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Abstract. Ensemble Lagrangian simulations aim to capture the full range of possible outcomes for particle dispersal. However,

single-member Lagrangian simulations are most commonly available and only provide a subset of the possible particle dis-

persal outcomes. This study explores how to generate the variability inherent in Lagrangian ensemble simulations by creating

variability in a single-member simulation. To obtain a reference for comparison, we performed ensemble lagrangian
:::::::::
Lagrangian

simulations by advecting the particles from the surface of the Gulf Stream, around 35.61◦N, 73.61◦W, in each member of the5

ensemble to obtain trajectories capturing the full ensemble variability
::::::::
variability

::
of

:::
the

:::
full

::::::::::
50-member

::::::::
ensemble. Subsequently,

we performed single-member simulations with spatially and temporally varying release strategies to generate comparable tra-

jectory variability and dispersal,
::::

and
::::
also

::::
with

:::::::
adding

::::::::
Brownian

::::::
motion

::::::::
diffusion

:::
to

:::
the

::::::::
advection. We studied how these

strategies affected the number of surface particles connecting the Gulf Stream with the eastern side of the subtropical gyre.

We used an information theory approach to define and compare the variability in the ensemble with the single-member10

strategies. We defined the variability as the marginal entropy or average information content of the probability distributions of

the position of the particles. We calculated the relative entropy to quantify the uncertainty of representing the full-ensemble

variability with single-member simulations. We found that release periods of 12 to 20 weeks most effectively captured the full

ensemble variability, while spatial releases with a 2.0◦ radius resulted in the closest match at timescales shorter than 10 days.

Our findings provide insights to improve the representation of variability in particle trajectories and define a framework for15

uncertainty quantification in Lagrangian ocean analysis.

1 Introduction

The ocean’s dynamics, driven by atmospheric fluxes of energy and momentum at the surface, are characterized by phenomena

that mutually interact across different spatiotemporal scales, including eddies, internal waves, zonal jets, and mixing processes,

up to decadal and basin-scale fluctuations (Vallis, 2017). These multi-scale interactions are non-linear and difficult to model,20

presenting a significant source of uncertainty in Ocean General Circulation Models (OGCMs) and our understanding of ocean
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circulation. Even under constant atmospheric forcing conditions, ocean models can produce divergent states from minimally

perturbed initial conditions (Penduff et al., 2014). This intrinsic variability becomes particularly prominent in eddy-permitting

models where small initial differences can cascade towards multi-decadal and basin scales (Grégorio et al., 2015; Leroux et al.,

2018; Zhao et al., 2023). To address these inherent uncertainties in OGCMs, researchers have increasingly adopted probabilistic25

ensemble models, running multiple simulations with small perturbations to initial conditions or parameter values to capture

a broad range of possible ocean states (Penduff et al., 2018; Zanna et al., 2019). The ultimate goal of ensemble models is to

predict the probability density of the system’s state at a future time (Leutbecher and Palmer, 2008).

Lagrangian particle tracking provides a powerful tool for studying ocean transport, mixing, and connectivity, with applications

ranging
::
the

:::::
latter

:
a
::::::
metric

:::
that

:::::
maps

:::
the

::::::
origin

::
of

:::::::::
substances

::::::
(water,

::::::::
nutrients,

::::::::
plankton,

::::::
plastic

:::::::
objects)

::
to

::::
their

:::::::::::
destinations.30

::::::::::
Applications

::
of

::::::::::
Lagrangian

:::::::
particle

:::::::
tracking

:::::
range from search and rescue operations (Breivik et al., 2013) to climate and en-

vironmental research (Bower et al., 2019; Van Sebille et al., 2018). In these simulations, virtual particles are typically advected

by velocity fields derived from OGCMs, with their dispersal patterns intimately linked to the underlying ocean state. These

::::::::
However,

::::::
similar

::
to

::::::
above,

:::
the

:::::::::
trajectories

::::::::
obtained

::::
from

:::
the

:::::::
particle

:::::::
tracking

::
in
::::

one
:::::::
OGCM

::::::::
ensemble

:::::::
member

::::
may

:::
not

:::
be

:::::::::::
representative

::
of

:::
the

::::
full

:::::::::
probability

::::::
density

:::
of

:::
the

:::::::
system’s

:::::
state.

:::::::
Because

::::
pure

::::::::
advection

::
is
::::::::::::
deterministic,

::::
there

::::
will

:::
be

::::
only35

:::
one

::::::::
trajectory

::::::::
resulting

::::
from

:
a
::::::
virtual

:::::::
particle

:::
that

:::::
starts

::
at

:
a
::::::
certain

:::::
place

:::
and

:::::
time.

::::
This

::::::::::
deterministic

::::::
nature

:::::
limits

::::
what

:::
we

::::::
define

::
as

::::::::
‘trajectory

::::::::::
variability’

:
–
:::
the

:::::
range

::
of

:::::::
possible

::::::::
pathways

::::
and

:::
end

::::::::
locations

:::
that

:::::::
particles

::::::
could

:::::
follow

:::::
given

:::::::::::
uncertainties

:::
in

:::::
ocean

:::::::::
conditions.

::::
We

:::::
define

:::::::::
trajectory

::::::::
variability

:::
as

:::
the

::::::
spread

::
in

:::::::
particle

::::::::
positions,

::::::::
pathways,

::::
and

::::::::::
connectivity

:::::::
patterns

:::
that

:::::::
emerges

:::::
when

::::::::::
accounting

::
for

:::::::::::
uncertainties

::
in

:::::
initial

:::::::::
conditions

::
or

::::::::
modeled

:::::
ocean

:::::
states.

:
40

::::::::
Capturing

:::
the

:::::::::
trajectory

:::::::::
variability

::
is

::::::
crucial

::::
for

:::::::
practical

::::::::::::
oceanography

:::::::::::
applications.

::::
For

::::::::
example,

::::::
search

::::
and

::::::
rescue

:::::::::::
professionals

::::
may

::::
want

::
to
::::::::

compute
:
a
::::

full
:::::::::
probability

:::::::
density

:::::::
function

::
of

::::::::
possible

:::::
object

::::::::
locations

::
–

::::
even

:::::
when

:::
the

:::::::
starting

::::::
location

::::
and

::::
time

::
of

::
an

::::::
object

:::
lost

::
at

:::
sea

:
is
::::::
known

::::::
exactly

::
–
:::
due

::
to

:::::::::::
uncertainties

::
in

:::
the

:::::
ocean

::::::
model.

::::::::
Similarly,

::::::
marine

::::::::
pollution

::::::
studies

::::
need

::
to

::::::
assess

:::
the

:::::
range

:::
of

:::::::
possible

::::::::::::
contamination

:::::::::
pathways,

:::::
while

::::::::::
connectivity

:::::::
studies

::
in

::::::
marine

:::::::
ecology

:::::::
require

:::::::::::
understanding

::::
the

:::
full

::::::::
spectrum

:::
of

:::::
larval

::::::::
dispersal

:::::
routes

::::::::
between

:::::::
habitats.

:::
In

::::
each

:::::
case,

::
a

:::::
single

:::::::::::
deterministic

:::::::::
trajectory45

:::::::
provides

:::::::::
insufficient

:::::::::::
information,

:::::::
limiting

:::
the

:::::::::::::
generalisability

::
of

:::
the

::::::
results,

::
as

::
it
::::::
cannot

::::::::
represent

:::
the

:::::::
inherent

::::::::::
uncertainty

::
in

:::::
ocean

::::::::
dynamics

:::
and

::::::
model

::::::::::
predictions.

::::
Now,

:
advected particle trajectories are chaotic, in which small perturbations in initial conditions or noise along their trajec-

tories can lead to significant divergences in particle trajectories (Koshel and Prants, 2006). The sensitivity to initial conditions

is often used to generate variability in particle trajectories to predict the drift of the particles when there is uncertainty in their50

initial conditions (Breivik et al., 2013).
::
In

::::
fluid

::::::::::
mechanics,

:::
this

::
is

::::::
related

::
to

:::
the

:::::::
concept

::
of

::::::::::
streaklines,

::::::::
transport

::::::
barriers

::::
and

:::::::
coherent

::::::::
structures

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Haller, 2004; Zhang, 2013; Karrasch, 2016; Balasuriya, 2017).

:

An alternative approach to generating variability in the trajectories is to advect particles using a full ensemble of vector fields

or ensemble models, an approach followed from Melsom et al. (2012), in which they advected particles using an ensemble of

100 members from the TOPAZ forecasting system. They found that ensemble average trajectories, calculated as the center of55

gravity (mean position) of all ensemble members at each time step, are generally closer (on a straight line distance) to the
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observed drifter trajectories than that from a deterministic single-member simulation. However, the study did not compare how

small perturbations in initial conditions in the single-member simulation performed relative to the trajectories advected by the

ensemble.

While ensemble Lagrangian simulations can capture a more complete spectrum of possible outcomes, single-member sim-60

ulations, which sample only a subset of the possible outcomes, remain more prevalent due to computational constraints. In

operational oceanography, data assimilative models are commonly used to improve trajectory predictions by combining ob-

servations with model dynamics to find an optimal solution (Castellari et al., 2001). However, while assimilation can reduce

systematic biases and improve the mean state representation, it may not fully capture the underlying uncertainty and variability

in particle trajectories, particularly in regions with sparse observations (Jacobs et al., 2018). Our study addresses these lim-65

itations by exploring ways of generating ensemble-like variability within single-member simulations.
:::::::
Missing

:::::::::
variability

::
in

::::::
particle

:::::::::
trajectories

::
is

::::::::
typically

::::::
created

::
by

::::::::
releasing

:::::::
particles

::
at

:::::::
different

::::::::
locations

:::::::::::::::::::::::::::::::::
(spatial variation; e.g., Rossi et al., 2013)

:
,
::
at

:::::::
different

:::::
times

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(temporal variation; e.g., Qin et al., 2014; van Sebille et al., 2015),

::::::
and/or

::::
with

:
a
:::::
small

:::::::
amount

::
of

::::::
random

:::::
walk

:::::::
diffusion

:::::
added

::
to
:::
the

:::::::::
advection

::::::::::::::::::::::::::::::::
(e.g., Hart-Davis and Backeberg, 2021).

:::
We

::::
here

:::
test

::::
how

::::::::::
well-suited

::::
these

::::::::::
approaches

:::
are

::
to

:::::::
represent

:::::::
intrinsic

:::::::::
variability

::::::::
resulting

::::
from

::
an

::::::::
ensemble

:::::::::
simulation

::::::
within

:
a
::::::
single

:::::::::
simulation.

:
70

We assess performance based on a connectivity analysis and dispersion patterns using a novel information theory approach.

Our approach consists of quantifying the variability in trajectories through the marginal entropy of particle position distribu-

tions and evaluating the uncertainty in representing full-ensemble variability with single-member simulations.
:::
Our

::::::::
approach

:
is
:::::::::::::
complementary

:::
to

::::
other

::::
new

::::::::::
approaches

:::
for

:::::::::
computing

::::::::
stochastic

:::::::::
sensitivity

::
of

::::::::::
Lagrangian

::::::::::
trajectories

::
in

:::
the

:::::
ocean,

:::::
such

::
as

:::::
those

::
by

:::::::::::::::
Balasuriya (2020)

:
,
::::::::::::::::
Badza et al. (2023)

:::
and

:::::::::::::::::::::
Branicki and Uda (2023).

:::::::::
However,

:::
our

::::::::
approach

::
is

::::::::::
particularly

::::
also75

:::::
useful

:::
for

:::::::
particles

::::
with

:::::
added

:::::::::::
‘behaviour’,

::::
such

::
as

::
in

:::
the

::::
case

::
of

::::::
plastic

:::::::
particles

:::::::::::::::::::::::::::::
(e.g., Denes and Van Sebille, 2024).

:

We focused on the region east of Cape Hatteras in the North Atlantic Ocean, implementing spatially and temporally varying

release strategies to generate variability comparable to that observed in full ensemble simulations. This region was chosen to

study the connectivity of water parcels at the surface of the Gulf Stream with the Eastern North Atlantic and the subtropical

gyre. It was previously thought that the salty and warm surface water of the Gulf Stream feeds directly to the subpolar gyre.80

However, recent Lagrangian studies have shown that the water parcels originating at the surface of the Gulf Stream recirculate

within the subtropical gyre, becoming part of the subtropical mode water, and enter the subpolar gyre via sub-surface connec-

tions (Rypina et al., 2011; Burkholder and Lozier, 2014; Foukal and Lozier, 2016; Berglund et al., 2022). Our study
:::::::::
case-study

:::
here

::::
thus

:
builds upon these findings by quantifying how intrinsic ocean variability affects this connectivity pattern within the

subtropical gyre, providing insights into the robustness and variability of these recirculation pathways.85

2 Methodology

2.1
:::::

Ocean Model Set-Up
:::::::::
Ensemble

:::::::::
Simulation

Lagrangian particles were advected offline using six years (2010-2015) of
:::
We

::::::::
employed

:
daily surface velocity fields produced

by the North Atlantic NATL025-CJMCYC3 50-member ensemble simulation. This regional ensemble simulation was per-
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formed in the context of the OceaniC Chaos – ImPacts, strUcture, predicTability project (OCCIPUT), described in Penduff90

et al. (2014) and Bessières et al. (2017). This ensemble was performed using the NEMO v3.5 ocean/sea-ice model over the

North Atlantic between 20◦S and 81◦N, with an eddy-permitting resolution of 1/4◦ and 46 vertical levels. The 50 ensemble

members were initialized by the final state of a 15-year one-member spin-up that ended in December 1992. The inter-member

dispersion was generated by activating a small stochastic perturbation in the equation of state during 1993 and deactivating

it for the remaining simulation time. All ensemble members were driven by the same atmospheric forcing between 1993 and95

2015, derived from the DRAKKAR Forcing Set 5.2 (DFS5.2; see Dussin et al. (2016)). The NATL025-CJMCYC3 1993-2025

simulation used here is similar to the NATL025-GSL301 1993-2012 simulation presented in Narinc et al. (2024), with one

difference: tropical cyclones were enhanced in the forcing of NATL025-CJMCYC3 since they were too weak in DFS5.2. More

details about the model setup are provided in Narinc et al. (2024).

These velocity fields were used to advect particles100

2.2
::::::::::

Lagrangian
::::::::::
Simulations

:::::::::
Lagrangian

:::::::
particles

:::::
were

::::::::
advected

:::::
offline

:::::
using

:::
six

:::::
years

:::::::::::
(2010-2015)

::
of

:::
the

:::::::
velocity

:::::
fields

::::::::
described

:::::
above, where particle

trajectories in each ensemble member were integrated using the Parcels framework v.3.0.2 (Delandmeter and van Sebille,

2019). Trajectories were integrated in three dimensions using a fourth-order Runge-Kutta scheme with a time step of 1 hour,

storing the output with a daily timestep. We modeled passive particles (that is, particles that instantly adjust their velocity105

to that of the ambient flow) by only considering three-dimensional advection and ignoring all buoyant or diffusive forces.

Additionally, particles that escaped the domain through the surface were placed back to a depth of 1m. We chose the region

off the coast of Cape Hatteras as a study location because it is an important region where the Gulf Stream separates from the

continental shelf and becomes a free jet (Mao et al., 2023; Buckley and Marshall, 2016).

2.3
:::::::::

Recreating
:::::::
Particle

::::::::::
Trajectory

:::::::::
Variability110

This study explores methods to recreate the trajectory variability typically obtained from ensemble ocean simulations using

only a single ensemble member. Figure 1 illustrates both the challenge and our proposed approaches. When particles are

released from a fixed point (35.61◦N, 73.61◦W; yellow square)
::
at

:
a
:::::::
distinct

::::
time

::
(2

:::::::
January

:::::
2010) and tracked using different

ensemble members, their trajectories (shown in black,
::::::
Figure

:::
1A) diverge due to variations

:::::::
intrinsic

:::::::::
variability in the velocity

fields. Our goal is to reproduce this dispersion
::
of

::::
what

:::
we

:::::
refer

::
to

::
as

:::
the

::::
‘full

::::::::
ensemble’

:
using just one ensemble member.115

We tested two
::::
three approaches to achieve ensemble-like variability

:::
the

::::::::
variability

:::
of

:::
this

:::
full

::::::::
ensemble

:
with single-member

simulations
:
, by leveraging the sensitivity to initial conditions

:
or

::::::
adding

::::::::
diffusion. The first strategy varies the release loca-

tions
:
of

:::
the

::::::
virtual

::::::::
particles

:
spatially (shown in purple in Figure 1

:
B), creating a cloud of initial positions centered around

35.61◦N and 73.61◦W. The purple circles indicate the varying release locations, while the purple arrows show their subse-

quent trajectories. The second strategy (shown in orange,
::::::
Figure

:::
1C) maintains the fixed release location (yellow square) but120

varies the release timing, with particles released continuously over a time period. Both methods generate substantial trajectory

spreading that qualitatively resembles
:::
The

::::
third

:::::::
strategy

:::::::
(shown

::
in

::::::
green,

::::::
Figure

::::
1D)

::::::::
maintains

::::
the

::::
fixed

:::::::
release

:::::::
location

4



:::
and

::::::
release

:::::
time,

:::
but

::::
adds

:
a
:::::

small
:::::::::
Brownian

::::::
motion

:::::::::
diffusivity

::
to

:::
the

::::::::
trajectory

:::::::::::
simulations.

:::
All

:::::::
methods

:::::::
generate

:::::::::
trajectory

::::::::
spreading

::::
with

:::::::
different

:::::::
patterns,

:::::
some

::
of

:::::
which

:::::::::::
qualitatively

::::::::
resemble the full ensemble variation, though with distinct spatial

patterns
::::::::::
trajectories,

:::::
which

:::
we

::::
seek

::
to

:::::::::::
quantitatively

::::::::
compare.125

The single-member simulations were performed using velocity fields from individual members of the NATL025-CJMCYC3

ensemble. To ensure robust statistics, we repeated each strategy (spatial and temporal variation
:::
and

::::::
added

::::::::
diffusion) with

all 50 ensemble members rather than arbitrarily selecting one. For the ensemble simulations, rather than running new sim-

ulations where all ensemble members simultaneously advect particles, we selected and joined trajectories from our existing

single-member simulations to create a ‘synthetic’ mixture-of-all-member simulation. This mixture simulation contains the130

full ensemble variability and is our benchmark for comparing both
:::
the

::::
three

:
single-member strategies. The following subsec-

tions further detail the two
::::
three single-member release strategies and the ensemble simulations, which we refer to as mixture

simulations.

2.4 Spatially Varying Release

2.3.1
::::::::
Spatially

:::::::
Varying

:::::::
Release135

We performed Lagrangian simulations by releasing a cloud of particles around (35.71◦N,73.61◦W), at 1 meter depth, on

2 January 2010.
::::
2010

:::
and

::::::::
tracking

::::
them

:::::
until

:::
the

:::
end

:::
of

:::::
2015,

::
so

::::
for

:::
six

::::
years

:::
in

::::
total.

:
We evenly spaced the particles in

concentric rings around the coordinates, where each ring was placed at a constant radial separation (δr) from the prior ring,

forming a circle of particles. We varied the radius of this cloud of particles; the larger the radius, the less correlated the velocity

vectors of the particles are expected to be, creating more variability in the trajectories.
:::
The

::::::
choice

::
of

:::::
spatial

::::::
release

:::::
radii

:::::
(9 km140

:::::::
-180 km)

:::::
spans

:::
the

::::::
range

::::
from

::::::::::::
sub-mesoscale

::
to
:::::::::
mesoscale

::::::::::::
oceanographic

::::::::
features,

:::::::
allowing

:::
us

::
to

:::
test

::::
how

::::::
initial

::::::::
condition

::::::::::
uncertainties

::
at

::::::::
different

:::::
scales

:::::
affect

::::::::
long-term

:::::::
particle

:::::::::
dispersion.

:
We created three sets of simulations, with 50 simulations

per set (one per ensemble member). The three sets of simulations were performed with 7,500 particles, with an initial cloud

varying δr ∈ {0.1◦,1.0◦,2.0◦}.

At the release point, the initial cloud radiuses
::::
radii are approximately 9 km, 90 km, and 180 km. As a reference, we computed145

the ensemble average spatial autocorrelation function of the initial particle velocities at the release location on the same release

day (2 January 2010). The spatial autocorrelation function describes the average agreement between the particle velocities

of particles
:
a

:::
pair

::
of
:::::::

particle
::::::::
velocities

:
separated by a distance L. The larger the separation distance L, the more likely their

velocities will be decorrelated (LaCasce, 2008). Assuming that the spatial correlation decays exponentially, we defined the

decorrelation length scale LL as the e-folding length scale of the exponential that describes the autocorrelations functions (Xia150

et al., 2013). The analysis is shown in Appendix ?? and Figue 2B.

In this region, the average decorrelation length scale for the

:::
The

::::::::::
particle-pair

::::::
spatial

:::::::::::::
autocorrelation

:::::::
function

::::
was

::::::::
calculated

:::::
over

:
a
:::
set

::
of

:::::
points

::::::
placed

::::
over

::
a
::::::::::
west-to-east

::::
line,

::::::
shown

::
by

:::
the

::::
blue

::::
dots

::
in

::::::
Figure

::::
2A,

::::
with

::
a

::::::::
horizontal

:::::::
spacing

::
of

:::::
0.01◦

:
.
:::
We

:::::::::
calculated

:::
the

:::::::
velocity

:::::::::::::
autocorrelation

:::::::
function

:::::
from

5



Figure 1. Schematic representation of the experiment design, east of Cape Hatteras, showing three
:::
four

:
approaches to generate variability in

the particle trajectories.
::
A)

:
The black lines show 50 trajectories of particles released from a single point (35.61◦N, 73.61◦W; yellow square)

:
at
::
a

:::::
distinct

::::
time

::
(2

::::::
January

:::::
2010) and advected using velocity fields from all 50 members of the NATL025-CJMCYC3 ensemble.

::
B) Purple

trajectories show 50 randomly selected particles, out of 7,500, released from spatially varying locations (purple circles) within a 1◦ radius

of the central point, all advected using ensemble member 3.
::
C)

:
Orange trajectories represent 50 randomly selected particles, out of 7,500,

released uniformly over a 20-week period from the central point (35.61◦N, 73.61◦W; yellow square), also using ensemble member 3.
::
D)

::::
Green

:::::::::
trajectories

:::::::
represent

:::
50,

:::
out

::
of

:::::
7,500,

::::::::
randomly

::::::
selected

:::::::
particles

::::
from

:::
the

:::::::
ensemble

:::::::
member

:
3
:::::::::

simulation
:::
with

:::::
added

::::::::
diffusion,

::::::
released

::::
from

::
the

::::::
central

::::
point

::::::
(35.61◦

::
N,

:::::
73.61◦

::
W;

:::::
yellow

:::::::
square). All trajectories are shown 14

::
35 days after their respective release times.

6



::::
these

:::::
points

:::
as

:
a
:::::::
function

::
of

:::
the

:::::::
distance

:::
L.

:::
The

::::::
spatial

:::::::::::::
autocorrelation

:::::::
function

::
is

::::::
defined

::
as

:
155

ρ(L) =

〈
u(r0 +L) ·u(r0)

∥u(r0 +L)∥∥u(r0)∥

〉
,

:::::::::::::::::::::::::::

(1)

::
in

:::::
which

:::
we

:::::::
compute

:::
the

::::
dot

::::::
product

:::
of

:
a
::::
pair

::
of

::::::
vectors

:::::
u(r0)::::

and
:::::::::
u(r0 +L),

:::::::
divided

::
by

:::
the

::::::::::::
multiplication

::
of

:::::
their

::::::
norms,

:::::::
averaged

::::
over

:::
all

:::
the

::::
pairs

:::
of

::::::::
velocities

::::::::::::::
(Xia et al., 2013)

:
.
::
In

:::
Eq.

::::
(1),

::::
∥ · ∥

:
is
::::

the
::::
usual

:::
L2::::::

norm,
:::
and

:::
⟨·⟩

:::::::
indicates

:::
an

:::::::
average

:::
over

::::::::
velocity

:::::
pairs.

:::
We

::::::::
computed

:::::
ρ(L)

:::
for

:::
the

:::::
range

::::::::::::::::
L ∈ [0.01◦,2.00◦],

::::
with

:
a
::::::
0.01◦

:::::::
spacing.

::::
The

::::::::::::
autocorrelation

::::::::
function

:
is
:::::::
defined

:::::::
between

:::::::
[−1,1],

::
in

:::::
which

::::::::
ρ(L) = 1

::::::::
indicates

:
a
:::
full

:::::::
positive

::::::::::
correlation,

::::::::::
ρ(L) =−1

:
a
:::
full

::::::::
negative

:::::::::
correlation,

::::
and160

:::::::
ρ(L) = 0

:::
no

::::::::::
correlation.

::::::::
Following

::::
Eq.

:::
(1),

:::
we

:::::::::
computed

:::::
ρ(L)

:::
for

:::::
each

::
of

:::
the

:::
50

:::::::::
ensemble

::::::::
members

::
of

:::
the

:
NATL025-CJMCYC3ensemble is

LL = 0.41◦, approximately 37 km. This LL is slightly larger than the local
:
,
::
on

::
2

::::::
January

:::::
2010.

::
In

::::::
Figure

:::
2B,

:::
we

:::::
show

::
the

:::::
ρ(L)

::
for

:::::
each

::::::::
ensemble

:::::::
member

::
as

:::::
black

::::
lines.

::::
We

:::
see

::::
great

:::::::::
variability

::
in

:::
the

::::::
curves

:::
but

::
an

:::::::::::
exponentially

::::::::
decaying

:::::
trend

::
in

::::::
which,

::
as

::
L

::::::::
increases,

:::
the

::::::
particle

::::::::
velocities

:::
are

::::
less

:::::::::
correlated.

:::
We

:::::::::
performed

::
an

::::::::::
exponential

:::
fit,

::::::
ex/LL ,

::
of

:::
the

::
50

::::::::::
correlation

::::::
curves,165

:::::
shown

::
in

::::
blue

:::
in

:::::
Figure

::::
2B.

:::::
From

:::
the

::::::::::
exponential

:::
fit,

::
we

::::::::
obtained

:
a
::::::::::::

decorrelation
:::::
length

:::::::::::
LL = 0.41◦,

:::::
which

:::::::::::
corresponds

::
to

::::::::::::
approximately

::::::
37 km

:
at
::
a
:::::::
latitude

::
of

:::::
35.5◦

::
N.

:::
As

:
a
:::::::::

reference,
:::
the

:
Rossby deformation radius , approximately 30 km in this

region
:
is

:::::::::::
LR ≈ 30km (Chelton et al., 1998). Both spatial scales indicate that the velocities of all the particles released from

an initial cloud of δr = 0.1◦ should be correlated, while for the larger clouds δr ∈ {1.0◦,2.0◦}, only a fraction of the particle

velocities may be correlated, leading to more variability in the trajectories.
:::::
While

:::::::::::
decorrelation

::::::
scales

:::::
likely

::::::
evolve

::::
over

:::
the170

:::::
6-year

:::::::::
simulation

::::::
period

:::
due

::
to

:::::::
particle

::::::::
spreading

:::
and

:::::::
varying

::::
flow

:::::::::
conditions,

:::::::::
computing

::::
their

::::::::
evolution

::
at

:::::
every

::::::
particle

::::
age

:
is
::::::::::::::
computationally

:::::::
intensive

::::
and

::::::::::
impractical,

::::::::
compared

::
to

:::::
other

:::::::
metrics.

2.4 Temporally Varying Release

2.3.1
::::::::::
Temporally

:::::::
Varying

:::::::
Release

We also created variability by releasing particles from the same location (35.71◦N,73.61◦W) at different times. We tested175

three release time windows: 4, 12, and 20 weeks, all starting from 2 January 2010. For each window length, we performed

50 simulations (one per ensemble member), with each simulation releasing 7,500 particles. Within each time window, we

distributed the 7,500 particles evenly across the days, resulting in multiple particles being released each day. To ensure particles

released on the same day followed different trajectories, we added small random perturbations to their release locations using

uniform noise with an amplitude of 0.01◦. We kept this noise amplitude small because larger values would introduce significant180

spatial variability, making it difficult to
:
to

:::
(as

:::::
much

::
as

::::::::
possible) isolate the effects of the temporal release strategy alone.

::::
Note

:::
that

:::
all

:::::::
particles

:::::
were

::::::::
advected

::::
until

:::
the

::::
end

::
of

::::::
2015,

::
so

::::
that

::
in

::::
this

:::::::::
simulation

:::::
some

:::::::
particles

:::::::
reached

::
a
:::::::::
maximum

:::::
‘age’

:::::::::::
(time-of-flow)

:::
of

:
6
:::::
years

:::
and

:::::
others

::::
only

:::
5.6

::::::
years.

::::
This

::
is

:
a
:::::
minor

:::::
effect

:::::::
though,

::
as

::::
most

::
of

:::
our

:::::::
analysis

::::
will

:::::
focus

::
on

:::
the

::::
first

:::
few

::::::
months

:::
of

::::::::
advection.

:

We computed the average decorrelation timescale for all ensemble members to better understand how the particles’ initial185

velocities are correlated for different time lags at the release location. Similar to spatial autocorrelation, the temporal autocorrelation
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Figure 2.
::
A)

::::
Map

::
of

::::
Cape

:::::::
Hatteras

::::::
showing

:::
the

:::::
points

::::
used

:
to
:::::::
compute

:::
the

:::::
spatial

:::::::::
correlations

:::::
(blue)

:::
and

::
the

:::::::
location

:::
used

::
to
:::::::
compute

:::
the

::::::
temporal

:::::::::
correlations

:::::
(red).

:::
The

:::::::
hexagons

::::
mark

:::
the

::::
limits

::
of

::
the

::::::::
hexagonal

:::
grid

::::
used

::
in

::::::::
subsequent

:::::::
analyses,

:::
and

:::
the

::::
green

:::
area

::::::::
represents

:::
the

::::
North

::::::::
American

::::
coast.

:::
B)

:::::
Spatial

:::::::::
correlations

::::::
function

::::::
around

::
the

::::::
release

:::::::
location,

:::
and

:::
each

:::::
black

:::
line

:::::
shows

::
the

:::::::::
correlation

::::::
function

:::
for

::
an

:::::::
ensemble

::::::
member.

::::
The

:::
blue

:::
line

:::::
shows

:::
the

::::::::
exponential

::
fit

::::::::
computed

:::
over

:::
the

::
50

::::::::
correlation

::::::::
functions.

:::
The

::::
green

:::
line

:::::
shows

:::
the

::::::::::
decorrelation

:::::
length

:::::
scale

::::::::::::::::
LL = 0.41◦ ≈ 37km.

:::
C)

:::::::
Temporal

:::::::::
correlations

::::
with

:::::::
velocities

:::::::
sampled

::::
daily

::
for

:::
60

::::
days

::::
from

::
the

::::
2nd

::
of

::::::
January

::::
2010.

::::
The

::::
black

::::
lines

::::
show

:::
the

:::::::::
correlation

:::::::
functions

::
of
:::::

single
::::::::

ensemble
:::::::
members,

::::
and

:::
the

:::
red

:::
line

:::::
shows

:::
the

:::::::::
exponential

::
fit

::::
with

::
a

::::::::::
decorrelation

:::::::
timescale

::
of

::
41

::::
days.

timescale describes the average agreement between the velocities of particles
:::
We

::::::::
computed

:::
the

::::::::::
particle-pair

:::::::
temporal

:::::::::::::
autocorrelation

:::::::
functions

:::
by

::::::::
sampling

:::
the

:::::::
velocity at the same location but with a delay or lag of t days. The longer

::
on

:::::::
different

:::::
days,

::::::
shown

::
as

:
a
:::
red

:::::
point

::
in

:::::
Figure

::::
2A.

:::
We

:::::::
sampled

:::
the

:::::::
velocity

::::
daily

:::
for

:
a
:::::::
duration

::
of
:::
60

:::::
days,

::::::
starting

::
on

:::
the

::::
2nd

::
of

:::::::
January,

:::::
2010.

:::::
From

::
the

::::::::
sampled

::::::::
velocities,

:::
we

::::::::
computed

:::
the

::::::::
temporal

:::::::::::::
autocorrelation

:::::::
function

:::::
given

::
by

:
190

ρ(t) =

〈
u(t0 + t) ·u(t0)

∥u(t0 + t)∥∥u(t0)∥

〉
,

:::::::::::::::::::::::::

(2)

:::::
where

:
t
:::::::::
represents

:::
the

::::
time

:::
lag

:::::::
between

:::::
pairs

::
of

::::::::
velocities

:::::
u(t0):::

and
::::::::
u(t0 + t)

::::::::
averaged

::::
over

:::
all

::::
pairs

::::
with

::
a
:::
lag t,

::::::
similar

::
to

:::
Eq.

:::
(1).

:

:::::::
Similarly

::
to
:::::
ρ(L),

:::
we

::::::::
computed

:::
the

::::::::
temporal

::::::::::::
autocorrelation

::::::::
function

:::
ρ(t)

:::
for

:::
the

::
50

::::::::
members

::
of

:::::::::::::::::::
NATL025-CJMCYC3,

:::
for

the more likely the velocities will be decorrelated (LaCasce, 2008). Assuming that temporal autocorrelation decays exponentially,195

we defined the decorrelation timescale τL as the e-folding timescale, after which there is a 69% probability for the velocities

to be decorrelated (Xia et al., 2013). The full analysis is shown in Appendix ?? and
::::
range

:::::::::
t ∈ [1,60]

::::
days

::::
with

:
a
:::::::
spacing

::
of

::
1

:::
day.

::
In

:
Figure 2C.

We found that the local average decorrelation timescale was ,
:::
we

:::::
show

::::
each

::::::::
member’s

::::
ρ(t)

::
as

:::::
black

::::::
curves.

:::
We

::::::::
performed

:::
an

:::::::::
exponential

::
fit

:::::
ex/τL

::::
over

:::
the

:::
50

:::::::::
correlation

::::::
curves.

::
In

::::::
Figure

:::
2C,

:::
we

:::::
show

::
in

:::
red

:::
the

:::::::::
exponential

:::
fit.

:::
We

:::::
found

::
a
:::::::::::
decorrelation200

::::::::
timescale

::
of τL = 41 days , almost 6 weeks

:::
for

:::
the

::::::::
velocities

::
of

:::
the

:::::::
particles

:::::::
released

::
on

:::::::
different

:::::
days. Therefore, it is expected
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that almost all the particles are correlated for a release period of 4 weeks, and for the larger release periods of 12 and 20 weeks,

only a fraction of the particles will be correlated, creating more variability in the trajectories.

2.3.2
::::::
Release

:::::
with

::::::
Added

::::::::
Diffusion

:::
We

::::::::
performed

::::::::::
simulations

::::
with

:::::::::
horizontal

::::::::
diffusion

::
as

:
a
:::::::
method

::
to

:::::::
generate

:::::::::
variability

::
in

:::
the

::::::::::
trajectories.

:::
The

:::::::::
variability

::::
was205

::::::::
generated

:::
by

::::::
adding

:
a
:::::::::

horizontal
:::::::::
Brownian

::::::
motion

:::::
(also

::::::
known

::
as

::
a
:::::::
random

:::::
walk)

:::::
term

::
to

:::
the

:::::::::
integration

:::
of

:::
the

:::::::
particle

:::::::::
trajectories.

:::::::::
Therefore,

:::
the

:::::::::
horizontal

::::::::::
components

::
of

:::
the

:::::::
particle

:::::::::
trajectories

::::
were

:::::::::
integrated

::::
with

x(t+∆t) = x(t)+

t+∆t∫
t

u(x, τ)dτ +R
√
2Kh∆t,

::::::::::::::::::::::::::::::::::::::::

(3)

:::::
where

::
x

:
is
:::
the

:::::::::
horizontal

:::::::
location

::
of

:::
the

::::::
particle

::
at
::
a
::::
time

::
t,

::
∆t

::
is
:::
the

:::::::::
integration

::::::::
timestep,

:::
and

::
u
::
is

:::
the

:::::::::
horizontal

::::::::::
components

::
of

:::
the

:::::::
Eulerian

:::::::
velocity

::::
field

:::::::::::
interpolated

::
to

:::
the

:::::::
particle

:::::::
location.

::::
The

:::
last

:::::
term

::
is

:::
the

::::::::
Brownian

:::::::
motion

::::
term,

::::::
where

::
R

::
is
::
a210

::::::
random

:::::::
number

:::::::
between

:::::
(0,1)

:::::
taken

::::
from

:::
the

::::::
normal

::::::::::
distribution

::::
with

::::
zero

:::::
mean

:::
and

::::
unit

::::::::
variance,

:::
and

:::
Kh::

is
:::
the

:::::::::
horizontal

:::::::
diffusion

:::::::::
coefficient

::::::::::::::::::::
(Van Sebille et al., 2018)

:
.

::
In

:::
the

::::::::::
simulations

::::
with

::::::
added

::::::::
diffusion,

:::
we

:::::::
released

::::::::
particles

::::
from

:::
the

:::::
fixed

:::::::
position

:::::::::::::::::
(35.71◦N,73.61◦W)

:::
on

::
2

:::::::
January

:::::
2010,

::::::
without

:::::::::
perturbing

:::
the

:::::
initial

:::::::::
conditions,

::::::::
spatially

::
or

::::::::::
temporally.

:::
We

:::::::
released

:::::
7,500

:::::::
particles

:::
per

::::::::
ensemble

:::::::
member

::::
and

::
we

::::::::
advected

::::
those

::::::::
particles

::
for

::
6
:::::
years,

::::
until

:::
the

:::
end

::
of

:::::
2015.

:::
We

::::
used

::
a

:::::::
constant

::::::::
horizontal

::::::::
diffusion

:::::::::
coefficient

::::
with

:
a
:::::
value

::
of215

:::::::::::::
Kh = 10m2s−1,

::
a
:::::
value

:::::::::
commonly

::::
used

::
to

::::::::::
parametrize

::::::
subgrid

::::::::
processes

::
in

:::::
ocean

:::::::
models

::::
with

::::::::::
comparable

:::::
spatial

:::::::::
resolution

:::::::::::::::::::::::::::::::::::::::::::::::::
(Lacerda et al., 2019; Onink et al., 2021; Pierard et al., 2022).

:::
We

::::
note

::::
that

:::::::::
appropriate

::::::::
diffusion

::::::::::
coefficients

:::
for

:::::::::::
subgrid-scale

:::::::::::::
parameterization

:::
are

:::::::
strongly

:::::::::
dependent

:::
on

:::
the

::::::
model’s

::::::
spatial

:::::::::
resolution.

:

2.4 Domain Partition and Two-Dimensional Probability Distributions
:::::::::
Trajectory

::::::::
Analysis

::::::::
Methods

2.4.1
:::::::
Domain

::::::::
Partition

::::
and

:::::::::::::::
Two-Dimensional

::::::::::
Probability

::::::::::::
Distributions220

For the analysis, we created probability distributions from two-dimensional histograms of the positions of particles (Van Sebille

et al., 2018). To construct the two-dimensional histograms, we
::
We

:
partitioned the domain into hexagonal bins by using the

H3 Uber hexagonal hierarchical spatial indexing system (Brodsky, 2018). The H3 grid has the advantage that the area of the

hexagons is better preserved across the low and high latitudes compared to a square grid in a Mercator projection (O’Malley

et al., 2021; Manral et al., 2023). Additionally, each ,
::::
and

::::
each

:::::::::
hexagonal

:
bin is uniquely indexed, facilitating the reproduc-225

tion of the analysis. We used a
::
an

:::
H3 resolution of h= 3for the hexagons, where the distance between the centroids of two

neighboring hexagons measures approximately
:
,
:::::
where

::::::::::
neighboring

:::::::
hexagon

::::::::
centroids

:::
are

::::::::
separated

:::
by 100 km. We acknowl-

edge that using a square grid projection for the analysis presented here will
:::::
would not significantly change the results if

:::
our

:::::
results

:::::
since particles do not drift to high latitudes.

With the hexagonal domain partitioning, we constructed a
:::
The

::::::
spatial

::::::
domain

::
is

:::::::::
discretized

:::
as

::::::::::::::::
X = x1,x2, . . . ,xB ,

::::::
where230

::::
each

::
xi:::::::::

represents
:
a
:::::::::

hexagonal
:::
bin

::::
and

::
B

::
is

:::
the

::::
total

:::::::
number

::
of

:::::
bins.

:::
We

::::::::::
constructed

:
time series of histograms , where we
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binned the positions of the particles by counting the number of
::
by

::::::::
counting

:
particles in each bin at timesteps of 1 day. We

binned the particle
::
xi ::

at
::::
daily

:::::::::
timesteps,

:::::::
binning

:
trajectories according to their particle age , which is defined as the drift

:
t

:
(time since release.

:
).
:

For each dayin the time series, we created a two-dimensional probability distribution by normalizing the number of particles235

in each bin by the total number of particles in the domain on a specific day. The probability distributions, or likelihood

distributions, indicate the most likely bins where there are particles at a certain particle age (Pierard et al., 2022). This
:
,
:::
we

::::::::
computed

:
a
::::::::::

probability distribution allows us to define the conditional probability Pm = P (X|m,t)
:::
over

:::
the

::::::
spatial

:::::::
domain

::
by

::::::::::
normalizing

:::::::
particle

:::::
counts

::
in
:::::
each

:::
bin.

::::
The

:::::::::
probability

::
of

::::::
finding

::::::::
particles

::
in

::::::::
hexagonal

:::
bin

:::
xi ::

is
::::
given

::::
by:

Pm(xi|m,t) =
Ni(m,t)∑B
j=1Nj(m,t)

,

:::::::::::::::::::::::::

(4)240

:::::
where

::::::::::
Pm(xi|m,t)

::
is
:::
the

:::::::::
probability

:::
of

::::::
finding

:::::::
particles

::
in

:::
bin

:::
xi ::::

given
:::::::::
ensemble

:::::::
member

::
m

::
at

::::::
particle

::::
age

:
t,
::::::::
Ni(m,t)

::
is

:::
the

::::::
number

::
of

::::::::
particles

::
in

:::
bin

::
xi:::

for
:::::::
member

:::
m

::
at

:::
age

::
t,

:::
and

:::
B

:
is
::::

the
::::
total

::::::
number

:::
of

::::
bins.

::::
This

:::::::
ensures

:::::::::::::::::::

∑B
i=1Pm(xi|m,t) = 1

::
for

::::
each

::::::::
member

:::
and

::::
time

::::
step.

:

:::
The

::::::::
complete

::::::::::
probability

::::::::::
distribution

::::::::::::::::::::::::::::::::::::::::::::::::::
Pm(X|m,t) = [Pm(x1|m,t),Pm(x2|m,t), . . . ,Pm(xB |m,t)]

:::::::::
represents

:::
the

::::::
spatial

::::::::
likelihood

:
of finding particles in the domain given the

:::::
across

:::
the

::::::
domain

:::
for

:
ensemble member m used to advect the particles245

at a particular
::
at particle age t.

2.5 Mixture Probability Distributions

2.4.1
:::::::
Mixture

:::::::::::
Simulations

:::
and

::::::::::
Probability

::::::::::::
Distributions

To evaluate how well single-member strategies can reproduce the full ensemble variability, we constructed mixture probability

distributions
::::::::::
simulations that capture the dispersal patterns across all ensemble members. Using a bootstrapping approach, we250

randomly selected 150
:::::::
np = 150

:
particles from each of the 50

::::::
M = 50

::::::::
ensemble

:
members and combined their trajectories to

create a mixture simulation
:::::::::
containing

:::::::::::::
M ×np = 7500

:::::::
particles

::::
total. We repeated this procedure 50

::::::
R= 50 times to generate

a robust set of mixture simulations. From these simulations

::::
Each

:::::::
mixture

:::::::::
simulation

:::::::::
represents

::
a
::::::::
synthetic

::::::
dataset

::::
that

:::::::::
combines

::::::
particle

::::::::::
trajectories

:::::
from

:::
all

::::::::
ensemble

:::::::::
members,

::::::
creating

::
a
::::::::::::
representation

:::
of

:::
the

::::
full

:::::::::
ensemble’s

::::::::
dispersal

:::::::::
behavior.

:::::
These

:::::::
mixture

::::::::::
simulations

:::::
serve

:::
as

:::
our

:::::::::
reference

:::
for255

::::::::
evaluating

:::::::::::::
single-member

::::::::
strategies

:::
and

:::
are

::::
used

::
in

::::::::::
subsequent

::::::::::
connectivity

:::::::
analyses

:

:::
For

::::
each

:::::::
mixture

::::::::::
simulation

:
r, we computed mixture probability distributions Pmix by binning particle positions in a

hexagonal grid . To assess the effectiveness of our single-member strategies, we computed mixture
:::::::::
probability distributions for

each release strategy
::::
over

::
the

:::::::::
hexagonal

::::
grid

:::::::::
following:

Pmix(xi|r, t) =
Ni(r, t)

M ×np
,

:::::::::::::::::::

(5)260
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:::::
where

::::::::::
Pmix(xi|r, t)::

is
::::

the
:::::::::
probability

::
of

:::::::
finding

:::::::
particles

::
in

::::
bin

::
xi:::

for
:::::::
mixture

:::::::::
simulation

::
r

::
at

::::::
particle

::::
age

::
t,

:::::::
Ni(r, t) ::

is
:::
the

:::::::::::
corresponding

:::::::
particle

:::::
count

::
in

:::
bin

:::
xi.

:::
We

::::::::
computed

:::::::
separate

:::::::
mixture

::::::::::
distributions

:::::::::::
Pmix(X|r, t)

::
for

::::
each

:::::::::::::
single-member

:::::::
strategy

::
to

:::::
assess

::::
their

:::::::::::
effectiveness: three

spatial variations (δr ∈ {0.1◦,1.0◦,2.0◦}) and three temporal variations (4 weeks, 12, and 20 weeks). Computing separate

mixture distributions for each strategy
:::
This

::::::::::::::
strategy-specific

::::::::
approach

:
was necessary because we could not predict a priori265

how the spatial or temporal release variations might affect
::::
could

::::::::::::
unpredictably

:::::
affect

:::::
how

::::
well

::::
each

:::::::
strategy

::::::::
captures the

ensemble variability represented in these
:::
the

::::::
mixture

:
distributions.

The optimal number of particles per ensemble member was determined by analyzing the
::
We

::::::::::
determined

:::
the

::::::
optimal

:::::::
particle

::::
count

:::
by

:::::::::
analyzing

::::::
entropy

:
convergence of the distribution’s entropy. For our chosen grid cell

:::::::::
probability

:::::::::::
distributions.

:::
At

:::
our

:::::::::
hexagonal

:::
grid

:
resolution (h= 3), we demonstrate in Appendix A and Figure A1 that the entropy converges with 150270

::::::
entropy

:::::::::
converges

::
at

::::::::
np = 150

:
particles per ensemble member, with additional particles providing no significant change in

entropy . Therefore, each mixture simulation subset comprises 7,500 trajectories(150 particles × 50 members). We maintained

this total particle count (7,500) in our
:::::::
yielding

:::
no

::::::::
significant

:::::::
entropy

::::::
change

::::::::::
(Appendix

::
A,

::::::
Figure

::::
A1).

::::
This

::::::
yields

:::::::
mixture

:::::::::
simulations

:::
of

:::::
7,500

::::::::::
trajectories,

:
a
:::::::
particle

:::::
count

:::
we

:::::::::
maintained

::::::
across

:::
all single-member simulations , both for spatial and

temporal release strategies,
::::::
(spatial

::::::::
releases,

:::::::
temporal

::::::::
releases,

:::
and

::::::
added

:::::::
diffusion

:::::::::
strategies)

:
to ensure direct comparability275

between mixture and single-member
:::
with

:::
the

:::::::
mixture distributions.

2.5 Connectivity Analysis

2.4.1
:::::::::::
Connectivity

::::::::
Analysis

The connectivity between regions is a useful and powerful analysis performed with Lagrangian simulations (Rypina et al.,

2011; Rühs et al., 2013), assessing how many particles originating from one region enter other
::::::::::
pre-defined regions. Within280

this analysis, we explored if the number of particles reaching each region differs significantly when using mixture simulations

instead of single-member simulations. We also compared how connectivity patterns vary across different mixture strategies

(spatial variations with δr ∈ {0.1◦,1.0◦,2.0◦} and temporal variations of 4, 12, and 20 weeks). Additionally, we investigated

whether single-member simulations with spatially and temporally varying release strategies can reproduce the connectivity

statistics of the mixture distributions.285

We focused on the connectivity between the surface of the Gulf Stream and the region east of 40◦W. The 40◦W longitude

defines the easternmost boundary where the near-surface waters from the Labrador Current join the Gulf Stream to form the

North Atlantic Current (Buckley and Marshall, 2016). This limit also assesses how many particles cross to the easternmost

side of the subtropical gyre when released from the surface of the Gulf Stream. In Appendix B, we see this limit in maps

showing all places particles drifted to during the six years of simulations. In Figure B1, we present particle dispersion maps290

for each of the six release strategies (three spatial and three temporal variations) across all 50 ensemble members. Figure B2

shows corresponding dispersion patterns for the 50 subsets of mixture simulations, allowing direct comparison between single-

member and mixture approaches. We compared how many particles crossed the 40◦W longitude from the surface of the Gulf
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Stream in a simulation period of 6 years. We also measured the median time that it took particles to cross 40◦W and the depth

at which the particles cross 40◦W.295

2.5 Marginal Entropy and Relative Entropy Calculation

2.4.1
::::::::
Marginal

::::::::
Entropy

:::
and

::::::::
Relative

:::::::
Entropy

:::::::::::
Calculation

To compare the dispersion patterns between ensemble members, we took an information theory approach, similar to Cerbus

and Goldburg (2013), where we treat each probability distribution as a message. Here, the bins represent the ‘alphabet,’ and

the occurrence of the particles in each
:::::::::
(hexagonal)

:
bin makes the message, with a probability given by P . Each bin xi contains300

log2(1/P (xi)) information, where P (xi) is the probability of a character or outcome occurring in a message. The less probable

the outcome, the more information it contains; therefore, the less redundant it is. The information can be thought of as the

optimal ‘length’ that the bin xi has to be encoded to transmit the message, costing the least amount of bits. Shannon (1948)

developed this into a theory of communications in which the fundamental problem is reproducing at one point either exactly or

approximately a message selected at another point transmitted over a noisy channel. In this theory, each probability distribution305

contains an average amount of information measured by the entropy. The marginal entropy, H , measures the intricacy or

randomness contained in a distribution and measures the average information content of the distribution (Cover, 1999). The

marginal entropy for the probability distribution is defined as

H(m|
::

X,t) =
∑
i=1

nB
:
P (m|

::
xi, t) log2

1

P (xi, t)

1

P (m|xi, t)
:::::::::

, (6)

where X is the ensemble
::
set

:
of bins xi of the grid, P is the probability distribution associated with the grid, n

::
of

::::::::
ensemble310

:::::::
member

::
m

:::
(or

:
r
:::
for

:::
the

:::::::
mixture

:::::::::::
simulations)

::
at

::::::
particle

::::
age

:
t,
:::
B is the number of

::::::::
hexagonal

:
bins in X , and t is the particle

age of the distribution. Marginal entropy measures the minimum number of bits to which the distribution can be compressed

or encoded. A distribution with ‘more’ randomness has less redundancy; therefore, its entropy is higher. This definition of

entropy is equivalent to the definition of entropy in statistical thermodynamics, where entropy is a measure of the number of

possible microstates or possible configurations of the system (Shannon, 1948; Cover, 1999). Thus, we define the variability in315

the dispersal of particles of a simulation as the marginal entropy of its corresponding probability distribution.

The marginal entropy measures the variability of a distribution, but it does not measure how well two distributions match

bin by bin. As illustrated by Olah (2015), consider two probability distributions PA(X) = (1/2,1/4,1/8,1/8) and PB(X) =

(1/8,1/2,1/4,1/8), both defined over X = (x1,x2,x3,x4). Both distributions are different when comparing them element by

element, that is, PA(xi) ̸= PB(xi). However, if we compute their marginal entropy, we see that they have the same marginal320

entropy HPA
(X) =HPB

(X) = 1.75 bits. Hence, while two distributions may have equivalent marginal entropies, this does

not imply that the distributions are equivalent or similar.

Cross-entropy and relative entropy provide better measures for quantifying the difference between two distributions. The

cross-entropy measures the average amount of information of a distribution Q(X,t) compared to a reference distribution
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P (X,t). It is defined as325

HP (Q,t) =

n∑
i=1

Q(xi, t) log2
1

P (xi, t)
, (7)

where each bin probability Q(xi, t) is weighted with the information of the reference distribution P (xi, t), summed over all

bins xi at time t. The cross-entropy tells us the average information content of Q using the encoding of P . From the previous

example, the cross-entropy of PA with respect to PB , or HPB
(PA) = 2.25 bits is larger than its marginal entropy H(Q).

Therefore, if we would send messages described by Q with P ’s encoding, it would be 0.5 bits more expensive than using its330

own encoding. The difference between the cross entropy and the marginal entropy is called the relative entropy or Kullback-

Leibler Divergence (Kullback and Leibler, 1951) and is defined as

D(Q||P,t) =HP (Q,t)−H(Q,t), (8)

where HP (Q,t) is the cross-entropy of Q with respect to P , minus the marginal entropy of Q. Eq. (8) is equivalent to the most

common definition (Cover, 1999; MacKay, 2003):335

D(Q||P,t) =
n∑

i=1

Q(xi, t) log2
Q(xi, t)

P (xi, t)
. (9)

The relative entropy measures the cost of assuming that the distribution is Q when the true distribution is P (Cover, 1999)

and is used to quantify the uncertainty between two distributions.

One of the objectives of this study is to quantify the difference between the mixture distributions Pmix::::
Pmix:and single-

member distributions Pm, where the variability is created following spatial and temporal release patterns. Given the sparsity340

of the trajectories sampling the domain, computing the relative entropy between the distributions Pmix :::
Pmix:and Pm implies

comparing two-dimensional distributions with zeros in most of the domain. Figure 3A and Figure 3B illustrate this by showing

Pmix :::
Pmix:and Pm at a particle age of t= 15 days. We see that the probability of finding particles is non-zero in a localized

area for both distributions. Therefore, when computing the relative entropy for some bins, it is unavoidable to have terms in

which q log2(q/p)→∞ as p→ 0
:
,
:::::
where

:::::::::
q =Q(xi)::::

and
:::::::::
p= P (xi):

,
:::
are

:::
the

::::::::::
probabilities

:::
of

::::::
finding

:::::::
particles

:::
in

:
a
:::
bin

:::
xi. To345

numerically represent the infinity and compute the relative entropy, we replaced the zeros with a double precision machine

epsilon in Pm and Pmix::::
Pmix. The machine epsilon (ϵ) is the smallest number that a computer can represent. For double

precision, it is equivalent to ϵ= 2−52, so that the information content of p= ϵ is equal to log2(1/ϵ) = 52 bits.

The relative entropy is non-symmetric, D(Q||P ) ̸=D(P ||Q), and the order in which we compare distributions is crucial. In

this study, we calculated the relative entropy as350

D(Pmixmix
::

||Pm, t) =
∑
i=1

nB
:
Pmixmix

::
(r|
:
xi, t) log2

Pmix(xi, t)

Pm(xi, t)

Pmix(r|xi, t)

Pm(m|xi, t)
::::::::::

, (10)

where Pmix ::::
Pmix is the full probabilistic model we aim to reproduce with Pm, the reduced-order approximate model computed

from a single member. The relative entropy is computed for the particle age t of the probability distribution. The relative

entropy can be interpreted as total information loss (or lack of information) when representing Pmix :::
Pmix:with Pm (Chen
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Figure 3. Comparison of probability distributions and their relative entropy. (A) Mixture distribution Pmix(X|δr = 0.1◦
:::::::::::::
Pmix(X|δr = 0.1◦)

at 15 days after release, representing the full probabilistic model. (B) Single-member distribution Pm(X|δr = 0.1◦) at 15 days after release,

representing the reduced-order approximate model. (C) Information loss map showing the contribution of each grid cell to the total relative

entropy D(Pmix||Pm)
::::::::::
D(Pmix||Pm)

:
when approximating the mixture distribution with the single-member distribution. (D) Information

loss map showing the contribution of each grid cell to the total relative entropy D(Pm||Pmix) ::::::::::
D(Pm||Pmix):when approximating the

single-member distribution with the mixture distribution. Gray hexagons represent land. Color scales show probability values (A and B) and

information loss in bits (C and D). The zero-bit value falls within the second color bin from the left in the information loss color scale.

et al., 2024; Kleeman, 2002). Figure 3C illustrates computing D(Pmix||Pm, t)
::::::::::::
D(Pmix||Pm, t)

:
with the distributions shown in355

Figures 3A and 3B, where each
::::::::::
(hexagonal)

:
bin shows the ‘information loss’, pmix log2(pmix/pm)

::::::::::::::::
Pmix log2(Pmix/Pm). We

note that the bins with information loss coincide with the bins where Pm fails to have particles, but Pmix ::::
Pmix:

does have

particles. Conversely, there is no information loss in bins where there are no particles for Pmix :::
Pmix, but there are for Pm.

Therefore, Pm having more bins with particles than Pmix :::
Pmix:is not quantified as information loss. This is more evident

when computing D(Pm||Pmix, t)::::::::::::
D(Pm||Pmix, t), in Figure 3D. In contrast, there is information loss in the bins where both360

distributions have particles but not the same number. There is no information loss if the bins have the same number of particles.

By summing over all the bins in D(Pmix||Pm, t)
::::::::::::
D(Pmix||Pm, t), we obtain a single value that quantifies the total information

loss between the two distributions.

Figure 3D illustrates the opposite case, computing D(Pm||Pmix, t) ::::::::::::
D(Pm||Pmix, t):in which the relative entropy mea-

sures how well Pmix ::::
Pmix :

approximates Pm. In this case, there is only information loss in the bins where Pm and Pmix365

::::
Pmix have particles, although Pmix ::::

Pmix :
covers more bins. This again shows that there is no information loss for having a

wider probability that covers a larger area, containing the bins of the distribution to represent. By summing over all bins

in D(Pm||Pmix)::::::::::
D(Pm||Pmix), we get a relative entropy of 2.8 bits, which is far less than D(Pmix||Pm, t)

:::::::::::::
D(Pmix||Pm, t)

described previously.

To summarize, because of the asymmetry in the relative entropy, it is important to evaluate the full probabilistic model370

with the encoding of the reduced-order model, D(Pmix||Pm, t)
:::::::::::::
D(Pmix||Pm, t), in Eq. (10). In that case, the relative entropy

quantifies the uncertainty when using the simplified probabilistic model (Pm) to approximate the full model (Pmix::::
Pmix) (Chen

et al., 2024).
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3 Results

3.1 Connectivity375

This section compares mixture simulations (containing the full ensemble variability) and single-member distributions for par-

ticles crossing the 40◦W line. Throughout this analysis, we use the mixture distribution with δr = 0.1◦ as our reference, as it

represents the closest approximation to a point release while still containing the full ensemble variability. This allows us to con-

sistently evaluate how increasing spatial or temporal variability in single-member simulations compares to this baseline case.

We employed Empirical Cumulative Distribution Functions (ECDFs) to assess the likelihood of single-member distributions380

matching the average particle counts in mixture distributions. Figure 4 shows the ECDFs for the number of particles crossing

40◦W and the median particle age at which they cross that longitude. Figures 4A and 4B compare spatially varying releases
:::
and

::
the

:::::::
releases

::::
with

::::::
added

::::::::
diffusion, whereas Figures 4C and 4D compare temporally varying release simulations. In all panels,

the ECDF curves represent the single-member distributions, and the vertically shaded lines show the 99% confidence interval

of their corresponding mixture distributions. The mixture distributions are depicted as vertically shaded lines to enhance the385

readability of the plots since they are well-defined Gaussian distributions. The plots showing Kernel Density Estimate (KDE)

distributions of the single-member and of the mixture distributions can be found in Figures B3 and B4, in the Appendix B.

Figure 4A shows greater variance in single-member distributions
::::
than

::::::
mixture

:::::::::::
distributions, with values ranging from 1,000

to 5,100 particles, compared to the mixture distributions. This increased variability occurs because single-member distributions

reflect the specific ocean conditions of individual ensemble members, while mixture distributions average out these individual390

variations across multiple members, resulting in more stable statistics. On average, more particles cross the 40◦W line for

simulations with larger release clouds δr in the single-member distributions. The same relation between δr and the number of

particles crossing is observed in the mixture distributions. The ECDF provides insights into the probability of single-member

simulations not capturing the mixture distribution averages. For instance, in single-member simulations with a release radius

of δr = 0.1◦, there is a 0.64 probability of having fewer particles crossing the 40◦W line than the average of the mixture395

distribution with δr = 0.1◦, and consequently, a 0.36 probability of overestimation. This
::::
The probability of underestimation

decreases to 0.34 (with 0.66 probability of overestimation) for δr = 1.0◦ and to 0.10 (with 0.90 probability of overestima-

tion) for δr = 2.0◦, taking the same mixture distribution (δr = 0.1◦) as reference.
:::
The

:::::
single

::::::::
member

:::::::::
simulations

::::
with

::::::
added

:::::::
diffusion

:::::::::::::::
(Kh = 10m2s−1)

::::
have

::
a
::::::::::
distribution

::::::
similar

::
to

:::
the

:::::
single

:::::::
member

::::::::::
simulations

::::
with

:::::::::
δr = 0.1◦,

:::
for

::::::
which

::::
there

::
is
::
a

::::
0.70

:::::::::
probability

::
of

::::::
having

:::::
fewer

:::::::
particles

:::::::
crossing

:::
the

::::
40◦

::
W

::::
line,

::::
than

::
the

:::::::
mixture

::::::::
δr = 0.1◦

:::::::::::
distribution.400

Figure 4C shows the ECDFs for temporally varying releases. The distributions for the single-member simulations with 4,

12, and 20-week releases are similar but show more variance than the mixture distributions represented by the shaded lines.

Mixture distributions for 4 and 12-week releases have comparable average particle counts, while 20-week releases show slightly

lower averages. For single-member simulations, the probability of having fewer particles than the mixture distribution average

(δr = 0.1◦) is 0.56 (with 0.44 probability of overestimation) for 4-week releases, 0.50 (with 0.50 probability of overestimation)405

for 12-week releases, and 0.66 (with 0.34 probability of overestimation) for 20-week release periods.
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Figure 4B shows the ECDFs for the median particle age of particles crossing 40◦W in spatially varying release simulations.

The single-member distributions (ECDF curves) show a clear separation based on the release cloud size (δr). Particles from

smaller release clouds (δr = 0.1◦) tend to have longer median drift times, while those from larger release clouds (δr = 2.0◦)

have shorter median drift times. This trend is also reflected in the mixture distributions’ 99% confidence interval (shaded410

lines). While the single-member simulations show a greater spread in median drift times compared to the mixture distributions,

they maintain the same general pattern of decreasing drift times with increasing release cloud size. However, the wider spread

in single-member distributions indicates that individual simulations may not consistently reproduce the more stable statistics

captured by the mixture distributions.
:::
The

::::::
ECDF

:::
for

:::::
single

:::::::
member

::::::::::
simulations

::::
with

:::::
added

::::::::
diffusion

::::::::::::::
(Kh = 10m2s−1)

::::::
shows

::::::
similar

::::::
median

::::::
particle

::::
age

:::::::::
distribution

::
as

:::
the

:::::
single

:::::::
member

::::::::::
simulations

::::
with

:::::::::
δr = 0.1◦.

::::
Both

::::::::::
distributions

:::::
show

::::
that

:::::::
particles415

:::
tend

:::
to
::::

take
::::::
longer

::
in

:::::::
crossing

:::
the

::::
40◦

:
W

::::
line

::::
than

:::::
larger

::::::
release

::::::
clouds.

:

Figure 4D shows the ECDFs for particle age in temporally varying release simulations. The distributions for different release

durations (4, 12, and 20 weeks) are more closely aligned than the spatial variations in panel B. However, longer release periods

(20 weeks) tend to show slightly shorter median drift times. While single-member distributions still exhibit greater variability

than the mixture distributions, this variability is less pronounced than in the spatially varying simulations. This suggests that420

temporal release variations may provide more consistent reproducibility of mixture statistics compared to spatial variations,

although this varies in individual simulation results.

In summary, our connectivity analysis reveals that single-member simulations tend to either significantly under- or overesti-

mate particle transport across 40◦W, with the bias depending on the release strategy. For spatial variations, larger release clouds

(δr = 2.0◦) show a strong tendency to overestimate connectivity (90% probability), while smaller release clouds (δr = 0.1◦)425

:::
and

::::::
adding

:::::::
diffusion

:::::::::::::::
(Kh = 10m2s−1) are more likely to underestimate it (64% probability

:::
and

::::
70%

::::::::::
probability,

::::::::::
respectively).

Temporal variations show more balanced probabilities of under- and overestimation, particularly for 12-week releases (50-50%

probability), and generally exhibit less pronounced variability in particle ages compared to spatial variations.

3.2
::::::::::::::

Two-Dimensional
:::::::::::
Probability

:::::::::::
Distributions

:::
The

::::
first

:::
step

::
to

::::::::
calculate

:::
the

:::::::
marginal

:::
and

:::::::
relative

::::::
entropy

::
is

::
to

:::
bin

:::
the

::::::
particle

:::::::::
trajectories

::::
into

:::
the

::::::::::::::
two-dimensional

:::::::::
probability430

::::::::::
distributions

::
in

::::
the

::::::::
hexagonal

:::::
grid.

:::
We

:::::::::
computed

:::
the

::::::::::::::
two-dimensional

::::::::::
probability

:::::::::::
distributions

:::
for

:::
all

:::
the

:::::
single

::::::::
member

:::
and

:::::::
mixture

::::::::::
simulations,

::::
for

:::
the

:::::::
different

:::::::::
strategies

::
to

::::::::
generate

:::::::::
variability

::
in

:::
the

::::::::::
trajectories.

:::
As

:::
an

::::::::::
illustration,

::::::
Figure

::
5

:::::
shows

:::
the

::::::::::::::
two-dimensional

:::::::::
probability

:::::::::::
distributions

::
for

:::
the

::::::::
reference

:::::::
mixture

::::::::
δr = 0.1◦

::::::::::
distribution

::::::
(subset

:::
43)

::::
and

::
the

::::::
single

::::::::
ensemble

:::::::
member

:::::::::::
distributions,

::::
with

:::::::
different

::::::
release

::::::::
strategies

:::::::::
(ensemble

:::::::
member

::::
22).

::::
The

::::
three

::::::::
columns

::
of

:::::::
subplots

:::::
show

::
the

:::::::::::
distributions

::
at

:::::::
particle

::::
ages

::
of

::::
10,

:::
100

::::
and

:::::
1,000

:::::
days,

:::
and

:::
the

::::::::
different

::::
rows

:::::
show

:::
the

::::::::
different

::::::::
strategies

::
to

::::::::
generate435

:::::::::
variability.

:::
We

:::::::
observe

::::
that

:::
the

::::::::
reference

:::::::
mixture

::::::::
δr = 0.1◦

:::::::::::
distribution,

::::::::::
showcasing

:::
the

:::
full

:::::::::
ensemble

:::::::::
variability,

:::::::
spreads

:::::
evenly

:::::
from

:::
the

:::::::
release

:::::::
location

:::::::
(shown

::
as

::
a
::::
blue

:::::
dot).

:::
We

::::
also

:::::::::
appreciate

:::::
how

:::::::
20-week

::::
and

:::::::::
δr = 2.0◦

:::::
single

::::::::
member

::::::::::
distributions

::::::::
resemble

:::
the

:::::::
mixture

:::::::::
distribution

:::
in

:::
the

::::
area

:::::::
covered

::
by

:::
the

:::::
bins,

:::
but

:::
the

:::::
shape

::
of

:::
the

:::::::::::
distributions

::::
still

::::::
remain

:::::::
different.

:::::::::
However,

:::
the

:::::
single

::::::::
member

::::::::
δr = 0.1◦

::::
and

:::::
added

::::::::
diffusion

::::::::::::::
Kh = 10m2s−1

::::::::::
distributions

::::::
clearly

:::::
cover

::::
less

:::::
bins,

:
at
::::

the
::::
three

:::::::
particle

::::
ages

::::::
shown,

:::::::
despite

::::::
having

:::
the

:::::
same

::::::
number

:::
of

:::::::
particles

::
as

::::
the

::::
other

:::::::::::
distributions.

:::::::
Figures

:::
??

:::
and

::::
B5,440
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Figure 4. Connectivity analysis between the Gulf Stream at Cape Hatteras and the line at 40◦W in the North Atlantic. The plots compare

single-member ECDFs (lines) with mixture distribution average plus/minus 99% confidence values (shaded vertical lines). A) ECDFs of the

number of particles crossing the line for spatially varying simulations .
::
and

:::::::::
simulations

:::
with

:::::
added

:::::::
diffusion B) ECDFs of the median particle

age distributions for spatially varying releases
::
and

:::::::::
simulations

::::
with

:::::
added

:::::::
diffusion. C) ECDFs of the number of particles from temporally

varying simulations. D) ECDFs of the median particle age distributions for temporally varying simulations.
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::
in

:::
the

::::::::
Appendix

:::
B,

:::::
show

::::::
similar

::::::
figures

::::
but

::::
with

:::::
other

:::::
single

::::::::
members

::::
and

:::::::
mixture

:::::::
subsets.

::
In

::::::::
general,

::::::::::::::
two-dimensional

::::::::::
distributions

:::
can

::::
best

:::
be

::::::::
described

:::
and

:::::::::
compared

::::
with

::::::::
statistical

:::::
tools.

:::::
Thus,

:::
we

::::::::
computed

:::
the

::::::::
marginal

:::::::
entropy

:::
and

:::::::
relative

::::::
entropy

::
of

:::::
these

:::::::::::
distributions,

::
at
::::::::

different
:::::::
particle

::::
ages,

::
to
:::::::::::

characterize
:::
and

::::::::
compare

:::
the

:::::::::
dispersion

:::::::
patterns

::
of

:::
the

::::::::
different

:::::
single

:::::::
member

::::::::
strategies

::
to

:::
that

:::
of

:::
the

:::::::
reference

::::::::
mixture.

3.3 Marginal and Relative Entropy445

We calculated the marginal entropy, Eq. (6), for every single-member and corresponding mixture distribution to assess the

variability and determine which release strategies can represent the variability of the full ensemble. In total, we computed

the marginal entropy functions for all six
:::::
seven sets of single-member distributions and the

:::::
(three

:::::
spatial

::::::::
varying,

:::
and

:::::
three

::::::::
temporal,

:::
and

::::
one

::::::::
diffusive).

::::
We

::::
also

::::::::
computed

:::
the

::::::::
marginal

:::::::
entropy

:::
for six sets of mixture distributions. Each ,

:::::::::
excluding

::
the

:::::::
mixture

::::::::::
distribution

::::
from

::::::::::
simulations

::::
with

:::::
added

::::::::
diffusion.

:::::
Each

::::::
release

:::::::
strategy

:::
and

:::::::
mixture set had 50 distributions. For450

each set, ,
::::::::
therefore,

:
we calculated the average and the standard deviation of the marginal entropy functions, resulting in one

::::::
average

:
entropy curve as a function of particle age per set. Figure 6A illustrates the average entropy curves for spatially varying

release distributions
:::
and

:::::::::::
distributions

::::
with

:::::::
diffusion, while Figure 6B shows those for temporally varying release distributions.

Detailed entropy curves for each single member and mixture simulation are provided in Figures B6 and B7 in the Appendix B.

Figure 6A shows the
::::::
average

:
marginal entropy as a function of particle age for various spatial release strategies, comparing455

single-member probability distributions (Pm) with mixture distributions (Pmix::::
Pmix) using different spatial release intervals

(δr). Three
::::
Four

:
single-member curves are shown: δr = 0.1◦ (blue dotted line), δr = 1.0◦ (purple dashed line), and δr = 2.0◦

(green dash-dot line),
::::

and
:::::::::::::
Kh = 10m2s−1

::::::
(black

::::::::
triangles

:::::
curve). Two mixture distribution curves are presented: δr = 0.1◦

(solid black line) and δr = 2.0◦ (black dash-dot line).
::::::
Shaded

:::::
areas

::::::
around

:::
the

:::::::::::::
single-member

:::::
curves

::::::::
represent

:::
the

::::::::
standard

::::::::
deviation,

:::::::::
illustrating

:::
the

::::::
spread

::
of

:::::::
entropy

::::::
values

:::::
across

:::
the

:::::::::
ensemble.

:::::
There

::
is
:::
no

::::::
shaded

::::
area

::::::
around

:::
the

:::::::
mixture

:::::::
entropy460

:::::
curves

:::::::
because

::::
their

:::::::
standard

::::::::
deviation

:::
was

::
of

:::
the

:::::
order

::
of

:::::::::
magnitude

::::
10−2

::::
bits.

::::
The

:::::::::
logarithmic

::::
scale

:::
on

:::
the

:::::
x-axis

::::::::::
emphasizes

::
the

:::::
rapid

:::::::
changes

::
in

:::::::
entropy

::::::
during

:::
the

::::
early

::::::
stages

::
of

:::::::
particle

:::::::::
dispersion.

:
All curves show a logarithmic increasing trend in

entropy with particle age, indicating growing dispersion over time. The single-member distributions with larger δr values (1.0◦

and 2.0◦) initially overestimate the entropy compared to the mixture distribution with δr = 0.1◦, particularly in the first 10 days.

After this period, only the single-member distribution with δr = 2.0◦ adequately represents the variability of the mixture with465

δr = 0.1◦. Shaded areas around the single-member curves represent the standard deviation, illustrating the spread of entropy

values across the ensemble. There is no shaded area around the mixture entropy curves because their standard deviation was

of the order of magnitude 10−2 bits. The logarithmic scale on the x-axis emphasizes the rapid changes in entropy during the

early stages of particle dispersion.

Figure 6B shows the
::::::
average

:
entropy as a function of time for the temporal varying release strategies and their correspond-470

ing mixture distributions, comparing single-member probability distributions Pm for different release periods against mixture

distributions (Pmix::::
Pmix). The single member distributions are shown for release periods of 4, 12, and 20 weeks. These curves

show a general trend of entropy increasing logarithmically over time, with longer release periods resulting in higher entropy val-

ues. Two
::::
Three

:
mixture distributions are plotted: one subsampled from a

::::::
mixture

::::::::::
subsampled

::::
from

:
4 week releaseand another
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Figure 5.
::::::::
Probability

::::::::::
distributions

::
of

:::::
particle

:::::::
locations

::
at

:::::::
different

:::
ages

::::
(10,

:::
100,

:::
and

:::::
1,000

::::
days;

:::::::
columns)

:::::
across

::::::
varying

::::::
release

:::::::
strategies

:::::
(rows).

:::
The

:::
top

:::
row

:::::
shows

:::
the

::::::::
probability

::
of

:::
the

::::::
mixture

::::::::
δr = 0.1◦

::::::::
distribution

:::::::
(mixture

:::::
subset

::
43

::
of

:::
the

:::::::::::
bootstrapping).

::::
The

:::
2nd,

::::
3rd,

:::
4th,

:::
and

::
5th

::::
rows

::::
show

:::
the

:::::::::::
single-member

::::::::::
distributions

::::::
(member

::::
22),

:::
with

:::::::
20-week,

::::::::
δr = 2.0◦,

::::::::
δr = 0.1◦,

:::
and

::::
with

::::::::
diffusivity

:::::::::::::
Kh = 10m2s−1.

:::
The

:::
blue

:::::
circles

:::::
mark

::
the

:::::::
particle’s

::::::
release

::::::
location,

::::::
omitted

:::
for

::::
plots

::
of

::::::
particle

:::
age

::
of

::
10

::::
days.

::::
Bins

:::
with

:::::::::
probability

:::
zero

::::
were

:::::::
removed

::
to

::::::
facilitate

:::::::::
visualizing

::
the

::::
area

::
of

:::::::
dispersal

:
of
:::

the
:::::::
particles.
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Figure 6. Average marginal entropy as a function of particle age of single-member distributions (colored lines) and mixture distributions

(black lines). The
::::::
average

:::::::
marginal

::::::
entropy

:::
for

::
the

:::::
single

:::::::
member

:::::::::
simulations

::::
with

:::::::
diffusion

:::
Kh ::

are
::::::

shown
::
as

::::
black

::::::
triangle

:::::
curve.

::::
The

shaded areas represent the standard deviation. The particle age is on a logarithmic scale. A) Comparison of the single-member and mixture

distributions with spatially varying release. B) Comparison of the single-member and mixture distributions with temporally varying release.

In both panels, we added the entropy curve of the mixture δr = 0.1◦ as a reference.

subsampled for ,
:::::::
mixture

::::::::::
subsampled

:::::
from

::
20

:::::
week

:::::::
release,

:::
and

:::
the

::::::::
reference

:::::::
mixture

::::
from

:
δr = 0.1◦. We compared tempo-475

ral and spatial mixture distributions to understand how different release strategies contribute to the total ensemble variability.

These
:::
As

:::
one

::::::
would

::::::
expect,

:::::
these

:
mixture distributions consistently show higher entropy values than single-member distri-

butions, indicating that Pm captures less variability than the mixture distributions. The 20 week single member distributions

::::::
average

:::::::
entropy closely follow the mixture distribution with

::::::::
reference

:::::::
mixture δr = 0.1◦

::::::
average

::::::
entropy, often overlapping

or slightly exceeding it. Among the single member curves, the 20 week release generally shows the highest
::::::
average entropy,480

followed by 12 and 4 weeks in descending order. However, these differences become less pronounced as time increases.

Comparing spatial and temporal strategies in Figures 6A and 6B, we establish
:::::::
supports

:::::
setting

:
the mixture distribution with

δr = 0.1◦ as our reference standard, as it shows the minimum variability
::::::
average

:::::::
entropy

:
among all mixture strategies

:
,
:::
but

:::
still

::::::::
capturing

:::
the

:::
full

::::::::
ensemble

:::::::::
variability. The 20-week single-member distributions

::::::
average

:::::::
entropy

:::::
curve

:
most closely ap-

proximate this reference
::
the

::::::::
reference

:::::::
mixture

::::::::
δr = 0.1◦

::::::
entropy, while the single-member spatial releases show more variable485

performance. Both the δr = 2.0◦ and the 20-week mixture distributions exhibit the highest
::::::
average

:
entropy values, demon-

strating how combining either spatial or temporal release variability with ensemble variability
:::::::
strategies

::::
with

:::
the

:::::::::
ensemble

:::::::::
variability, increases the total dispersion

::::::::
variability. This reinforces our choice of the more point-like δr = 0.1◦ mixture as our

reference for evaluating single-member approximations. For clarity, we omitted the intermediate mixture curves (δr = 1.0◦ ,

:::
and 12-week, and 20-week), as their entropy values consistently fall between those of the δr = 0.1◦ and δr = 2.0◦distributions

:
,490

:::
and

::::::
4-week

::::
and

::::::::
20-week,

::::::::::
respectively.
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We computed the relative entropy as a function of particle age , Eq. (10), by comparing single-member distributions with

mixture distributions. Also,
::
to

::::::::::
understand

::::
how

::::::
similar

:::
are

:::
the

:::::
single

:::::::
member

:::::::::::
distributions

::::
with

:::
the

:::::::
mixture

:::::::::::
distributions,

:::
bin

::
by

::::
bin.

:::
For

::::
this, we computed the relative entropy of every ensemble member with every mixture distribution individually.

:
a

:::::
single

:::::::
member

::::::::::
distribution

::::::::
Pm(X,t)

:::::::::
compared

::
to

::
a

:::::::
mixture

:::::::::
distribution

::::::::::
Pmix(X,t),

:::::
using

:::::::
Eq.(10),

::::::
across

:::
all

::::
their

:::::::
particle495

::::
ages.

:
Therefore, we calculated 502 = 2,500 relative entropies

::::::
entropy

:::::
curve

::
as

:
a
::::::::

function
::
of

:::::::
particle

:::
age

::::::
curves

:
when com-

paring two sets of distributions. We
:::
That

:::
is,

::::
one

:::
set

:::
for

::::::
single

:::::::
member

::::::::::
simulations

::::
and

::::
one

:::
set

::
of

:::::::
mixture

:::::::::::
simulations.

::::
From

:::
the

:::::
2,500

:::::::
relative

:::::::
entropy

::::::::
functions,

:::
we

:
computed the average and the standard deviation of the 2,500 relative entropy

functions for each of the six
:::::
relative

:::::::
entropy

::
as

::
a
:::::::
function

::
of
:::::::

particle
::::
age.

:::
We

:::::::::
computed

:::
the

:::::::
average

::::::
relative

:::::::
entropy

:::
for

:::
the

::::::::::
combination

::
of

:::
the

:::::
seven

:
sets of single member distributions (δr ∈ {0.1◦,1.0◦,2.0◦}and

:
, 4, 12 and 20 weeks), relative to the500

:
,
:::
and

:::::::::::::::
Kh = 10m2s−1),

::::::
withthe

:
six sets of mixture distributions

:::::::::
(excluding

::::::::
diffusion), ending up with 36

::
42

:
average relative

entropy functions
::::
curve

:::
as

:
a
:::::::
function

::
of

:::::::
particle

:::
age.

Figure 7 shows the average relative entropy as a function of particle age, divided into four panels (A-D), each using a

different mixture distribution as a reference
::::
(Pmix). We omitted the plots where the mixture for the δr = 1.0◦ and

::::::
mixture

12-weeks strategy as a reference
:::
was

::::
used

::
a
::::::::
reference,

:
since their entropy lies between their corresponding extreme strategies,505

that is δr ∈ {0.1◦,2.0◦}, and 4 and 20-weeks releases. In all panels, the dotted and dashed
::::
solid

:::
and

::::::
dotted lines represent the

average relative entropy for each strategy, while the shaded areas
:::::
bands around these lines indicate the

::::
their

::::::::::::
corresponding

standard deviation. The standard deviation measures the variability in relative entropy, revealing that extreme cases exist
:::
the

::::::
extreme

:::::
cases

:
where single-member distributions

:::::
poorly

:
represent the reference mixture distributionspoorly.

Figure 7A uses the
::::::::
reference mixture distribution with δr = 0.1◦ as the reference

:::::
(Pmix). On average, the single-member510

distribution with δr = 2.0◦ (green dotted line) most closely approximates the reference mixture, having the lowest mean relative

entropy across most of the time range. The 20-week release strategy (red dashed line) performs similarly well. However,

the large standard deviations, particularly for δr = 0.1◦ (blue dash-dot line)and ,
:

the 4-week strategy (orange dotted line),

indicate significant variability in how well these strategies represent the reference mixture, indicating a
:::
and

::::::::::::::
Kh = 10m2s−1

::::
have

:::::
higher

:::::::
average

:::::::
relative

:::::::
entropy,

:::::::
showing

::::
that

::::
their

::::::::::::::
two-dimensional

:::::::::::
distributions

:::::::::::::
under-represent

:::::
Pmix.

::::::::
Regarding

:::::
their515

:::::::
standard

::::::::
deviation

:::::
bands,

:::
we

:::
see

:::
that

::::::::
δr = 2.0◦

::::
has

:::::
almost

::::
zero

:::::::
standard

::::::::
deviation

:::
on

:::
the

:::
first

:::
ten

::::
days

::::
after

:::::::
release.

::::
This

:
is
::::
due

::
to

:::
the

:::::
larger

::::
area

::::::
covered

:::
by

:::::::
particles

::
at
:::
the

:::::::
release

::::::::
compared

::
to

:::
the

::::
area

:::::::
covered

::
by

:::
the

:::::
Pmix.

::::
The

:::::::
opposite

::::
case

::
is

::::::::
observed

::::
with

::::::::
δr = 0.1◦

:::
and

::::::::::::::
Kh = 10m2s−1

:::::::
standard

:::::::::
deviations

:::::
which

:::::::
indicate

:
a
:::::
more

:::::
likely

:
greater lack of information

::::::::
compared

::
to

::
the

::::::::
reference

::::::::::
distribution

::::
Pmix.

Figure 7B, referencing
::::
with the mixture distribution with δr = 2.0◦

::
as

::::::::
reference

::::
Pmix, shows that the single-member δr =520

2.0◦ strategy most closely matches this reference mixture
::::
Pmix on average. The 20-week release strategy also performs well,

especially for higher particle ages. However, this 20-week release strategy shows a distinctly different evolution pattern with a

constant decrease in relative entropy compared to other strategies. The substantial standard deviations for all strategies, partic-

ularly pronounced for δr = 0.1◦and
:
, the 4-week strategy,

:::
and

::::::::::::::
Kh = 10m2s−1, highlight the potential for large discrepancies

between individual simulations and the reference mixture
::::
lack

::
of

::::::::::
information

::
in
:::::::::::

representing
::::
Pmix::

at
:::

all
:::::::
particle

::::
ages. Fig-525

ures 7C and 7D use the 4-week and 20-week mixture distributions as references, respectively. The corresponding
:
In

:::::
both
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::::
case,

:::::::
20-week

::::
and

::::::::
δr = 2.0◦

:
single-member temporal release strategies show the lowest mean relative entropyin both cases.

However, the .
::::
The

:
wide standard deviation bands, particularly noticeable for the spatial release strategies (δr = 0.1◦ and

δr = 2.0◦)
:::::::::::::
Kh = 10m2s−1, underscore the high variability in how well these strategies capture the reference mixture’s charac-

teristics.530

Across all panels of Figure 7, relative entropy peaks between 10 and 100 days of particle age, with the largest standard

deviations also occurring in this range. Notably, standard deviations for temporal (20-week
:::::::
20-week) and spatial (δr = 2.0◦)

strategies peak at different times: the 20-week
:::::::
20-week release shows maximum variability at earlier particle ages

::::::
(before

::
10

:::::
days), while the δr = 2.0◦ release peaks later

::::::
(before

::::
100

:::::
days). This suggests that

::::
these

:
single-member distributions

::::::::
strategies are most likely to significantly diverge from the mixture distributions during this time period. Figures ?? and B5, in535

the Appendix B, illustrate this variability of two randomly selected probability distributions of different release strategies at

particle agesof 10, 100 and 1,000 days. These figures also show randomly selected subsets of the mixture distributions at the

same particle age.
:::::
around

:::::
these

:::::::
particle

::::
ages.

:

From the average entropy curves shown in Figure 7, we took the average over the 6 years the particles were drifting after

release. We compiled these values for the 36
::
20

:
comparisons between mixture and single-member sets, with different release540

strategies in Figure 8. This figure presents a heatmap of the time-averaged relative entropy values for various combinations of

single-member and mixture distributions. The rows represent single-member distributions, while the columns represent mix-

ture distributions. The color scale ranges from dark green (lowest relative entropy) to light green (highest relative entropy),

with numerical values provided in each cell. Notably, the 20-week single-member distribution (bottom
:::::
second

::
to

::::
last row) con-

sistently shows the lowest relative entropy across all mixture distributions, indicating it best represents the ensemble variability.545

Conversely, the δr = 0.1◦ single-member distribution exhibits the highest relative entropy values, suggesting it is
:::::::
followed

:::
by

:::::::::::::
Kh = 10m2s−1,

:::::::::
suggesting

::::
that

::::
they

:::
are the least effective at capturing the characteristics of the mixture distributions.

4 Discussion and Conclusions

In this study, we investigated how to generate ensemble-like variability within single-member Lagrangian simulations by

implementing varying spatial and temporal release strategies
:
,
::
as

::::
well

::
as

:::
by

::::::
adding

::::::::
diffusion,

:
in the Gulf Stream region near550

Cape Hatteras. The surface connectivity between the Gulf Stream and the region past 40◦W revealed significant differences in

the number of particles crossing between different release strategies in the single-member distributions. The ECDFs in Figure 4

showed that, for spatially varying releases, the larger the initial particle cloud, the more particles cross the 40◦W. Regarding

the temporal distributions, we did not see significant variations in the number of particles crossing 40◦W; the distributions

for the number of particles and the median times were similar between the three temporal release strategies.
:::
The

::::::::
diffusion555

:::
Kh :::::::::

distribution
::::
was

::::
very

::::::
similar

::
to

:::
the

::::::
spatial

:::::::
δ = 0.1◦

:::::::::::
distribution,

::::
with

:::::
fewer

:::::::
particles

:::::::
crossing

::::
40◦

::
W

::::
than

::::
other

:::::::::
strategies.

Moreover, the normal distribution observed in the mixture distributions can be attributed to the central limit theorem. This

fundamental principle in probability theory states that when independent random samples are drawn from a population with a

finite variance, the distribution of their means will approximate a normal distribution as the sample size increases. In our case,
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Figure 7. Relative entropy as a function of particle age for different single-member distributions compared to mixture distributions. The

subplots A-D show comparisons using different reference mixture distributions
::::
(Pmix): (A) δr = 0.1◦, (B) δr = 2.0◦, (C) 4-week release,

and (D) 20-week release. Dotted and dashed
:::
solid

:
lines represent the average relative entropy for each

:::::
release strategy, while shaded areas

indicate
::::
their

::::::::::
corresponding

:
standard deviation. The x-axis shows particle age in days (log scale), and the y-axis shows relative entropy in

bits. Different colors represent various single-member strategies: δr = 0.1◦ (blue), δr = 2.0◦ (green), 4-week release (red), and 20-week

release (orange),
:::
and

::::::::::::
Kh = 10m2s−1

::::::
(black).

23



Figure 8. Time-averaged relative entropy (in bits) between single-member and mixture distributions for different release strategies. Rows

represent single-member distributions, and the columns represent mixture distributions. Color intensity indicates the magnitude of relative

entropy, with dark green representing lower values (better agreement) and light green representing higher values (poorer agreement). Numer-

ical values in each cell show the precise time-averaged relative entropy.

the bootstrapping method used to construct the mixture distributions effectively simulates this sampling process, resulting in560

the observed normal distributions.

Regarding representing the full ensemble variability with single-member simulations in the connectivity analysis, we see that

particles are more consistent in crossing the 40◦W meridian in the mixture distributions. Therefore, when comparing mixture

distributions with single-member distributions, we counted the percentage of single-member simulations with fewer particle

crossings than the
:::::::
reference

:
mixture distribution with δr = 0.1◦. In this analysis, we saw

::
see

:
that performing a one-time spatial565

release with a radius of δr = 2.0◦ better represents the particle crossings in the mixture distributions
:
,
::::
than

:::
the

::::
other

::::::::
strategies.

From all the release strategies, single-member simulations with δr = 2.0◦ release cloud had the lowest likelihood of having

fewer particles crossing than the
:::::::
reference

:
mixture simulation with δr = 0.1◦. This might be because a large initial cloud of

particles releases more particles outside the Gulf Stream, creating a wider variety of trajectories that cross 40◦W. In the case of

the temporal releases, the single member with 20-week releases
::::::
release

:::::::::
simulation had fewer particles crossing 40◦W

::::
than

:::
the570

::::::
mixture

::::
with

:::::::::
δr = 0.1◦, with a 66

::
66% likelihood of having fewer particlesthan the mixture with δr = 0.1◦. This likelihood is

10
::
10% higher than 4 and 12-week single-member distributions, suggesting that the seasonability may be playing a role in the

transport of particles to the eastern side of the domain. The connectivity with the eastern region of the domain might be stronger
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during winter, corresponding to the release of particles in the 4-week period (from 2nd to 30 of January) and 12-week period

(from 2 January to 27 March). Meanwhile, the 20-week release, from 2nd January to 22 May, had a portion of its particles575

released during spring.

The marginal entropy analysis, shown in Figure 6, provided insights into how well different release strategies represent the

full ensemble variability. In general, we saw
::
see

:
how the marginal entropy increased with time for all strategies considered,

some at slower rates than others. We attributed this to the percentage of particles released under the local decorrelation length

and times
:::
time

::::::
scales for the different strategies. For instance, spatial releases with radius δr = 0.1◦ and temporal releases580

of 4-weeks, which exhibited the lowest marginal entropy, had all their particles released within their respective decorrelation

scales. As the radius or release period was increased, there were more particles with decorrelated initial velocities, resulting in

higher entropy
::
in

:::
the

::::::::::::::
two-dimensional

::::::::::
distributions.

It is important to highlight that the marginal entropy of the mixture distributions consistently exceeds that of corresponding

single-member distributions, demonstrating that ensemble simulations under identical release conditions inherently generate585

greater trajectory variability than single-member simulations. By maintaining equal particle counts between mixture and single-

member simulations, we ensured that the higher entropy in mixture distributions reflects genuine ensemble dynamics rather

than statistical artifacts. The higher marginal entropy in mixture distributions may also be attributed to the temporal context of

our study: we advected particles ∼ 18 years after the initialization of the NATL025-CJMCYC3 ensemble (which was perturbed

during 1993). At the release date of the particles (2010), the perturbations had sufficient time to adapt and decorrelate the590

velocity fields of the members, which suggests that ensemble Lagrangian dispersion arises not only from mesoscale chaos but

also from low-frequency, large-scale intrinsic fluctuations.

Our analysis compares both spatial and temporal release strategies against the reference mixture simulation
:::::
Based

:::
on

:::
the

:::::::
marginal

:::::::
entropy

:::::
curves

::::
from

::::::
Figure

::
6,

:::
we

:::::::
selected

::
the

:::::::
mixture

::::::::::
simulations with δr = 0.1◦ . For spatial releases

::
as

::::::::
reference

:::
for

:::::::::
comparing

::
the

::::::::
different

::::::
release

::::::::
strategies,

:::::::
because

::::
they

::::::
contain

:::
the

:::
full

::::::::
ensemble

:::::::::
variability

:::
with

:::::
least

::::
noise

:::::
added

:::
by

:::
the

:::::
initial595

::::::::::
perturbation

::
to

::::
their

:::::
initial

::::::::::
conditions.

:::::::::
Comparing

:::
the

::::::
spatial

:::::::
releases

::::::
against

::::
this

::::::::
reference

:
(Figure 6A) , we found

:::::::
revealed

significant limitations. The larger release areas (δr = 1.0◦ and δr = 2.0◦) initially overestimate variability during the first 10

::
10

:
days, as particles start from a wider area than the reference’s mixture with δr = 0.1◦ radius. While δr = 2.0◦ simulations

eventually match the reference entropy after 30-40
:::::
30-40

:
days, δr = 1.0◦ simulations underestimate it until about 1,000 days

after release.600

:::
The

::::::::::
simulations

::::
with

:::::
added

:::::::::
diffusivity

:::::::::::::::
(Kh = 10m2s−1)

:::::
show

:::::::
marginal

:::::::
entropy

::::::
similar

::
to

::::::
spatial

:::::::
releases

::::
with

:::::::::
δr = 0.1◦,

:::
but

:::
fail

::
to

::::::::
reproduce

:::
the

::::
full

::::::::
ensemble

::::::::
variability

:::::
until

::::::::::::
approximately

:::::
1,000

::::
days

::::
after

:::::::
release,

::
as

::::
seen

::
in

::::::
Figure

::
6.

:::
The

::::::
added

:::::::
diffusion

::::::::::
simulations

:::::
used

:
a
:::::::::

stochastic
::::::::::
differential

:::::::
equation

::::::::
approach

:::::
with

::::::::
Brownian

:::::::
motion

::::::
terms,

::::::::
following

::::::::::
established

:::::::
methods

::
in

::::::::::
Lagrangian

::::::::::::
oceanography

::::::::::::
(Griffa, 1996)

:
.
::::::::
However,

::::
our

::::::
results

::::::::::
demonstrate

::::
that

::::
this

::::::::
approach

:::
has

::::::::::
limitations

::
in

::::::::::
reproducing

:::
the

::::
full

::::::::
ensemble

:::::::::
variability

:::::::::
compared

::
to

::::::
spatial

::::
and

:::::::
temporal

::::::::
releases.

:::
We

::::::
chose

:
a
:::::::::

physically
::::::::::

reasonable605

:::::::
diffusion

:::::::::
coefficient

:::::
based

:::
on

::::::::
literature

::::::
values

::
for

::::::::::::
subgrid-scale

::::::::::::::
parameterization

::
at

:::
our

::::::
model

:::::::::
resolution.

::::::
Larger

:::::::::
diffusivity

:::::::::
coefficients

:::::
could

:::::::::
potentially

:::::::
increase

::::::::
trajectory

:::::::::
variability,

::::
they

::::::
would

::::::
become

:::::::::
unphysical

:::
as

::
the

::::::::
artificial

::::
noise

::::::
would

::::::
exceed
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::
the

:::::::::
magnitude

::
of

::::::
typical

:::::::::
unresolved

:::::::
subgrid

::::::::
processes

::
in

:::
the

:::::
model,

:::::::::
effectively

::::::
forcing

:::
the

:::::::
particles

::
to
::::::
behave

::
as

::
if
:::::::::::
experiencing

:::::::
constant

:::::
strong

::::::::
turbulent

:::::::
mixing.

:::
The

::::::::::::::::
underperformance

::
of

:::
the

::::::::
diffusion

:::::::
strategy

::::::
likely

::::::
reflects

::::
that

::
it
:::::::::

represents
::::::::
primarily

::::::::::
small-scale

::::::::
turbulent

:::::::
mixing610

::::::::
processes,

::::
and

::
the

:::::::::
diffusivity

::::::
cannot

:::::
create

:::::::::
noticeable

::::::::
variability

::
in
::::::::::
trajectories,

::::::::
specially

:::
for

::::::
particle

::::
ages

:::::
< 100

:::::
days,

:::::::
missing

::
the

::::::::::
larger-scale

:::::
flow

::::::::::
uncertainties

::::
and

:::::::::
mesoscale

:::::::::
variability

:::::::
captured

:::::::
through

:::::
other

:::::::::
strategies.

:
In contrast, temporal release

strategies (Figure 6B) show better performance, particularly the 12 and 20-week
::
12

::::
and

:::::::
20-week

:
releases. The 20-week

:::::::
20-week

:
release strategy consistently matches the reference mixture’s entropy

:::::::
marginal

::::::
entropy

::::::::
(mixture

:::::::::
δr = 0.1◦)

:
across

all temporal scales, demonstrating that continuous particle releases over time can effectively reproduce the variability captured615

by ensemble simulations. This suggests that temporal variation in release times
::::::::
temporally

:::::::
varying

:::
the

::::::
initial

:::::::::
conditions is

more effective at representing
::::::::
generating

:
ensemble variability than increasing the spatial

:::::
adding

:::::::::
diffusion,

:::
and

::::
also

::
is

:::::
more

::::::::
consistent

:::::::::
throughout

:::::::
particle

::::
ages

::::
than

::::::
varying

::::::::
spatially

:::
the extent of the release area.

As we explained in Section 2.4.1, two distributions that have the same entropy do not necessarily exhibit the same dis-

tributions since two different probability distributions can have equivalent entropies. We compared
:::::::
marginal

::::::::
entropies.

:::
As

::
a620

::::::::::::
complementary

::::::::
analysis,

:::
we

::::::::
computed

:
the relative entropy to measure the agreement between two distributions, which mea-

sures the lack of information when representing the full ensemble with a single-member simulation. In this framework, we

found that performing an ensemble simulation is more informative than a single-member simulation. The relative entropy

quantifies the lack of information, or in other words, quantifies the uncertainty, by measuring the agreement between the

distributions. The relative entropies
:::
We

::::::
applied

:::
the

::::::
relative

:::::::
entropy

:::::::
analysis

::
to

:::::::
compare

::
all

::::::
release

::::::::
strategies

::::::
against

:::
the

:::::::
mixture625

:::::::::
distribution

:::::::::
δr = 0.1◦.

::::
The

::::::::
averaged

::::::
results

:::
and

:::::
their

:::::::::
variability, shown in Figure 7, further support the findings from the

marginal entropy assessment. The 20-week release generally showed the lowest
::::::::::
consistently

:::
low

:::::::
average relative entropy with

respect to the mixture using δr = 0.1◦
:::::::
reference

:::::::
mixture

::::::::::
distribution, indicating this release strategy most effectively captured

the variability in the trajectoriesof the full ensemble. Despite this, the standard deviation of the relative entropy of the 20,
:::
by

::::::::
generating

:::::::::::::::
two-dimensional

::::::::::
distributions

::::
that

:::::::::
resembled

:::
the

::::
most

:::
to

:::
the

::::
ones

::
of

:::
the

:::::::
mixture

::::::::::
distribution

:::::::::
containing

:::
the

::::
full630

::::::::
ensemble

:::::::::
variability.

::::::::
Contrary

::
to

::::
that,

:::
the

:::::::::
δr = 0.1◦,

::
4-weeksimulations indicated that individual simulations could deviate

substantially for timescales less than 100 daysafter release. In addition, comparing the ,
::::
and

:::::::::::::
Kh = 10m2s−1

::::::::
strategies

:::::::
showed

::
the

::::::
largest

::::::
values

::
in

:::::::
average

::::::
relative

:::::::
entropy,

::::
with

:::::
large

:::::::
standard

:::::::::
deviations

::
in

:::::::
particle

::::
ages

:::::
below

::::
100

:::::
days.

::::
This

:::::
shows

::::
that

::::
these

::::::::
strategies

::::
have

:::::::::
particular

:::::::
difficulty

::
to

::::::::
generate

::::::::
variability

::
in

:::
the

::::::::::
trajectories

::::::
similar

::
to

:
a
:::
full

:::::::::
ensemble.

:

:::::::::
Comparing

:::
the

:::
the

::
6
:::::
years

:
time-averaged relative entropy, shown in Figure 8, showed how 20-week releases have less635

uncertainty,
:::

or
::::::::
represents

:::
the

::::
best

:::
the

:::
the

::::
full

::::::::
ensemble

:::::::::
variability,

:
across different reference mixtures, followed by 12-week

releases. On average, a .
::::
The δr = 2.0◦ and a 4-week release had similar

:::::::
strategies

:::::::
showed

:::::
higher

:
uncertainties compared to all

mixture distributions. a
::::::::
20-week

::::::
release.

::::::
Lastly,

:::::::::::::
Kh = 10m2s−1

::::
and

::::::::
δr = 0.1◦

:::
had

:::
the

::::::
highest

:::::::::::
time-average

::::::
relative

:::::::::
entropies.

This further supports the idea that performing long continuous releases is the best release strategy to represent the ensemble

variability
::::::
generate

:::::::::
variability

::
in

:::::::
particle

:::::::::
trajectories

::::::
similar

::
to

::
a

:::
full

::::::::
ensemble

:::::::::
simulation.640

In single-member simulations, we demonstrated that releasing particles at slightly different locations or times can match the

variability in the behavior of particles released at a specific time and location from an ensemble of simulations. An interpretation
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of this may be that an ensemble of Lagrangian simulations has an ergodic flavor in which statistical homogeneity exists between

an ensemble of simulations and single-member simulations (Shannon, 1948). However, this does not constitute proof of the

system’s ergodicity.645

While our study provides valuable insights into generating ensemble-like variability in single-member simulations, several

limitations should be acknowledged. Our analysis focused solely on the Gulf Stream region near Cape Hatteras, and the effec-

tiveness of these release strategies may vary in other oceanic regions with different dynamics. Additionally, while our particles

were advected in three-dimensional flows, we only considered surface particle releases, which may not fully represent the three-

dimensional transport processes occurring throughout the water column. Our results are based on the NATL025-CJMCYC3650

model configuration, and the effectiveness of these strategies may be resolution-dependent, as higher-resolution models resolve

smaller-scale processes that could introduce additional variability in transport pathways.
:::
We

:::::::::
performed

::::::::::
simulations

:::
for

::::
only

:::
one

::::::
release

::::::
period,

:::
on

::
2

:::::::
January

:::::
2010,

:::::::
because

:::
that

:::::::
allowed

:::
us

:::
the

::::::
longest

:::::::
particle

:::::::::
advection

::::
time;

:::
but

::::::
realise

::::
that

:::::
there

::
is

::::::
nothing

:::::::
‘special’

:::::
about

::::
that

:
2
:::::::
January

:::::
2010

:::
and

::::
that

::
the

::::::
results

::::::::
presented

::::
here

:::::
might

:::::::
depend

::
on

:::
the

::::::
release

:::::
time. Furthermore,

our study was limited to forward-in-time simulations, whereas backward-in-time tracking could provide complementary infor-655

mation about generating ensemble variability in single-member simulations in studies concerning source regions and transport

pathways. Future work should explore the applicability of these methods across different oceanic regions, depths, and temporal

directions to establish more comprehensive guidelines for single-member Lagrangian simulations.

Ensemble simulations remain the standard for capturing the full range of variability in ocean simulations; our study provides

guidance on releasing particles in single-member simulations to increase the variability of the trajectories and, in this case, bet-660

ter represent ensemble statistics. While data assimilative models excel at improving mean state predictions through observation

integration, ensemble approaches are better suited for exploring the full range of possible outcomes and quantifying uncertainty

in trajectory predictions. Generating ensemble-like variability for Lagrangian simulations advected using assimilative models

could be particularly powerful: applying spatial or temporal release strategies could help capture both the improved mean state

from data assimilation and the trajectory variability typical of ensemble simulations. These findings have important implica-665

tions for ocean modeling and particle tracking studies, especially when computational resources limit the use of full ensemble

simulations. By carefully selecting release strategies, researchers can maximize the variability of single-member simulations,

potentially improving predictions of particle transport by capturing extreme events.

Appendix A: Spatial and Temporal Autocorrelations at the Release Location

We computed the spatial and temporal autocorrelation functions of the horizontal velocity vectors at the time and location of670

release of the particles. The spatial autocorrelation functions were calculated over a set of points placed over a west-to-east

line, shown by the blue dots in Figure 2A, with a horizontal spacing of 0.01◦. We calculated the autocorrelation function from

these points as a function of the distance L. The spatial autocorrelation function is defined as

ρ(L) =

〈
u(r0 +L) ·u(r0)

∥u(r0 +L)∥∥u(r0)∥

〉
,
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in which we compute the dot product of a pair of vectors u(r0) and u(r0 +L), divided by the multiplication of their norms,675

averaged over all the pairs of particles (Xia et al., 2013). In Eq. (1), ∥ · ∥ is the usual L2 norm, and ⟨·⟩ indicates an average

over particle pairs. We computed ρ(L) for the range L ∈ [0.01◦,2.00◦], with a 0.01◦ spacing. The autocorrelation function

is defined between [−1,1], in which ρ(L) = 1 indicates a full positive correlation, ρ(L) =−1 a full negative correlation, and

ρ(L) = 0 no correlation.

Following Eq. (1), we computed ρ(L) for each of the 50 ensemble members of the NATL025-CJMCYC3. In Figure 2B, we680

show the ρ(L) for each ensemble member as black lines. We see great variability in the curves but an exponentially decaying

trend in which, as L increases, the particle velocities are less correlated. We performed an exponential fit, ex/LL , of the 50

correlation curves, shown in blue in Figure 2B. From the exponential fit, we obtained a decorrelation length LL = 0.41◦,

which corresponds to approximately 37 km at a latitude of 35.5◦N. As a reference, the Rossby deformation radius in this

region is LR ≈ 30km (Chelton et al., 1998).685

Similarly, we computed the temporal autocorrelation functions by sampling the velocity at the same location but on different

days, shown as a red point in Figure 2A. We sampled the velocity daily for a duration of 60 days, starting on the 2nd of January,

2010. From the sampled velocities, we computed the temporal autocorrelation function given by

ρ(t) =

〈
u(t0 + t) ·u(t0)

∥u(t0 + t)∥∥u(t0)∥

〉
,

where t represents the time lag between pairs of velocities u(t0) and u(t0 + t) averaged over all pairs with a lag t, similar to690

Eq. (1).

Similarly to ρ(L), we computed the temporal autocorrelation function ρ(t) for the 50 members of NATL025-CJMCYC3, for

the range t ∈ [1,60] days with a spacing of 1 day. In Figure 2C, we show each member’s ρ(t) as black curves. We performed an

exponential fit ex/τL over the 50 correlation curves. In Figure 2C, we show in red the exponential fit. We found a decorrelation

timescale of τL = 41 days for the velocities of the particles released on different days.695

A) Map of Cape Hatteras showing the points used to compute the spatial correlations (blue) and the location used to compute

the temporal correlations (red). The hexagons mark the limits of the hexagonal grid, and the green area represents the North

American coast. B) Spatial correlations function around the release location, and each black line shows the correlation function

for an ensemble member. The blue line shows the exponential fit computed over the 50 correlation functions. The green line

shows the decorrelation length scale LL = 0.41◦ ≈ 37km. C) Temporal Correlations with velocities sampled daily for 60 days700

from the 2nd of January 2010. The black lines show the correlation functions of single ensemble members, and the red line

shows the exponential fit with a decorrelation timescale of 41 days.
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Figure A1. Marginal entropy of mixture distributions as a function of particles sampled per ensemble member, shown for three different

hexagonal grid resolutions (h). Higher h values indicate finer spatial resolution, resulting in higher entropy values.

Appendix A: Marginal Entropy as a Function of Number of Particles and Grid Resolution

The calculation of the mixture probability distributions (Pmix :::
Pmix) requires determining both the optimal number of particles

to sample and the appropriate spatial resolution for binning these particles. These parameters directly affect the entropy of the705

resulting distributions. We investigated this relationship by varying two key parameters: the number of particles sampled per

ensemble member and the hexagonal grid resolution (h).

Figure A1 shows how the entropy converges as we increase the number of particles sampled per ensemble member, plotted

for three different grid resolutions (h ∈ {2,3,4}). As expected, finer grid resolutions (larger h values) yield higher entropy

values as they capture more detailed spatial information. For our chosen grid resolution of h= 3, the entropy converges to710

approximately 8.5 bits when sampling 150 or more particles per ensemble member. Coarser resolutions (h= 2) require fewer

particles to converge, while finer resolutions (h= 4) need more particles but capture more spatial detail. Based on this analysis,

we selected h= 3 and 150 particles per member as sufficient parameters for our study, balancing computational efficiency with

spatial resolution.
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Figure B1. Ensemble standard deviation of time-averaged particle occurrence per
:::::::::
(hexagonal) bin in the North Atlantic Ocean for single-

member simulations. Left column (A, C, E): Temporal release strategies at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F):

Spatial release strategies with δr ∈ {0.1◦,1.0◦,2.0◦}. The color scale represents the ensemble standard deviation of a 6-year time-averaged

occurrence per bin. The maps illustrate the variability in particle dispersal for single-member simulations. The dashed line at 40◦W indicates

the eastern boundary of the study area. The blue dot marks the approximate release location.

Appendix B: Additional Supplementary Figures715
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Figure B2. Ensemble standard deviation of time-averaged particle occurrence per
::::::::
(hexagonal)

:
bin in the North Atlantic Ocean for mixture

simulation subsets. Left column (A, C, E): Mixture subsets at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F): Mixture subsets with

spatial variability δr ∈ {0.1◦,1.0◦,2.0◦}. The color scale represents the ensemble standard deviation of a 6-year time-averaged occurrence

per bin. The maps show the variability in particle dispersal patterns for all 50 subsets of the mixture simulations. The dashed line at 40◦W

indicates the eastern boundary of the study area. The blue dot marks the approximate release location.
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Figure B3. Kernel Density Estimates (KDE) of connectivity analysis for the single-member simulations. The top row (A-C) shows distribu-

tions for spatial releases δr ∈ {0.1◦,1.0◦,2.0◦}: Particle counts (A), median drift time in years (B), and median depth in meters (C). The

bottom row (D-F) shows the same metrics but is compared across different temporal releases of 4, 12, and 20 weeks.
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Figure B4. Kernel Density Estimates (KDE) of connectivity analysis for the mixture simulations, using Scott’s method with a bandwidth

of 1. The top row (A-C) shows distributions for mixture spatial releases δr ∈ {0.1◦,1.0◦,2.0◦}: Particle counts (A), median drift time in

years (B), and median depth in meters (C). The bottom row (D-F) shows the same metrics but is compared across different mixture temporal

releases of 4, 12, and 20 weeks.
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Figure B5. Probability distributions of particle locations at different ages (10, 100, and 1,000 days; columns) across varying release strategies

(rows). The top row shows the probability of the mixture δr = 0.1◦ distribution (
::::::
mixture subset 10

::
10

:
of the bootstrapping). The 2nd, 3rd,

and 4th rows show the single-member distributions (member 46
::
46), with 20-week, δr = 2.0◦ and δr = 0.1◦ release, respectively. The blue

circles mark the particle release location, omitted for plots of particle age of 10 days. Bins with probability zero were removed to facilitate

visualizing the area of dispersal of the particles.
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Figure B6.
:::::::
Marginal

::::::
entropy

:::
the

::
50

:::::::::::
single-member

:::::::::
simulations

::::::::
performed

:::
with

:::
the

:::::::
different

:::::
release

:::::::
strategies

:::::::::
(individual

::::::
panels).

:::
The

::::
lines

::
are

::::::::::::::
randomly-colored

:::
and

:::
each

:::
line

::::::::
represents

:::
one

:::::::::::
single-member

::::::
entropy

:::
and

:::
the

::::
black

::::::
dashed

:::
line

:
is
:::
the

:::::::
ensemble

::::::
average

::
as

:
a
:::::::
function

::
of

::::
time.
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Figure B7.
:::::::
Marginal

::::::
entropy

::
of

::
the

:::
50

::::::::::
bootstrapping

:::::::::
realizations

::
or

::::::
mixture

:::::::::
distributions,

:::::::::
subsampled

::::
from

:::::::::::
single-member

:::::::::
simulations

::::
with

::::::
different

::::::
release

:::::::
strategies

::::::::
(individual

::::::
panels).

::::
The

::::
color

::::
lines

::::
show

::
the

::::::
entropy

::
of
::::
each

:::::::::
realization,

:::
and

::
the

:::::
black

:::::
dashed

:::
line

::
is
:::
the

::::::
average

:
as
::

a
::::::
function

::
of

::::
time.
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