shaded lines to enhance the readability of the plots since they

are well-defined Gaussian distributions. The plots showing Kernel Density Estimate (KDE) distributions of the single-member275

and of the mixture distributions can be found in Figures C3 and C4, in the Appendix C.

Figure 3A shows greater variance in single-member distributions, with values ranging from 1,000 to 5,100 particles, com-

pared to the mixture distributions. This increased variability occurs because single-member distributions reflect the specific

ocean conditions of individual ensemble members, while mixture distributions average out these individual variations across

multiple members, resulting in more stable statistics. On average, more particles cross the 40◦W line for simulations with280

larger release clouds δr in the single-member distributions. The same relation between δr and the number of particles crossing
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is observed in the mixture distributions. The ECDF provides insights into the probability of single-member simulations not

capturing the mixture distribution averages. For instance, in single-member simulations with a release radius of δr = 0.1◦,

there is a 0.64 probability of having fewer particles crossing the 40◦W line than the average of the mixture distribution with

δr = 0.1◦, and consequently, a 0.36 probability of overestimation. This probability of underestimation decreases to 0.34 (with285

0.66 probability of overestimation) for δr = 1.0◦ and to 0.10 (with 0.90 probability of overestimation) for δr = 2.0◦, taking

the same mixture distribution (δr = 0.1◦) as reference.

Figure 3C shows the ECDFs for temporally varying releases. The distributions for the single-member simulations with 4,

12, and 20-week releases are similar but show more variance than the mixture distributions represented by the shaded lines.

Mixture distributions for 4 and 12-week releases have comparable average particle counts, while 20-week releases show slightly290

lower averages. For single-member simulations, the probability of having fewer particles than the mixture distribution average

(δr = 0.1◦) is 0.56 (with 0.44 probability of overestimation) for 4-week releases, 0.50 (with 0.50 probability of overestimation)

for 12-week releases, and 0.66 (with 0.34 probability of overestimation) for 20-week release periods.

Figure 3B shows the ECDFs for the median particle age of particles crossing 40◦W in spatially varying release simulations.

The single-member distributions (ECDF curves) show a clear separation based on the release cloud size (δr). Particles from295

smaller release clouds (δr = 0.1◦) tend to have longer median drift times, while those from larger release clouds (δr = 2.0◦)

have shorter median drift times. This trend is also reflected in the mixture distributions’ 99 % confidence interval (shaded

lines). While the single-member simulations show a greater spread in median drift times compared to the mixture distributions,

they maintain the same general pattern of decreasing drift times with increasing release cloud size. However, the wider spread

in single-member distributions indicates that individual simulations may not consistently reproduce the more stable statistics300

captured by the mixture distributions.

Figure 3D shows the ECDFs for particle age in temporally varying release simulations. The distributions for different release

durations (4, 12, and 20 weeks) are more closely aligned than the spatial variations in panel B. However, longer release periods

(20 weeks) tend to show slightly shorter median drift times. While single-member distributions still exhibit greater variability

than the mixture distributions, this variability is less pronounced than in the spatially varying simulations. This suggests that305

temporal release variations may provide more consistent reproducibility of mixture statistics compared to spatial variations,

although this varies in individual simulation results.

In summary, our connectivity analysis reveals that single-member simulations tend to either significantly under- or overesti-

mate particle transport across 40◦W, with the bias depending on the release strategy. For spatial variations, larger release clouds

(δr = 2.0◦) show a strong tendency to overestimate connectivity (90 % probability), while smaller release clouds (δr = 0.1◦)310

are more likely to underestimate it (64 % probability). Temporal variations show more balanced probabilities of under- and

overestimation, particularly for 12-week releases (50-50% probability), and generally exhibit less pronounced variability in

particle ages compared to spatial variations.
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Figure 3. Connectivity analysis between the Gulf Stream at Cape Hatteras and the line at 40◦W in the North Atlantic. The plots compare

single-member ECDFs (lines) with mixture distribution average plus/minus 99% confidence values (shaded vertical lines). A) ECDFs of the

number of particles crossing the line for spatially varying simulations. B) ECDFs of the median particle age distributions for spatially varying

releases. C) ECDFs of the number of particles from temporally varying simulations. D) ECDFs of the median particle age distributions for

temporally varying simulations.
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3.2 Marginal and Relative Entropy

We calculated the marginal entropy, Eq. (1), for every single-member and corresponding mixture distribution to assess the315

variability and determine which release strategies can represent the variability of the full ensemble. In total, we computed the

marginal entropy functions for all six sets of single-member distributions and the six sets of mixture distributions. Each set had

50 distributions. For each set, we calculated the average and the standard deviation of the marginal entropy functions, resulting

in one entropy curve as a function of particle age per set. Figure 4A illustrates the average entropy curves for spatially varying

release distributions, while Figure 4B shows those for temporally varying release distributions. Detailed entropy curves for320

each single member and mixture simulation are provided in Figures C5 and C6 in the Appendix C.

Figure 4A shows the marginal entropy as a function of particle age for various spatial release strategies, comparing single-

member probability distributions (Pm) with mixture distributions (Pmix) using different spatial release intervals (δr). Three

single-member curves are shown: δr = 0.1◦ (blue dotted line), δr = 1.0◦ (purple dashed line), and δr = 2.0◦ (green dash-dot

line). Two mixture distribution curves are presented: δr = 0.1◦ (solid black line) and δr = 2.0◦ (black dash-dot line). All curves325

show a logarithmic increasing trend in entropy with particle age, indicating growing dispersion over time. The single-member

distributions with larger δr values (1.0◦ and 2.0◦) initially overestimate the entropy compared to the mixture distribution with

δr = 0.1◦, particularly in the first 10 days. After this period, only the single-member distribution with δr = 2.0◦ adequately

represents the variability of the mixture with δr = 0.1◦. Shaded areas around the single-member curves represent the standard

deviation, illustrating the spread of entropy values across the ensemble. There is no shaded area around the mixture entropy330

curves because their standard deviation was of the order of magnitude 10−2 bits. The logarithmic scale on the x-axis emphasizes

the rapid changes in entropy during the early stages of particle dispersion.

Figure 4B shows the entropy as a function of time for the temporal varying release strategies and their corresponding

mixture distributions, comparing single-member probability distributions Pm for different release periods against mixture

distributions (Pmix). The single member distributions are shown for release periods of 4, 12, and 20 weeks. These curves335

show a general trend of entropy increasing logarithmically over time, with longer release periods resulting in higher entropy

values. Two mixture distributions are plotted: one subsampled from a 4 week release and another subsampled for δr = 0.1◦.

We compared temporal and spatial mixture distributions to understand how different release strategies contribute to the total

ensemble variability. These mixture distributions consistently show higher entropy values than single-member distributions,

indicating that Pm captures less variability than the mixture distributions. The 20 week single member distributions closely340

follow the mixture distribution with δr = 0.1◦, often overlapping or slightly exceeding it. Among the single member curves,

the 20 week release generally shows the highest entropy, followed by 12 and 4 weeks in descending order. However, these

differences become less pronounced as time increases.

Comparing spatial and temporal strategies in Figures 4A and 4B, we establish the mixture distribution with δr = 0.1◦ as our

reference standard, as it shows the minimum variability among all mixture strategies. The 20-week single-member distributions345

most closely approximate this reference, while the single-member spatial releases show more variable performance. Both

the δr = 2.0◦ and the 20-week mixture distributions exhibit the highest entropy values, demonstrating how combining either
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Figure 4. Average marginal entropy as a function of particle age of single-member distributions (colored lines) and mixture distributions

(black lines). The shaded areas represent the standard deviation. The particle age is on a logarithmic scale. A) Comparison of the single-

member and mixture distributions with spatially varying release. B) Comparison of the single-member and mixture distributions with tem-

porally varying release. In both panels, we added the entropy curve of the mixture δr = 0.1◦ as a reference.

spatial or temporal release variability with ensemble variability increases the total dispersion. This reinforces our choice of the

more point-like δr = 0.1◦ mixture as our reference for evaluating single-member approximations. For clarity, we omitted the

intermediate mixture curves (δr = 1.0◦, 12-week, and 20-week), as their entropy values consistently fall between those of the350

δr = 0.1◦ and δr = 2.0◦ distributions.

We computed the relative entropy as a function of particle age, Eq. (5), by comparing single-member distributions with

mixture distributions. Also, we computed the relative entropy of every ensemble member with every mixture distribution indi-

vidually. Therefore, we calculated 502 = 2,500 relative entropies when comparing two sets of distributions. We computed the

average and the standard deviation of the 2,500 relative entropy functions for each of the six sets of single member distributions355

(δr ∈ {0.1◦,1.0◦,2.0◦} and 4, 12 and 20 weeks), relative to the six sets of mixture distributions, ending up with 36 average

relative entropy functions.

Figure 5 shows the average relative entropy as a function of particle age, divided into four panels (A-D), each using a

different mixture distribution as a reference. We omitted the plots where the mixture for the δr = 1.0◦ and 12-weeks strategy

as a reference since their entropy lies between their corresponding extreme strategies, that is δr ∈ {0.1◦,2.0◦}, and 4 and360

20-weeks releases. In all panels, the dotted and dashed lines represent the average relative entropy for each strategy, while

the shaded areas around these lines indicate the standard deviation. The standard deviation measures the variability in relative

entropy, revealing that extreme cases exist where single-member distributions represent the reference mixture distributions

poorly.

Figure 5A uses the mixture distribution with δr = 0.1◦ as the reference. On average, the single-member distribution with365

δr = 2.0◦ (green dotted line) most closely approximates the reference mixture, having the lowest mean relative entropy across
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most of the time range. The 20-week release strategy (red dashed line) performs similarly well. However, the large standard

deviations, particularly for δr = 0.1◦ (blue dash-dot line) and the 4-week strategy (orange dotted line), indicate significant

variability in how well these strategies represent the reference mixture, indicating a greater lack of information.

Figure 5B, referencing the mixture distribution with δr = 2.0◦, shows that the single-member δr = 2.0◦ strategy most closely370

matches this reference mixture on average. The 20-week release strategy also performs well, especially for higher particle ages.

However, this 20-week release strategy shows a distinctly different evolution pattern with a constant decrease in relative entropy

compared to other strategies. The substantial standard deviations for all strategies, particularly pronounced for δr = 0.1◦ and

the 4-week strategy, highlight the potential for large discrepancies between individual simulations and the reference mixture.

Figures 5C and 5D use the 4-week and 20-week mixture distributions as references, respectively. The corresponding single-375

member temporal release strategies show the lowest mean relative entropy in both cases. However, the wide standard deviation

bands, particularly noticeable for the spatial release strategies (δr = 0.1◦ and δr = 2.0◦), underscore the high variability in how

well these strategies capture the reference mixture’s characteristics.

Across all panels of Figure 5, relative entropy peaks between 10 and 100 days of particle age, with the largest standard

deviations also occurring in this range. Notably, standard deviations for temporal (20-week) and spatial (δr = 2.0◦) strategies380

peak at different times: the 20-week release shows maximum variability at earlier particle ages, while the δr = 2.0◦ release

peaks later. This suggests that single-member distributions are most likely to significantly diverge from the mixture distributions

during this time period. Figures C7 and C8, in the Appendix C, illustrate this variability of two randomly selected probability

distributions of different release strategies at particle ages of 10, 100 and 1,000 days. These figures also show randomly selected

subsets of the mixture distributions at the same particle age.385

From the average entropy curves shown in Figure 5, we took the average over the 6 years the particles were drifting after

release. We compiled these values for the 36 comparisons between mixture and single-member sets, with different release

strategies in Figure 6. This figure presents a heatmap of the time-averaged relative entropy values for various combinations of

single-member and mixture distributions. The rows represent single-member distributions, while the columns represent mixture

distributions. The color scale ranges from dark green (lowest relative entropy) to light green (highest relative entropy), with390

numerical values provided in each cell. Notably, the 20-week single-member distribution (bottom row) consistently shows the

lowest relative entropy across all mixture distributions, indicating it best represents the ensemble variability. Conversely, the

δr = 0.1◦ single-member distribution exhibits the highest relative entropy values, suggesting it is the least effective at capturing

the characteristics of the mixture distributions.

4 Discussion and Conclusions395

In this study, we investigated how to generate ensemble-like variability within single-member Lagrangian simulations by imple-

menting varying spatial and temporal release strategies in the Gulf Stream region near Cape Hatteras. The surface connectivity

between the Gulf Stream and the region past 40◦W revealed significant differences in the number of particles crossing be-

tween different release strategies in the single-member distributions. The ECDFs in Figure 3 showed that, for spatially varying
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Figure 5. Relative entropy as a function of particle age for different single-member distributions compared to mixture distributions. The

subplots A-D show comparisons using different reference mixture distributions: (A) δr = 0.1◦, (B) δr = 2.0◦, (C) 4-week release, and (D)

20-week release. Dotted and dashed lines represent the average relative entropy for each strategy, while shaded areas indicate standard

deviation. The x-axis shows particle age in days (log scale), and the y-axis shows relative entropy in bits. Different colors represent various

single-member strategies: δr = 0.1◦ (blue), δr = 2.0◦ (green), 4-week release (red), and 20-week release (orange).
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Figure 6. Time-averaged relative entropy (in bits) between single-member and mixture distributions for different release strategies. Rows

represent single-member distributions, and the columns represent mixture distributions. Color intensity indicates the magnitude of relative

entropy, with dark green representing lower values (better agreement) and light green representing higher values (poorer agreement). Numer-

ical values in each cell show the precise time-averaged relative entropy.

releases, the larger the initial particle cloud, the more particles cross the 40◦W. Regarding the temporal distributions, we did400

not see significant variations in the number of particles crossing 40◦W; the distributions for the number of particles and the

median times were similar between the three temporal release strategies. Moreover, the normal distribution observed in the

mixture distributions can be attributed to the central limit theorem. This fundamental principle in probability theory states that

when independent random samples are drawn from a population with a finite variance, the distribution of their means will

approximate a normal distribution as the sample size increases. In our case, the bootstrapping method used to construct the405

mixture distributions effectively simulates this sampling process, resulting in the observed normal distributions.

Regarding representing the full ensemble variability with single-member simulations in the connectivity analysis, we see that

particles are more consistent in crossing the 40◦W meridian in the mixture distributions. Therefore, when comparing mixture

distributions with single-member distributions, we counted the percentage of single-member simulations with fewer particle

crossings than the mixture distribution with δr = 0.1◦. In this analysis, we saw that performing a one-time spatial release with410

a radius of δr = 2.0◦ better represents the particle crossings in the mixture distributions. From all the release strategies, single-

member simulations with δr = 2.0◦ release cloud had the lowest likelihood of having fewer particles crossing than the mixture

simulation with δr = 0.1◦. This might be because a large initial cloud of particles releases more particles outside the Gulf
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Stream, creating a wider variety of trajectories that cross 40◦W. In the case of the temporal releases, the single member with

20-week releases had fewer particles crossing 40◦W, with a 66% likelihood of having fewer particles than the mixture with415

δr = 0.1◦. This likelihood is 10% higher than 4 and 12-week single-member distributions, suggesting that the seasonability

may be playing a role in the transport of particles to the eastern side of the domain. The connectivity with the eastern region

of the domain might be stronger during winter, corresponding to the release of particles in the 4-week period (from 2nd to 30

of January) and 12-week period (from 2 January to 27 March). Meanwhile, the 20-week release, from 2nd January to 22 May,

had a portion of its particles released during spring.420

The marginal entropy analysis, shown in Figure 4, provided insights into how well different release strategies represent the

full ensemble variability. In general, we saw how the marginal entropy increased with time for all strategies considered, some

at slower rates than others. We attributed this to the percentage of particles released under the local decorrelation length and

times for the different strategies. For instance, spatial releases with radius δr = 0.1◦ and temporal releases of 4-weeks, which

exhibited the lowest marginal entropy, had all their particles released within their respective decorrelation scales. As the radius425

or release period was increased, there were more particles with decorrelated initial velocities, resulting in higher entropy.

It is important to highlight that the marginal entropy of the mixture distributions consistently exceeds that of corresponding

single-member distributions, demonstrating that ensemble simulations under identical release conditions inherently generate

greater trajectory variability than single-member simulations. By maintaining equal particle counts between mixture and single-

member simulations, we ensured that the higher entropy in mixture distributions reflects genuine ensemble dynamics rather430

than statistical artifacts. The higher marginal entropy in mixture distributions may also be attributed to the temporal context of

our study: we advected particles∼ 18 years after the initialization of the NATL025-CJMCYC3 ensemble (which was perturbed

during 1993). At the release date of the particles (2010), the perturbations had sufficient time to adapt and decorrelate the

velocity fields of the members, which suggests that ensemble Lagrangian dispersion arises not only from mesoscale chaos but

also from low-frequency, large-scale intrinsic fluctuations.435

Our analysis compares both spatial and temporal release strategies against the reference mixture simulation with δr = 0.1◦.

For spatial releases (Figure 4A), we found significant limitations. The larger release areas (δr = 1.0◦ and δr = 2.0◦) initially

overestimate variability during the first 10 days, as particles start from a wider area than the reference’s mixture with δr = 0.1◦

radius. While δr = 2.0◦ simulations eventually match the reference entropy after 30-40 days, δr = 1.0◦ simulations underes-

timate it until about 1,000 days after release. In contrast, temporal release strategies (Figure 4B) show better performance,440

particularly the 12 and 20-week releases. The 20-week release strategy consistently matches the reference mixture’s entropy

across all temporal scales, demonstrating that continuous particle releases over time can effectively reproduce the variabil-

ity captured by ensemble simulations. This suggests that temporal variation in release times is more effective at representing

ensemble variability than increasing the spatial extent of the release area.

As we explained in Section 2.7, two distributions that have the same entropy do not necessarily exhibit the same distributions445

since two different probability distributions can have equivalent entropies. We compared the relative entropy to measure the

agreement between two distributions, which measures the lack of information when representing the full ensemble with a

single-member simulation. In this framework, we found that performing an ensemble simulation is more informative than a
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single-member simulation. The relative entropy quantifies the lack of information, or in other words, quantifies the uncertainty,

by measuring the agreement between the distributions. The relative entropies, shown in Figure 5, further support the findings450

from the marginal entropy assessment. The 20-week release generally showed the lowest relative entropy with respect to

the mixture using δr = 0.1◦, indicating this release strategy most effectively captured the variability in the trajectories of the

full ensemble. Despite this, the standard deviation of the relative entropy of the 20-week simulations indicated that individual

simulations could deviate substantially for timescales less than 100 days after release. In addition, comparing the time-averaged

relative entropy, shown in Figure 6, showed how 20-week releases have less uncertainty across different reference mixtures,455

followed by 12-week releases. On average, a δr = 2.0◦ and a 4-week release had similar uncertainties compared to all mixture

distributions. This further supports the idea that performing long continuous releases is the best release strategy to represent

the ensemble variability.

In single-member simulations, we demonstrated that releasing particles at slightly different locations or times can match the

variability in the behavior of particles released at a specific time and location from an ensemble of simulations. An interpretation460

of this may be that an ensemble of Lagrangian simulations has an ergodic flavor in which statistical homogeneity exists between

an ensemble of simulations and single-member simulations (Shannon, 1948). However, this does not constitute proof of the

system’s ergodicity.

While our study provides valuable insights into generating ensemble-like variability in single-member simulations, several

limitations should be acknowledged. Our analysis focused solely on the Gulf Stream region near Cape Hatteras, and the effec-465

tiveness of these release strategies may vary in other oceanic regions with different dynamics. Additionally, while our particles

were advected in three-dimensional flows, we only considered surface particle releases, which may not fully represent the three-

dimensional transport processes occurring throughout the water column. Our results are based on the NATL025-CJMCYC3

model configuration, and the effectiveness of these strategies may be resolution-dependent, as higher-resolution models resolve

smaller-scale processes that could introduce additional variability in transport pathways. Furthermore, our study was limited to470

forward-in-time simulations, whereas backward-in-time tracking could provide complementary information about generating

ensemble variability in single-member simulations in studies concerning source regions and transport pathways. Future work

should explore the applicability of these methods across different oceanic regions, depths, and temporal directions to establish

more comprehensive guidelines for single-member Lagrangian simulations.

Ensemble simulations remain the standard for capturing the full range of variability in ocean simulations; our study provides475

guidance on releasing particles in single-member simulations to increase the variability of the trajectories and, in this case, bet-

ter represent ensemble statistics. While data assimilative models excel at improving mean state predictions through observation

integration, ensemble approaches are better suited for exploring the full range of possible outcomes and quantifying uncertainty

in trajectory predictions. Generating ensemble-like variability for Lagrangian simulations advected using assimilative models

could be particularly powerful: applying spatial or temporal release strategies could help capture both the improved mean state480

from data assimilation and the trajectory variability typical of ensemble simulations. These findings have important implica-

tions for ocean modeling and particle tracking studies, especially when computational resources limit the use of full ensemble
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simulations. By carefully selecting release strategies, researchers can maximize the variability of single-member simulations,

potentially improving predictions of particle transport by capturing extreme events.

Appendix A: Spatial and Temporal Autocorrelations at the Release Location485

We computed the spatial and temporal autocorrelation functions of the horizontal velocity vectors at the time and location of

release of the particles. The spatial autocorrelation functions were calculated over a set of points placed over a west-to-east

line, shown by the blue dots in Figure A1A, with a horizontal spacing of 0.01◦. We calculated the autocorrelation function

from these points as a function of the distance L. The spatial autocorrelation function is defined as

ρ(L) =

〈
u(r0 + L) ·u(r0)
∥u(r0 + L)∥∥u(r0)∥

〉
, (A1)490

in which we compute the dot product of a pair of vectors u(r0) and u(r0 + L), divided by the multiplication of their norms,

averaged over all the pairs of particles (Xia et al., 2013). In Eq. (A1), ∥ · ∥ is the usual L2 norm, and ⟨·⟩ indicates an average

over particle pairs. We computed ρ(L) for the range L ∈ [0.01◦,2.00◦], with a 0.01◦ spacing. The autocorrelation function

is defined between [−1,1], in which ρ(L) = 1 indicates a full positive correlation, ρ(L) =−1 a full negative correlation, and

ρ(L) = 0 no correlation.495

Following Eq. (A1), we computed ρ(L) for each of the 50 ensemble members of the NATL025-CJMCYC3. In Figure A1B,

we show the ρ(L) for each ensemble member as black lines. We see great variability in the curves but an exponentially decaying

trend in which, as L increases, the particle velocities are less correlated. We performed an exponential fit, ex/LL , of the 50

correlation curves, shown in blue in Figure A1B. From the exponential fit, we obtained a decorrelation length LL = 0.41◦,

which corresponds to approximately 37 km at a latitude of 35.5◦N. As a reference, the Rossby deformation radius in this500

region is LR ≈ 30km (Chelton et al., 1998).

Similarly, we computed the temporal autocorrelation functions by sampling the velocity at the same location but on different

days, shown as a red point in Figure A1A. We sampled the velocity daily for a duration of 60 days, starting on the 2nd of

January, 2010. From the sampled velocities, we computed the temporal autocorrelation function given by

ρ(t) =

〈
u(t0 + t) ·u(t0)
∥u(t0 + t)∥∥u(t0)∥

〉
, (A2)505

where t represents the time lag between pairs of velocities u(t0) and u(t0 + t) averaged over all pairs with a lag t, similar to

Eq. (A1).

Similarly to ρ(L), we computed the temporal autocorrelation function ρ(t) for the 50 members of NATL025-CJMCYC3,

for the range t ∈ [1,60] days with a spacing of 1 day. In Figure A1C, we show each member’s ρ(t) as black curves. We

performed an exponential fit ex/τL over the 50 correlation curves. In Figure A1C, we show in red the exponential fit. We found510

a decorrelation timescale of τL = 41 days for the velocities of the particles released on different days.
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Figure A1. A) Map of Cape Hatteras showing the points used to compute the spatial correlations (blue) and the location used to compute

the temporal correlations (red). The hexagons mark the limits of the hexagonal grid, and the green area represents the North American coast.

B) Spatial correlations function around the release location, and each black line shows the correlation function for an ensemble member.

The blue line shows the exponential fit computed over the 50 correlation functions. The green line shows the decorrelation length scale

LL = 0.41◦ ≈ 37km. C) Temporal Correlations with velocities sampled daily for 60 days from the 2nd of January 2010. The black lines

show the correlation functions of single ensemble members, and the red line shows the exponential fit with a decorrelation timescale of

41 days.
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Figure B1. Marginal entropy of mixture distributions as a function of particles sampled per ensemble member, shown for three different

hexagonal grid resolutions (h). Higher h values indicate finer spatial resolution, resulting in higher entropy values.

Appendix B: Marginal Entropy as a Function of Number of Particles and Grid Resolution

The calculation of the mixture probability distributions (Pmix) requires determining both the optimal number of particles to

sample and the appropriate spatial resolution for binning these particles. These parameters directly affect the entropy of the

resulting distributions. We investigated this relationship by varying two key parameters: the number of particles sampled per515

ensemble member and the hexagonal grid resolution (h).

Figure B1 shows how the entropy converges as we increase the number of particles sampled per ensemble member, plotted

for three different grid resolutions (h ∈ {2,3,4}). As expected, finer grid resolutions (larger h values) yield higher entropy

values as they capture more detailed spatial information. For our chosen grid resolution of h = 3, the entropy converges to

approximately 8.5 bits when sampling 150 or more particles per ensemble member. Coarser resolutions (h = 2) require fewer520

particles to converge, while finer resolutions (h = 4) need more particles but capture more spatial detail. Based on this analysis,

we selected h = 3 and 150 particles per member as sufficient parameters for our study, balancing computational efficiency with

spatial resolution.
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Figure C1. Ensemble standard deviation of time-averaged particle occurrence per bin in the North Atlantic Ocean for single-member sim-

ulations. Left column (A, C, E): Temporal release strategies at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F): Spatial release

strategies with δr ∈ {0.1◦,1.0◦,2.0◦}. The color scale represents the ensemble standard deviation of a 6-year time-averaged occurrence per

bin. The maps illustrate the variability in particle dispersal for single-member simulations. The dashed line at 40◦W indicates the eastern

boundary of the study area. The blue dot marks the approximate release location.

Appendix C: Additional Supplementary Figures
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Figure C2. Ensemble standard deviation of time-averaged particle occurrence per bin in the North Atlantic Ocean for mixture simulation

subsets. Left column (A, C, E): Mixture subsets at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F): Mixture subsets with spatial

variability δr ∈ {0.1◦,1.0◦,2.0◦}. The color scale represents the ensemble standard deviation of a 6-year time-averaged occurrence per bin.

The maps show the variability in particle dispersal patterns for all 50 subsets of the mixture simulations. The dashed line at 40◦W indicates

the eastern boundary of the study area. The blue dot marks the approximate release location.
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Figure C3. Kernel Density Estimates (KDE) of connectivity analysis for the single-member simulations. The top row (A-C) shows distri-

butions for spatial releases δr ∈ {0.1◦,1.0◦,2.0◦}: Particle counts (A), median drift time in years (B), and median depth in meters (C). The

bottom row (D-F) shows the same metrics but is compared across different temporal releases of 4, 12, and 20 weeks.
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Figure C4. Kernel Density Estimates (KDE) of connectivity analysis for the mixture simulations, using Scott’s method with a bandwidth

of 1. The top row (A-C) shows distributions for mixture spatial releases δr ∈ {0.1◦,1.0◦,2.0◦}: Particle counts (A), median drift time in

years (B), and median depth in meters (C). The bottom row (D-F) shows the same metrics but is compared across different mixture temporal

releases of 4, 12, and 20 weeks.
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Figure C5. Marginal entropy the 50 single-member simulations performed with the different release strategies (individual panels). The lines

are randomly-colored and each line represents one single-member entropy and the black dashed line is the ensemble average as a function of

time.
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Figure C6. Marginal entropy of the 50 bootstrapping realizations or mixture distributions, subsampled from single-member simulations with

different release strategies (individual panels). The color lines show the entropy of each realization, and the black dashed line is the average

as a function of time.
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Figure C7. Probability distributions of particle locations at different ages (10, 100, and 1,000 days; columns) across varying release strategies

(rows). The top row shows the probability of the mixture δr = 0.1◦ distribution (subset 43 of the bootstrapping). The 2nd, 3rd, and 4th rows

show the single-member distributions (member 22), with 20-week, δr = 2.0◦ and δr = 0.1◦ release, respectively. The blue circles mark the

particle’s release location, omitted for plots of particle age of 10 days. Bins with probability zero were removed to facilitate visualizing the

area of dispersal of the particles.
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Figure C8. Probability distributions of particle locations at different ages (10, 100, and 1,000 days; columns) across varying release strategies

(rows). The top row shows the probability of the mixture δr = 0.1◦ distribution (subset 10 of the bootstrapping). The 2nd, 3rd, and 4th rows

show the single-member distributions (member 46), with 20-week, δr = 2.0◦ and δr = 0.1◦ release, respectively. The blue circles mark the

particle release location, omitted for plots of particle age of 10 days. Bins with probability zero were removed to facilitate visualizing the

area of dispersal of the particles.
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Code and Data Availability525

The data related to this article can be found at https://doi.org/zenodoXXXXX. The code is available at https://github.com/

OceanParcels/NEMO_Ensemble_Lagrangian_Analysis.git.
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