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Abstract. Ensemble Lagrangian simulations aim to capture the full range of possible outcomes for particle dispersal. However,
single-member Lagrangian simulations are most commonly available and only provide a subset of the possible particle dis-
persal outcomes. This study explores how to generate the variability inherent in Lagrangian ensemble simulations by creating
variability in a single-member simulation. To obtain a reference for comparison, we performed ensemble fagrangian-Lagrangian
simulations by advecting the particles from the surface of the Gulf Stream, around 35.61°N, 73.61°W, in each member of-the
ensemble-to obtain trajectories capturing the full-ensemble-variabilityvariability of the full 50-member ensemble. Subsequently,

we performed single-member simulations with spatially and temporally varying release strategies to generate comparable tra-
jectory variability and dispersal, and also with adding Brownian motion diffusion to the advection. We studied how these
strategies affected the number of surface particles connecting the Gulf Stream with the eastern side of the subtropical gyre.
We used an information theory approach to define and compare the variability in the ensemble with the single-member
strategies. We defined the variability as the marginal entropy or average information content of the probability distributions of
the position of the particles. We calculated the relative entropy to quantify the uncertainty of representing the full-ensemble
variability with single-member simulations. We found that release periods of 12 to 20 weeks most effectively captured the full
ensemble variability, while spatial releases with a 2.0° radius resulted in the closest match at timescales shorter than 10 days.
Our findings provide insights to improve the representation of variability in particle trajectories and define a framework for

uncertainty quantification in Lagrangian ocean analysis.

1 Introduction

The ocean’s dynamics, driven by atmospheric fluxes of energy and momentum at the surface, are characterized by phenomena
that mutually interact across different spatiotemporal scales, including eddies, internal waves, zonal jets, and mixing processes,
up to decadal and basin-scale fluctuations (Vallis, 2017). These multi-scale interactions are non-linear and difficult to model,

presenting a significant source of uncertainty in Ocean General Circulation Models (OGCMs) and our understanding of ocean



25

30

35

40

45

50

55

circulation. Even under constant atmospheric forcing conditions, ocean models can produce divergent states from minimally
perturbed initial conditions (Penduff et al., 2014). This intrinsic variability becomes particularly prominent in eddy-permitting
models where small initial differences can cascade towards multi-decadal and basin scales (Grégorio et al., 2015; Leroux et al.,
2018; Zhao et al., 2023). To address these inherent uncertainties in OGCMs, researchers have increasingly adopted probabilistic
ensemble models, running multiple simulations with small perturbations to initial conditions or parameter values to capture
a broad range of possible ocean states (Penduff et al., 2018; Zanna et al., 2019). The ultimate goal of ensemble models is to
predict the probability density of the system’s state at a future time (Leutbecher and Palmer, 2008).
Lagrangian particle tracking provides a powerful tool for studying ocean transport, mixing, and connectivity, with applieations

Applications of Lagrangian particle tracking range from search and rescue operations (Breivik et al., 2013) to climate and en-
vironmental research (Bower et al., 2019; Van Sebille et al., 2018). In these simulations, virtual particles are typically advected

by velocity fields derived from OGCMs, with their dispersal patterns intimately linked to the underlying ocean state. These

However, similar to above, the trajectories obtained from the particle tracking in one OGCM ensemble member may not be
representative of the full probability density of the system’s state. Because pure advection is deterministic, there will be only.
one trajectory resulting from a virtual particle that starts at a certain place and time.

This deterministic nature limits what we define as ‘trajectory variability” - the range of possible pathways and end locations
that particles could follow given uncertainties in ocean conditions. We define trajectory variability as the spread in particle
positions, pathways, and connectivity patterns that emerges when accounting for uncertainties in initial conditions or modeled
ocean states.

Capturing the trajectory variability is crucial for practical oceanography applications. For example, search and rescue
professionals may want to compute a full probability density function of possible object locations — even when the starting.
location and time of an object lost at sea is known exactly — due to uncertainties in the ocean model. Similarly, marine pollution
studies need to assess the range of possible contamination pathways, while connectivity studies in marine ecology require
understanding the full spectrum of larval dispersal routes between habitats. In each case, a single deterministic trajectory.
provides insufficient information, limiting the generalisability of the results, as it cannot represent the inherent uncertainty in
ocean dynamics and model predictions.

Now, advected particle trajectories are chaotic, in which small perturbations in initial conditions or noise along their trajec-
tories can lead to significant divergences in particle trajectories (Koshel and Prants, 2006). The sensitivity to initial conditions
is often used to generate variability in particle trajectories to predict the drift of the particles when there is uncertainty in their

initial conditions (Breivik et al., 2013). In fluid mechanics, this is related to the concept of streaklines, transport barriers and

coherent structures (e.g., Haller, 2004; Zhang, 2013; Karrasch, 2016; Balasuriya, 2017).

An alternative approach to generating variability in the trajectories is to advect particles using a full ensemble of vector fields
or ensemble models, an approach followed from Melsom et al. (2012), in which they advected particles using an ensemble of
100 members from the TOPAZ forecasting system. They found that ensemble average trajectories, calculated as the center of

gravity (mean position) of all ensemble members at each time step, are generally closer (on a straight line distance) to the
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observed drifter trajectories than that from a deterministic single-member simulation. However, the study did not compare how
small perturbations in initial conditions in the single-member simulation performed relative to the trajectories advected by the
ensemble.

While ensemble Lagrangian simulations can capture a more complete spectrum of possible outcomes, single-member sim-
ulations, which sample only a subset of the possible outcomes, remain more prevalent due to computational constraints. In
operational oceanography, data assimilative models are commonly used to improve trajectory predictions by combining ob-
servations with model dynamics to find an optimal solution (Castellari et al., 2001). However, while assimilation can reduce
systematic biases and improve the mean state representation, it may not fully capture the underlying uncertainty and variability
in particle trajectories, particularly in regions with sparse observations (Jacobs et al., 2018). Our study addresses these lim-
itations by exploring ways of generating ensemble-like variability within single-member simulations. Missing variability in
2013)

in et al., 2014; van Sebille et al., 2015), and/or with a small amount of random walk

Rossi et al., at

articles at different locations (spatial variation; e.

3

different times (temporal variation; e.g.

diffusion added to the advection (e.g., Hart-Davis and Backeberg, 2021). We here test how well-suited these approaches are to
represent intrinsic variability resulting from an ensemble simulation within a single simulation.

We assess performance based on a connectivity analysis and dispersion patterns using a novel information theory approach.
Our approach consists of quantifying the variability in trajectories through the marginal entropy of particle position distribu-
tions and evaluating the uncertainty in representing full-ensemble variability with single-member simulations. Our approach

is complementary to other new approaches for computing stochastic sensitivity of Lagrangian trajectories in the ocean, such
as those by Balasuriya (2020), Badza et al. (2023) and Branicki and Uda (2023). However, our approach is particularly also

useful for particles with added “behaviour’, such as in the case of plastic particles (e.g., Denes and Van Sebille, 2024).

We focused on the region east of Cape Hatteras in the North Atlantic Ocean, implementing spatially and temporally varying
release strategies to generate variability comparable to that observed in full ensemble simulations. This region was chosen to
study the connectivity of water parcels at the surface of the Gulf Stream with the Eastern North Atlantic and the subtropical
gyre. It was previously thought that the salty and warm surface water of the Gulf Stream feeds directly to the subpolar gyre.
However, recent Lagrangian studies have shown that the water parcels originating at the surface of the Gulf Stream recirculate
within the subtropical gyre, becoming part of the subtropical mode water, and enter the subpolar gyre via sub-surface connec-
tions (Rypina et al., 2011; Burkholder and Lozier, 2014; Foukal and Lozier, 2016; Berglund et al., 2022). Our study-case-study
here thus builds upon these findings by quantifying how intrinsic ocean variability affects this connectivity pattern within the

subtropical gyre, providing insights into the robustness and variability of these recirculation pathways.

2 Methodology

2.1 Ocean Model Set-UpEnsemble Simulation

Lagrangtanparticles-were-adveeted-offline-using six-years(2010-2615)-0f We employed daily surface velocity fields produced
by the North Atlantic NATL025-CIMCYC3 50-member ensemble simulation. This regional ensemble simulation was per-
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formed in the context of the OceaniC Chaos — ImPacts, strUcture, predicTability project (OCCIPUT), described in Penduff
et al. (2014) and Bessieres et al. (2017). This ensemble was performed using the NEMO v3.5 ocean/sea-ice model over the
North Atlantic between 20°S and 81°N, with an eddy-permitting resolution of 1/4° and 46 vertical levels. The 50 ensemble
members were initialized by the final state of a 15-year one-member spin-up that ended in December 1992. The inter-member
dispersion was generated by activating a small stochastic perturbation in the equation of state during 1993 and deactivating
it for the remaining simulation time. All ensemble members were driven by the same atmospheric forcing between 1993 and
2015, derived from the DRAKKAR Forcing Set 5.2 (DFS5.2; see Dussin et al. (2016)). The NATL025-CIMCYC3 1993-2025
simulation used here is similar to the NATL025-GSL301 1993-2012 simulation presented in Narinc et al. (2024), with one
difference: tropical cyclones were enhanced in the forcing of NATL025-CJIMCYC3 since they were too weak in DFS5.2. More
details about the model setup are provided in Narinc et al. (2024).

2.2 Lagrangian Simulations

Lagrangian particles were advected offline using six years (2010-2015) of the velocity fields described above, where particle

trajectories in each ensemble member were integrated using the Parcels framework v.3.0.2 (Delandmeter and van Sebille,
2019). Trajectories were integrated in three dimensions using a fourth-order Runge-Kutta scheme with a time step of 1 hour,
storing the output with a daily timestep. We modeled passive particles (that is, particles that instantly adjust their velocity
to that of the ambient flow) by only considering three-dimensional advection and ignoring all buoyant er—diffasiveforces.
Additionally, particles that escaped the domain through the surface were placed back to a depth of 1 m. We chose the region
off the coast of Cape Hatteras as a study location because it is an important region where the Gulf Stream separates from the

continental shelf and becomes a free jet (Mao et al., 2023; Buckley and Marshall, 2016).

2.3 Recreating Particle Trajectory Variabilit

This study explores methods to recreate the trajectory variability typically obtained from ensemble ocean simulations using
only a single ensemble member. Figure 1 illustrates both the challenge and our proposed approaches. When particles are
released from a fixed point (35.61°N, 73.61°W; yellow square) at a distinct time (2 January 2010) and tracked using different
ensemble members, their trajectories (shown in black, Figure 1A) diverge due to variations-intrinsic variability in the velocity
fields. Our goal is to reproduce this dispersion of what we refer to as the ‘full ensemble’ using just one ensemble member.

We tested tweo-three approaches to achieve ensemble-tike-vartabitity-the variability of this full ensemble with single-member
simulations, by leveraging the sensitivity to initial conditions or adding diffusion. The first strategy varies the release loca-
tions of the virtual particles spatially (shown in purple in Figure 1B), creating a cloud of initial positions centered around
35.61°N and 73.61°W. The purple circles indicate the varying release locations, while the purple arrows show their subse-
quent trajectories. The second strategy (shown in orange, Figure 1C) maintains the fixed release location (yellow square) but
varies the release tlmmg, with particles released continuously over a time period. Beth-methods-generate-substantial-trajectory
s-The third strategy (shown in green, Figure 1D) maintains the fixed release location
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and release time, but adds a small Brownian motion diffusivity to the trajectory simulations. All methods generate trajecto
spreading with different patterns, some of which qualitatively resemble the full ensemble variation;though-with-distinetspatial

patternstrajectories, which we seek to quantitatively compare.
The single-member simulations were performed using velocity fields from individual members of the NATL025-CIMCYC3

ensemble. To ensure robust statistics, we repeated each strategy (spatial and temporal variation and added diffusion) with
all 50 ensemble members rather than arbitrarily selecting one. For the ensemble simulations, rather than running new sim-
ulations where all ensemble members simultaneously advect particles, we selected and joined trajectories from our existing
single-member simulations to create a ‘synthetic’ mixture-of-all-member simulation. This mixture simulation contains the
full ensemble variability and is our benchmark for comparing beth-the three single-member strategies. The following subsec-
tions further detail the two-three single-member release strategies and the ensemble simulations, which we refer to as mixture

simulations.

2.4 Spatially-Varying Release

2.3.1 Spatially Varying Release

We performed Lagrangian simulations by releasing a cloud of particles around (35.71°N,73.61°W), at 1 meter depth, on
2 January 26462010 and tracking them until the end of 2015, so for six years in total. We evenly spaced the particles in
concentric rings around the coordinates, where each ring was placed at a constant radial separation (d,.) from the prior ring,
forming a circle of particles. We varied the radius of this cloud of particles; the larger the radius, the less correlated the velocity

vectors of the particles are expected to be, creating more variability in the trajectories. The choice of spatial release radii (9 km

-180 km) spans the range from sub-mesoscale to mesoscale oceanographic features, allowing us to test how initial condition
uncertainties at different scales affect long-term particle dispersion. We created three sets of simulations, with 50 simulations

per set (one per ensemble member). The three sets of simulations were performed with 7,500 particles, with an initial cloud
varying 6, € {0.1°,1.0°,2.0°}.

At the release point, the initial cloud radiusesradii are approximately 9 km, 90 km, and 180 km. As areference, we computed
the ensemble average spatial autocorrelation function of the initial particle velocities at the release location on the samerelease
day (2 January 2010). The spatial autocorrelation function describes the average agreement between the-particle—veloeities
of-particles-a pair of particle velocities separated by a distance L. The larger the separation distance L, the more likely their
velocities will be decorrelated (LaCasce, 2008). Assuming that the spatial correlation decays exponentially, we defined the
decorrelation length scale Ly, as the e-folding length scale of the exponential that describes the autocorrelations functions (Xia
et al., 2013). The-analysis-is-shown-in-Appendix?2-and-Figue 2B

In-this region; the-average decorrelation length-seale for-the

The particle-pair spatial autocorrelation function was calculated over a set of points placed over a west-to-east line, shown
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Figure 1. Schematic representation of the experiment design, east of Cape Hatteras, showing three-four approaches to generate variability in
the particle trajectories. A) The black lines show 50 trajectories of particles released from a single point (35.61°N, 73.61°W; yellow square)
at a distinct time (2 January 2010) and advected using velocity fields from all 50 members of the NATL025-CIMCYC3 ensemble. B) Purple
trajectories show 50 randomly selected particles, out of 7,500, released from spatially varying locations (purple circles) within a 1° radius
of the central point, all advected using ensemble member 3. C) Orange trajectories represent 50 randomly selected particles, out of 7,500,
released uniformly over a 20-week period from the central point (35.61°N, 73.61°W; yellow square), also using ensemble member 3. D)

Green trajectories represent 50, out of 7,500, randomly selected particles from the ensemble member 3 simulation with added diffusion,

released from the central point (35.61°N, 73.61°W; yellow square). All trajectories are shown +4-35 days after their respective release times.
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these points as a function of the distance L. The spatial autocorrelation function is defined as

u(rg+ L) -u(r
p(L) = (,0 )-ulro) )
[u(ro + L)||[[a(ro)|l
in which we compute the dot product of a pair of vectors u(rq) and u(rg + L), divided by the multiplication of their norms
averaged over all the pairs of velocities (Xia et al., 2013). In Eq. (1), || - || is the usual Lo norm, and (-) indicates an average

with a 0.01° spacing. The autocorrelation function

is defined between [—1,1 — —1 a full negative correlation, and

(L) = 0 no correlation,

Following Eqg. (1), we computed p(L) for each of the 50 ensemble members of the NATL025-CIMCY C3ensemble—is
i is-Lr-is-sh ~.on 2 January 2010. In Figure 2B, we show the p(L)
for each ensemble member as black lines. We see great variability in the curves but an exponentially decaying trend in which,
as L increases, the particle velocities are less correlated. We performed an exponential fit, ¢”/"~ . of the 50 correlation curves.
shown in blue in Figure 2B. From the exponential fit, we obtained a decorrelation length L7, = 0.41°, which corresponds to

approximately 37 km at a latitude of 35.5°N. As a reference, the Rossby deformation radius ;appreximately36km-in this
region is L ~ 30km (Chelton et al., 1998). Both spatial scales indicate that the velocities of all the particles released from

in which p(L) =1 indicates a full positive correlation, p(L

an initial cloud of §,. = 0.1° should be correlated, while for the larger clouds 4, € {1.0°,2.0°}, only a fraction of the particle
velocities may be correlated, leading to more variability in the trajectories. While decorrelation scales likely evolve over the

6-year simulation period due to particle spreading and varying flow conditions, computing their evolution at every particle age
is computationally intensive and impractical, compared to other metrics.

2.4 Temporally-Varying Release

2.3.1 Temporally Varying Release

We also created variability by releasing particles from the same location (35.71°N,73.61°W) at different times. We tested
three release time windows: 4, 12, and 20 weeks, all starting from 2 January 2010. For each window length, we performed
50 simulations (one per ensemble member), with each simulation releasing 7,500 particles. Within each time window, we
distributed the 7,500 particles evenly across the days, resulting in multiple particles being released each day. To ensure particles
released on the same day followed different trajectories, we added small random perturbations to their release locations using
uniform noise with an amplitude of 0.01°. We kept this noise amplitude small beeause-larger-values-wouldintroduee significant
spatial-variability,making-it-diffieutt-to-to (as much as possible) isolate the effects of the temporal release strategy alone. Note
that all particles were advected until the end of 2015, so that in this simulation some particles reached a maximum ‘age’
(time-of-flow) of 6 years and others only 5.6 years. This is a minor effect though, as most of our analysis will focus on the first

few months of advection.
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Figure 2. A) Map of Cape Hatteras showing the points used to compute the spatial correlations (blue) and the location used to compute the

temporal correlations (red). The hexagons mark the limits of the hexagonal grid used in subsequent analyses, and the green area represents the

North American coast. B) Spatial correlations function around the release location, and each black line shows the correlation function for an

ensemble member. The blue line shows the exponential fit computed over the 50 correlation functions. The green line shows the decorrelation

length scale L7, = 0.41° ~ 37km. C) Temporal correlations with velocities sampled daily for 60 days from the 2nd of January 2010. The

black lines show the correlation functions of single ensemble members, and the red line shows the exponential fit with a decorrelation

timescale of 41 days.

We computed the particle-pair temporal autocorrelation
functions by sampling the velocity at the same location but svith-a-delay-ortag-of +-days—TFhe-donger-on different days, shown
as ared point in Figure 2A. We sampled the velocity daily for a duration of 60 days, starting on the 2nd of January, 2010. From

190  the sampled velocities, we computed the temporal autocorrelation function given by

7 u(to +1)-ulto)

where ¢ represents the time lag between pairs of velocities u(tg) and u(tg +t) averaged over all pairs with a lag ¢, similar to
Eg (D).

Similarly to p(L), we computed the temporal autocorrelation function p(¢) for the 50 members of NATL025-CIMCYC3, for

195

day. In Figure 2C-

We-found-that the-local-average decorrelationtimeseale-was-, we show each member’s p(?) as black curves. We performed an

200 exponential fit €*/ 7% over the 50 correlation curves. In Figure 2C, we show in red the exponential fit. We found a decorrelation
timescale of 77, = 41 days s-almest-6-weeksfor the velocities of the particles released on different days. Therefore, it is expected
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that almost all the particles are correlated for a release period of 4 weeks, and for the larger release periods of 12 and 20 weeks,

only a fraction of the particles will be correlated, creating more variability in the trajectories.

2.3.2  Release with Added Diffusion

We performed simulations with horizontal diffusion as a method to generate variability in the trajectories. The variability was
enerated by adding a horizontal Brownian motion (also known as a random walk) term to the integration of the particle
trajectories. Therefore, the horizontal components of the particle trajectories were integrated with

t+At

x(t+ At) =x(t) + / u(x,7)dr + R\/ 2K, At, 3)

t

where x is the horizontal location of the particle at a time ¢, At is the integration timestep, and u is the horizontal components
random number between (0, 1) taken from the normal distribution with zero mean and unit variance, and K, is the horizontal
In the simulations with added diffusion, we released particles from the fixed position (35.71°N,73.61°W) on 2 Janua
2010, without perturbing the initial conditions, spatially or temporally. We released 7,500 particles per ensemble member and

1

K, = 10m2s~ !, a value commonly used to parametrize subgrid processes in ocean models with comparable spatial resolution
Lacerda et al., 2019; Onink et al., 2021; Pierard et al., 2022). We note that a

arameterization are strongly dependent on the model’s spatial resolution.

ropriate diffusion coefficients for subgrid-scale

utionsTrajectory Analysis Methods

2.4.1 Domain Partition and Two-Dimensional Probability Distributions

For the analysis, we created probability distributions from two-dimensional histograms of the positions of particles (Van Sebille
et al., 2018). To-construct-the-two-dimensional-histograms;—we-We partitioned the domain into hexagonal bins by using the
H3 Uber hexagonal hierarchical spatial indexing system (Brodsky, 2018). The H3 grid has the advantage that the area of the
hexagons is better preserved across the low and high latitudes compared to a square grid in a Mercator projection (O’Malley

et al., 2021; Manral et al., 2023)—Additionally,each-, and each hexagonal bin is umquely indexed, facilitating the reproduc-

tion of the analysis. We used a-an H3 resolution of h =3

netehbering-hexagons-measures-approximately-, where neighboring hexagon centroids are separated by 100 km. We acknowl-
edge that using a square grid projection-for-the-analysis-presented-here-wil-would not significantly change the-results—+if-our

results since particles do not drift to high latitudes.

With-the-hexagonal-domain-partitioning,—~we-constructed-a-The spatial domain is discretized as X = x1,29,..., x5, where
each z; represents a hexagonal bin and B is the total number of bins. We constructed time series of histograms ;-where-we
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-by counting particles in each bin at-timesteps-of-t-day—We
binned-the-particle-x; at daily timesteps, binning trajectories according to their particle age s-which-is-defined-as-—the-drift-{

(time since release-).

For each dayin

EIN S

computed a probability distribution allews-us-to-define-the-conditional-probability P=-(F m¢)-over the spatial domain

by normalizing particle counts in each bin. The probability of finding particles in hexagonal bin z; is given by:
B b

> j=1Vj(m,t)

P, (z;)m,t) =

likelihood of finding particles in-the-demain-given-the-across the domain for ensemble member m used-to-adveet-the-particles
at-a-partictlar-at particle age ?.

25 M Probabilitv-Distributi

2.4.1 Mixture Simulations and Probability Distributions

To evaluate how well single-member strategies can reproduce the full ensemble variability, we constructed mixture probability
distributions-simulations that capture the dispersal patterns across all ensemble members. Using a bootstrapping approach, we
randomly selected +56-1,, = 150 particles from each of the 56-M = 50 ensemble members and combined their trajectories to
create a mixture simulation containing M x n, = 7500 particles total. We repeated this procedure 56-I2 = 50 times to generate
a robust set of mixture simulations. From-these-simulations-

Each mixture simulation represents a synthetic dataset that combines particle trajectories from all ensemble members
creating a representation of the full ensemble’s dispersal behavior. These mixture simulations serve as our reference for
evaluating single-member strategies and are used in subsequent connectivity analyses

For each mixture simulation 7, we computed i

eachrelease-strategy-over the hexagonal grid following:

NZ‘(T,t)

T cn 5)

Prix(xi|r,t) =

10
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spatial variations (0, € {0.1°,1.0°,2.0°}) and three temporal variations (4 weeks, 12, and 20 weeks). Computing-—separate

mixtare-distributionsfor-each-strategy-This strategy-specific approach was necessary because we-could-not-predict-a—priori

hew-the spatial or temporal release variations might-affeet-could unpredictably affect how well each strategy captures the
ensemble variability represented in these-the mixture distributions.

‘We determined the optimal particle
count by analyzing entropy convergence of the dw‘cﬂbﬂﬂeﬁ%epy—l;e%eu%ehesewgﬁéree# robability distributions. At
our hexagonal grid resolution (1 = 3),

entropy converges at n,, = 150 particles per ensemble member, with additional parncles pfewémgﬂe—%tgﬁrﬂeaﬂ%ehaﬂge—m

=N EN) saaratha

MW%%%%WW%WM&@@&
simulations of 7,500 trajectories, a particle count we maintained across all single-member simulations -beth-fer-spatial-and
temporal-release strategies(spatial releases, temporal releases, and added diffusion strategies) to ensure direct comparability
between-mixture-and-single-member-with the mixture distributions.

2.5 Conneetivity-Analysis

2.4.1 Connectivity Analysis

The connectivity between regions is a useful and powerful analysis performed with Lagrangian simulations (Rypina et al.,
2011; Riihs et al., 2013), assessing how many particles originating from one region enter other pre-defined regions. Within
this analysis, we explored if the number of particles reaching each region differs significantly when using mixture simulations
instead of single-member simulations. We also compared how connectivity patterns vary across different mixture strategies
(spatial variations with ¢, € {0.1°,1.0°,2.0°} and temporal variations of 4, 12, and 20 weeks). Additionally, we investigated
whether single-member simulations with spatially and temporally varying release strategies can reproduce the connectivity
statistics of the mixture distributions.

We focused on the connectivity between the surface of the Gulf Stream and the region east of 40°W. The 40°W longitude
defines the easternmost boundary where the near-surface waters from the Labrador Current join the Gulf Stream to form the
North Atlantic Current (Buckley and Marshall, 2016). This limit also assesses how many particles cross to the easternmost
side of the subtropical gyre when released from the surface of the Gulf Stream. In Appendix B, we see this limit in maps
showing all places particles drifted to during the six years of simulations. In Figure B1, we present particle dispersion maps
for each of the six release strategies (three spatial and three temporal variations) across all 50 ensemble members. Figure B2
shows corresponding dispersion patterns for the 50 subsets of mixture simulations, allowing direct comparison between single-

member and mixture approaches. We compared how many particles crossed the 40°W longitude from the surface of the Gulf

11
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Stream in a simulation period of 6 years. We also measured the median time that it took particles to cross 40°W and the depth

at which the particles cross 40°W.

2.5 MarginalEntrepy-andRelative Entropy-Caleulation

2.4.1 Marginal Entropy and Relative Entropy Calculation

To compare the dispersion patterns between ensemble members, we took an information theory approach, similar to Cerbus
and Goldburg (2013), where we treat each probability distribution as a message. Here, the bins represent the ‘alphabet,” and
the occurrence of the particles in each (hexagonal) bin makes the message, with a probability given by P. Each bin z; contains
log,(1/P(x;)) information, where P(z;) is the probability of a character or outcome occurring in a message. The less probable
the outcome, the more information it contains; therefore, the less redundant it is. The information can be thought of as the
optimal ‘length’ that the bin z; has to be encoded to transmit the message, costing the least amount of bits. Shannon (1948)
developed this into a theory of communications in which the fundamental problem is reproducing at one point either exactly or
approximately a message selected at another point transmitted over a noisy channel. In this theory, each probability distribution
contains an average amount of information measured by the entropy. The marginal entropy, H, measures the intricacy or
randomness contained in a distribution and measures the average information content of the distribution (Cover, 1999). The

marginal entropy for the probability distribution is defined as

n 1 1
H(m|X,8) = > _"2P(mles,)1ogs 5ro—ps oo
P St LR

(6)

where X is the ensemble-set of bins x; of the grid, P is the probability distribution asseetated-with-the-grie—-of ensemble
member m (or r for the mixture simulations) at particle age ¢, B is the number of hexagonal bins in X, and ¢ is the particle
age of the distribution. Marginal entropy measures the minimum number of bits to which the distribution can be compressed
or encoded. A distribution with ‘more’ randomness has less redundancy; therefore, its entropy is higher. This definition of
entropy is equivalent to the definition of entropy in statistical thermodynamics, where entropy is a measure of the number of
possible microstates or possible configurations of the system (Shannon, 1948; Cover, 1999). Thus, we define the variability in
the dispersal of particles of a simulation as the marginal entropy of its corresponding probability distribution.

The marginal entropy measures the variability of a distribution, but it does not measure how well two distributions match
bin by bin. As illustrated by Olah (2015), consider two probability distributions P4(X) = (1/2,1/4,1/8,1/8) and Pp(X) =
(1/8,1/2,1/4,1/8), both defined over X = (1,22, x3,z4). Both distributions are different when comparing them element by
element, that is, Pa(z;) # Pp(x;). However, if we compute their marginal entropy, we see that they have the same marginal
entropy Hp, (X) = Hp, (X ) = 1.75 bits. Hence, while two distributions may have equivalent marginal entropies, this does
not imply that the distributions are equivalent or similar.

Cross-entropy and relative entropy provide better measures for quantifying the difference between two distributions. The

cross-entropy measures the average amount of information of a distribution Q(X,t) compared to a reference distribution
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P(X,t). It is defined as

Hp(@,t) =3 Q(ri,t)log, P(g%) )
i=1 v

where each bin probability Q(z;,t) is weighted with the information of the reference distribution P(x;,t), summed over all
bins x; at time ¢. The cross-entropy tells us the average information content of () using the encoding of P. From the previous
example, the cross-entropy of P4 with respect to Pp, or Hp,(P4) = 2.25 bits is larger than its marginal entropy H(Q).
Therefore, if we would send messages described by () with P’s encoding, it would be 0.5 bits more expensive than using its
own encoding. The difference between the cross entropy and the marginal entropy is called the relative entropy or Kullback-

Leibler Divergence (Kullback and Leibler, 1951) and is defined as
D(Q||P,t) = Hp(Q,t) — H(Q,1), (8)

where Hp(Q,t) is the cross-entropy of ) with respect to P, minus the marginal entropy of Q). Eq. (8) is equivalent to the most
common definition (Cover, 1999; MacKay, 2003):

DQIPD) = Y- Qlar.log, Z 2.

i=1

€))

The relative entropy measures the cost of assuming that the distribution is ) when the true distribution is P (Cover, 1999)
and is used to quantify the uncertainty between two distributions.

One of the objectives of this study is to quantify the difference between the mixture distributions +5z—Fp, and single-
member distributions P,,, where the variability is created following spatial and temporal release patterns. Given the sparsity
of the trajectories sampling the domain, computing the relative entropy between the distributions 5 DFyix_and P, implies
comparing two-dimensional distributions with zeros in most of the domain. Figure 3A and Figure 3B illustrate this by showing
PrmPyis_and Py, at a particle age of ¢t = 15 days. We see that the probability of finding particles is non-zero in a localized
area for both distributions. Therefore, when computing the relative entropy for some bins, it is unavoidable to have terms in
are the probabilities of finding particles in a bin z;. To

which glog,(q/p) — oo as p — 0, where

numerically represent the infinity and compute the relative entropy, we replaced the zeros with a double precision machine
epsilon in P, and 5. The machine epsilon (¢) is the smallest number that a computer can represent. For double
precision, it is equivalent to € = 2752, so that the information content of p = ¢ is equal to log,(1/¢) = 52 bits.

The relative entropy is non-symmetric, D(Q||P) # D(P||Q), and the order in which we compare distributions is crucial. In

this study, we calculated the relative entropy as

Prrai’I'(fL'j-t) Pmix(T‘zi t)
D Pm’i'rmix P 7t = nBP’mi’rmix '7t 1 — : )
( 7WH m ) ;7«, 7,\,\/(7,:’|Iz ) 0go P,nl(:ljhf) Pm(m|x“t)

(10)

where £ Pix is the full probabilistic model we aim to reproduce with F,,, the reduced-order approximate model computed
from a single member. The relative entropy is computed for the particle age ¢ of the probability distribution. The relative

entropy can be interpreted as total information loss (or lack of information) when representing 77— Eyix With P, (Chen
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Figure 3. Comparison of probability distributions and their relative entropy. (A) Mixture distribution Frrz{{67="03>Pyix (X0, = 0.1°)
at 15 days after release, representing the full probabilistic model. (B) Single-member distribution P,, (X |8, = 0.1°) at 15 days after release,
representing the reduced-order approximate model. (C) Information loss map showing the contribution of each grid cell to the total relative
entropy PPz ) =D (Pnix]| Prn) When approximating the mixture distribution with the single-member distribution. (D) Information
loss map showing the contribution of each grid cell to the total relative entropy PFPrHPrmiz)-D (P || Puix) When approximating the
single-member distribution with the mixture distribution. Gray hexagons represent land. Color scales show probability values (A and B) and

information loss in bits (C and D). The zero-bit value falls within the second color bin from the left in the information loss color scale.

et al., 2024; Kleeman, 2002). Figure 3C illustrates computing P{PrzH 251D Paig || P t) With the distributions shown in
Figures 3A and 3B, where each (hexagonal) bin shows the ‘information loss’,

note that the bins with information loss coincide with the bins where P, fails to have particles, but £z—Fy; does have
particles. Conversely, there is no information loss in bins where there are no particles for Pz Eyiy, but there are for P,,.
Therefore, P,, having more bins with particles than F;7—Fp is not quantified as information loss. This is more evident
when computing DL 4D (Pl Pris. 1), in Figure 3D. In contrast, there is information loss in the bins where both
distributions have particles but not the same number. There is no information loss if the bins have the same number of particles.
By summing over all the bins in PPzt Pmt:D( Pyix|| P t), We obtain a single value that quantifies the total information
loss between the two distributions.

Figure 3D illustrates the opposite case, computing PP Pmzrt)-D (P | Prix,t) in which the relative entropy mea-
sures how well Pr—Fpix_approximates P,,. In this case, there is only information loss in the bins where P, and Pz
Pyix_have particles, although 7P _covers more bins. This again shows that there is no information loss for having a
wider probability that covers a larger area, containing the bins of the distribution to represent. By summing over all bins
n D Py D(Pyl| Prix), We get a relative entropy of 2.8 bits, which is far less than D{PrztPmt) =D (Poix|| Pt
described previously.

To summarize, because of the asymmetry in the relative entropy, it is important to evaluate the full probabilistic model
D (Puix|| P, t), in Eq. (10). In that case, the relative entropy
quantifies the uncertainty when using the simplified probabilistic model (P,,) to approximate the full model (77 FPpix) (Chen
et al., 2024).

with the encoding of the reduced-order model,
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3 Results
3.1 Connectivity

This section compares mixture simulations (containing the full ensemble variability) and single-member distributions for par-
ticles crossing the 40°W line. Throughout this analysis, we use the mixture distribution with é,, = 0.1° as our reference, as it
represents the closest approximation to a point release while still containing the full ensemble variability. This allows us to con-
sistently evaluate how increasing spatial or temporal variability in single-member simulations compares to this baseline case.
We employed Empirical Cumulative Distribution Functions (ECDFs) to assess the likelihood of single-member distributions
matching the average particle counts in mixture distributions. Figure 4 shows the ECDFs for the number of particles crossing
40°W and the median particle age at which they cross that longitude. Figures 4A and 4B compare spatially varying releases and
the releases with added diffusion, whereas Figures 4C and 4D compare temporally varying release simulations. In all panels,
the ECDF curves represent the single-member distributions, and the vertically shaded lines show the 99 % confidence interval
of their corresponding mixture distributions. The mixture distributions are depicted as vertically shaded lines to enhance the
readability of the plots since they are well-defined Gaussian distributions. The plots showing Kernel Density Estimate (KDE)
distributions of the single-member and of the mixture distributions can be found in Figures B3 and B4, in the Appendix B.
Figure 4A shows greater variance in single-member distributions than mixture distributions, with values ranging from 1,000
to 5,100 particles;eompared-to-the-mixture-distributions. This increased variability occurs because single-member distributions
reflect the specific ocean conditions of individual ensemble members, while mixture distributions average out these individual
variations across multiple members, resulting in more stable statistics. On average, more particles cross the 40°W line for
simulations with larger release clouds ¢, in the single-member distributions. The same relation between §,. and the number of
particles crossing is observed in the mixture distributions. The ECDF provides insights into the probability of single-member
simulations not capturing the mixture distribution averages. For instance, in single-member simulations with a release radius
of 4, =0.1°, there is a 0.64 probability of having fewer particles crossing the 40°W line than the average of the mixture
distribution with §,, = 0.1°, and consequently, a 0.36 probability of overestimation. This-The probability of underestimation
decreases to 0.34 (with 0.66 probability of overestimation) for §,, = 1.0° and to 0.10 (with 0.90 probability of overestima-
tion) for 4, = 2.0°, taking the same mixture distribution (d, = 0.1°) as reference. The single member simulations with added
diffusion (K]

0.70 probability of having fewer particles crossing the 40°W line, than the mixture §,, = 0.1° distribution,
Figure 4C shows the ECDFs for temporally varying releases. The distributions for the single-member simulations with 4,

= 10m2s— 1) have a distribution similar to the single member simulations with ¢, = 0.1°, for which there is a

12, and 20-week releases are similar but show more variance than the mixture distributions represented by the shaded lines.
Mixture distributions for 4 and 12-week releases have comparable average particle counts, while 20-week releases show slightly
lower averages. For single-member simulations, the probability of having fewer particles than the mixture distribution average
(6 =0.1°)is 0.56 (with 0.44 probability of overestimation) for 4-week releases, 0.50 (with 0.50 probability of overestimation)

for 12-week releases, and 0.66 (with 0.34 probability of overestimation) for 20-week release periods.
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Figure 4B shows the ECDFs for the median particle age of particles crossing 40°W in spatially varying release simulations.
The single-member distributions (ECDF curves) show a clear separation based on the release cloud size (d,.). Particles from
smaller release clouds (J,- = 0.1°) tend to have longer median drift times, while those from larger release clouds (6, = 2.0°)
have shorter median drift times. This trend is also reflected in the mixture distributions’ 99 % confidence interval (shaded
lines). While the single-member simulations show a greater spread in median drift times compared to the mixture distributions,
they maintain the same general pattern of decreasing drift times with increasing release cloud size. However, the wider spread

in single-member distributions indicates that individual simulations may not consistently reproduce the more stable statistics

captured by the mixture distributions. The ECDF for single member simulations with added diffusion (K = 10m?s~!) shows
similar median particle age distribution as the single member simulations with §,. = 0.1°. Both distributions show that particles
tend to take longer in crossing the 40°W line than larger release clouds.

Figure 4D shows the ECDFs for particle age in temporally varying release simulations. The distributions for different release
durations (4, 12, and 20 weeks) are more closely aligned than the spatial variations in panel B. However, longer release periods
(20 weeks) tend to show slightly shorter median drift times. While single-member distributions still exhibit greater variability
than the mixture distributions, this variability is less pronounced than in the spatially varying simulations. This suggests that
temporal release variations may provide more consistent reproducibility of mixture statistics compared to spatial variations,
although this varies in individual simulation results.

In summary, our connectivity analysis reveals that single-member simulations tend to either significantly under- or overesti-
mate particle transport across 40°W, with the bias depending on the release strategy. For spatial variations, larger release clouds
(6, = 2.0°) show a strong tendency to overestimate connectivity (90 % probability), while smaller release clouds (§, = 0.1°)
and adding diffusion (/;, = 10m?s_1) are more likely to underestimate it (64 % prebabilityand 70 % probability, respectively).
Temporal variations show more balanced probabilities of under- and overestimation, particularly for 12-week releases (50-50%

probability), and generally exhibit less pronounced variability in particle ages compared to spatial variations.

3.2 Two-Dimensional Probability Distributions

The first step to calculate the marginal and relative entropy is to bin the particle trajectories into the two-dimensional probabilit
distributions in the hexagonal grid. We computed the two-dimensional probability distributions for all the single member
and mixture simulations, for the different strategies to generate variability in the trajectories. As an illustration, Figure 5

shows the two-dimensional probability distributions for the reference mixture 6,, = 0.1° distribution (subset 43) and the single

ensemble member distributions, with different release strategies (ensemble member 22). The three columns of subplots show.
the distributions at particle ages of 10, 100 and 1,000 days, and the different rows show the different strategies to generate
variability. We observe that the reference mixture 9, = 0.1° distribution, showcasing the full ensemble variability, spreads
evenly from the release location (shown as a blue dot). We also appreciate how 20-week and 0, = 2.0° single member
distributions resemble the mixture distribution in the area covered by the bins, but the shape of the distributions still remain
different. However, the single member d, =0.1° and added diffusion K = 10m?s”" distributions clearly cover less bins,
at the three particle ages shown, despite having the same number of particles as the other distributions. Figures ?? and BS,
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Figure 4. Connectivity analysis between the Gulf Stream at Cape Hatteras and the line at 40°W in the North Atlantic. The plots compare

single-member ECDFs (lines) with mixture distribution average plus/minus 99 % confidence values (shaded vertical lines). A) ECDFs of the

number of particles crossing the line for spatially varying simulations —and simulations with added diffusion B) ECDFs of the median particle

age distributions for spatially varying releases and simulations with added diffusion. C) ECDFs of the number of particles from temporally

varying simulations. D) ECDFs of the median particle age distributions for temporally varying simulations.
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in_the Appendix B, show similar figures but with other single members and mixture subsets. In general, two-dimensional
distributions can best be described and compared with statistical tools. Thus, we computed the marginal entropy and relative
entropy of these distributions, at different particle ages, to characterize and compare the dispersion patterns of the different
single member strategies to that of the reference mixture.

3.3 Marginal and Relative Entropy

We calculated the marginal entropy, Eq. (6), for every single-member and corresponding mixture distribution to assess the
variability and determine which release strategies can represent the variability of the full ensemble. In total, we computed
the marginal entropy functions for all six-seven sets of single-member distributions and-the-(three spatial varying, and three

temporal, and one diffusive). We also computed the marginal entropy for six sets of mixture distributions-—Eaeh-, excluding
the mixture distribution from simulations with added diffusion. Each release strategy and mixture set had 50 distributions—Fer

each-set, therefore, we calculated the average and the standard deviation of the marginal entropy functions, resulting in one
average entropy curve as a function of particle age per set. Figure 6A illustrates the average entropy curves for spatially varying
release distributions and distributions with diffusion, while Figure 6B shows those for temporally varying release distributions.
Detailed entropy curves for each single member and mixture simulation are provided in Figures B6 and B7 in the Appendix B.

Figure 6A shows the average marginal entropy as a function of particle age for various spatial release strategies, comparing
single-member probability distributions (F;,,) with mixture distributions (Fm7zFyi) using different spatial release intervals

(6;-). Faree-Four single-member curves are shown: . = 0.1° (blue dotted line), §,, = 1.0° (purple dashed line), and-9, = 2.0°

(green dash-dot line), and Kj, = 10m?s~! (black triangles curve). Two mixture distribution curves are presented: 6, = 0.1°

(solid black line) and d,, = 2.0° (black dash-dot line). Shaded areas around the single-member curves represent the standard
deviation, illustrating the spread of entropy values across the ensemble. There is no shaded area around the mixture entropy.
curves because their standard deviation was of the order of magnitude 102 bits. The logarithmic scale on the z-axis emphasizes
the rapid changes in entropy during the early stages of particle dispersion. All curves show a logarithmic increasing trend in

entropy with particle age, indicating growing dispersion over time. The single-member distributions with larger ¢, values (1.0°
and 2.0°) initially overestimate the entropy compared to the mixture distribution with 6, = 0.1°, particularly in the first 10 days.
After this period, only the single-member distribution with d,. = 2.0° adequately represents the variability of the mixture with

6, =0.1°.

Figure 6B shows the average entropy as a function of time for the temporal varying release strategies and their correspond-

ing mixture distributions, comparing single-member probability distributions P,, for different release periods against mixture
distributions (£33 Lix). The single member distributions are shown for release periods of 4, 12, and 20 weeks. These curves
show a general trend of entropy increasing logarithmically over time, with longer release periods resulting in higher entropy val-

ues. Fwo-Three mixture distributions are plotted: ene-stbsampled-fromamixture subsampled from 4 week releaseand-another
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The blue circles mark the particle’s release location, omitted for plots of particle age of 10 days. Bins with probability zero were removed to

facilitate visualizing the area of dispersal of the particles.
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Figure 6. Average marginal entropy as a function of particle age of single-member distributions (colored lines) and mixture distributions

(black lines). The average marginal entropy for the single member simulations with diffusion K are shown as black triangle curve. The

shaded areas represent the standard deviation. The particle age is on a logarithmic scale. A) Comparison of the single-member and mixture
distributions with spatially varying release. B) Comparison of the single-member and mixture distributions with temporally varying release.

In both panels, we added the entropy curve of the mixture 6, = 0.1° as a reference.

subsampled-for-, mixture subsampled from 20 week release, and the reference mixture from §, = 0.1°. We compared tempo-

ral and spatial mixture distributions to understand how different release strategies contribute to the total ensemble variability.
These-As one would expect, these mixture distributions consistently show higher entropy values than single-member distri-
butions, indicating that P, captures less variability than the mixture distributions. The 20 week single member distributions
average entropy closely follow the mixture-distribution-with-reference mixture d,, = 0.1° average entropy, often overlapping
or slightly exceeding it. Among the single member curves, the 20 week release generally shows the highest average entropy,
followed by 12 and 4 weeks in descending order. However, these differences become less pronounced as time increases.
Comparing spatial and temporal strategies in Figures 6A and 6B, we-establish-supports setting the mixture distribution with
0r = 0.1° as our reference standard, as it shows the minimum variability-average entropy among all mixture strategies, but
still capturing the full ensemble variability. The 20-week single-member distributions-average entropy curve most closely ap-
proximate this-reference-the reference mixture §,, = 0.1° entropy, while the single-member spatial releases show more variable
performance. Both the §, = 2.0° and the 20-week mixture distributions exhibit the highest average entropy values, demon-
strating how combining either spatial or temporal release variability-with-ensemble-variability-strategies with the ensemble
variability, increases the total dispersion variability. This reinforces our choice of the more point-like 6, = 0.1° mixture as our
reference for evaluating single-member approximations. For clarity, we omitted the intermediate mixture curves (6, = 1.0° 5

and 12-week;-and-20-week), as their entropy values consistently fall between those of the §,, = 0.1° and 6, = 2.0°distributions,
and 4-week and 20-week, respectively.
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We computed the relative entropy as a function of particle age - Eg—10);-by comparing single-member distributions with
mixture distributions—Adse, to understand how similar are the single member distributions with the mixture distributions, bin
by bin. For this, we computed the relative entropy of every-ensemble-member-with-every-mixture-distribution-individua
X.,t), using Eq.
ages. Therefore, we calculated 50% = 2,500 relative entropies-entropy curve as a function of particle age curves when com-
paring two sets of distributions. We-That is, one set for single member simulations and one set of mixture simulations.
From the 2,500 relative entropy functions, we computed the average and the standard deviation of the 2;500-relative-entropy

funetionsfor-each-of-the-sixrelative entropy as a function of particle age. We computed the average relative entropy for the
combination of the seven sets of single member distributions (0, € {0.1°,1.0°,2.0° }and-, 4, 12 and 20 weeks);relative-to-the

and K = 10m?s~!), withthe six sets of mixture distributions (excluding diffusion), ending up with 36-42 average relative
entropy funetionscurve as a function of particle age.

Figure 7 shows the average relative entropy as a function of particle age, divided into four panels (A-D), each using a

)

single member distribution P,,(X,t) compared to a mixture distribution P 10), across all their particle

different mixture distribution as a reference (Pyx). We omitted the plots where the mixture for-the-d, = 1.0° and mixture
12-weeks strategy as-a-referencewas used a reference, since their entropy lies between their corresponding extreme strategies,
that is §, € {0.1°,2.0°}, and 4 and 20-weeks releases. In all panels, the dotted-and-dashed-solid and dotted lines represent the
average relative entropy for each strategy, while the shaded areas-bands around these lines indicate the-their corresponding
standard deviation. The standard deviation measures the variability in relative entropy, revealing that-extreme-cases-exist-the
extreme cases where single-member distributions poorly represent the reference mixture distributionspootty.

Figure 7A uses the reference mixture distribution with d,, = 0.1° as the reference (Fix). On average, the single-member
distribution with 6, = 2.0° (green dotted line) most closely approximates the reference mixture, having the lowest mean relative
entropy across most of the time range. The 20-week release strategy (red dashed line) performs similarly well. However,
the-large-standard-deviations;partienlarlyfor-0, = 0.1° (blue dash-dot line)and-, the 4-week strategy—(orange dotted line),
indicate significar R T R D coi . e and G, = 10m?%s !
have higher average relative entropy, showing that their two-dimensional distributions under-represent Dy, Regarding their
standard deviation bands, we see that 9, = 2.0° has almost zero standard deviation on the first ten days after release. This is due
to the larger area covered by particles at the release compared to the area covered by the Fyix. The opposite case is observed

the reference distribution Py

Figure 7B, referencing-with the mixture distribution with §, = 2.0° as reference Py, shows that the single-member J, =

2.0° strategy most closely matches this-referenee-mixture-Fy on average. The 20-week release strategy also performs well,

especially for higher particle ages. However,this-20-weekreleasestrategyshows-a-distinetly-different-evolation-pattern-with
tes—The substantial standard deviations for all strategies, partic-
ularly pronounced for 6, = 0.1°and-, the 4-week strategy, and K = 10m*s~!, highlight the potential for large diserepaneies
between-individual-stmulations—and-the referenee-mixturelack of information in representing P, at all particle ages. Fig-
ures 7C and 7D use the 4-week and 20-week mixture distributions as references, respectively. The-corresponding-In both
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case, 20-week and §, = 2.0° single-member temporal release strategies show the lowest mean relative entropyin-beth-eases:

Hewever—the-. The wide standard deviation bands, particularly noticeable for 0 =0.1° and
§7=2:02K), = 10m?s~', underscore the high variability in how well these strategies capture the reference mixture’s charac-
teristics.

Across all panels of Figure 7, relative entropy peaks between 10 and 100 days of particle age, with the largest standard
deviations also occurring in this range. Notably, standard deviations for temporal (20-week20-week) and spatial (6, = 2.0°)

strategies peak at different times: the 20-week-20-week release shows maximum variability at earlier particle ages (before
10 days), while the §, = 2.0° release peaks later (before 100 days). This suggests that these single-member distributions

strategies are most likely to significantly diverge from the mixture distributions 8 : 27 =

same-partiele-age—around these particle ages.
From the average entropy curves shown in Figure 7, we took the average over the 6 years the particles were drifting after

release. We compiled these values for the 36-20 comparisons between mixture and single-member sets, with different release
strategies in Figure 8. This figure presents a heatmap of the time-averaged relative entropy values for various combinations of
single-member and mixture distributions. The rows represent single-member distributions, while the columns represent mix-
ture distributions. The color scale ranges from dark green (lowest relative entropy) to light green (highest relative entropy),
with numerical values provided in each cell. Notably, the 20-week single-member distribution (bettem-second to last row) con-
sistently shows the lowest relative entropy across all mixture distributions, indicating it best represents the ensemble variability.
Conversely, the 6, = 0.1° single-member distribution exhibits the highest relative entropy values, saggesting-itis-followed by
Ky =10m?s ™", suggesting that they are the least effective at capturing the characteristics of the mixture distributions.

4 Discussion and Conclusions

In this study, we investigated how to generate ensemble-like variability within single-member Lagrangian simulations by
implementing varying spatial and temporal release strategies, as well as by adding diffusion, in the Gulf Stream region near
Cape Hatteras. The surface connectivity between the Gulf Stream and the region past 40°W revealed significant differences in
the number of particles crossing between different release strategies in the single-member distributions. The ECDFs in Figure 4
showed that, for spatially varying releases, the larger the initial particle cloud, the more particles cross the 40°W. Regarding
the temporal distributions, we did not see significant variations in the number of particles crossing 40°W; the distributions
for the number of particles and the median times were similar between the three temporal release strategies. The diffusion
K distribution was very similar to the spatial 9 = 0.1° distribution, with fewer particles crossing 40°W than other strategies.
Moreover, the normal distribution observed in the mixture distributions can be attributed to the central limit theorem. This
fundamental principle in probability theory states that when independent random samples are drawn from a population with a

finite variance, the distribution of their means will approximate a normal distribution as the sample size increases. In our case,
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Figure 7. Relative entropy as a function of particle age for different single-member distributions compared to mixture distributions. The

subplots A-D show comparisons using different reference mixture distributions (Pyix): (A) 6 = 0.1°, (B) d, = 2.0°, (C) 4-week release,

and (D) 20-week release. Dotted and dashed-solid lines represent the average relative entropy for each release strategy, while shaded areas

indicate their corresponding standard deviation. The x-axis shows particle age in days (log scale), and the y-axis shows relative entropy in

bits. Different colors represent various single-member strategies: 6, = 0.1° (blue), §, = 2.0° (green), 4-week release (red), and-20-week

release (orange), and K; = 10 m?s ™! (black).

23



560

565

570

0.1°

-0.25
- 0.230 0.269 0.238 0.254

6=

o
o~

-0.20

0.15

4 weeks

0.10

0.05

Time Averaged Relative Entropy, D(Puix||P;) (bits)

Kn =10 m2s~1 20 weeks

0.00

o 0

~0} =2 eeks eek®
WX or WX 6¢ MiX- av MIX- 20V
Figure 8. Time-averaged relative entropy (in bits) between single-member and mixture distributions for different release strategies. Rows
represent single-member distributions, and the columns represent mixture distributions. Color intensity indicates the magnitude of relative

entropy, with dark green representing lower values (better agreement) and light green representing higher values (poorer agreement). Numer-

ical values in each cell show the precise time-averaged relative entropy.

the bootstrapping method used to construct the mixture distributions effectively simulates this sampling process, resulting in
the observed normal distributions.

Regarding representing the full ensemble variability with single-member simulations in the connectivity analysis, we see that
particles are more consistent in crossing the 40°W meridian in the mixture distributions. Therefore, when comparing mixture
distributions with single-member distributions, we counted the percentage of single-member simulations with fewer particle
crossings than the reference mixture distribution with ,, = 0.1°. In this analysis, we saw-see that performing a one-time spatial
release with a radius of §,, = 2.0° better represents the particle crossings in the mixture distributions, than the other strategies.
From all the release strategies, single-member simulations with §,, = 2.0° release cloud had the lowest likelihood of having
fewer particles crossing than the reference mixture simulation with d,, = 0.1°. This might be because a large initial cloud of
particles releases more particles outside the Gulf Stream, creating a wider variety of trajectories that cross 40°W. In the case of
the temporal releases, the single member with 20-week releasesrelease simulation had fewer particles crossing 40°W than the
mixture with J,, = 0.1°, with a 6666% likelihood of having fewer particlesthan-the-mixture-with-07—==0-1>. This likelihood is
+610% higher than 4 and 12-week single-member distributions, suggesting that the seasonability may be playing a role in the

transport of particles to the eastern side of the domain. The connectivity with the eastern region of the domain might be stronger
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during winter, corresponding to the release of particles in the 4-week period (from 2nd to 30 of January) and 12-week period
(from 2 January to 27 March). Meanwhile, the 20-week release, from 2nd January to 22 May, had a portion of its particles
released during spring.

The marginal entropy analysis, shown in Figure 6, provided insights into how well different release strategies represent the
full ensemble variability. In general, we saw-see how the marginal entropy increased with time for all strategies considered,
some at slower rates than others. We attributed this to the percentage of particles released under the local decorrelation length
and times-time scales for the different strategies. For instance, spatial releases with radius J,, = 0.1° and temporal releases
of 4-weeks, which exhibited the lowest marginal entropy, had all their particles released within their respective decorrelation
scales. As the radius or release period was increased, there were more particles with decorrelated initial velocities, resulting in
higher entropy in the two-dimensional distributions.

It is important to highlight that the marginal entropy of the mixture distributions consistently exceeds that of corresponding
single-member distributions, demonstrating that ensemble simulations under identical release conditions inherently generate
greater trajectory variability than single-member simulations. By maintaining equal particle counts between mixture and single-
member simulations, we ensured that the higher entropy in mixture distributions reflects genuine ensemble dynamics rather
than statistical artifacts. The higher marginal entropy in mixture distributions may also be attributed to the temporal context of
our study: we advected particles ~ 18 years after the initialization of the NATL025-CIMCYC3 ensemble (which was perturbed
during 1993). At the release date of the particles (2010), the perturbations had sufficient time to adapt and decorrelate the
velocity fields of the members, which suggests that ensemble Lagrangian dispersion arises not only from mesoscale chaos but

also from low-frequency, large-scale intrinsic fluctuations.

marginal entropy curves from Figure 6, we selected the mixture simulations with 6, = 0.1° —Ferspatial-releases-as reference for
comparing the different release strategies, because they contain the full ensemble variability with least noise added by the initial

erturbation to their initial conditions. Comparing the spatial releases against this reference (Figure 6A) -we-found-revealed
significant limitations. The larger release areas (6, = 1.0° and J,, = 2.0°) initially overestimate variability during the first 10

10 days, as particles start from a wider area than the reference’s mixture with ¢, = 0.1° radius. While §,, = 2.0° simulations
eventually match the reference entropy after 30-46-30-40 days, 4, = 1.0° simulations underestimate it until about 1,000 days
after release.

The simulations with added diffusivity (X}, = 10m?s~!) show marginal entropy similar to spatial releases with &, = 0.1°

but fail to reproduce the full ensemble variability until approximately 1.000 days after release, as seen in Figure 6. The added
diffusion simulations used a stochastic differential equation approach with Brownian motion terms, following established
methods in Lagrangian oceanography (Griffa, 1996). However, our results demonstrate that this approach has limitations
in_reproducing the full ensemble variability compared to spatial and temporal releases. We chose a physically reasonable
diffusion coefficient based on literature values for subgrid-scale parameterization at our model resolution, Larger diffusivity.
coefficients could potentially increase trajectory variability, they would become unphysical as the artificial noise would exceed
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the magnitude of typical unresolved subgrid processes in the model, effectively forcing the particles to behave as if experiencing
constant strong turbulent mixing,

The underperformance of the diffusion strategy likely reflects that it represents primarily small-scale turbulent mixing
processes, and the diffusivity cannot create noticeable variability in trajectories, specially for particle ages < 100 days, missing

the larger-scale flow uncertainties and mesoscale variability captured through other strategies. In contrast, temporal release
strategies (Figure 6B) show better performance, particularly the +2-and-20-week-12 and 20-week releases. The 20-week

20-week release strategy consistently matches the reference mixture’s entropy-marginal entropy (mixture ¢, = 0.1°) across

all temporal scales, demonstrating that continuous particle releases over time can effectively reproduce the variability captured

by ensemble simulations. This suggests that temperal-variation-inrelease-times—temporally varying the initial conditions is
more effective at representing-generating ensemble variability than irereasing-the-spatial-adding diffusion, and also is more
consistent throughout particle ages than varying spatially the extent of the release area.

As we explained in Section 2.4.1, two distributions that have the same entropy do not necessarily exhibit the same dis-

tributions since two different probability distributions can have equivalent entropies—We-compared-marginal entropies. As a
complementary analysis, we computed the relative entropy to measure the agreement between two distributions, which mea-

sures the lack of information when representing the full ensemble with a single-member simulation. fi-thisframework—we

distributions—Therelative-entropiesWe applied the relative entropy analysis to compare all release strategies against the mixture

distribution J,, = 0.1°. The averaged results and their variability, shown in Figure 7, further support the findings from the
marginal entropy assessment. The 20-week release generally showed thedowest-consistently low average relative entropy with

respect to the mixture-using-0=0-1reference mixture distribution, indicating this release strategy most effectively captured
the variability in the trajectoriesof-the-full-ensemble—Despite-this;-the-standard-deviation-of-the-relative-entropy-of-the-20, by

and K, = 10m?s~! strategies showed
the largest values in average relative entropy, with large standard deviations in particle ages below 100 days. This shows that

these strategies have particular difficulty to generate variability in the trajectories similar to a full ensemble.
Comparing the the 6 years time-averaged relative entropy, shown in Figure 8, showed how 20-week releases have less

uncertainty, or represents the best the the full ensemble variability, across different reference mixtures;foHlowed-by12-week
releases-—On-average;a-. The §, = 2.0° and a 4-week release had-similar-strategies showed higher uncertainties compared to alt

mixtare-distributions—a 20-week release. Lastly, K;, = 10m2s~—! and §,, = 0.1° had the highest time-average relative entropies.
This further supports the idea that performing long continuous releases is the best release strategy to represent-the-ensemble

vartability-generate variability in particle trajectories similar to a full ensemble simulation.

In single-member simulations, we demonstrated that releasing particles at slightly different locations or times can match the

variability in the behavior of particles released at a specific time and location from an ensemble of simulations. An interpretation
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of this may be that an ensemble of Lagrangian simulations has an ergodic flavor in which statistical homogeneity exists between
an ensemble of simulations and single-member simulations (Shannon, 1948). However, this does not constitute proof of the
system’s ergodicity.

While our study provides valuable insights into generating ensemble-like variability in single-member simulations, several
limitations should be acknowledged. Our analysis focused solely on the Gulf Stream region near Cape Hatteras, and the effec-
tiveness of these release strategies may vary in other oceanic regions with different dynamics. Additionally, while our particles
were advected in three-dimensional flows, we only considered surface particle releases, which may not fully represent the three-
dimensional transport processes occurring throughout the water column. Our results are based on the NATL025-CIMCYC3
model configuration, and the effectiveness of these strategies may be resolution-dependent, as higher-resolution models resolve

smaller-scale processes that could introduce additional variability in transport pathways. We performed simulations for onl

one release period, on 2 January 2010, because that allowed us the longest particle advection time; but realise that there is

nothing ‘special’ about that 2 January 2010 and that the results presented here might depend on the release time. Furthermore,
our study was limited to forward-in-time simulations, whereas backward-in-time tracking could provide complementary infor-

mation about generating ensemble variability in single-member simulations in studies concerning source regions and transport
pathways. Future work should explore the applicability of these methods across different oceanic regions, depths, and temporal
directions to establish more comprehensive guidelines for single-member Lagrangian simulations.

Ensemble simulations remain the standard for capturing the full range of variability in ocean simulations; our study provides
guidance on releasing particles in single-member simulations to increase the variability of the trajectories and, in this case, bet-
ter represent ensemble statistics. While data assimilative models excel at improving mean state predictions through observation
integration, ensemble approaches are better suited for exploring the full range of possible outcomes and quantifying uncertainty
in trajectory predictions. Generating ensemble-like variability for Lagrangian simulations advected using assimilative models
could be particularly powerful: applying spatial-ertemporal release strategies could help capture both the improved mean state
from data assimilation and the trajectory variability typical of ensemble simulations. These findings have important implica-
tions for ocean modeling and particle tracking studies, especially when computational resources limit the use of full ensemble
simulations. By carefully selecting release strategies, researchers can maximize the variability of single-member simulations,

potentially improving predictions of particle transport by capturing extreme events.
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Figure A1l. Marginal entropy of mixture distributions as a function of particles sampled per ensemble member, shown for three different

hexagonal grid resolutions (k). Higher A values indicate finer spatial resolution, resulting in higher entropy values.

Appendix A: Marginal Entropy as a Function of Number of Particles and Grid Resolution

The calculation of the mixture probability distributions (F7zFy;) requires determining both the optimal number of particles
to sample and the appropriate spatial resolution for binning these particles. These parameters directly affect the entropy of the
resulting distributions. We investigated this relationship by varying two key parameters: the number of particles sampled per
ensemble member and the hexagonal grid resolution (h).

Figure A1 shows how the entropy converges as we increase the number of particles sampled per ensemble member, plotted
for three different grid resolutions (h € {2,3,4}). As expected, finer grid resolutions (larger h values) yield higher entropy
values as they capture more detailed spatial information. For our chosen grid resolution of h = 3, the entropy converges to
approximately 8.5 bits when sampling 150 or more particles per ensemble member. Coarser resolutions (h = 2) require fewer
particles to converge, while finer resolutions (h = 4) need more particles but capture more spatial detail. Based on this analysis,

we selected h = 3 and 150 particles per member as sufficient parameters for our study, balancing computational efficiency with

spatial resolution.
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Figure B1. Ensemble standard deviation of time-averaged particle occurrence per (hexagonal) bin in the North Atlantic Ocean for single-
member simulations. Left column (A, C, E): Temporal release strategies at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F):
Spatial release strategies with 0, € {0.1°,1.0°,2.0°}. The color scale represents the ensemble standard deviation of a 6-year time-averaged
occurrence per bin. The maps illustrate the variability in particle dispersal for single-member simulations. The dashed line at 40°W indicates

the eastern boundary of the study area. The blue dot marks the approximate release location.

715 Appendix B: Additional Supplementary Figures
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Figure B2. Ensemble standard deviation of time-averaged particle occurrence per (hexagonal) bin in the North Atlantic Ocean for mixture
simulation subsets. Left column (A, C, E): Mixture subsets at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F): Mixture subsets with
spatial variability 6, € {0.1°,1.0°,2.0°}. The color scale represents the ensemble standard deviation of a 6-year time-averaged occurrence
per bin. The maps show the variability in particle dispersal patterns for all 50 subsets of the mixture simulations. The dashed line at 40°W

indicates the eastern boundary of the study area. The blue dot marks the approximate release location.

31



0.0008 -

0.0006 -
iy
2
S 0.0004 ~
[a

0.0002 A

0.0000 === T T 1

0 2000 4000 6000
Counts
----- 4 weeks
D == 12 weeks
0.0008 - 20 weeks
A
> 0.0006 AL
@ ] \
; Y
0 0.0004 A 1 !‘
i [
i v
0.0002 Hi i
i A
A E—
0.0000 = : ;
0 2000 4000 6000
Counts

Particles Crossing 40°W

1.2
B

0.6 E

0.2 A /7

11
&
J
g
=
7

0.0 L .
0 2 4

Median Particle Age (years)

Density

0.000 — T T
0 50 100 150 200
Median Depth (m)
0.015 A
0.010 A
0.005 §
0.000 . —= .
0 50 100 150 200

Median Depth (m)

Figure B3. Kernel Density Estimates (KDE) of connectivity analysis for the single-member simulations. The top row (A-C) shows distribu-

tions for spatial releases 4, € {0.1°,1.0°,2.0°}: Particle counts (A), median drift time in years (B), and median depth in meters (C). The

bottom row (D-F) shows the same metrics but is compared across different temporal releases of 4, 12, and 20 weeks.
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