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Abstract. Ensemble Lagrangian simulations aim to capture the full range of possible outcomes for particle dispersal. However,

single-member Lagrangian simulations are most commonly available and only provide a subset of the possible particle dis-

persal outcomes. This study explores how to generate the variability inherent in Lagrangian ensemble simulations by creating

variability in a single-member simulation. To obtain a reference for comparison, we performed ensemble Lagrangian simu-

lations by advecting the particles from the surface of the Gulf Stream, around 35.61◦N, 73.61◦W, in each member to obtain5

trajectories capturing the variability of the full 50-member ensemble. Subsequently, we performed single-member simulations

with spatially and temporally varying release strategies to generate comparable trajectory variability and dispersal, and also

with adding Brownian motion diffusion to the advection. We studied how these strategies affected the number of surface parti-

cles connecting the Gulf Stream with the eastern side of the subtropical gyre. We used an information theory approach to define

and compare the variability in the ensemble with the single-member strategies. We defined the variability as the marginal en-10

tropy or average information content of the probability distributions of the position of the particles. We calculated the relative

entropy to quantify the uncertainty of representing the full-ensemble variability with single-member simulations. We found

that release periods of 12 to 20 weeks most effectively captured the full ensemble variability, while spatial releases with a 2.0◦

radius resulted in the closest match at timescales shorter than 10 days. We found that adding relatively high amounts of Brow-

nian motion diffusion (Kh = 1,000m2s−1) captures the entropy aspects of the full ensemble variability well, but lead to an15

overestimation of connectivity. Our findings provide insights to improve the representation of variability in particle trajectories

and define a framework for uncertainty quantification in Lagrangian ocean analysis.
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1 Introduction

The ocean’s dynamics, driven by atmospheric fluxes of energy and momentum at the surface, are characterized by phenomena

that mutually interact across different spatiotemporal scales, including eddies, internal waves, zonal jets, and mixing processes,20

up to decadal and basin-scale fluctuations (Vallis, 2017). These multi-scale interactions are non-linear and difficult to model,

presenting a significant source of uncertainty in Ocean General Circulation Models (OGCMs) and our understanding of ocean

circulation. Even under constant atmospheric forcing conditions, ocean models can produce divergent states from minimally

perturbed initial conditions (Penduff et al., 2014). This intrinsic variability becomes particularly prominent in eddy-permitting

models where small initial differences can cascade towards multi-decadal and basin scales (Grégorio et al., 2015; Leroux et al.,25

2018; Zhao et al., 2023). To address these inherent uncertainties in OGCMs, researchers have increasingly adopted probabilistic

ensemble models, running multiple simulations with small perturbations to initial conditions or parameter values to capture

a broad range of possible ocean states (Penduff et al., 2018; Zanna et al., 2019). The ultimate goal of ensemble models is to

predict the probability density of the system’s state at a future time (Leutbecher and Palmer, 2008).

Lagrangian particle tracking provides a powerful tool for studying ocean transport, mixing, and connectivity, with the latter30

a metric that maps the origin of substances (water, nutrients, plankton, plastic objects) to their destinations. Applications of

Lagrangian particle tracking range from search and rescue operations (Breivik et al., 2013) to climate and environmental

research (Bower et al., 2019; Van Sebille et al., 2018). In these simulations, virtual particles are typically advected by velocity

fields derived from OGCMs, with their dispersal patterns intimately linked to the underlying ocean state. However, similar to

above, the trajectories obtained from the particle tracking in one OGCM ensemble member may not be representative of the35

full probability density of the system’s state. Because pure advection is deterministic, there will be only one trajectory resulting

from a virtual particle that starts at a certain place and time.

This deterministic nature limits what we define as ‘trajectory variability’ – the range of possible pathways and end locations

that particles could follow given uncertainties in ocean conditions. We define trajectory variability as the spread in particle

positions, pathways, and connectivity patterns that emerges when accounting for uncertainties in initial conditions or modeled40

ocean states.

Capturing the trajectory variability is crucial for practical oceanography applications. For example, search and rescue profes-

sionals may want to compute a full probability density function of possible object locations – even when the starting location

and time of an object lost at sea is known exactly – due to uncertainties in the ocean model. Similarly, marine pollution studies

need to assess the range of possible contamination pathways, while connectivity studies in marine ecology require under-45

standing the full spectrum of larval dispersal routes between habitats. In each case, a single deterministic trajectory provides

insufficient information, limiting the generalisability of the results, as it cannot represent the inherent uncertainty in ocean

dynamics and model predictions.

Now, advected particle trajectories are chaotic, in which small perturbations in initial conditions or noise along their trajec-

tories can lead to significant divergences in particle trajectories (Koshel and Prants, 2006). The sensitivity to initial conditions50

is often used to generate variability in particle trajectories to predict the drift of the particles when there is uncertainty in their
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initial conditions (Breivik et al., 2013). In fluid mechanics, this is related to the concept of streaklines, transport barriers and

coherent structures (e.g., Haller, 2004; Zhang, 2013; Karrasch, 2016; Balasuriya, 2017).

An alternative approach to generating variability in the trajectories is to advect particles using a full ensemble of vector fields

or ensemble models, an approach followed from Melsom et al. (2012), in which they advected particles using an ensemble of55

100 members from the TOPAZ forecasting system. They found that ensemble average trajectories, calculated as the center of

gravity (mean position) of all ensemble members at each time step, are generally closer (on a straight line distance) to the

observed drifter trajectories than that from a deterministic single-member simulation. However, the study did not compare how

small perturbations in initial conditions in the single-member simulation performed relative to the trajectories advected by the

ensemble.60

While ensemble Lagrangian simulations can capture a more complete spectrum of possible outcomes, single-member sim-

ulations, which sample only a subset of the possible outcomes, remain more prevalent due to computational constraints. In

operational oceanography, data assimilative models are commonly used to improve trajectory predictions by combining ob-

servations with model dynamics to find an optimal solution (Castellari et al., 2001). However, while assimilation can reduce

systematic biases and improve the mean state representation, it may not fully capture the underlying uncertainty and variability65

in particle trajectories, particularly in regions with sparse observations (Jacobs et al., 2018). Our study addresses these lim-

itations by exploring ways of generating ensemble-like variability within single-member simulations. Missing variability in

particle trajectories is typically created by releasing particles at different locations (spatial variation; e.g., Rossi et al., 2013),

at different times (temporal variation; e.g., Qin et al., 2014; van Sebille et al., 2015), and/or with some random walk diffusion

added to the advection (e.g., Hart-Davis and Backeberg, 2021). We here test how well-suited these approaches are to represent70

intrinsic variability resulting from an ensemble simulation within a single simulation.

We assess performance based on a connectivity analysis and dispersion patterns using a novel information theory approach.

Our approach consists of quantifying the variability in trajectories through the marginal entropy of particle position distribu-

tions and evaluating the uncertainty in representing full-ensemble variability with single-member simulations. Our approach

is complementary to other new approaches for computing stochastic sensitivity of Lagrangian trajectories in the ocean, such75

as those by Balasuriya (2020), Badza et al. (2023) and Branicki and Uda (2023). However, our approach is particularly also

useful for particles with added ‘behaviour’, such as in the case of plastic particles (e.g., Denes and Van Sebille, 2024).

We focused on the region east of Cape Hatteras in the North Atlantic Ocean, implementing spatially and temporally varying

release strategies to generate variability comparable to that observed in full ensemble simulations. This region was chosen to

study the connectivity of water parcels at the surface of the Gulf Stream with the Eastern North Atlantic and the subtropical80

gyre. It was previously thought that the salty and warm surface water of the Gulf Stream feeds directly to the subpolar gyre.

However, recent Lagrangian studies have shown that the water parcels originating at the surface of the Gulf Stream recirculate

within the subtropical gyre, becoming part of the subtropical mode water, and enter the subpolar gyre via sub-surface con-

nections (Rypina et al., 2011; Burkholder and Lozier, 2014; Foukal and Lozier, 2016; Berglund et al., 2022). Our case-study

here thus builds upon these findings by quantifying how intrinsic ocean variability affects this connectivity pattern within the85

subtropical gyre, providing insights into the robustness and variability of these recirculation pathways.
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2 Methodology

2.1 Ocean Model Ensemble Simulation

We employed daily surface velocity fields produced by the North Atlantic NATL025-CJMCYC3 50-member ensemble simula-

tion. This regional ensemble simulation was performed in the context of the OceaniC Chaos – ImPacts, strUcture, predicTability90

project (OCCIPUT), described in Penduff et al. (2014) and Bessières et al. (2017). This ensemble was performed using the

NEMO v3.5 ocean/sea-ice model over the North Atlantic between 20◦S and 81◦N, with an eddy-permitting resolution of 1/4◦

and 46 vertical levels. The 50 ensemble members were initialized by the final state of a 15-year one-member spin-up that

ended in December 1992. The inter-member dispersion was generated by activating small stochastic perturbations in the den-

sity gradients resolved by the model during 1993, and deactivating these perturbations for the remaining simulation time, as95

presented in Bessières et al. (2017) and based on the algorithm of Brankart (2013). All ensemble members were driven by the

same atmospheric forcing between 1993 and 2015, derived from the DRAKKAR Forcing Set 5.2 (DFS5.2; see Dussin et al.

(2016)). The NATL025-CJMCYC3 1993-2025 simulation used here is similar to the NATL025-GSL301 1993-2012 simulation

presented in Narinc et al. (2024), with one difference: tropical cyclones were enhanced in the forcing of NATL025-CJMCYC3

since they were too weak in DFS5.2. More details about the model setup are provided in Narinc et al. (2024).100

2.2 Lagrangian Simulations

Lagrangian particles were advected offline using six years (2010-2015) of the velocity fields described above, where particle

trajectories in each ensemble member were integrated using the Parcels framework v.3.0.2 (Delandmeter and van Sebille,

2019). Trajectories were integrated in three dimensions using a fourth-order Runge-Kutta scheme with a time step of 1 hour,

storing the output with a daily timestep. We modeled passive particles (that is, particles that instantly adjust their velocity105

to that of the ambient flow) by only considering three-dimensional advection and ignoring all buoyant forces. Additionally,

particles that escaped the domain through the surface were placed back to a depth of 1m. We chose the region off the coast of

Cape Hatteras as a study location because it is an important region where the Gulf Stream separates from the continental shelf

and becomes a free jet (Mao et al., 2023; Buckley and Marshall, 2016).

2.3 Recreating Particle Trajectory Variability110

This study explores methods to recreate the trajectory variability typically obtained from ensemble ocean simulations using

only a single ensemble member. Figure 1 illustrates both the challenge and our proposed approaches. When particles are

released from a fixed point (35.61◦N, 73.61◦W; yellow square) at a distinct time (2 January 2010) and tracked using different

ensemble members, their trajectories (shown in black, Figure 1A) diverge due to intrinsic variability in the velocity fields. Our

goal is to reproduce this dispersion of what we refer to as the ‘full ensemble’ using just one ensemble member.115

We tested three approaches to achieve the variability of this full ensemble with single-member simulations, by leveraging

the sensitivity to initial conditions or adding diffusion. The first strategy varies the release locations of the virtual particles
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spatially (shown in purple in Figure 1B), creating a cloud of initial positions centered around 35.61◦N and 73.61◦W. The

purple circles indicate the varying release locations, while the purple arrows show their subsequent trajectories. The second

strategy (shown in orange, Figure 1C) maintains the fixed release location (yellow square) but varies the release timing, with120

particles released continuously over a time period. The third strategy (shown in green, Figure 1D) maintains the fixed release

location and release time, but adds a small Brownian motion diffusion to the trajectory simulations. All methods generate

trajectory spreading with different patterns, some of which qualitatively resemble the full ensemble trajectories, which we seek

to quantitatively compare.

The single-member simulations were performed using velocity fields from individual members of the NATL025-CJMCYC3125

ensemble. To ensure robust statistics, we repeated each strategy (spatial and temporal variation and added diffusion) with

all 50 ensemble members rather than arbitrarily selecting one. For the ensemble simulations, rather than running new sim-

ulations where all ensemble members simultaneously advect particles, we selected and joined trajectories from our existing

single-member simulations to create a ‘synthetic’ mixture-of-all-member simulation. This mixture simulation contains the full

ensemble variability and is our benchmark for comparing the three single-member strategies. The following subsections further130

detail the three single-member release strategies and the ensemble simulations, which we refer to as mixture simulations.

2.3.1 Spatially Varying Release

We performed Lagrangian simulations by releasing a cloud of particles around (35.71◦N,73.61◦W), at 1 meter depth, on 2

January 2010 and tracking them until the end of 2015, so for six years in total. We evenly spaced the particles in concentric

rings around the coordinates, where each ring was placed at a constant radial separation (δr) from the prior ring, forming a135

circle of particles. We varied the radius of this cloud of particles; the larger the radius, the less correlated the velocity vectors

of the particles are expected to be, creating more variability in the trajectories. The choice of spatial release radii (9 km-

180 km) spans the range from sub-grid scales to ten grid cells apart, allowing us to test how initial condition uncertainties at

different (grid) scales affect long-term particle dispersion. We created three sets of simulations, with 50 simulations per set

(one per ensemble member). The three sets of simulations were performed with 7,500 particles, with an initial cloud varying140

δr ∈ {0.1◦,1.0◦,2.0◦}.

At the release point, the initial cloud radii are approximately 9 km, 90 km, and 180 km. As a reference, we computed the

ensemble average spatial autocorrelation function of the initial particle velocities at the release location on the release day

(2 January 2010). The spatial autocorrelation function describes the average agreement between a pair of particle velocities

separated by a distance L. The larger the separation distance L, the more likely their velocities will be decorrelated (LaCasce,145

2008). Assuming that the spatial correlation decays exponentially, we defined the decorrelation length scale LL as the e-folding

length scale of the exponential that describes the autocorrelations functions (Xia et al., 2013).

The particle-pair spatial autocorrelation function was calculated over a set of points placed over a west-to-east line, shown

by the blue dots in Figure 2A, with a horizontal spacing of 0.01◦. We calculated the velocity autocorrelation function from
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Figure 1. Schematic representation of the experiment design, east of Cape Hatteras, showing four approaches to generate variability in the

particle trajectories. A) The black lines show 50 trajectories of particles released from a single point (35.61◦N, 73.61◦W; yellow square)

at a distinct time (2 January 2010) and advected using velocity fields from all 50 members of the NATL025-CJMCYC3 ensemble. B)

Purple trajectories show 50 randomly selected particles, out of 7,500, released from spatially varying locations (purple circles) within a 1◦

radius of the central point, all advected using ensemble member 3. C) Orange trajectories represent 50 randomly selected particles, out of

7,500, released uniformly over a 20-week period from the central point (35.61◦N, 73.61◦W; yellow square), also using ensemble member

3. D) Green trajectories represent 50, out of 7,500, randomly selected particles from the ensemble member 3 simulation with low diffusion

(Kh = 10m2s−1; light green) and high diffusion Kh = 1,000m2s−1; dark green), released from the central point (35.61◦N, 73.61◦W;

yellow square). All trajectories are shown 35 days after their respective release times.
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these points as a function of the distance L. The spatial autocorrelation function is defined as150

ρ(L) =

〈
u(r0 +L) ·u(r0)

∥u(r0 +L)∥∥u(r0)∥

〉
, (1)

in which we compute the dot product of a pair of vectors u(r0) and u(r0 +L), divided by the multiplication of their norms,

averaged over all the pairs of velocities (Xia et al., 2013). In Eq. (1), ∥ · ∥ is the usual L2 norm, and ⟨·⟩ indicates an average

over velocity pairs. We computed ρ(L) for the range L ∈ [0.01◦,2.00◦], with a 0.01◦ spacing. The autocorrelation function

is defined between [−1,1], in which ρ(L) = 1 indicates a full positive correlation, ρ(L) =−1 a full negative correlation, and155

ρ(L) = 0 no correlation.

Following Eq. (1), we computed ρ(L) for each of the 50 ensemble members of the NATL025-CJMCYC3, on 2 January

2010. In Figure 2B, we show the ρ(L) for each ensemble member as black lines. We see great variability in the curves but an

exponentially decaying trend in which, as L increases, the particle velocities are less correlated. We performed an exponential

fit, ex/LL , of the 50 correlation curves, shown in blue in Figure 2B. From the exponential fit, we obtained a decorrelation length160

LL = 0.41◦, which corresponds to approximately 37 km at a latitude of 35.5◦N. Both spatial scales indicate that the velocities

of all the particles released from an initial cloud of δr = 0.1◦ should be correlated, while for the larger clouds δr ∈ {1.0◦,2.0◦},

only a fraction of the particle velocities may be correlated, leading to more variability in the trajectories. While decorrelation

scales likely evolve over the 6-year simulation period due to particle spreading and varying flow conditions, computing their

evolution at every particle age is computationally intensive and impractical, compared to other metrics.165

2.3.2 Temporally Varying Release

We also created variability by releasing particles from the same location (35.71◦N,73.61◦W) at different times. We tested

three release time windows: 4, 12, and 20 weeks, all starting from 2 January 2010. For each window length, we performed

50 simulations (one per ensemble member), with each simulation releasing 7,500 particles. Within each time window, we

distributed the 7,500 particles evenly across the days, resulting in multiple particles being released each day. To ensure particles170

released on the same day followed different trajectories, we added small random perturbations to their release locations using

uniform noise with an amplitude of 0.01◦. We kept this noise amplitude small to (as much as possible) isolate the effects of

the temporal release strategy alone. Note that all particles were advected until the end of 2015, so that in this simulation some

particles reached a maximum ‘age’ (time-of-flow) of 6 years and others only 5.6 years. This is a minor effect though, as most

of our analysis will focus on the first few months of advection.175

We computed the particle-pair temporal autocorrelation functions by sampling the velocity at the same location but on

different days, shown as a red point in Figure 2A. We sampled the velocity daily for a duration of 60 days, starting on the 2nd

of January, 2010. From the sampled velocities, we computed the temporal autocorrelation function given by

ρ(t) =

〈
u(t0 + t) ·u(t0)

∥u(t0 + t)∥∥u(t0)∥

〉
, (2)

where t represents the time lag between pairs of velocities u(t0) and u(t0 + t) averaged over all pairs with a lag t, similar to180

Eq. (1).
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Figure 2. A) Map of Cape Hatteras showing the points used to compute the spatial correlations (blue) and the location used to compute the

temporal correlations (red). The hexagons mark the limits of the hexagonal grid used in subsequent analyses, and the green area represents the

North American coast. B) Spatial correlations function around the release location, and each black line shows the correlation function for an

ensemble member. The blue line shows the exponential fit computed over the 50 correlation functions. The green line shows the decorrelation

length scale LL = 0.41◦ ≈ 37km. C) Temporal correlations with velocities sampled daily for 60 days from the 2nd of January 2010. The

black lines show the correlation functions of single ensemble members, and the red line shows the exponential fit with a decorrelation

timescale of 41 days.

Similarly to ρ(L), we computed the temporal autocorrelation function ρ(t) for the 50 members of NATL025-CJMCYC3, for

the range t ∈ [1,60] days with a spacing of 1 day. In Figure 2C, we show each member’s ρ(t) as black curves. We performed an

exponential fit ex/τL over the 50 correlation curves. In Figure 2C, we show in red the exponential fit. We found a decorrelation

timescale of τL = 41 days for the velocities of the particles released on different days. Therefore, it is expected that almost all185

the particles are correlated for a release period of 4 weeks, and for the larger release periods of 12 and 20 weeks, only a fraction

of the particles will be correlated, creating more variability in the trajectories.

2.3.3 Release with Added Diffusion

We performed simulations with horizontal diffusion as a method to generate variability in the trajectories. The variability was

generated by adding a horizontal Brownian motion (also known as a random walk) term to the integration of the particle190

trajectories. Therefore, the horizontal components of the particle trajectories were integrated with

x(t+∆t) = x(t)+

t+∆t∫
t

u(x, τ)dτ +R
√
2Kh∆t, (3)

where x is the horizontal location of the particle at a time t, ∆t is the integration timestep, and u is the horizontal components

of the Eulerian velocity field interpolated to the particle location. The last term is the Brownian motion term, where R is a
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random number between (0,1) taken from the normal distribution with zero mean and unit variance, and Kh is the horizontal195

diffusion coefficient (Van Sebille et al., 2018).

In the simulations with added diffusion, we released particles from the fixed position (35.71◦N,73.61◦W) on 2 January

2010, without perturbing the initial conditions, spatially or temporally. We released 7,500 particles per ensemble member

and we advected those particles for 6 years, until the end of 2015. We explored the sensitivity to the magnitudes of the

horizontal diffusion coefficients by running simulations with two values representative of different scales, specifically with200

Kh = 10m2s−1 – a value commonly used to parametrize subgrid processes in ocean models with O(1/10◦) spatial resolution

(Lacerda et al., 2019; Onink et al., 2021; Pierard et al., 2022), and with Kh = 1,000m2s−1 – a value used to parameterize

eddies in ocean models with O(1◦) spatial resolution (Reijnders et al., 2022).

Since Random Walk diffusion can kick particles on land, where they would not be advected by ocean currents anymore,

we removed the particles as soon as they reach land and do not take them into account in the analysis. We therefore ran205

the simulations with Kh = 1,000m2s−1 with double amount of initial particles (15,000 instead of the normal 7,500) and

subsampled to 7,500 full trajectories for the analysis.

2.4 Trajectory Analysis Methods

2.4.1 Domain Partition and Two-Dimensional Probability Distributions

For the analysis, we created probability distributions from two-dimensional histograms of the positions of particles (Van Sebille210

et al., 2018). We partitioned the domain into hexagonal bins by using the H3 Uber hexagonal hierarchical spatial indexing

system (Brodsky, 2018). The H3 grid has the advantage that the area of the hexagons is better preserved across the low and

high latitudes compared to a square grid in a Mercator projection (O’Malley et al., 2021; Manral et al., 2023), and each

hexagonal bin is uniquely indexed, facilitating the reproduction of the analysis. We used an H3 resolution of h= 3, where

neighboring hexagon centroids are separated by 100 km. We acknowledge that using a square grid would not significantly215

change our results since particles do not drift to high latitudes.

The spatial domain is discretized as X = x1,x2, . . . ,xB , where each xi represents a hexagonal bin and B is the total number

of bins. We constructed time series of histograms by counting particles in each bin xi at daily timesteps, binning trajectories

according to their particle age t (time since release).

For each day, we computed a probability distribution over the spatial domain by normalizing particle counts in each bin. The220

probability of finding particles in hexagonal bin xi is given by:

Pm(xi|m,t) =
Ni(m,t)∑B
j=1Nj(m,t)

, (4)

where Pm(xi|m,t) is the probability of finding particles in bin xi given ensemble member m at particle age t, Ni(m,t) is the

number of particles in bin xi for member m at age t, and B is the total number of bins. This ensures
∑B

i=1Pm(xi|m,t) = 1

for each member and time step.225
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The complete probability distribution Pm(X|m,t) = [Pm(x1|m,t),Pm(x2|m,t), . . . ,Pm(xB |m,t)] represents the spatial

likelihood of finding particles across the domain for ensemble member m at particle age t.

2.4.2 Mixture Simulations and Probability Distributions

To evaluate how well single-member strategies can reproduce the full ensemble variability, we constructed mixture simula-

tions that capture the dispersal patterns across all ensemble members. Using a bootstrapping approach, we randomly selected230

np = 150 particles from each of the M = 50 ensemble members and combined their trajectories to create a mixture simula-

tion containing M ×np = 7500 particles total. We repeated this procedure R= 50 times to generate a robust set of mixture

simulations.

Each mixture simulation represents a synthetic dataset that combines particle trajectories from all ensemble members, creat-

ing a representation of the full ensemble’s dispersal behavior. These mixture simulations serve as our reference for evaluating235

single-member strategies and are used in subsequent connectivity analyses

For each mixture simulation r, we computed probability distributions over the hexagonal grid following:

Pmix(xi|r, t) =
Ni(r, t)

M ×np
, (5)

where Pmix(xi|r, t) is the probability of finding particles in bin xi for mixture simulation r at particle age t, Ni(r, t) is the

corresponding particle count in bin xi.240

We then used these probability distributions to compute the mixture distributions over all grid cells Pmix(X|r, t) for each

single-member strategy to assess their effectiveness: three spatial variations (δr ∈ {0.1◦,1.0◦,2.0◦}) and three temporal vari-

ations (4 weeks, 12, and 20 weeks). This strategy-specific approach was necessary because the spatial or temporal release

variations could unpredictably affect how well each strategy captures the ensemble variability represented in the mixture dis-

tributions.245

We determined the optimal particle count by analyzing entropy convergence of the probability distributions. At our hexago-

nal grid resolution (h= 3), entropy converges at np = 150 particles per ensemble member, with additional particles yielding no

significant entropy change (Appendix A, Figure A1). This yields mixture simulations of 7,500 trajectories, a particle count we

maintained across all single-member simulations (spatial releases, temporal releases, and added diffusion strategies) to ensure

direct comparability with the mixture distributions.250

2.4.3 Connectivity Analysis

The connectivity between regions is a useful and powerful analysis performed with Lagrangian simulations (Rypina et al.,

2011; Rühs et al., 2013), assessing how many particles originating from one region enter other pre-defined regions. Within

this analysis, we explored if the number of particles reaching each region differs significantly when using mixture simulations

instead of single-member simulations. We also compared how connectivity patterns vary across different mixture strategies255

(spatial variations with δr ∈ {0.1◦,1.0◦,2.0◦} and temporal variations of 4, 12, and 20 weeks). Additionally, we investigated
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whether single-member simulations with spatially and temporally varying release strategies can reproduce the connectivity

statistics of the mixture distributions.

We focused on the connectivity between the surface of the Gulf Stream and the region east of 40◦W. The 40◦W longitude

defines the easternmost boundary where the near-surface waters from the Labrador Current join the Gulf Stream to form the260

North Atlantic Current (Buckley and Marshall, 2016). This limit also assesses how many particles cross to the easternmost

side of the subtropical gyre when released from the surface of the Gulf Stream. In Appendix B, we see this limit in maps

showing all places particles drifted to during the six years of simulations. In Figure B1, we present particle dispersion maps

for each of the six release strategies (three spatial and three temporal variations) across all 50 ensemble members. Figure B2

shows corresponding dispersion patterns for the 50 subsets of mixture simulations, allowing direct comparison between single-265

member and mixture approaches. We compared how many particles crossed the 40◦W longitude from the surface of the Gulf

Stream in a simulation period of 6 years. We also measured the median time that it took particles to cross 40◦W and the depth

at which the particles cross 40◦W.

2.4.4 Marginal Entropy and Relative Entropy Calculation

To compare the dispersion patterns between ensemble members, we took an information theory approach, similar to Cerbus270

and Goldburg (2013), where we treat each probability distribution as a message. Here, the bins represent the ‘alphabet,’ and

the occurrence of the particles in each (hexagonal) bin makes the message, with a probability given by P . Each bin xi contains

log2(1/P (xi)) information, where P (xi) is the probability of a character or outcome occurring in a message. The less probable

the outcome, the more information it contains; therefore, the less redundant it is. The information can be thought of as the

optimal ‘length’ that the bin xi has to be encoded to transmit the message, costing the least amount of bits. Shannon (1948)275

developed this into a theory of communications in which the fundamental problem is reproducing at one point either exactly or

approximately a message selected at another point transmitted over a noisy channel. In this theory, each probability distribution

contains an average amount of information measured by the entropy. The marginal entropy, H , measures the intricacy or

randomness contained in a distribution and measures the average information content of the distribution (Cover, 1999). The

marginal entropy for the probability distribution is defined as280

H(m|X,t) =

B∑
i=1

P (m|xi, t) log2
1

P (m|xi, t)
, (6)

where X is the set of bins xi of the grid, P is the probability distribution of ensemble member m (or r for the mixture simula-

tions) at particle age t, B is the number of hexagonal bins in X , and t is the particle age of the distribution. Marginal entropy

measures the minimum number of bits to which the distribution can be compressed or encoded. A distribution with ‘more’

randomness has less redundancy; therefore, its entropy is higher. This definition of entropy is equivalent to the definition of285

entropy in statistical thermodynamics, where entropy is a measure of the number of possible microstates or possible configu-

rations of the system (Shannon, 1948; Cover, 1999). Thus, we define the variability in the dispersal of particles of a simulation

as the marginal entropy of its corresponding probability distribution.
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The marginal entropy measures the variability of a distribution, but it does not measure how well two distributions match

bin by bin. As illustrated by Olah (2015), consider two probability distributions PA(X) = (1/2,1/4,1/8,1/8) and PB(X) =290

(1/8,1/2,1/4,1/8), both defined over X = (x1,x2,x3,x4). Both distributions are different when comparing them element by

element, that is, PA(xi) ̸= PB(xi). However, if we compute their marginal entropy, we see that they have the same marginal

entropy HPA
(X) =HPB

(X) = 1.75 bits. Hence, while two distributions may have equivalent marginal entropies, this does

not imply that the distributions are equivalent or similar.

Cross-entropy and relative entropy provide better measures for quantifying the difference between two distributions. The295

cross-entropy measures the average amount of information of a distribution Q(X,t) compared to a reference distribution

P (X,t). It is defined as

HP (Q,t) =

n∑
i=1

Q(xi, t) log2
1

P (xi, t)
, (7)

where each bin probability Q(xi, t) is weighted with the information of the reference distribution P (xi, t), summed over all

bins xi at time t. The cross-entropy tells us the average information content of Q using the encoding of P . From the previous300

example, the cross-entropy of PA with respect to PB , or HPB
(PA) = 2.25 bits is larger than its marginal entropy H(Q).

Therefore, if we would send messages described by Q with P ’s encoding, it would be 0.5 bits more expensive than using its

own encoding. The difference between the cross entropy and the marginal entropy is called the relative entropy or Kullback-

Leibler Divergence (Kullback and Leibler, 1951) and is defined as

D(Q||P,t) =HP (Q,t)−H(Q,t), (8)305

where HP (Q,t) is the cross-entropy of Q with respect to P , minus the marginal entropy of Q. Eq. (8) is equivalent to the most

common definition (Cover, 1999; MacKay, 2003):

D(Q||P,t) =
n∑

i=1

Q(xi, t) log2
Q(xi, t)

P (xi, t)
. (9)

The relative entropy measures the cost of assuming that the distribution is Q when the true distribution is P (Cover, 1999)

and is used to quantify the uncertainty between two distributions.310

One of the objectives of this study is to quantify the difference between the mixture distributions Pmix and single-member

distributions Pm, where the variability is created following spatial and temporal release patterns. Given the sparsity of the

trajectories sampling the domain, computing the relative entropy between the distributions Pmix and Pm implies comparing two-

dimensional distributions with zeros in most of the domain. Figure 3A and Figure 3B illustrate this by showing Pmix and Pm at a

particle age of t= 15 days. We see that the probability of finding particles is non-zero in a localized area for both distributions.315

Therefore, when computing the relative entropy for some bins, it is unavoidable to have terms in which q log2(q/p)→∞ as

p→ 0, where q =Q(xi) and p= P (xi) , are the probabilities of finding particles in a bin xi. To numerically represent the

infinity and compute the relative entropy, we replaced the zeros with a double precision machine epsilon in Pm and Pmix. The

machine epsilon (ϵ) is the smallest number that a computer can represent. For double precision, it is equivalent to ϵ= 2−52, so

that the information content of p= ϵ is equal to log2(1/ϵ) = 52 bits.320
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The relative entropy is non-symmetric, D(Q||P ) ̸=D(P ||Q), and the order in which we compare distributions is crucial. In

this study, we calculated the relative entropy as

D(Pmix||Pm, t) =

B∑
i=1

Pmix(r|xi, t) log2
Pmix(r|xi, t)

Pm(m|xi, t)
, (10)

where Pmix is the full probabilistic model we aim to reproduce with Pm, the reduced-order approximate model computed

from a single member. The relative entropy is computed for the particle age t of the probability distribution. The relative325

entropy can be interpreted as total information loss (or lack of information) when representing Pmix with Pm (Chen et al.,

2024; Kleeman, 2002). Figure 3C illustrates computing D(Pmix||Pm, t) with the distributions shown in Figures 3A and 3B,

where each (hexagonal) bin shows the ‘information loss’, Pmix log2(Pmix/Pm). We note that the bins with information loss

coincide with the bins where Pm fails to have particles, but Pmix does have particles. Conversely, there is no information loss

in bins where there are no particles for Pmix, but there are for Pm. Therefore, Pm having more bins with particles than Pmix330

is not quantified as information loss. This is more evident when computing D(Pm||Pmix, t), in Figure 3D. In contrast, there

is information loss in the bins where both distributions have particles but not the same number. There is no information loss

if the bins have the same number of particles. By summing over all the bins in D(Pmix||Pm, t), we obtain a single value that

quantifies the total information loss between the two distributions.

Figure 3D illustrates the opposite case, computing D(Pm||Pmix, t) in which the relative entropy measures how well Pmix335

approximates Pm. In this case, there is only information loss in the bins where Pm and Pmix have particles, although Pmix

covers more bins. This again shows that there is no information loss for having a wider probability that covers a larger area,

containing the bins of the distribution to represent. By summing over all bins in D(Pm||Pmix), we get a relative entropy of

2.8 bits, which is far less than D(Pmix||Pm, t) described previously.

To summarize, because of the asymmetry in the relative entropy, it is important to evaluate the full probabilistic model340

with the encoding of the reduced-order model, D(Pmix||Pm, t), in Eq. (10). In that case, the relative entropy quantifies the

uncertainty when using the simplified probabilistic model (Pm) to approximate the full model (Pmix) (Chen et al., 2024).

3 Results

3.1 Connectivity

This section compares mixture simulations (containing the full ensemble variability) and single-member distributions for par-345

ticles crossing the 40◦W line. Throughout this analysis, we use the mixture distribution with δr = 0.1◦ as our reference, as it

represents the closest approximation to a point release, while still being controlled by the variability in ocean velocities from

the full ensemble variability. This allows us to consistently evaluate how increasing spatial or temporal variability in single-

member simulations compares to this baseline case. We employed Empirical Cumulative Distribution Functions (ECDFs) to

assess the likelihood of single-member distributions matching the average particle counts in mixture distributions. Figure 4350

shows the ECDFs for the number of particles crossing 40◦W and the median particle age at which they cross that longitude.
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Figure 3. Comparison of probability distributions and their relative entropy. (A) Mixture distribution Pmix(X|δr = 0.1◦) at 15 days after

release, representing the full probabilistic model. (B) Single-member distribution Pm(X|δr = 0.1◦) at 15 days after release, representing

the reduced-order approximate model. (C) Information loss map showing the contribution of each grid cell to the total relative entropy

D(Pmix||Pm) when approximating the mixture distribution with the single-member distribution. (D) Information loss map showing the

contribution of each grid cell to the total relative entropy D(Pm||Pmix) when approximating the single-member distribution with the mixture

distribution. Gray hexagons represent land. Color scales show probability values (A and B) and information loss in bits (C and D). The

zero-bit value falls within the second color bin from the left in the information loss color scale.

Figures 4A and 4B compare spatially varying releases and the releases with added diffusion, whereas Figures 4C and 4D

compare temporally varying release simulations. In all panels, the ECDF curves represent the single-member distributions,

and the vertically shaded lines show the 99% confidence interval of their corresponding mixture distributions. The mixture

distributions are depicted as vertically shaded lines to enhance the readability of the plots since they are well-defined Gaus-355

sian distributions. The plots showing Kernel Density Estimate (KDE) distributions of the single-member and of the mixture

distributions can be found in Figures B3 and B4, in the Appendix B.

Figure 4A shows greater variance in single-member distributions than mixture distributions, with values ranging from 1,000

to 5,100 particles. This increased variability occurs because single-member distributions reflect the specific ocean conditions

of individual ensemble members, while mixture distributions average out these individual variations across multiple members,360

resulting in more stable statistics. On average, more particles cross the 40◦W line for simulations with larger release clouds

δr in the single-member distributions. The same relation between δr and the number of particles crossing is observed in

the mixture distributions. The ECDF provides insights into the probability of single-member simulations not capturing the

mixture distribution averages. For instance, in single-member simulations with a release radius of δr = 0.1◦, there is a 0.64

probability of having fewer particles crossing the 40◦W line than the average of the mixture distribution with δr = 0.1◦, and365

consequently, a 0.36 probability of overestimation. The probability of underestimation decreases to 0.34 (with 0.66 probability

of overestimation) for δr = 1.0◦ and to 0.10 (with 0.90 probability of overestimation) for δr = 2.0◦, taking the same mixture

distribution (δr = 0.1◦) as reference.

Figure 4C shows the ECDFs for temporally varying releases. The distributions for the single-member simulations with 4,

12, and 20-week releases are similar but show more variance than the mixture distributions represented by the shaded lines.370

Mixture distributions for 4 and 12-week releases have comparable average particle counts, while 20-week releases show slightly
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lower averages. For single-member simulations, the probability of having fewer particles than the mixture distribution average

(δr = 0.1◦) is 0.56 (with 0.44 probability of overestimation) for 4-week releases, 0.50 (with 0.50 probability of overestimation)

for 12-week releases, and 0.66 (with 0.34 probability of overestimation) for 20-week release periods.

Figure 4E shows that the single member simulations with low diffusion (Kh = 10m2s−1) have a distribution similar to the375

single member simulations with δr = 0.1◦, for which there is a 0.70 probability of having fewer particles crossing the 40◦W

line, than the mixture δr = 0.1◦ distribution. The simulations with high diffusion have a distribution where there is a zero

chance that fewer particles cross the 40◦W line than in the mixture δr = 0.1◦ distribution; which means that connectivity is

very likely to be overestimated in this simulation with high diffusion.

Figure 4B shows the ECDFs for the median particle age of particles crossing 40◦W in spatially varying release simulations.380

The single-member distributions (ECDF curves) show a clear separation based on the release cloud size (δr). Particles from

smaller release clouds (δr = 0.1◦) tend to have longer median drift times, while those from larger release clouds (δr = 2.0◦)

have shorter median drift times. This trend is also reflected in the mixture distributions’ 99% confidence interval (shaded

lines). While the single-member simulations show a greater spread in median drift times compared to the mixture distributions,

they maintain the same general pattern of decreasing drift times with increasing release cloud size. However, the wider spread385

in single-member distributions indicates that individual simulations may not consistently reproduce the more stable statistics

captured by the mixture distributions.

Figure 4D shows the ECDFs for particle age in temporally varying release simulations. The distributions for different release

durations (4, 12, and 20 weeks) are more closely aligned than the spatial variations in panel B. However, longer release periods

(20 weeks) tend to show slightly shorter median drift times. While single-member distributions still exhibit greater variability390

than the mixture distributions, this variability is less pronounced than in the spatially varying simulations. This suggests that

temporal release variations may provide more consistent reproducibility of mixture statistics compared to spatial variations,

although this varies in individual simulation results.

Figure 4F shows that the ECDF for single member simulations with low diffusion (Kh = 10m2s−1) shows similar median

particle age distribution as the single member simulations with δr = 0.1◦. The particles in the simulations with high diffusion395

(Kh = 1,000m2s−1) have both a much lower average age and a much lower spread in their age when they cross the 40◦W line

than in any of the other strategies.

In summary, our connectivity analysis reveals that single-member simulations tend to either significantly under- or overesti-

mate particle transport across 40◦W, with the bias depending on the release strategy. For spatial variations, larger release clouds

(δr = 2.0◦) show a strong tendency to overestimate connectivity (90% probability), while smaller release clouds (δr = 0.1◦)400

are more likely to underestimate it (64% probability). Temporal variations show more balanced probabilities of under- and

overestimation, particularly for 12-week releases (50-50% probability), and generally exhibit less pronounced variability in

particle ages compared to spatial variations. Adding a low amount of diffusion (Kh = 10m2s−1) is likely to underestimate

particle transport (70% probability), while high diffusion (Kh = 1,000m2s−1) is certain to overestimate particle transport.
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Figure 4. Connectivity analysis between the Gulf Stream at Cape Hatteras and the line at 40◦W in the North Atlantic. The plots compare

single-member ECDFs (lines) with mixture distribution average plus/minus 99% confidence values (shaded vertical lines). A) ECDFs of

the number of particles crossing the line for spatially varying simulations B) ECDFs of the median particle age distributions for spatially

varying releases and simulations with diffusion. C) ECDFs of the number of particles from temporally varying simulations. D) ECDFs of the

median particle age distributions for temporally varying simulations. E) ECDFs of the number of particles from simulations with diffusion.

F) ECDFs of the median particle age distributions for simulations with diffusion.
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3.2 Two-Dimensional Probability Distributions405

The first step to calculate the marginal and relative entropy is to bin the particle trajectories into the two-dimensional probability

distributions in the hexagonal grid. We computed the two-dimensional probability distributions for all the single member and

mixture simulations, for the different strategies to generate variability in the trajectories. As an illustration, Figure 5 shows the

two-dimensional probability distributions for the reference mixture δr = 0.1◦ distribution (subset 43) and the single ensemble

member distributions, with different release strategies (ensemble member 22). The three columns of subplots show the distri-410

butions at particle ages of 10, 100 and 1,000 days, and the different rows show the different strategies to generate variability.

We observe that the reference mixture δr = 0.1◦ distribution, showcasing the full ensemble variability, spreads evenly from the

release location (shown as a blue dot). We also appreciate how 20-week and δr = 2.0◦ single member distributions resemble

the mixture distribution in the area covered by the bins, but the shape of the distributions still remain different. However, the

distributions from the single member simulations with δr = 0.1◦ and low diffusion (Kh = 10m2s−1) clearly cover less bins415

at the three particle ages shown, despite having the same number of particles as the other distributions. The distributions from

the simulations with high diffusion (Kh = 1,000m2s−1) covers a similar range of bins as the δr = 2.0◦ single member distri-

bution for 10 days, covers much more bins for 100 days, and then looks fairly similar to the other distributions for 1,000 days.

Figures B5 and B6, in the Appendix B, show similar figures but with other single members and mixture subsets. In general,

two-dimensional distributions can best be described and compared with statistical tools. Thus, we computed the marginal en-420

tropy and relative entropy of these distributions, at different particle ages, to characterize and compare the dispersion patterns

of the different single member strategies to that of the reference mixture.

3.3 Marginal and Relative Entropy

We calculated the marginal entropy, Eq. (6), for every single-member and corresponding mixture distribution to assess the

variability and determine which release strategies can represent the variability of the full ensemble. In total, we computed the425

marginal entropy functions for all eight sets of single-member distributions (three spatial varying, three temporal varying, and

two diffusive). We also computed the marginal entropy for six sets of mixture distributions, excluding the mixture distribution

from simulations with diffusion. Each release strategy and mixture set had 50 distributions, therefore, we calculated the average

and the standard deviation of the marginal entropy functions, resulting in one average entropy curve as a function of particle

age per set. Figure 6A illustrates the average entropy curves for spatially varying release distributions, while Figure 6B shows430

those for temporally varying release distributions and Figure 6C shows those for distributions with diffusion. Detailed entropy

curves for each single member and mixture simulation are provided in Figures B7 and B8 in the Appendix B.

Figure 6A shows the average marginal entropy as a function of particle age for various spatial release strategies, comparing

single-member probability distributions (Pm) with mixture distributions (Pmix) using different spatial release intervals (δr).

Three single-member curves are shown: δr = 0.1◦ (blue dotted line), δr = 1.0◦ (purple dashed line), δr = 2.0◦ (green dash-dot435

line). Two mixture distribution curves are presented: δr = 0.1◦ (solid black line) and δr = 2.0◦ (black dash-dot line). Shaded

areas around the single-member curves represent the standard deviation, illustrating the spread of entropy values across the
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Figure 5. Probability distributions of particle locations at different ages (10, 100, and 1,000 days; columns) across varying release strategies

(rows). The top row shows the probability of the mixture δr = 0.1◦ distribution (mixture subset 43 of the bootstrapping). The 2nd, 3rd, 4th,

and 5th rows show the single-member distributions (member 22), with 20-week, δr = 2.0◦, δr = 0.1◦, and with diffusion Kh = 10m2s−1

and Kh = 1,000m2s−1. The blue circles mark the particle’s release location, omitted for plots of particle age of 10 days. Bins with proba-

bility zero were removed to facilitate visualizing the area of dispersal of the particles.
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ensemble. There is no shaded area around the mixture entropy curves because their standard deviation was of the order of

magnitude 10−2 bits. The logarithmic scale on the x-axis emphasizes the rapid changes in entropy during the early stages of

particle dispersion. All curves show a logarithmic increasing trend in entropy with particle age, indicating growing dispersion440

over time. The single-member distributions with larger δr values (1.0◦ and 2.0◦) initially overestimate the entropy compared to

the mixture distribution with δr = 0.1◦, particularly in the first 10 days. After this period, only the single-member distribution

with δr = 2.0◦ adequately represents the variability of the mixture with δr = 0.1◦.

Figure 6B shows the average entropy as a function of time for the temporal varying release strategies and their corresponding

mixture distributions, comparing single-member probability distributions Pm for different release periods against mixture445

distributions (Pmix). The single member distributions are shown for release periods of 4, 12, and 20 weeks. These curves show

a general trend of entropy increasing logarithmically over time, with longer release periods resulting in higher entropy values.

Three mixture distributions are plotted: mixture subsampled from 4 week release, mixture subsampled from 20 week release,

and the reference mixture from δr = 0.1◦. We compared temporal and spatial mixture distributions to understand how different

release strategies contribute to the total ensemble variability. As one would expect, these mixture distributions consistently450

show higher entropy values than single-member distributions, indicating that Pm captures less variability than the mixture

distributions. The 20 week single member average entropy closely follow the reference mixture δr = 0.1◦ average entropy,

often overlapping or slightly exceeding it. Among the single member curves, the 20 week release generally shows the highest

average entropy, followed by 12 and 4 weeks in descending order. However, these differences become less pronounced as time

increases.455

Figure 6C shows the average entropy as a function of time for the simulations with diffusion. The simulations with the

low diffusion (Kh = 10m2s−1) show very low entropy for the first 10 days, somewhat similar to the single-member curve of

δr = 0.1◦ in Figure 6A. The simulations with the high diffusion (Kh = 1,000m2s−1), on the other hand, track the δr = 0.1◦

mixture distribution (solid black line), with a slight underestimation in the first 20 days and a slight overestimation between 20

and 1,000 days.460

Comparing spatial and temporal strategies in Figures 6A and 6B, supports setting the mixture distribution with δr = 0.1◦

as our reference standard, as it shows the minimum average entropy among all mixture strategies, but still capturing the

full ensemble variability. The 20-week single-member average entropy curve most closely approximate the reference mixture

δr = 0.1◦ entropy, while the single-member spatial releases show more variable performance. Both the δr = 2.0◦ and the 20-

week mixture distributions exhibit the highest average entropy values, demonstrating how combining either spatial or temporal465

release strategies with the ensemble variability, increases the total dispersion variability. This reinforces our choice of the

more point-like δr = 0.1◦ mixture as our reference for evaluating single-member approximations. For clarity, we omitted the

intermediate mixture curves (δr = 1.0◦ and 12-week), as their entropy values consistently fall between those of the δr = 0.1◦

and δr = 2.0◦, and 4-week and 20-week, respectively.

We computed the relative entropy as a function of particle age by comparing single-member distributions with mixture470

distributions, to understand how similar are the single member distributions with the mixture distributions, bin by bin. For this,

we computed the relative entropy of a single member distribution Pm(X,t) compared to a mixture distribution Pmix(X,t),
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Figure 6. Average marginal entropy as a function of particle age of single-member distributions (colored lines) and mixture distributions

(black lines). The average marginal entropy for the single member simulations with diffusion Kh are shown as black triangle curve. The

shaded areas represent the standard deviation. The particle age is on a logarithmic scale. A) Comparison of the single-member and mixture

distributions with spatially varying release. B) Comparison of the single-member and mixture distributions with temporally varying release.

C) Comparison fo the single-member distributions with diffusion. In all panels, we added the entropy curve of the mixture δr = 0.1◦ as a

reference.

using Eq.(10), across all their particle ages. Therefore, we calculated 502 = 2,500 relative entropy curve as a function of

particle age curves when comparing two sets of distributions. That is, one set for single member simulations and one set of

mixture simulations. From the 2,500 relative entropy functions, we computed the average and the standard deviation of the475

relative entropy as a function of particle age. We computed the average relative entropy for the combination of the seven sets of

single member distributions (δr ∈ {0.1◦,1.0◦,2.0◦}, 4, 12 and 20 weeks, and Kh = 10m2s−1 and Kh = 1,000m2s−1), with

the six sets of mixture distributions (excluding diffusion), ending up with 48 average relative entropy curve as a function of

particle age.

Figure 7 shows the average relative entropy as a function of particle age, divided into four panels (A-D), each using a480

different mixture distribution as a reference (Pmix). In these plots, low values of the relative entropy indicate a good agreement

to the reference case, as relative entropy is a measure of the mismatch between each of the distributions shown and the reference

distribution (technically: the cost of assuming that each of the distributions shown is the reference distribution). We omitted

the plots where the mixture δr = 1.0◦ and mixture 12-weeks strategy was used a reference, since their entropy lies between

their corresponding extreme strategies, that is δr ∈ {0.1◦,2.0◦}, and 4 and 20-weeks releases. In all panels, the solid and485

dotted lines represent the average relative entropy for each strategy, while the shaded bands around these lines indicate their

corresponding standard deviation. The standard deviation measures the variability in relative entropy, revealing the extreme

cases where single-member distributions poorly represent the reference mixture distributions.

Figure 7A uses the reference mixture distribution with δr = 0.1◦ as the reference (Pmix). On average, the single-member

distribution with δr = 2.0◦ (green dotted line) most closely approximates the reference mixture, having the lowest mean rela-490
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tive entropy across most of the time range. The 20-week release strategy (yellow dashed line) and Kh = 1,000m2s−1 (purple

dashed line) perform similarly well. However, δr = 0.1◦ (blue dash-dot line), the 4-week (red dotted line), and Kh = 10m2s−1

(black line) have higher average relative entropy, showing that their two-dimensional distributions under-represent Pmix. Re-

garding their standard deviation bands, we see that δr = 2.0◦ has almost zero standard deviation on the first ten days after

release. This is due to the larger area covered by particles at the release compared to the area covered by the Pmix. The op-495

posite case is observed with δr = 0.1◦ and Kh = 10m2s−1 standard deviations which indicate a more likely greater lack of

information compared to the reference distribution Pmix.

Figure 7B, with the mixture distribution with δr = 2.0◦ as reference Pmix, shows that the single-member δr = 2.0◦ strategy

most closely matches Pmix on average. The 20-week release strategy and Kh = 1,000m2s−1 also perform well, especially for

higher particle ages. The substantial standard deviations for all strategies, particularly pronounced for δr = 0.1◦, the 4-week500

strategy, and Kh = 10m2s−1, highlight the potential for large lack of information in representing Pmix at all particle ages.

Figures 7C and 7D use the 4-week and 20-week mixture distributions as references, respectively. In both case, 20-week and

δr = 2.0◦ single-member temporal release strategies, and the Kh = 10m2s−1 show the lowest mean relative entropy. The wide

standard deviation bands, particularly noticeable for δr = 0.1◦ and Kh = 10m2s−1, underscore the high variability in how

well these strategies capture the reference mixture’s characteristics.505

Across all panels of Figure 7, relative entropy peaks between 10 and 100 days of particle age, with the largest standard

deviations also occurring in this range. Notably, standard deviations for temporal (20-week) and spatial (δr = 2.0◦) strategies

peak at different times: the 20-week release shows maximum variability at earlier particle ages (before 10 days), while the

δr = 2.0◦ release peaks later (before 100 days). This suggests that these single-member strategies are most likely to significantly

diverge from the mixture distributions around these particle ages.510

From the average entropy curves shown in Figure 7, we took the average over the 6 years the particles were drifting after

release. We compiled these values for the 20 comparisons between mixture and single-member sets, with different release

strategies in Figure 8. This figure presents a heatmap of the time-averaged relative entropy values for various combinations of

single-member and mixture distributions. The rows represent single-member distributions, while the columns represent mixture

distributions. The color scale ranges from dark green (lowest relative entropy) to light green (highest relative entropy), with515

numerical values provided in each cell. Notably, the Kh = 1,000m2s−1 (last row) and 20-week single-member distribution

(fourth row) consistently shows the lowest relative entropy across all mixture distributions, indicating both strategies best

represents the ensemble variability. Conversely, the δr = 0.1◦ single-member distribution exhibits the highest relative entropy

values, followed by Kh = 10m2s−1, suggesting that they are the least effective at capturing the characteristics of the mixture

distributions.520

4 Discussion and Conclusions

In this study, we investigated how to generate ensemble-like variability within single-member Lagrangian simulations by

implementing varying spatial and temporal release strategies, as well as by adding diffusion, in the Gulf Stream region near
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Figure 7. Relative entropy as a function of particle age for different single-member distributions compared to mixture distributions. The

subplots A-D show comparisons using different reference mixture distributions (Pmix): (A) δr = 0.1◦, (B) δr = 2.0◦, (C) 4-week release,

and (D) 20-week release. Dotted and solid lines represent the average relative entropy for each release strategy, while shaded areas indicate

their corresponding standard deviation. The x-axis shows particle age in days (log scale), and the y-axis shows relative entropy in bits.

Different colors represent various single-member strategies: δr = 0.1◦ (blue), δr = 2.0◦ (green), 4-week release (red), 20-week release

(orange), and Kh = 10m2s−1 (black) and Kh = 1,000m2s−1 (purple).
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Figure 8. Time-averaged relative entropy (in bits) between single-member and mixture distributions for different release strategies. Rows

represent single-member distributions, and the columns represent mixture distributions. Color intensity indicates the magnitude of relative

entropy, with dark green representing lower values (better agreement) and light green representing higher values (poorer agreement). Numer-

ical values in each cell show the precise time-averaged relative entropy.

Cape Hatteras. The surface connectivity between the Gulf Stream and the region past 40◦W revealed significant differences in

the number of particles crossing between different release strategies in the single-member distributions. The ECDFs in Figure 4525

showed that, for spatially varying releases, the larger the initial particle cloud, the more particles cross the 40◦W. Regarding

the temporal distributions, we did not see significant variations in the number of particles crossing 40◦W; the distributions for

the number of particles and the median times were similar between the three temporal release strategies. The low diffusion

Kh distribution was very similar to the spatial δ = 0.1◦ distribution, with fewer particles crossing 40◦W than other strategies,

while the high diffusion Kh distribution resulted in complete connectivity on much shorter timescales than any other strategy.530

Moreover, the normal distribution observed in the mixture distributions can be attributed to the central limit theorem. This

fundamental principle in probability theory states that when independent random samples are drawn from a population with a
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finite variance, the distribution of their means will approximate a normal distribution as the sample size increases. In our case,

the bootstrapping method used to construct the mixture distributions effectively simulates this sampling process, resulting in

the observed normal distributions.535

Regarding representing the full ensemble variability with single-member simulations in the connectivity analysis, we see

that particles are more consistent in crossing the 40◦W meridian in the mixture distributions. Therefore, when comparing

mixture distributions with single-member distributions, we counted the percentage of single-member simulations with fewer

particle crossings than the reference mixture distribution with δr = 0.1◦. In this analysis, we see that performing a one-time

spatial release with a radius of δr = 2.0◦ better represents the particle crossings in the mixture distributions, than the other540

strategies. From all the release strategies, single-member simulations with δr = 2.0◦ release cloud had the lowest likelihood

of having fewer particles crossing than the reference mixture simulation with δr = 0.1◦. This might be because a large initial

cloud of particles releases more particles outside the Gulf Stream, creating a wider variety of trajectories that cross 40◦W. In

the case of the temporal releases, the single member with 20-week release simulation had fewer particles crossing 40◦W than

the mixture with δr = 0.1◦, with a 66% likelihood of having fewer particles. This likelihood is 10% higher than 4 and 12-week545

single-member distributions, suggesting that the seasonability may be playing a role in the transport of particles to the eastern

side of the domain. The connectivity with the eastern region of the domain might be stronger during winter, corresponding to

the release of particles in the 4-week period (from 2nd to 30 of January) and 12-week period (from 2 January to 27 March).

Meanwhile, the 20-week release, from 2nd January to 22 May, had a portion of its particles released during spring.

The marginal entropy analysis, shown in Figure 6, provided insights into how well different release strategies represent the550

full ensemble variability. In general, we see how the marginal entropy increased with time for all strategies considered, some at

slower rates than others. We attributed this to the percentage of particles released under the local decorrelation length and time

scales for the different strategies. For instance, spatial releases with radius δr = 0.1◦ and temporal releases of 4-weeks, which

exhibited the lowest marginal entropy, had all their particles released within their respective decorrelation scales. As the radius

or release period was increased, there were more particles with decorrelated initial velocities, resulting in higher entropy in the555

two-dimensional distributions.

It is important to highlight that the marginal entropy of the mixture distributions consistently exceeds that of corresponding

single-member distributions, demonstrating that ensemble simulations under identical release conditions inherently generate

greater trajectory variability than single-member simulations. By maintaining equal particle counts between mixture and single-

member simulations, we ensured that the higher entropy in mixture distributions reflects genuine ensemble dynamics rather560

than statistical artifacts. The higher marginal entropy in mixture distributions may also be attributed to the temporal context of

our study: we advected particles ∼ 18 years after the initialization of the NATL025-CJMCYC3 ensemble (which was perturbed

during 1993). At the release date of the particles (2010), the perturbations had sufficient time to adapt and decorrelate the

velocity fields of the members, which suggests that ensemble Lagrangian dispersion arises not only from mesoscale chaos but

also from low-frequency, large-scale intrinsic fluctuations.565

Based on the marginal entropy curves from Figure 6, we selected the mixture simulations with δr = 0.1◦ as reference for

comparing the different release strategies, because they contain the full ensemble variability with least noise added by the initial
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perturbation to their initial conditions. Comparing the spatial releases against this reference (Figure 6A) revealed significant

limitations. The larger release areas (δr = 1.0◦ and δr = 2.0◦) initially overestimate variability during the first 10 days, as

particles start from a wider area than the reference’s mixture with δr = 0.1◦ radius. While δr = 2.0◦ simulations eventually570

match the reference entropy after 30-40 days, δr = 1.0◦ simulations underestimate it until about 1,000 days after release.

The simulations with low diffusion (Kh = 10m2s−1) show marginal entropy similar to spatial releases with δr = 0.1◦, but

fail to reproduce the full ensemble variability until approximately 1,000 days after release, as seen in Figure 6. The simulations

with high diffusion (Kh = 1,000m2s−1), on the other hand lead to very similar entropy statistics as the mixture models (Figure

8), although they fail to capture the connectivity and transport time patterns. These added diffusion simulations used a stochas-575

tic differential equation approach with Brownian motion terms, following established methods in Lagrangian oceanography

(Griffa, 1996). Our results demonstrate that such an approach could reproduce some of the full ensemble entropy, but at the

expense of overestimating the connectivity. Furthermore, Brownian diffusion can also move particles across permanent fronts

or (if not treated carefully), even across landmasses such as the Panama Isthmus (McAdam and Van Sebille, 2018).

The underperformance of the low diffusion strategy likely reflects that it represents primarily small-scale turbulent mixing580

processes, and the diffusion cannot create noticeable variability in trajectories, specially for particle ages < 100 days, missing

the larger-scale flow uncertainties and mesoscale variability captured through other strategies. In contrast, temporal release

strategies (Figure 6B) show better performance, particularly the 12 and 20-week releases. The 20-week release strategy con-

sistently matches the reference mixture’s marginal entropy (mixture δr = 0.1◦) across all temporal scales, demonstrating that

continuous particle releases over time can effectively reproduce the variability captured by ensemble simulations. This suggests585

that temporally varying the initial conditions is more effective at generating ensemble variability than adding diffusion, and

also is more consistent throughout particle ages than varying spatially the extent of the release area.

As we explained in Section 2.4.4, two distributions that have the same entropy do not necessarily exhibit the same distri-

butions since two different probability distributions can have equivalent marginal entropies. As a complementary analysis, we

computed the relative entropy to measure the agreement between two distributions, which measures the lack of information590

when representing the full ensemble with a single-member simulation. We applied the relative entropy analysis to compare all

release strategies against the mixture distribution δr = 0.1◦. The averaged results and their variability, shown in Figure 7, fur-

ther support the findings from the marginal entropy assessment. The 20-week and Kh = 1,000m2s−1 release generally showed

consistently low average relative entropy with respect to the reference mixture distribution, indicating this release strategy most

effectively captured the particle distributions over time, by generating two-dimensional distributions that resembled the most595

to the ones of the mixture distribution containing the full ensemble variability. Contrary to that, the δr = 0.1◦, 4-week, and

Kh = 10m2s−1 strategies showed the largest values in average relative entropy, with large standard deviations in particle ages

below 100 days. This shows that these strategies have particular difficulty to generate variability in the trajectories similar to a

full ensemble.

Comparing the 6 years time-averaged relative entropy, shown in Figure 8, showed how the 20-week release strategy and600

the Kh = 1,000m2s−1 simulations have least uncertainty, or represents the best the full ensemble variability, across different

reference mixtures. The δr = 2.0◦ and a 4-week release strategies showed higher uncertainties compared to a 20-week re-
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lease. Lastly, Kh = 10m2s−1 and δr = 0.1◦ had the highest time-average relative entropies. This further supports the idea that

performing long continuous releases is the best release strategy to generate variability in particle trajectories similar to a full

ensemble simulation.605

In single-member simulations, we demonstrated that releasing particles at slightly different locations or times can match the

variability in the behavior of particles released at a specific time and location from an ensemble of simulations. An interpretation

of this may be that an ensemble of Lagrangian simulations has an ergodic flavor in which statistical homogeneity exists between

an ensemble of simulations and single-member simulations (Shannon, 1948). However, this does not constitute proof of the

system’s ergodicity.610

While our study provides valuable insights into generating ensemble-like variability in single-member simulations, several

limitations should be acknowledged. Our analysis focused solely on the Gulf Stream region near Cape Hatteras, and the effec-

tiveness of these release strategies may vary in other oceanic regions with different dynamics. Additionally, while our particles

were advected in three-dimensional flows, we only considered surface particle releases, which may not fully represent the three-

dimensional transport processes occurring throughout the water column. Our results are based on the NATL025-CJMCYC3615

model configuration, and the effectiveness of these strategies may be resolution-dependent, as higher-resolution models resolve

smaller-scale processes that could introduce additional variability in transport pathways. We performed simulations for only

one release period, on 2 January 2010, because that allowed us the longest particle advection time. We acknowledge, however,

that the results presented here may depend on the chosen release time. Furthermore, our study was limited to forward-in-time

simulations, whereas backward-in-time tracking could provide complementary information about generating ensemble vari-620

ability in single-member simulations in studies concerning source regions and transport pathways. Future work should explore

the potential of the framework and methods provided in this study across different oceanic regions, depths, and temporal di-

rections to establish more comprehensive guidelines for single-member Lagrangian simulations, including appropriate values

for Kh in Random-walk diffusion parameterizations.

Ensemble simulations remain the standard for capturing the full range of variability in ocean simulations; our study pro-625

vides guidance on releasing particles in single-member simulations to increase the variability of the trajectories and, in this

case, better represent ensemble statistics. While data assimilative models excel at improving mean state predictions through

observation integration, ensemble approaches are better suited for exploring the full range of possible outcomes and quan-

tifying uncertainty in trajectory predictions. Generating ensemble-like variability for Lagrangian simulations advected using

assimilative models could be particularly powerful: applying temporal release strategies could help capture both the improved630

mean state from data assimilation and the trajectory variability typical of ensemble simulations. These findings have important

implications for ocean modeling and particle tracking studies, especially when computational resources limit the use of full

ensemble simulations. By carefully selecting release strategies, researchers can maximize the variability of single-member

simulations, potentially improving predictions of particle transport by capturing extreme events.
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Figure A1. Marginal entropy of mixture distributions as a function of particles sampled per ensemble member, shown for three different

hexagonal grid resolutions (h). Higher h values indicate finer spatial resolution, resulting in higher entropy values.

Appendix A: Marginal Entropy as a Function of Number of Particles and Grid Resolution635

The calculation of the mixture probability distributions (Pmix) requires determining both the optimal number of particles to

sample and the appropriate spatial resolution for binning these particles. These parameters directly affect the entropy of the

resulting distributions. We investigated this relationship by varying two key parameters: the number of particles sampled per

ensemble member and the hexagonal grid resolution (h).

Figure A1 shows how the entropy converges as we increase the number of particles sampled per ensemble member, plotted640

for three different grid resolutions (h ∈ {2,3,4}). As expected, finer grid resolutions (larger h values) yield higher entropy

values as they capture more detailed spatial information. For our chosen grid resolution of h= 3, the entropy converges to

approximately 8.5 bits when sampling 150 or more particles per ensemble member. Coarser resolutions (h= 2) require fewer

particles to converge, while finer resolutions (h= 4) need more particles but capture more spatial detail. Based on this analysis,

we selected h= 3 and 150 particles per member as sufficient parameters for our study, balancing computational efficiency with645

spatial resolution.
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Appendix B: Additional Supplementary Figures
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Figure B1. Ensemble standard deviation of time-averaged particle occurrence per (hexagonal) bin in the North Atlantic Ocean for single-

member simulations. Subplots A, C, E: Temporal release strategies at 4 weeks, 12 weeks, and 20 weeks. Subplots B, D, F: Spatial release

strategies with δr ∈ {0.1◦,1.0◦,2.0◦}. Subplots G and H: Diffusion strategies with Kh = 10m2s−1 and Kh = 1,000m2s−1. The color

scale represents the ensemble standard deviation of a 6-year time-averaged occurrence per bin. The maps illustrate the variability in particle

dispersal for single-member simulations. The dashed line at 40◦W indicates the eastern boundary of the study area. The blue dot marks the

approximate release location.
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Figure B2. Ensemble standard deviation of time-averaged particle occurrence per (hexagonal) bin in the North Atlantic Ocean for mixture

simulation subsets. Left column (A, C, E): Mixture subsets at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F): Mixture subsets with

spatial variability δr ∈ {0.1◦,1.0◦,2.0◦}. The color scale represents the ensemble standard deviation of a 6-year time-averaged occurrence

per bin. The maps show the variability in particle dispersal patterns for all 50 subsets of the mixture simulations. The dashed line at 40◦W

indicates the eastern boundary of the study area. The blue dot marks the approximate release location.
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Figure B3. Kernel Density Estimates (KDE) of connectivity analysis for the single-member simulations. The top row (A-C) shows distribu-

tions for spatial releases δr ∈ {0.1◦,1.0◦,2.0◦}: Particle counts (A), median drift time in years (B), and median depth in meters (C). The

middle row (D-F) shows the same metrics but is compared across different temporal releases of 4, 12, and 20 weeks. The bottom row (G-I)

corresponds to Kh = 10m2s−1 and Kh = 1,000m2s−1.
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Figure B4. Kernel Density Estimates (KDE) of connectivity analysis for the mixture simulations, using Scott’s method with a bandwidth

of 1. The top row (A-C) shows distributions for mixture spatial releases δr ∈ {0.1◦,1.0◦,2.0◦}: Particle counts (A), median drift time in

years (B), and median depth in meters (C). The bottom row (D-F) shows the same metrics but is compared across different mixture temporal

releases of 4, 12, and 20 weeks.
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Figure B5. Probability distributions of particle locations at different ages (10, 100, and 1,000 days; columns) across varying release strategies

(rows). The top row shows the probability of the mixture δr = 0.1◦ distribution (mixture subset 4 of the bootstrapping). From the 2nd to

the 6th row, the single-member distributions (member 17), with strategies: 20-week, δr = 2.0◦, δr = 0.1◦, Kh = 10m2s−1, and Kh =

1,000m2s−1. The blue circles mark the particle’s release location. Bins with probability zero were removed to facilitate visualizing the area

of dispersal of the particles.
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Figure B6. Probability distributions of particle locations at different ages (10, 100, and 1,000 days; columns) across varying release strategies

(rows). The top row shows the probability of the mixture δr = 0.1◦ distribution (mixture subset 10 of the bootstrapping). From the 2nd to

the 6th row, the single-member distributions (member 46), with 20-week, δr = 2.0◦, δr = 0.1◦, Kh = 10m2s−1, and Kh = 1,000m2s−1.

The blue circles mark the particle release location. Bins with probability zero were removed to facilitate visualizing the area of dispersal of

the particles.
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Figure B7. Marginal entropy the 50 single-member simulations performed with the different release strategies (individual panels). The lines

are randomly-colored and each line represents one single-member entropy and the black dashed line is the ensemble average as a function of

time.
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Figure B8. Marginal entropy of the 50 bootstrapping realizations or mixture distributions, subsampled from single-member simulations with

different release strategies (individual panels). The color lines show the entropy of each realization, and the black dashed line is the average

as a function of time.
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