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Abstract. Ensemble Lagrangian simulations aim to capture the full range of possible outcomes for particle dispersal. How-
ever, single-member Lagrangian simulations are most commonly available and only provide a subset of the possible particle
dispersal outcomes. This study explores how to generate the variability inherent in Lagrangian ensemble simulations by cre-
ating variability in a single-member simulation. To obtain a reference for comparison, we performed ensemble Lagrangian
simulations by advecting the particles from the surface of the Gulf Stream, around 35.61°N, 73.61°W, in each member to
obtain trajectories capturing the variability of the full 50-member ensemble. Subsequently, we performed single-member sim-
ulations with spatially and temporally varying release strategies to generate comparable trajectory variability and dispersal,
and also with adding Brownian motion diffusion to the advection. We studied how these strategies affected the number of
surface particles connecting the Gulf Stream with the eastern side of the subtropical gyre. We used an information theory
approach to define and compare the variability in the ensemble with the single-member strategies. We defined the variability
as the marginal entropy or average information content of the probability distributions of the position of the particles. We
calculated the relative entropy to quantify the uncertainty of representing the full-ensemble variability with single-member
simulations. We found that release periods of 12 to 20 weeks most effectively captured the full ensemble variability, while spa-
tial releases with a 2.0° radius resulted in the closest match at timescales shorter than 10 days. We found that adding relatively
hi =1,000m?s ! aspects of the full ensemble variabilit

h amounts of Brownian motion diffusion (/4 captures the entro

well, but lead to an overestimation of connectivity. Our findings provide insights to improve the representation of variability in

particle trajectories and define a framework for uncertainty quantification in Lagrangian ocean analysis.
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1 Introduction

The ocean’s dynamics, driven by atmospheric fluxes of energy and momentum at the surface, are characterized by phenomena
that mutually interact across different spatiotemporal scales, including eddies, internal waves, zonal jets, and mixing processes,
up to decadal and basin-scale fluctuations (Vallis, 2017). These multi-scale interactions are non-linear and difficult to model,
presenting a significant source of uncertainty in Ocean General Circulation Models (OGCMs) and our understanding of ocean
circulation. Even under constant atmospheric forcing conditions, ocean models can produce divergent states from minimally
perturbed initial conditions (Penduff et al., 2014). This intrinsic variability becomes particularly prominent in eddy-permitting
models where small initial differences can cascade towards multi-decadal and basin scales (Grégorio et al., 2015; Leroux et al.,
2018; Zhao et al., 2023). To address these inherent uncertainties in OGCMs, researchers have increasingly adopted probabilistic
ensemble models, running multiple simulations with small perturbations to initial conditions or parameter values to capture
a broad range of possible ocean states (Penduff et al., 2018; Zanna et al., 2019). The ultimate goal of ensemble models is to
predict the probability density of the system’s state at a future time (Leutbecher and Palmer, 2008).

Lagrangian particle tracking provides a powerful tool for studying ocean transport, mixing, and connectivity, with the latter
a metric that maps the origin of substances (water, nutrients, plankton, plastic objects) to their destinations. Applications of
Lagrangian particle tracking range from search and rescue operations (Breivik et al., 2013) to climate and environmental
research (Bower et al., 2019; Van Sebille et al., 2018). In these simulations, virtual particles are typically advected by velocity
fields derived from OGCMs, with their dispersal patterns intimately linked to the underlying ocean state. However, similar to
above, the trajectories obtained from the particle tracking in one OGCM ensemble member may not be representative of the
full probability density of the system’s state. Because pure advection is deterministic, there will be only one trajectory resulting
from a virtual particle that starts at a certain place and time.

This deterministic nature limits what we define as ‘trajectory variability’ — the range of possible pathways and end locations
that particles could follow given uncertainties in ocean conditions. We define trajectory variability as the spread in particle
positions, pathways, and connectivity patterns that emerges when accounting for uncertainties in initial conditions or modeled
ocean states.

Capturing the trajectory variability is crucial for practical oceanography applications. For example, search and rescue profes-
sionals may want to compute a full probability density function of possible object locations — even when the starting location
and time of an object lost at sea is known exactly — due to uncertainties in the ocean model. Similarly, marine pollution studies
need to assess the range of possible contamination pathways, while connectivity studies in marine ecology require under-
standing the full spectrum of larval dispersal routes between habitats. In each case, a single deterministic trajectory provides
insufficient information, limiting the generalisability of the results, as it cannot represent the inherent uncertainty in ocean
dynamics and model predictions.

Now, advected particle trajectories are chaotic, in which small perturbations in initial conditions or noise along their trajec-
tories can lead to significant divergences in particle trajectories (Koshel and Prants, 2006). The sensitivity to initial conditions

is often used to generate variability in particle trajectories to predict the drift of the particles when there is uncertainty in their
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initial conditions (Breivik et al., 2013). In fluid mechanics, this is related to the concept of streaklines, transport barriers and
coherent structures (e.g., Haller, 2004; Zhang, 2013; Karrasch, 2016; Balasuriya, 2017).

An alternative approach to generating variability in the trajectories is to advect particles using a full ensemble of vector fields
or ensemble models, an approach followed from Melsom et al. (2012), in which they advected particles using an ensemble of
100 members from the TOPAZ forecasting system. They found that ensemble average trajectories, calculated as the center of
gravity (mean position) of all ensemble members at each time step, are generally closer (on a straight line distance) to the
observed drifter trajectories than that from a deterministic single-member simulation. However, the study did not compare how
small perturbations in initial conditions in the single-member simulation performed relative to the trajectories advected by the
ensemble.

While ensemble Lagrangian simulations can capture a more complete spectrum of possible outcomes, single-member sim-
ulations, which sample only a subset of the possible outcomes, remain more prevalent due to computational constraints. In
operational oceanography, data assimilative models are commonly used to improve trajectory predictions by combining ob-
servations with model dynamics to find an optimal solution (Castellari et al., 2001). However, while assimilation can reduce
systematic biases and improve the mean state representation, it may not fully capture the underlying uncertainty and variability
in particle trajectories, particularly in regions with sparse observations (Jacobs et al., 2018). Our study addresses these lim-
itations by exploring ways of generating ensemble-like variability within single-member simulations. Missing variability in
particle trajectories is typically created by releasing particles at different locations (spatial variation; e.g., Rossi et al., 2013), at
different times (temporal variation; e.g., Qin et al., 2014; van Sebille et al., 2015), and/or with a-smal-ameunt-ef-some random
walk diffusion added to the advection (e.g., Hart-Davis and Backeberg, 2021). We here test how well-suited these approaches
are to represent intrinsic variability resulting from an ensemble simulation within a single simulation.

We assess performance based on a connectivity analysis and dispersion patterns using a novel information theory approach.
Our approach consists of quantifying the variability in trajectories through the marginal entropy of particle position distribu-
tions and evaluating the uncertainty in representing full-ensemble variability with single-member simulations. Our approach
is complementary to other new approaches for computing stochastic sensitivity of Lagrangian trajectories in the ocean, such
as those by Balasuriya (2020), Badza et al. (2023) and Branicki and Uda (2023). However, our approach is particularly also
useful for particles with added ‘behaviour’, such as in the case of plastic particles (e.g., Denes and Van Sebille, 2024).

We focused on the region east of Cape Hatteras in the North Atlantic Ocean, implementing spatially and temporally varying
release strategies to generate variability comparable to that observed in full ensemble simulations. This region was chosen to
study the connectivity of water parcels at the surface of the Gulf Stream with the Eastern North Atlantic and the subtropical
gyre. It was previously thought that the salty and warm surface water of the Gulf Stream feeds directly to the subpolar gyre.
However, recent Lagrangian studies have shown that the water parcels originating at the surface of the Gulf Stream recirculate
within the subtropical gyre, becoming part of the subtropical mode water, and enter the subpolar gyre via sub-surface con-
nections (Rypina et al., 2011; Burkholder and Lozier, 2014; Foukal and Lozier, 2016; Berglund et al., 2022). Our case-study
here thus builds upon these findings by quantifying how intrinsic ocean variability affects this connectivity pattern within the

subtropical gyre, providing insights into the robustness and variability of these recirculation pathways.
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2 Methodology
2.1 Ocean Model Ensemble Simulation

We employed daily surface velocity fields produced by the North Atlantic NATL025-CJIMCYC3 50-member ensemble simula-
tion. This regional ensemble simulation was performed in the context of the OceaniC Chaos — ImPacts, strUcture, predicTability
project (OCCIPUT), described in Penduff et al. (2014) and Bessieres et al. (2017). This ensemble was performed using the
NEMO v3.5 ocean/sea-ice model over the North Atlantic between 20°S and 81°N, with an eddy-permitting resolution of
1/4° and 46 vertical levels. The 50 ensemble members were initialized by the final state of a 15-year one-member spin-up
that ended in December 1992. The inter-member dispersion was generated by activating a-small-stochastie-perturbation-in-the
equation-of state-small stochastic perturbations in the density gradients resolved by the model during 1993and-deactivating

#-, and deactivating these perturbations for the remaining simulation time, as presented in Bessieres et al. (2017) and based
on the algorithm of Brankart (2013). All ensemble members were driven by the same atmospheric forcing between 1993 and

2015, derived from the DRAKKAR Forcing Set 5.2 (DFS5.2; see Dussin et al. (2016)). The NATL025-CIMCYC3 1993-2025
simulation used here is similar to the NATL025-GSL301 1993-2012 simulation presented in Narinc et al. (2024), with one
difference: tropical cyclones were enhanced in the forcing of NATL025-CJMCYC3 since they were too weak in DFS5.2. More

details about the model setup are provided in Narinc et al. (2024).
2.2 Lagrangian Simulations

Lagrangian particles were advected offline using six years (2010-2015) of the velocity fields described above, where particle
trajectories in each ensemble member were integrated using the Parcels framework v.3.0.2 (Delandmeter and van Sebille,
2019). Trajectories were integrated in three dimensions using a fourth-order Runge-Kutta scheme with a time step of 1 hour,
storing the output with a daily timestep. We modeled passive particles (that is, particles that instantly adjust their velocity
to that of the ambient flow) by only considering three-dimensional advection and ignoring all buoyant forces. Additionally,
particles that escaped the domain through the surface were placed back to a depth of 1 m. We chose the region off the coast of
Cape Hatteras as a study location because it is an important region where the Gulf Stream separates from the continental shelf

and becomes a free jet (Mao et al., 2023; Buckley and Marshall, 2016).
2.3 Recreating Particle Trajectory Variability

This study explores methods to recreate the trajectory variability typically obtained from ensemble ocean simulations using
only a single ensemble member. Figure 1 illustrates both the challenge and our proposed approaches. When particles are
released from a fixed point (35.61°N, 73.61°W; yellow square) at a distinct time (2 January 2010) and tracked using different
ensemble members, their trajectories (shown in black, Figure 1A) diverge due to intrinsic variability in the velocity fields. Our

goal is to reproduce this dispersion of what we refer to as the ‘full ensemble’ using just one ensemble member.



120

125

130

135

140

145

150

We tested three approaches to achieve the variability of this full ensemble with single-member simulations, by leveraging
the sensitivity to initial conditions or adding diffusion. The first strategy varies the release locations of the virtual particles
spatially (shown in purple in Figure 1B), creating a cloud of initial positions centered around 35.61°N and 73.61°W. The
purple circles indicate the varying release locations, while the purple arrows show their subsequent trajectories. The second
strategy (shown in orange, Figure 1C) maintains the fixed release location (yellow square) but varies the release timing, with
particles released continuously over a time period. The third strategy (shown in green, Figure 1D) maintains the fixed release
location and release time, but adds a small Brownian motion diffustvity-diffusion to the trajectory simulations. All methods
generate trajectory spreading with different patterns, some of which qualitatively resemble the full ensemble trajectories, which
we seek to quantitatively compare.

The single-member simulations were performed using velocity fields from individual members of the NATL025-CIMCYC3
ensemble. To ensure robust statistics, we repeated each strategy (spatial and temporal variation and added diffusion) with
all 50 ensemble members rather than arbitrarily selecting one. For the ensemble simulations, rather than running new sim-
ulations where all ensemble members simultaneously advect particles, we selected and joined trajectories from our existing
single-member simulations to create a ‘synthetic’ mixture-of-all-member simulation. This mixture simulation contains the full
ensemble variability and is our benchmark for comparing the three single-member strategies. The following subsections further

detail the three single-member release strategies and the ensemble simulations, which we refer to as mixture simulations.
2.3.1 Spatially Varying Release

We performed Lagrangian simulations by releasing a cloud of particles around (35.71°N,73.61°W), at 1 meter depth, on 2
January 2010 and tracking them until the end of 2015, so for six years in total. We evenly spaced the particles in concentric
rings around the coordinates, where each ring was placed at a constant radial separation (6,-) from the prior ring, forming a
circle of particles. We varied the radius of this cloud of particles; the larger the radius, the less correlated the velocity vectors of
the particles are expected to be, creating more variability in the trajectories. The choice of spatial release radii (9 km-180 km)
spans the range from sub-mesoseale-to-mesoscale-oceanographtefeaturessub-grid scales to ten grid cells apart, allowing us to
test how initial condition uncertainties at different (grid) scales affect long-term particle dispersion. We created three sets of
simulations, with 50 simulations per set (one per ensemble member). The three sets of simulations were performed with 7,500
particles, with an initial cloud varying ¢,. € {0.1°,1.0°,2.0°}.

At the release point, the initial cloud radii are approximately 9 km, 90 km, and 180 km. As a reference, we computed the
ensemble average spatial autocorrelation function of the initial particle velocities at the release location on the release day
(2 January 2010). The spatial autocorrelation function describes the average agreement between a pair of particle velocities
separated by a distance L. The larger the separation distance L, the more likely their velocities will be decorrelated (LaCasce,
2008). Assuming that the spatial correlation decays exponentially, we defined the decorrelation length scale Ly, as the e-folding
length scale of the exponential that describes the autocorrelations functions (Xia et al., 2013).

The particle-pair spatial autocorrelation function was calculated over a set of points placed over a west-to-east line, shown

by the blue dots in Figure 2A, with a horizontal spacing of 0.01°. We calculated the velocity autocorrelation function from
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Figure 1. Schematic representation of the experiment design, east of Cape Hatteras, showing four approaches to generate variability in the
particle trajectories. A) The black lines show 50 trajectories of particles released from a single point (35.61°N, 73.61°W; yellow square) at
a distinct time (2 January 2010) and advected using velocity fields from all 50 members of the NATL025-CJMCYC3 ensemble. B) Purple
trajectories show 50 randomly selected particles, out of 7,500, released from spatially varying locations (purple circles) within a 1° radius
of the central point, all advected using ensemble member 3. C) Orange trajectories represent 50 randomly selected particles, out of 7,500,
released uniformly over a 20-week period from the central point (35.61°N, 73.61°W; yellow square), also using ensemble member 3. D)
Green trajectories represent 50, out of 7,500, randomly selected particles from the ensemble member 3 simulation with added-low diffusion

, released from the central point (35.61°N, 73.61°W;

=1,000m?s~!; dark green
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yellow square). All trajectories are shown 35 days after their respective release times.
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these points as a function of the distance L. The spatial autocorrelation function is defined as

_/ _u(ro+L)-u(ry)
= < [u(ro + L) [u(ro)l > .

in which we compute the dot product of a pair of vectors u(rg) and u(rg + L), divided by the multiplication of their norms,
averaged over all the pairs of velocities (Xia et al., 2013). In Eq. (1), || - || is the usual L, norm, and (-) indicates an average
over velocity pairs. We computed p(L) for the range L € [0.01°,2.00°], with a 0.01° spacing. The autocorrelation function
is defined between [—1,1], in which p(L) = 1 indicates a full positive correlation, p(L) = —1 a full negative correlation, and
p(L) = 0 no correlation.

Following Eq. (1), we computed p(L) for each of the 50 ensemble members of the NATL025-CIMCYC3, on 2 January
2010. In Figure 2B, we show the p(L) for each ensemble member as black lines. We see great variability in the curves but an
exponentially decaying trend in which, as L increases, the particle velocities are less correlated. We performed an exponential

fit, e*/ Lz of the 50 correlation curves, shown in blue in Figure 2B. From the exponential fit, we obtained a decorrelation length

L, = 0.41°, which corresponds to approximately 37 km at a latitude of 35.5°N. As-areference;the Rossby-deformationradius
in-thisregionisLr~-30km{(Cheltenetal;1998)-Both spatial scales indicate that the velocities of all the particles released

from an initial cloud of 4,, = 0.1° should be correlated, while for the larger clouds §, € {1.0°,2.0°}, only a fraction of the
particle velocities may be correlated, leading to more variability in the trajectories. While decorrelation scales likely evolve
over the 6-year simulation period due to particle spreading and varying flow conditions, computing their evolution at every

particle age is computationally intensive and impractical, compared to other metrics.
2.3.2 Temporally Varying Release

We also created variability by releasing particles from the same location (35.71°N,73.61°W) at different times. We tested
three release time windows: 4, 12, and 20 weeks, all starting from 2 January 2010. For each window length, we performed
50 simulations (one per ensemble member), with each simulation releasing 7,500 particles. Within each time window, we
distributed the 7,500 particles evenly across the days, resulting in multiple particles being released each day. To ensure particles
released on the same day followed different trajectories, we added small random perturbations to their release locations using
uniform noise with an amplitude of 0.01°. We kept this noise amplitude small to (as much as possible) isolate the effects of
the temporal release strategy alone. Note that all particles were advected until the end of 2015, so that in this simulation some
particles reached a maximum ‘age’ (time-of-flow) of 6 years and others only 5.6 years. This is a minor effect though, as most
of our analysis will focus on the first few months of advection.

We computed the particle-pair temporal autocorrelation functions by sampling the velocity at the same location but on
different days, shown as a red point in Figure 2A. We sampled the velocity daily for a duration of 60 days, starting on the 2nd

of January, 2010. From the sampled velocities, we computed the temporal autocorrelation function given by

u(to+1)-u(to)

o= < [u(to +t)[[u(to) ] > !
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Figure 2. A) Map of Cape Hatteras showing the points used to compute the spatial correlations (blue) and the location used to compute the
temporal correlations (red). The hexagons mark the limits of the hexagonal grid used in subsequent analyses, and the green area represents the
North American coast. B) Spatial correlations function around the release location, and each black line shows the correlation function for an
ensemble member. The blue line shows the exponential fit computed over the 50 correlation functions. The green line shows the decorrelation
length scale Lz, = 0.41° ~ 37km. C) Temporal correlations with velocities sampled daily for 60 days from the 2nd of January 2010. The
black lines show the correlation functions of single ensemble members, and the red line shows the exponential fit with a decorrelation

timescale of 41 days.

where ¢ represents the time lag between pairs of velocities u(to) and u(to +t) averaged over all pairs with a lag ¢, similar to
Eq. (1).

Similarly to p(L), we computed the temporal autocorrelation function p(t) for the 50 members of NATL025-CJIMCYC3, for
the range ¢ € [1,60] days with a spacing of 1 day. In Figure 2C, we show each member’s p(t) as black curves. We performed an
exponential fit e/ ™= over the 50 correlation curves. In Figure 2C, we show in red the exponential fit. We found a decorrelation
timescale of 77, = 41 days for the velocities of the particles released on different days. Therefore, it is expected that almost all
the particles are correlated for a release period of 4 weeks, and for the larger release periods of 12 and 20 weeks, only a fraction

of the particles will be correlated, creating more variability in the trajectories.
2.3.3 Release with Added Diffusion

We performed simulations with horizontal diffusion as a method to generate variability in the trajectories. The variability was
generated by adding a horizontal Brownian motion (also known as a random walk) term to the integration of the particle
trajectories. Therefore, the horizontal components of the particle trajectories were integrated with

t+At
x(t+ Af) = x(t) + / u(x,7)dr + Rv/2KAL, 3)

t
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where x is the horizontal location of the particle at a time ¢, At is the integration timestep, and u is the horizontal components
of the Eulerian velocity field interpolated to the particle location. The last term is the Brownian motion term, where R is a
random number between (0, 1) taken from the normal distribution with zero mean and unit variance, and K}, is the horizontal
diffusion coefficient (Van Sebille et al., 2018).

In the simulations with added diffusion, we released particles from the fixed position (35.71°N,73.61°W) on 2 January
2010, without perturbing the initial conditions, spatially or temporally. We released 7,500 particles per ensemble member and
we advected those particles for 6 years, until the end of 2015. We used-a-constant-horizontal-diffusion-coefficient-with-a-value

of I=10m2s—L-explored the sensitivity to the magnitudes of the horizontal diffusion coefficients by running simulations

with two values representative of different scales, specifically with K = 10m?s~! — a value commonly used to parametrize
subgrid processes in ocean models with eemparable-(O(1/10°) spatial resolution (Lacerda et al., 2019; Onink et al., 2021;

Pierard et al., 2022)—We-note-that-appropriate-diffusion-coefficientsforsubgrid-seale-parameterization-are-strongly-dependen
on-the-model’s-spatiat-resetution—, and with ), =1,000m?s”" — a value used to parameterize eddies in ocean models with
O(1°) spatial resolution (Reijnders et al., 2022).

Since Random Walk diffusion can kick particles on land, where they would not be advected by ocean currents anymore,
we removed the particles as soon as they reach land and do not take them into account in the analysis. We therefore ran

= 1,000m2s—! with double amount of initial particles (15,000 instead of the normal 7,500) and

the simulations with K

subsampled to 7,500 full trajectories for the analysis.

2.4 Trajectory Analysis Methods
2.4.1 Domain Partition and Two-Dimensional Probability Distributions

For the analysis, we created probability distributions from two-dimensional histograms of the positions of particles (Van Sebille
et al., 2018). We partitioned the domain into hexagonal bins by using the H3 Uber hexagonal hierarchical spatial indexing
system (Brodsky, 2018). The H3 grid has the advantage that the area of the hexagons is better preserved across the low and
high latitudes compared to a square grid in a Mercator projection (O’Malley et al., 2021; Manral et al., 2023), and each
hexagonal bin is uniquely indexed, facilitating the reproduction of the analysis. We used an H3 resolution of & = 3, where
neighboring hexagon centroids are separated by 100 km. We acknowledge that using a square grid would not significantly
change our results since particles do not drift to high latitudes.

The spatial domain is discretized as X = x1,xs,...,zp, Where each x; represents a hexagonal bin and B is the total number
of bins. We constructed time series of histograms by counting particles in each bin x; at daily timesteps, binning trajectories
according to their particle age ¢ (time since release).

For each day, we computed a probability distribution over the spatial domain by normalizing particle counts in each bin. The

probability of finding particles in hexagonal bin x; is given by:
Ni (m, t)

P (x; m,t) = ’
(ralm.) S N (m,t)

“4)
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where Py, (x;|m,t) is the probability of finding particles in bin x; given ensemble member m at particle age ¢, N;(m,t) is the
number of particles in bin z; for member m at age ¢, and B is the total number of bins. This ensures Zi1 P (zilm,t)=1
for each member and time step.

The complete probability distribution P, (X|m,t) = [Py, (z1|m,t), Pr(z2|m,t),. .., Py (xg|m,t)] represents the spatial

likelihood of finding particles across the domain for ensemble member m at particle age ¢.
2.4.2 Mixture Simulations and Probability Distributions

To evaluate how well single-member strategies can reproduce the full ensemble variability, we constructed mixture simula-
tions that capture the dispersal patterns across all ensemble members. Using a bootstrapping approach, we randomly selected
n, = 150 particles from each of the M = 50 ensemble members and combined their trajectories to create a mixture simula-
tion containing M X n, = 7500 particles total. We repeated this procedure 2 = 50 times to generate a robust set of mixture
simulations.

Each mixture simulation represents a synthetic dataset that combines particle trajectories from all ensemble members, creat-
ing a representation of the full ensemble’s dispersal behavior. These mixture simulations serve as our reference for evaluating
single-member strategies and are used in subsequent connectivity analyses

For each mixture simulation r, we computed probability distributions over the hexagonal grid following:
N;(r,t)

Pmix(xi|rvt) = Mxn.’
P

®)

where Ppix(x;|r,t) is the probability of finding particles in bin z; for mixture simulation r at particle age ¢, N;(r,t) is the

corresponding particle count in bin z;.

s-then used these probability distributions to compute the mixture distributions
over all grid cells Px(X|r,t) for each single-member strategy to assess their effectiveness: three spatial variations (4, €

{0.1°,1.0°,2.0°}) and three temporal variations (4 weeks, 12, and 20 weeks). This strategy-specific approach was necessary
because the spatial or temporal release variations could unpredictably affect how well each strategy captures the ensemble
variability represented in the mixture distributions.

We determined the optimal particle count by analyzing entropy convergence of the probability distributions. At our hexago-
nal grid resolution (h = 3), entropy converges at n,, = 150 particles per ensemble member, with additional particles yielding no
significant entropy change (Appendix A, Figure A1). This yields mixture simulations of 7,500 trajectories, a particle count we
maintained across all single-member simulations (spatial releases, temporal releases, and added diffusion strategies) to ensure

direct comparability with the mixture distributions.
2.4.3 Connectivity Analysis

The connectivity between regions is a useful and powerful analysis performed with Lagrangian simulations (Rypina et al.,
2011; Riihs et al., 2013), assessing how many particles originating from one region enter other pre-defined regions. Within

this analysis, we explored if the number of particles reaching each region differs significantly when using mixture simulations

10
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instead of single-member simulations. We also compared how connectivity patterns vary across different mixture strategies
(spatial variations with ¢, € {0.1°,1.0°,2.0°} and temporal variations of 4, 12, and 20 weeks). Additionally, we investigated
whether single-member simulations with spatially and temporally varying release strategies can reproduce the connectivity
statistics of the mixture distributions.

We focused on the connectivity between the surface of the Gulf Stream and the region east of 40°W. The 40°W longitude
defines the easternmost boundary where the near-surface waters from the Labrador Current join the Gulf Stream to form the
North Atlantic Current (Buckley and Marshall, 2016). This limit also assesses how many particles cross to the easternmost
side of the subtropical gyre when released from the surface of the Gulf Stream. In Appendix B, we see this limit in maps
showing all places particles drifted to during the six years of simulations. In Figure B1, we present particle dispersion maps
for each of the six release strategies (three spatial and three temporal variations) across all 50 ensemble members. Figure B2
shows corresponding dispersion patterns for the 50 subsets of mixture simulations, allowing direct comparison between single-
member and mixture approaches. We compared how many particles crossed the 40°W longitude from the surface of the Gulf
Stream in a simulation period of 6 years. We also measured the median time that it took particles to cross 40°W and the depth

at which the particles cross 40°W.
2.4.4 Marginal Entropy and Relative Entropy Calculation

To compare the dispersion patterns between ensemble members, we took an information theory approach, similar to Cerbus
and Goldburg (2013), where we treat each probability distribution as a message. Here, the bins represent the ‘alphabet,” and
the occurrence of the particles in each (hexagonal) bin makes the message, with a probability given by P. Each bin z; contains
log,(1/P(x;)) information, where P(z;) is the probability of a character or outcome occurring in a message. The less probable
the outcome, the more information it contains; therefore, the less redundant it is. The information can be thought of as the
optimal ‘length’ that the bin x; has to be encoded to transmit the message, costing the least amount of bits. Shannon (1948)
developed this into a theory of communications in which the fundamental problem is reproducing at one point either exactly or
approximately a message selected at another point transmitted over a noisy channel. In this theory, each probability distribution
contains an average amount of information measured by the entropy. The marginal entropy, H, measures the intricacy or
randomness contained in a distribution and measures the average information content of the distribution (Cover, 1999). The

marginal entropy for the probability distribution is defined as

B

H(m|X,t) = Zp(m‘x“t) 10g2 W’
i=1 v

(6)

where X is the set of bins x; of the grid, P is the probability distribution of ensemble member m (or 7 for the mixture simula-
tions) at particle age ¢, B is the number of hexagonal bins in X, and ¢ is the particle age of the distribution. Marginal entropy
measures the minimum number of bits to which the distribution can be compressed or encoded. A distribution with ‘more’
randomness has less redundancy; therefore, its entropy is higher. This definition of entropy is equivalent to the definition of

entropy in statistical thermodynamics, where entropy is a measure of the number of possible microstates or possible configu-
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rations of the system (Shannon, 1948; Cover, 1999). Thus, we define the variability in the dispersal of particles of a simulation
as the marginal entropy of its corresponding probability distribution.

The marginal entropy measures the variability of a distribution, but it does not measure how well two distributions match
bin by bin. As illustrated by Olah (2015), consider two probability distributions P4(X) = (1/2,1/4,1/8,1/8) and Pp(X) =
(1/8,1/2,1/4,1/8), both defined over X = (1,22, x3,z4). Both distributions are different when comparing them element by
element, that is, P (z;) # Pp(x;). However, if we compute their marginal entropy, we see that they have the same marginal
entropy Hp, (X) = Hp, (X ) = 1.75 bits. Hence, while two distributions may have equivalent marginal entropies, this does
not imply that the distributions are equivalent or similar.

Cross-entropy and relative entropy provide better measures for quantifying the difference between two distributions. The
cross-entropy measures the average amount of information of a distribution Q(X,t) compared to a reference distribution

P(X,t). It is defined as

n

Hp(Q,t) = Q(xi,t)log, ﬁ (7)
i=1 7

where each bin probability Q(z;,t) is weighted with the information of the reference distribution P(x;,t), summed over all
bins x; at time ¢. The cross-entropy tells us the average information content of () using the encoding of P. From the previous
example, the cross-entropy of P4 with respect to Pp, or Hp,(P4) = 2.25 bits is larger than its marginal entropy H(Q).
Therefore, if we would send messages described by () with P’s encoding, it would be 0.5 bits more expensive than using its
own encoding. The difference between the cross entropy and the marginal entropy is called the relative entropy or Kullback-

Leibler Divergence (Kullback and Leibler, 1951) and is defined as

D(Q|‘P7t):HP(Qvt)fH(Qvt)a (®)

where Hp(Q,t) is the cross-entropy of () with respect to P, minus the marginal entropy of Q. Eq. (8) is equivalent to the most
common definition (Cover, 1999; MacKay, 2003):

DIQIIP0) = Y- Qlast)lows F)

i=1

. €))

The relative entropy measures the cost of assuming that the distribution is () when the true distribution is P (Cover, 1999)
and is used to quantify the uncertainty between two distributions.

One of the objectives of this study is to quantify the difference between the mixture distributions P« and single-member
distributions P,,, where the variability is created following spatial and temporal release patterns. Given the sparsity of the
trajectories sampling the domain, computing the relative entropy between the distributions P,,x and P,,, implies comparing two-
dimensional distributions with zeros in most of the domain. Figure 3A and Figure 3B illustrate this by showing Ppix and P, ata
particle age of t = 15 days. We see that the probability of finding particles is non-zero in a localized area for both distributions.
Therefore, when computing the relative entropy for some bins, it is unavoidable to have terms in which glog,(q/p) — oo as

p — 0, where ¢ = Q(x;) and p = P(x;) , are the probabilities of finding particles in a bin ;. To numerically represent the
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infinity and compute the relative entropy, we replaced the zeros with a double precision machine epsilon in P, and Ppx. The
machine epsilon (¢) is the smallest number that a computer can represent. For double precision, it is equivalent to e = 2752, so
that the information content of p = € is equal to log, (1/€) = 52 bits.
The relative entropy is non-symmetric, D(Q||P) # D(P||Q), and the order in which we compare distributions is crucial. In
this study, we calculated the relative entropy as
B
D(Prais | Prst) = 3 Pris(rfzs, ) log, ELM

i=1

(mlaat)’ (10

where Px is the full probabilistic model we aim to reproduce with P,,, the reduced-order approximate model computed
from a single member. The relative entropy is computed for the particle age ¢ of the probability distribution. The relative
entropy can be interpreted as total information loss (or lack of information) when representing Ppx with P, (Chen et al.,
2024; Kleeman, 2002). Figure 3C illustrates computing D (Ppix||Pr,t) with the distributions shown in Figures 3A and 3B,
where each (hexagonal) bin shows the ‘information loss’, Puix10gs(Puix/Pm). We note that the bins with information loss
coincide with the bins where P, fails to have particles, but Ppix does have particles. Conversely, there is no information loss
in bins where there are no particles for P, but there are for P,,. Therefore, P,, having more bins with particles than P
is not quantified as information loss. This is more evident when computing D(P,, || Pnix,t), in Figure 3D. In contrast, there
is information loss in the bins where both distributions have particles but not the same number. There is no information loss
if the bins have the same number of particles. By summing over all the bins in D(Pyix|| P, t), we obtain a single value that
quantifies the total information loss between the two distributions.

Figure 3D illustrates the opposite case, computing D(P,,||Pnix,t) in which the relative entropy measures how well Py
approximates P,,. In this case, there is only information loss in the bins where P,, and P have particles, although Ppix
covers more bins. This again shows that there is no information loss for having a wider probability that covers a larger area,
containing the bins of the distribution to represent. By summing over all bins in D(FP,,|| Puix), we get a relative entropy of
2.8 bits, which is far less than D(Ppix|| P, t) described previously.

To summarize, because of the asymmetry in the relative entropy, it is important to evaluate the full probabilistic model
with the encoding of the reduced-order model, D(Pyix||Pr,t), in Eq. (10). In that case, the relative entropy quantifies the
uncertainty when using the simplified probabilistic model (P, ) to approximate the full model (Fpx) (Chen et al., 2024).

3 Results

3.1 Connectivity

This section compares mixture simulations (containing the full ensemble variability) and single-member distributions for par-

ticles crossing the 40°W line. Throughout this analysis, we use the mixture distribution with §,, = 0.1° as our reference, as it

represents the closest approximation to a point releasewhile-stil-centaining-the-, while still being controlled by the variabilit

in ocean velocities from the full ensemble variability. This allows us to consistently evaluate how increasing spatial or tempo-
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Figure 3. Comparison of probability distributions and their relative entropy. (A) Mixture distribution Ppix (X |0 = 0.1°) at 15 days after
release, representing the full probabilistic model. (B) Single-member distribution P, (X|d, = 0.1°) at 15 days after release, representing
the reduced-order approximate model. (C) Information loss map showing the contribution of each grid cell to the total relative entropy
D(Phrix||Pm) when approximating the mixture distribution with the single-member distribution. (D) Information loss map showing the
contribution of each grid cell to the total relative entropy D (P, || Pnix) when approximating the single-member distribution with the mixture
distribution. Gray hexagons represent land. Color scales show probability values (A and B) and information loss in bits (C and D). The

zero-bit value falls within the second color bin from the left in the information loss color scale.

ral variability in single-member simulations compares to this baseline case. We employed Empirical Cumulative Distribution
Functions (ECDFs) to assess the likelihood of single-member distributions matching the average particle counts in mixture
distributions. Figure 4 shows the ECDFs for the number of particles crossing 40°W and the median particle age at which they
cross that longitude. Figures 4A and 4B compare spatially varying releases and the releases with added diffusion, whereas Fig-
ures 4C and 4D compare temporally varying release simulations. In all panels, the ECDF curves represent the single-member
distributions, and the vertically shaded lines show the 99 % confidence interval of their corresponding mixture distributions.
The mixture distributions are depicted as vertically shaded lines to enhance the readability of the plots since they are well-
defined Gaussian distributions. The plots showing Kernel Density Estimate (KDE) distributions of the single-member and of
the mixture distributions can be found in Figures B3 and B4, in the Appendix B.

Figure 4A shows greater variance in single-member distributions than mixture distributions, with values ranging from 1,000
to 5,100 particles. This increased variability occurs because single-member distributions reflect the specific ocean conditions
of individual ensemble members, while mixture distributions average out these individual variations across multiple members,
resulting in more stable statistics. On average, more particles cross the 40°W line for simulations with larger release clouds
0, in the single-member distributions. The same relation between 4, and the number of particles crossing is observed in
the mixture distributions. The ECDF provides insights into the probability of single-member simulations not capturing the
mixture distribution averages. For instance, in single-member simulations with a release radius of §,, = 0.1°, there is a 0.64
probability of having fewer particles crossing the 40°W line than the average of the mixture distribution with §,, = 0.1°, and
consequently, a 0.36 probability of overestimation. The probability of underestimation decreases to 0.34 (with 0.66 probability

of overestimation) for §,, = 1.0° and to 0.10 (with 0.90 probability of overestimation) for J,, = 2.0°, taking the same mixture

distribution (6, = 0.1°) as reference. inglemember-si ions-with-added 2g=1
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Figure 4C shows the ECDFs for temporally varying releases. The distributions for the single-member simulations with 4,

12, and 20-week releases are similar but show more variance than the mixture distributions represented by the shaded lines.
Mixture distributions for 4 and 12-week releases have comparable average particle counts, while 20-week releases show slightly
lower averages. For single-member simulations, the probability of having fewer particles than the mixture distribution average
(6 = 0.1°)is 0.56 (with 0.44 probability of overestimation) for 4-week releases, 0.50 (with 0.50 probability of overestimation)
for 12-week releases, and 0.66 (with 0.34 probability of overestimation) for 20-week release periods.

=10m?s

Figure 4E shows that the single member simulations with low diffusion (X —1) have a distribution similar to the

single member simulations with J,, = 0.1°, for which there is a 0.70 probability of having fewer particles crossing the 40°
W line, than the mixture §,, = 0.1° distribution, The simulations with high diffusion have a distribution where there is a zero
chance that fewer particles cross the 40°W line than in the mixture §,, = 0.1° distribution; which means that connectivity is

very likely to be overestimated in this simulation with high diffusion.
Figure 4B shows the ECDFs for the median particle age of particles crossing 40°W in spatially varying release simulations.

The single-member distributions (ECDF curves) show a clear separation based on the release cloud size (4,.). Particles from
smaller release clouds (6, = 0.1°) tend to have longer median drift times, while those from larger release clouds (§,- = 2.0°)
have shorter median drift times. This trend is also reflected in the mixture distributions’ 99 % confidence interval (shaded
lines). While the single-member simulations show a greater spread in median drift times compared to the mixture distributions,
they maintain the same general pattern of decreasing drift times with increasing release cloud size. However, the wider spread

in single-member distributions indicates that individual simulations may not consistently reproduce the more stable statistics

captured by the mixture distributions. singlem simulations-with-added 2g—1y

Figure 4D shows the ECDFs for particle age in temporally varying release simulations. The distributions for different release

durations (4, 12, and 20 weeks) are more closely aligned than the spatial variations in panel B. However, longer release periods
(20 weeks) tend to show slightly shorter median drift times. While single-member distributions still exhibit greater variability
than the mixture distributions, this variability is less pronounced than in the spatially varying simulations. This suggests that
temporal release variations may provide more consistent reproducibility of mixture statistics compared to spatial variations,

although this varies in individual simulation results.

Figure 4F shows that the ECDF for single member simulations with low diffusion (X, = 10m?s—"') shows similar median

article age distribution as the single member simulations with §,, = 0.1°. The particles in the simulations with high diffusion
Kj, = 1,000m2s~1) have both a much lower average age and a much lower spread in their age when they cross the 40°W line
than in any of the other strategies.

In summary, our connectivity analysis reveals that single-member simulations tend to either significantly under- or overesti-

mate particle transport across 40°W, with the bias depending on the release strategy. For spatial variations, larger release clouds
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(6, = 2.0°) show a strong tendency to overestimate connectivity (90 % probability), while smaller release clouds (6, = 0.1°)

are more likely to underestimate it (64 % and-70-%-probability; respeetivelyprobability).

Temporal variations show more balanced probabilities of under- and overestimation, particularly for 12-week releases (50-50%

2. —1

probability), and generally exhibit less pronounced variability in particle ages compared to spatial variations. Adding a low

amount of diffusion (K = 10m?2s

K; =1,000m3s~1) is certain to overestimate particle transport.

—1) is likely to underestimate particle transport (70 % probability), while high diffusion

3.2 Two-Dimensional Probability Distributions

The first step to calculate the marginal and relative entropy is to bin the particle trajectories into the two-dimensional probabil-
ity distributions in the hexagonal grid. We computed the two-dimensional probability distributions for all the single member
and mixture simulations, for the different strategies to generate variability in the trajectories. As an illustration, Figure 5 shows
the two-dimensional probability distributions for the reference mixture §,, = 0.1° distribution (subset 43) and the single en-
semble member distributions, with different release strategies (ensemble member 22). The three columns of subplots show the
distributions at particle ages of 10, 100 and 1,000 days, and the different rows show the different strategies to generate vari-
ability. We observe that the reference mixture &, = 0.1° distribution, showcasing the full ensemble variability, spreads evenly
from the release location (shown as a blue dot). We also appreciate how 20-week and d,, = 2.0° single member distributions
resemble the mixture distribution in the area covered by the bins, but the shape of the distributions still remain different. How-
ever, the single-member-distributions from the single member simulations with &, = 0.1° and added-diffusion-low diffusion
(K, = 10m?s~ ' distributions-) clearly cover less bins ;-at the three particle ages shown, despite having the same number of
=1,000m?s~!) covers a

particles as the other distributions. The distributions from the simulations with high diffusion (K},

similar range of bins as the §,, = 2.0° single member distribution for 10 days, covers much more bins for 100 days, and then
looks fairly similar to the other distributions for 1,000 days. Figures B5 and B6, in the Appendix B, show similar figures but

with other single members and mixture subsets. In general, two-dimensional distributions can best be described and compared
with statistical tools. Thus, we computed the marginal entropy and relative entropy of these distributions, at different particle
ages, to characterize and compare the dispersion patterns of the different single member strategies to that of the reference

mixture.
3.3 Marginal and Relative Entropy

We calculated the marginal entropy, Eq. (6), for every single-member and corresponding mixture distribution to assess the
variability and determine which release strategies can represent the variability of the full ensemble. In total, we computed the
marginal entropy functions for all seven-eight sets of single-member distributions (three spatial varying, and-three-temporal
sand-ene-three temporal varying, and two diffusive). We also computed the marginal entropy for six sets of mixture distri-
butions, excluding the mixture distribution from simulations with added-diffusion. Each release strategy and mixture set had
50 distributions, therefore, we calculated the average and the standard deviation of the marginal entropy functions, resulting

in one average entropy curve as a function of particle age per set. Figure 6A illustrates the average entropy curves for spa-

16



1.0 = T AT 1.0 s —— i
A | R B g7 e Wi
0.8 - Cagee BN S 0.8 - r !
e 'r"— rp'" J__o" y i
. Kk r .
L 0.6 A ..‘_,--' _I" ‘,_" ..... 6,=0.1° [TH 0.6 1 '.-l' '__l' .H:.-"
S any e |8 i
W 0.4 - FooEt —- 6,=2.0° & 0.4 N i
4 |.f m Mix. 6,=0.1° -
0.2 i | Mix. 6, = 1.0° 0.2 R R
I - Mix. 6, =2.0° rJ'_,_.;','._..—-"-""
0.0 2Lt = T = T T T 0.0 mes T T T T T
1000 2000 3000 4000 5000 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Counts Median Particle Age (years)
1.0 isgsecsenssnnunananad ot 1.0 T anenans -
C _I:F_: D . ) :—"..—.:'..ﬂ
0.8 ds 0.8 e
#
L 0.6 - 1E L 0.6
(@] ":r"‘ ----- 4 weeks (@] AR
8 0.4 - ;‘ == 12 weeks B 0.4 - Fa X i
' j'.' 20 weeks ' . i 1
= m Mix. 4 weeks i
0.2 1 ":i' Mix. 12 weeks 0.2 1 P
g Mix. 20 weeks _:;;_-l-"--_--:'"
0.0 = — T T T T 0.0 -'.-' T T T T T
1000 2000 3000 4000 5000 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Counts Median Particle Age (years)
1.0 = 1.0 -
- F E
0.8 1 i 0.8 1 A
! I
w 0.6 1 "'- w 0.6 ll
=) a .’
O O El
w 0.4 - o 0.4 - )
0.2 + 0.2 + —— Kp=10m2s~1
—: Kp=1,000m2s-1
0.0 T T — T T 0.0 T T T T T
2000 3000 4000 5000 2.5 3.0 3.5 4.0 4.5 5.0
Counts Median Particle Age (years)

Figure 4. Connectivity analysis between the Gulf Stream at Cape Hatteras and the line at 40°W in the North Atlantic. The plots compare
single-member ECDFs (lines) with mixture distribution average plus/minus 99 % confidence values (shaded vertical lines). A) ECDFs of the
number of particles crossing the line for spatially varying simulations and-simulatiens-with-added-diffusion-B) ECDFs of the median particle
age distributions for spatially varying releases and simulations with added-diffusion. C) ECDFs of the number of particles from temporally
varying simulations. D) ECDFs of the median particle age distributions for temporally varying simulations. E) ECDFs of the number of

articles from simulations with diffusion. F) ECDFs of the median particle age distributions for simulations with diffusion.

17



°, Particle Age 10 days Particle Age 100 days Particle Age 1000 days
o 38°N 41°N ¥« .
" ® ® ‘ 35°N
© _ 35°N 35°N .
2 ’ 25°N
3 et ) )
X 32°N 29°N 15°N
=
38°N 41°N
(9]
kY, 35°N
o
g 35°N 35°N 25°N
8
32°N 29°N 15°N
38°N 41°N
> 35°N
o o °
) 35°N 35°N 250N
lOL (<]
32°N 29°N 15°N
38°N 41°N
35°N
35°N 35°N 25°N
32°N 29°N 15°N
n 38°N 41°N
R 35°N
£ 35°N 35°N
S 25°N
Il
5 32°N 29°N 15°N
v 38°N 41°N
g | 35°N
o o o
S 35°N 35°N 25N
—
n 32°N 29°N : 15°N
XT78°W  74°W 70°W  66°W 80°W 70°W 60°W 80°W 50°W  30°W
0.00 0.02 0.04 0.06 0.08 0.10

Probability

Figure 5. Probability distributions of particle locations at different ages (10, 100, and 1,000 days; columns) across varying release strategies
(rows). The top row shows the probability of the mixture §,, = 0.1° distribution (mixture subset 43 of the bootstrapping). The 2nd, 3rd,
4th, and 5th rows show the single-member distributions (member 22), with 20-week, d, = 2.0°, 6, = 0.1°, and with diffusivity-diffusion
Kj=10m?%s! %QQQ\@AQAS:L The blue circles mark the particle’s release location, omitted for plots of particle age of 10 days.

Bins with probability zero were removed to facilitate visualizing the area of dispersal of the particles.
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tially varying release distributionsand-distributions-with-diffusion, while Figure 6B shows those for temporally varying release
distributions and Figure 6C shows those for distributions with diffusion. Detailed entropy curves for each single member and
mixture simulation are provided in Figures B7 and B8 in the Appendix B.

Figure 6A shows the average marginal entropy as a function of particle age for various spatial release strategies, comparing
single-member probability distributions (P,,,) with mixture distributions (Ppx) using different spatial release intervals (d,.).
Feur-Three single-member curves are shown: §, = 0.1° (blue dotted line), §,, = 1.0° (purple dashed line), J, = 2.0° (green
dash-dot line);-and—4,—10m2s—(black-triangles-eurve). Two mixture distribution curves are presented: §, = 0.1° (solid
black line) and §,- = 2.0° (black dash-dot line). Shaded areas around the single-member curves represent the standard deviation,
illustrating the spread of entropy values across the ensemble. There is no shaded area around the mixture entropy curves because
their standard deviation was of the order of magnitude 102 bits. The logarithmic scale on the z-axis emphasizes the rapid
changes in entropy during the early stages of particle dispersion. All curves show a logarithmic increasing trend in entropy
with particle age, indicating growing dispersion over time. The single-member distributions with larger J, values (1.0° and
2.0°) initially overestimate the entropy compared to the mixture distribution with é,, = 0.1°, particularly in the first 10 days.
After this period, only the single-member distribution with §,, = 2.0° adequately represents the variability of the mixture with
0, =0.1°.

Figure 6B shows the average entropy as a function of time for the temporal varying release strategies and their corresponding
mixture distributions, comparing single-member probability distributions P,, for different release periods against mixture
distributions (Ppix). The single member distributions are shown for release periods of 4, 12, and 20 weeks. These curves show
a general trend of entropy increasing logarithmically over time, with longer release periods resulting in higher entropy values.
Three mixture distributions are plotted: mixture subsampled from 4 week release, mixture subsampled from 20 week release,
and the reference mixture from ¢§,, = 0.1°. We compared temporal and spatial mixture distributions to understand how different
release strategies contribute to the total ensemble variability. As one would expect, these mixture distributions consistently
show higher entropy values than single-member distributions, indicating that P,, captures less variability than the mixture
distributions. The 20 week single member average entropy closely follow the reference mixture 6, = 0.1° average entropy,
often overlapping or slightly exceeding it. Among the single member curves, the 20 week release generally shows the highest
average entropy, followed by 12 and 4 weeks in descending order. However, these differences become less pronounced as time

increases.

Figure 6C shows the average entropy as a function of time for the simulations with diffusion. The simulations with the

low diffusion (), = 10m?s~1) show very low entropy for the first 10 days, somewhat similar to the single-member curve of
§, = 0.1° in Figure 6A. The simulations with the high diffusion ()X}, = 1,000m?s—!). on the other hand, track the §, = 0.1°

mixture distribution (solid black line), with a slight underestimation in the first 20 days and a slight overestimation between 20

and 1,000 days.
Comparing spatial and temporal strategies in Figures 6A and 6B, supports setting the mixture distribution with 6, = 0.1°

as our reference standard, as it shows the minimum average entropy among all mixture strategies, but still capturing the

full ensemble variability. The 20-week single-member average entropy curve most closely approximate the reference mixture
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Figure 6. Average marginal entropy as a function of particle age of single-member distributions (colored lines) and mixture distributions
(black lines). The average marginal entropy for the single member simulations with diffusion K} are shown as black triangle curve. The
shaded areas represent the standard deviation. The particle age is on a logarithmic scale. A) Comparison of the single-member and mixture
distributions with spatially varying release. B) Comparison of the single-member and mixture distributions with temporally varying release.

C) Comparison fo the single-member distributions with diffusion. In beth-all panels, we added the entropy curve of the mixture d, = 0.1° as

a reference.

6 = 0.1° entropy, while the single-member spatial releases show more variable performance. Both the §,, = 2.0° and the 20-
week mixture distributions exhibit the highest average entropy values, demonstrating how combining either spatial or temporal
release strategies with the ensemble variability, increases the total dispersion variability. This reinforces our choice of the
more point-like §,, = 0.1° mixture as our reference for evaluating single-member approximations. For clarity, we omitted the
intermediate mixture curves (d, = 1.0° and 12-week), as their entropy values consistently fall between those of the d,, = 0.1°
and ¢, = 2.0°, and 4-week and 20-week, respectively.

We computed the relative entropy as a function of particle age by comparing single-member distributions with mixture
distributions, to understand how similar are the single member distributions with the mixture distributions, bin by bin. For this,
we computed the relative entropy of a single member distribution P,,(X,¢) compared to a mixture distribution Py (X, 1),
using Eq.(10), across all their particle ages. Therefore, we calculated 502 = 2,500 relative entropy curve as a function of particle
age curves when comparing two sets of distributions. That is, one set for single member simulations and one set of mixture
simulations. From the 2,500 relative entropy functions, we computed the average and the standard deviation of the relative
entropy as a function of particle age. We computed the average relative entropy for the combination of the seven sets of single
member distributions (6, € {0.1°,1.0°,2.0°}, 4, 12 and 20 weeks, and Kj, = 10m?s~! y-withthe-and K, = 1,000m?s 1),
with the six sets of mixture distributions (excluding diffusion), ending up with 42-48 average relative entropy curve as a
function of particle age.

Figure 7 shows the average relative entropy as a function of particle age, divided into four panels (A-D), each using a

different mixture distribution as a reference (Px). In these plots, low values of the relative entropy indicate a good agreement
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to the reference case, as relative entropy is a measure of the mismatch between each of the distributions shown and the reference

distribution (technically: the cost of assuming that each of the distributions shown is the reference distribution). We omitted

the plots where the mixture J,, = 1.0° and mixture 12-weeks strategy was used a reference, since their entropy lies between
their corresponding extreme strategies, that is ¢, € {0.1°,2.0°}, and 4 and 20-weeks releases. In all panels, the solid and
dotted lines represent the average relative entropy for each strategy, while the shaded bands around these lines indicate their
corresponding standard deviation. The standard deviation measures the variability in relative entropy, revealing the extreme
cases where single-member distributions poorly represent the reference mixture distributions.

Figure 7A uses the reference mixture distribution with 8, = 0.1° as the reference (Py;x). On average, the single-member
distribution with §,. = 2.0° (green dotted line) most closely approximates the reference mixture, having the lowest mean relative
entropy across most of the time range. The 20-week release strategy (red-yellow dashed line) performs-and K = 1,000m?s~!
(purple dashed line) perform similarly well. However, §, = 0.1° (blue dash-dot line), the 4-week (erange-red dotted line),
and Kj, = 10m?s~ ! (black line) have higher average relative entropy, showing that their two-dimensional distributions under-
represent Ppx. Regarding their standard deviation bands, we see that §,, = 2.0° has almost zero standard deviation on the first
ten days after release. This is due to the larger area covered by particles at the release compared to the area covered by the Pix.
The opposite case is observed with §, = 0.1° and K = 10m?s~! standard deviations which indicate a more likely greater
lack of information compared to the reference distribution Pyix.

Figure 7B, with the mixture distribution with d,. = 2.0° as reference Py, shows that the single-member §,. = 2.0° strategy

2,1

most closely matches Pix on average. The 20-week release strategy also-performs-and K, = 1,000m=s™~ also perform well,
especially for higher particle ages. The substantial standard deviations for all strategies, particularly pronounced for ¢, = 0.1°,
the 4-week strategy, and K = 10m?s~!, highlight the potential for large lack of information in representing Py at all particle
ages. Figures 7C and 7D use the 4-week and 20-week mixture distributions as references, respectively. In both case, 20-week
and &, = 2.0° single-member temporal release strategies, and the K;, = 10m?s ! show the lowest mean relative entropy. The
wide standard deviation bands, particularly noticeable for &, = 0.1° and K}, = 10m?s~!, underscore the high variability in
how well these strategies capture the reference mixture’s characteristics.

Across all panels of Figure 7, relative entropy peaks between 10 and 100 days of particle age, with the largest standard
deviations also occurring in this range. Notably, standard deviations for temporal (20-week) and spatial (J, = 2.0°) strategies
peak at different times: the 20-week release shows maximum variability at earlier particle ages (before 10 days), while the
0, = 2.0° release peaks later (before 100 days). This suggests that these single-member strategies are most likely to significantly
diverge from the mixture distributions around these particle ages.

From the average entropy curves shown in Figure 7, we took the average over the 6 years the particles were drifting after
release. We compiled these values for the 20 comparisons between mixture and single-member sets, with different release
strategies in Figure 8. This figure presents a heatmap of the time-averaged relative entropy values for various combinations of
single-member and mixture distributions. The rows represent single-member distributions, while the columns represent mixture

distributions. The color scale ranges from dark green (lowest relative entropy) to light green (highest relative entropy), with

numerical values provided in each cell. Notably, the K} = 1,000m?s~! (last row) and 20-week single-member distribution

21



. sans 5,=0.1° l . eani 5,=0.1°

A ijX . M|Xture 5I‘= O]O — 5, =2.0° B Pmix . M|Xture 6,— = 2 o — 5, =2.0°

7 == 4 weeks 1 == 4 weeks
+ 20 weeks ' 20 weeks

— Ky =10 m?s~1

— Ky =10 m?s~1
- Ky=1,000 m?s~1

= K,=1,000m?s~1

Relative Entropy (bits)

8 T
. aemr 5,=0.1° . aem 5,=0.1°
C Pmix : Mixture 4 weeks — 5-20 D Ppix : Mixture 20 weeks — s-20
7 = = 4 weeks 1 = = 4 weeks
=== 20 weeks ===+ 20 weeks
6 — Ky =10 m?s~1 — K, =10 m?s~1
— K,=1,000m?s~1 = K,=1,000m?s~1
5

| M
By N
: =-l.\

100 10t 102 103 10° 10t 102 103
Particle Age (days) Particle Age (days)

Relative Entropy (bits)
2

Figure 7. Relative entropy as a function of particle age for different single-member distributions compared to mixture distributions. The
subplots A-D show comparisons using different reference mixture distributions (Prix): (A) 8, = 0.1°, (B) 4, = 2.0°, (C) 4-week release,
and (D) 20-week release. Dotted and solid lines represent the average relative entropy for each release strategy, while shaded areas indicate
their corresponding standard deviation. The x-axis shows particle age in days (log scale), and the y-axis shows relative entropy in bits.

Different colors represent various single-member strategies: 6, = 0.1° (blue), §, = 2.0° (green), 4-week release (red), 20-week release

(orange), and K, = 10 m?s™! (black) and K, = 1,000m?s !
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ical values in each cell show the precise time-averaged relative entropy.

(seeond-to-tast-fourth row) consistently shows the lowest relative entropy across all mixture distributions, indicating #-both

strategies best represents the ensemble variability. Conversely, the &, = 0.1° single-member distribution exhibits the highest

241
s

relative entropy values, followed by K = 10m , suggesting that they are the least effective at capturing the characteristics

of the mixture distributions.
4 Discussion and Conclusions

In this study, we investigated how to generate ensemble-like variability within single-member Lagrangian simulations by
implementing varying spatial and temporal release strategies, as well as by adding diffusion, in the Gulf Stream region near

Cape Hatteras. The surface connectivity between the Gulf Stream and the region past 40°W revealed significant differences in
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the number of particles crossing between different release strategies in the single-member distributions. The ECDFs in Figure 4
showed that, for spatially varying releases, the larger the initial particle cloud, the more particles cross the 40°W. Regarding
the temporal distributions, we did not see significant variations in the number of particles crossing 40°W; the distributions for
the number of particles and the median times were similar between the three temporal release strategies. The low diffusion
K, distribution was very similar to the spatial § = 0.1° distribution, with fewer particles crossing 40°W than other strategies,
while the high diffusion K distribution resulted in complete connectivity on much shorter timescales than any other strategy.
Moreover, the normal distribution observed in the mixture distributions can be attributed to the central limit theorem. This
fundamental principle in probability theory states that when independent random samples are drawn from a population with a
finite variance, the distribution of their means will approximate a normal distribution as the sample size increases. In our case,
the bootstrapping method used to construct the mixture distributions effectively simulates this sampling process, resulting in
the observed normal distributions.

Regarding representing the full ensemble variability with single-member simulations in the connectivity analysis, we see
that particles are more consistent in crossing the 40°W meridian in the mixture distributions. Therefore, when comparing
mixture distributions with single-member distributions, we counted the percentage of single-member simulations with fewer
particle crossings than the reference mixture distribution with d,, = 0.1°. In this analysis, we see that performing a one-time
spatial release with a radius of J,, = 2.0° better represents the particle crossings in the mixture distributions, than the other
strategies. From all the release strategies, single-member simulations with d,, = 2.0° release cloud had the lowest likelihood
of having fewer particles crossing than the reference mixture simulation with §,, = 0.1°. This might be because a large initial
cloud of particles releases more particles outside the Gulf Stream, creating a wider variety of trajectories that cross 40°W. In
the case of the temporal releases, the single member with 20-week release simulation had fewer particles crossing 40°W than
the mixture with §,, = 0.1°, with a 66% likelihood of having fewer particles. This likelihood is 10% higher than 4 and 12-week
single-member distributions, suggesting that the seasonability may be playing a role in the transport of particles to the eastern
side of the domain. The connectivity with the eastern region of the domain might be stronger during winter, corresponding to
the release of particles in the 4-week period (from 2nd to 30 of January) and 12-week period (from 2 January to 27 March).
Meanwhile, the 20-week release, from 2nd January to 22 May, had a portion of its particles released during spring.

The marginal entropy analysis, shown in Figure 6, provided insights into how well different release strategies represent the
full ensemble variability. In general, we see how the marginal entropy increased with time for all strategies considered, some at
slower rates than others. We attributed this to the percentage of particles released under the local decorrelation length and time
scales for the different strategies. For instance, spatial releases with radius §,- = 0.1° and temporal releases of 4-weeks, which
exhibited the lowest marginal entropy, had all their particles released within their respective decorrelation scales. As the radius
or release period was increased, there were more particles with decorrelated initial velocities, resulting in higher entropy in the
two-dimensional distributions.

It is important to highlight that the marginal entropy of the mixture distributions consistently exceeds that of corresponding
single-member distributions, demonstrating that ensemble simulations under identical release conditions inherently generate

greater trajectory variability than single-member simulations. By maintaining equal particle counts between mixture and single-
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member simulations, we ensured that the higher entropy in mixture distributions reflects genuine ensemble dynamics rather
than statistical artifacts. The higher marginal entropy in mixture distributions may also be attributed to the temporal context of
our study: we advected particles ~ 18 years after the initialization of the NATL025-CIMCY C3 ensemble (which was perturbed
during 1993). At the release date of the particles (2010), the perturbations had sufficient time to adapt and decorrelate the
velocity fields of the members, which suggests that ensemble Lagrangian dispersion arises not only from mesoscale chaos but
also from low-frequency, large-scale intrinsic fluctuations.

Based on the marginal entropy curves from Figure 6, we selected the mixture simulations with §,, = 0.1° as reference for
comparing the different release strategies, because they contain the full ensemble variability with least noise added by the initial
perturbation to their initial conditions. Comparing the spatial releases against this reference (Figure 6A) revealed significant
limitations. The larger release areas (J, = 1.0° and §,, = 2.0°) initially overestimate variability during the first 10 days, as
particles start from a wider area than the reference’s mixture with §,, = 0.1° radius. While §,, = 2.0° simulations eventually
match the reference entropy after 30-40 days, J,, = 1.0° simulations underestimate it until about 1,000 days after release.

The simulations with added-diffusivity-low diffusion (Kj, = 10m?s~!) show marginal entropy similar to spatial releases
with §, = 0.1°, but fail to reproduce the full ensemble variability until approximately 1,000 days after release, as seen in
Figure 6. The simulations with high diffusion (K, = 1,000m?s~*
as the mixture models (Figure 8), although they fail to capture the connectivity and transport time patterns. These added
diffusion simulations used a stochastic differential equation approach with Brownian motion terms, following established
methods in Lagrangian oceanography (Griffa, 1996). Hewever-eur-Qur results demonstrate that this-approach-has-limitations

in-reprodueing-such an approach could reproduce some of the full ensemble variability-compared-to-spatial-and-temporal

on the other hand lead to very similar entropy statistics

the connectivity. Furthermore, Brownian diffusion can also move particles across permanent fronts or (if not treated carefully)

even across landmasses such as the Panama Isthmus (McAdam and Van Sebille, 2018).

The underperformance of the low diffusion strategy likely reflects that it represents primarily small-scale turbulent mixing
processes, and the diffusivity-diffusion cannot create noticeable variability in trajectories, specially for particle ages < 100 days,
missing the larger-scale flow uncertainties and mesoscale variability captured through other strategies. In contrast, temporal
release strategies (Figure 6B) show better performance, particularly the 12 and 20-week releases. The 20-week release strategy
consistently matches the reference mixture’s marginal entropy (mixture d,, = 0.1°) across all temporal scales, demonstrating
that continuous particle releases over time can effectively reproduce the variability captured by ensemble simulations. This
suggests that temporally varying the initial conditions is more effective at generating ensemble variability than adding diffusion,
and also is more consistent throughout particle ages than varying spatially the extent of the release area.

As we explained in Section 2.4.4, two distributions that have the same entropy do not necessarily exhibit the same distri-

butions since two different probability distributions can have equivalent marginal entropies. As a complementary analysis, we
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computed the relative entropy to measure the agreement between two distributions, which measures the lack of information
when representing the full ensemble with a single-member simulation. We applied the relative entropy analysis to compare all
release strategies against the mixture distribution d,, = 0.1°. The averaged results and their variability, shown in Figure 7, fur-
ther support the findings from the marginal entropy assessment. The 20-week and K}, = 1,000 m?s " release generally showed
consistently low average relative entropy with respect to the reference mixture distribution, indicating this release strategy most
effectively captured the variability-in-the-trajectoriesparticle distributions over time, by generating two-dimensional distribu-
tions that resembled the most to the ones of the mixture distribution containing the full ensemble variability. Contrary to that,
the 6, = 0.1°, 4-week, and K}, = 10m?s~! strategies showed the largest values in average relative entropy, with large standard
deviations in particle ages below 100 days. This shows that these strategies have particular difficulty to generate variability in
the trajectories similar to a full ensemble.

Comparing the the-6 years time-averaged relative entropy, shown in Figure 8, showed how the 20-week releases-haveless
release strategy and the K = 1,000m?s”! simulations have least uncertainty, or represents the best the the-full ensemble
variability, across different reference mixtures. The §, = 2.0° and a 4-week release strategies showed higher uncertainties
compared to a 20-week release. Lastly, K; = 10m?s~! and §, = 0.1° had the highest time-average relative entropies. This
further supports the idea that performing long continuous releases is the best release strategy to generate variability in particle
trajectories similar to a full ensemble simulation.

In single-member simulations, we demonstrated that releasing particles at slightly different locations or times can match the
variability in the behavior of particles released at a specific time and location from an ensemble of simulations. An interpretation
of this may be that an ensemble of Lagrangian simulations has an ergodic flavor in which statistical homogeneity exists between
an ensemble of simulations and single-member simulations (Shannon, 1948). However, this does not constitute proof of the
system’s ergodicity.

While our study provides valuable insights into generating ensemble-like variability in single-member simulations, several
limitations should be acknowledged. Our analysis focused solely on the Gulf Stream region near Cape Hatteras, and the effec-
tiveness of these release strategies may vary in other oceanic regions with different dynamics. Additionally, while our particles
were advected in three-dimensional flows, we only considered surface particle releases, which may not fully represent the three-
dimensional transport processes occurring throughout the water column. Our results are based on the NATL025-CIMCYC3
model configuration, and the effectiveness of these strategies may be resolution-dependent, as higher-resolution models resolve
smaller-scale processes that could introduce additional variability in transport pathways. We performed simulations for only
one release period, on 2 January 2010, because that allowed us the longest particle advection time:-but-realise-that-there—is
nothing—speetal—about-that 2 January2640-and-that-, We acknowledge, howeyver, that the results presented here might-may
depend on the chosen release time. Furthermore, our study was limited to forward-in-time simulations, whereas backward-in-
time tracking could provide complementary information about generating ensemble variability in single-member simulations
in studies concerning source regions and transport pathways. Future work should explore the applicability-of-these-metheds
potential of the framework and methods provided in this study across different oceanic regions, depths, and temporal directions
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to establish more comprehensive guidelines for single-member Lagrangian simulations, including appropriate values for K,

in Random-walk diffusion parameterizations.
Ensemble simulations remain the standard for capturing the full range of variability in ocean simulations; our study pro-
vides guidance on releasing particles in single-member simulations to increase the variability of the trajectories and, in this
645 case, better represent ensemble statistics. While data assimilative models excel at improving mean state predictions through
observation integration, ensemble approaches are better suited for exploring the full range of possible outcomes and quan-
tifying uncertainty in trajectory predictions. Generating ensemble-like variability for Lagrangian simulations advected using
assimilative models could be particularly powerful: applying temporal release strategies could help capture both the improved
mean state from data assimilation and the trajectory variability typical of ensemble simulations. These findings have important
650 implications for ocean modeling and particle tracking studies, especially when computational resources limit the use of full
ensemble simulations. By carefully selecting release strategies, researchers can maximize the variability of single-member

simulations, potentially improving predictions of particle transport by capturing extreme events.
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Figure A1l. Marginal entropy of mixture distributions as a function of particles sampled per ensemble member, shown for three different

hexagonal grid resolutions (k). Higher A values indicate finer spatial resolution, resulting in higher entropy values.

Appendix A: Marginal Entropy as a Function of Number of Particles and Grid Resolution

The calculation of the mixture probability distributions (Ppx) requires determining both the optimal number of particles to
sample and the appropriate spatial resolution for binning these particles. These parameters directly affect the entropy of the
resulting distributions. We investigated this relationship by varying two key parameters: the number of particles sampled per
ensemble member and the hexagonal grid resolution (h).

Figure Al shows how the entropy converges as we increase the number of particles sampled per ensemble member, plotted
for three different grid resolutions (h € {2,3,4}). As expected, finer grid resolutions (larger h values) yield higher entropy
values as they capture more detailed spatial information. For our chosen grid resolution of h = 3, the entropy converges to
approximately 8.5 bits when sampling 150 or more particles per ensemble member. Coarser resolutions (h = 2) require fewer
particles to converge, while finer resolutions (h = 4) need more particles but capture more spatial detail. Based on this analysis,

we selected h = 3 and 150 particles per member as sufficient parameters for our study, balancing computational efficiency with

spatial resolution.
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Figure B1. Ensemble standard deviation of time-averaged particle occurrence per (hexagonal) bin in the North Atlantic Ocean for single-
member simulations. Eeft-eotumn—Subplots A, C, E}: Temporal release strategies at 4 weeks, 12 weeks, and 20 weeks. Right-ecotumn
¢Subplots B, D, F: Spatial release strategies with &, € {0.1°,1.0°,2.0°}. Subplots G and H: Diffusion strategies with K, = 10m?s" "' and
&valv,gggrvnig:i; The color scale represents the ensemble standard deviation of a 6-year time-averaged occurrence per bin. The maps
illustrate the variability in particle dispersal for single-member simulations. The dashed line at 40°W indicates the eastern boundary of the

study area. The blue dot marks the approximate release location.
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Figure B2. Ensemble standard deviation of time-averaged particle occurrence per (hexagonal) bin in the North Atlantic Ocean for mixture
simulation subsets. Left column (A, C, E): Mixture subsets at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F): Mixture subsets with
spatial variability 6, € {0.1°,1.0°,2.0°}. The color scale represents the ensemble standard deviation of a 6-year time-averaged occurrence
per bin. The maps show the variability in particle dispersal patterns for all 50 subsets of the mixture simulations. The dashed line at 40°W

indicates the eastern boundary of the study area. The blue dot marks the approximate release location.
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Figure B3. Kernel Density Estimates (KDE) of connectivity analysis for the single-member simulations. The top row (A-C) shows distribu-

tions for spatial releases 0. € {0.1°,1.0°,2.0°}: Particle counts (A), median drift time in years (B), and median depth in meters (C). The

boettomr-middle row (D-F) shows the same metrics but is compared across different temporal releases of 4, 12, and 20 weeks. The bottom row

G-I) corresponds to K, = 10m?s~! and K, = 1,000m?s~".
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removed to facilitate visualizing the area of dispersal of the particles.
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Figure B7. Marginal entropy the 50 single-member simulations performed with the different release strategies (individual panels). The lines

are randomly-colored and each line represents one single-member entropy and the black dashed line is the ensemble average as a function of

time.
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Figure B8. Marginal entropy of the 50 bootstrapping realizations or mixture distributions, subsampled from single-member simulations with
different release strategies (individual panels). The color lines show the entropy of each realization, and the black dashed line is the average

as a function of time.
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