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Abstract: Previous measurement-model comparisons of atmospheric isoprene levels 23 

showed a significant unidentified source of isoprene in some northern Chinese cities 24 

during winter. Here, spatial variability in winter aerosol organosulfate (OS) formation 25 

in typical southern (Guangzhou and Kunming) and northern (Xi’an and Taiyuan) 26 

cities, China, was investigated to reveal the influence of potential non biogenic 27 

contributor on aerosol OS pollution levels. Monoterpene-derived OSs were 28 

significantly higher in southern cities than in northern cities, which was attributed to 29 

temperature dependent emission of monoterpenes (i.e., higher temperatures in 30 

southern cities drove more monoterpene emissions). However, isoprene-derived OSs 31 

(OSi) showed the opposite trend, with significantly higher levels in northern cities. 32 

Principal component analysis combined with field simulation combustion experiments 33 

suggested that biomass burning rather than gasoline, diesel, and coal combustion 34 

contributed significantly to the abundance of OSi in northern cities. The comparison 35 

of anthropogenic OS molecular characteristics between particles released from 36 

various combustion sources and ambient aerosol particles suggested that stronger 37 

biomass and fossil fuel combustion activities in northern cities promoted the 38 

formation of more anthropogenic OSs. Overall, this study provides direct molecular 39 

evidence for the first time that non biogenic sources can significantly contribute to the 40 

formation of OSi in China during winter. 41 

 42 
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1. Introduction 45 

Organosulfates (OSs) with a sulfate ester functional group typically contribute 3–46 

30% of the organic aerosol mass in atmospheric fine particles (PM2.5) (Luk´Acs et al. 47 

2009). Moreover, OSs have been estimated to account for up to 12% of the total sulfur 48 

mass in fine particles, playing significant roles in the global biogeochemical cycling 49 

of sulfur (Luk´Acs et al. 2009). In particular, OSs can impact the properties of 50 

aerosols, such as hygroscopicity, acidity, viscosity, and morphology, which are closely 51 

associated with the organic aerosol formation and urban air quality (Riva et al. 2019; 52 

Fleming et al. 2019). Thus, aerosol OSs have attracted significant attention over the 53 

years. However, the mechanisms and key factors impacting the formation and 54 

abundance of aerosol OSs in the real world remain considerable uncertainty, despite 55 

the important insights gained from laboratory simulation experiments (Wang et al. 56 

2021; Yang et al. 2023; Wang et al. 2020).  57 

Previous field studies have indicated that acidity (Duporté et al. 2019), sulfate 58 

(Aoki et al. 2020), aerosol liquid water (Duporté et al. 2016), and oxidants (e.g., 59 

ozone) (Wang et al. 2021) represent critical factors controlling the formation of OSs 60 

via heterogeneous and liquid phase processes (Brüggemann et al. 2020b). Precursor 61 

emission intensities (e.g., isoprene, monoterpenes, polycyclic aromatic hydrocarbons, 62 

and alkanes) also play an important role in impacting abundance of biogenic and 63 

anthropogenic OSs in ambient aerosols (Wang et al. 2022; Bryant et al. 2021; Yang et 64 

al. 2024). Furthermore, previous studies have identified a large number of CHOS 65 

compounds in smoke particles (e.g., pine branches, corn straw, rice straw, and coal) 66 
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(Song et al. 2019; Song et al. 2018; Tang et al. 2020). However, limited studies have 67 

focused on the contribution of different smoke particles to urban aerosol OSs. This 68 

may be an overlooked source of OSs. In general, few field studies have conducted a 69 

comprehensive investigation into the relationship between biogenic and 70 

anthropogenic impacting factors and regional differences in aerosol OS pollution. 71 

This hinders our understanding of the formation and constraints of aerosol OS 72 

pollution in a complex polluted atmospheric environment across diverse cities in 73 

China. 74 

The considerable variations in climatic conditions and air pollution levels in the 75 

northern and southern regions of China during winter (Ding et al. 2014; Ding et al. 76 

2016b) provide a distinctive opportunity to examine the complex influences of 77 

precursors, humidity, acidity, atmospheric oxidants, and anthropogenic pollution on 78 

the formation and abundance of aerosol OSs in the real world (Yang et al. 2024; Yang 79 

et al. 2023; Wang et al. 2021; Hettiyadura et al. 2019). In this study, we conducted the 80 

simultaneous observations of OSs and other chemical components in PM2.5 collected 81 

from typical southern (Guangzhou and Kunming) and northern (Xi’an and Taiyuan) 82 

cities in China during winter. Moreover, we also attempted to identify OSs in smoke 83 

particles emitted from combustion of different materials (i.e., rice straw, pine branch, 84 

diesel, gasoline, and coal). The principal aims of this study are 1) to investigate the 85 

spatial differences in aerosol OS pollution in northern and southern China during 86 

winter and 2) to elucidate the key factors that contribute to the spatial variability of 87 

OS pollution, with a focus on the OSs derived from smoke particles. 88 
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2. Materials and Methods 89 

2.1. Site description and sample collection 90 

The research sites are located in four urban areas in China, including Xi’an (XA) 91 

Taiyuan (TY), Guangzhou (GZ), and Kunming (KM) (Figure S1a). XA and TY are 92 

typical northern cities with cold winters (average temperature below 2 ℃ during the 93 

study period; Table S1). Thus, burning coal and biomass for heating is prevalent in 94 

these two cities during winter (Zhou et al. 2017; Ma et al. 2017), which significantly 95 

deteriorated the local air quality (Figure S1b). GZ and KM represent typical southern 96 

cities, with an average air temperature of over 10 ℃ during the winter sampling 97 

period (Table S1). Clearly, the distinctive climatic conditions in the northern and 98 

southern cities during winter may lead to significant spatial differences in the level of 99 

air pollution and the emission intensity of biogenic volatile organic compounds 100 

(VOCs) (Ding et al. 2014; Xu et al. 2024b).  101 

From 10 December 2017 to 8 January 2018, sampling was performed 102 

simultaneously in four cities. Filters contained PM2.5 were collected at regular two- to 103 

three-day intervals, with the collection duration being 24 hours, using a high-volume 104 

air sampler (Series 2031, Laoying, China) at a flow rate of ∼1.05 m3 min−1 (Xu et al. 105 

2024a). A blank filter was sampled at each of the study sites. A total of four PM2.5 106 

samples were collected and stored at a temperature of −30°C. Meteorological data, 107 

including wind speed, relative humidity (RH), and temperature, were obtained from 108 

nearby environmental stations. Concurrently, the concentrations of various pollutants, 109 

such as O3, NO₂, and SO₂, were also recorded. 110 
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2.2. Smoke particle collection 111 

The controlled burning experiments conducted in the field were designed to 112 

simulate the emissions of “real world” burning cases in China (Figure S2), with the 113 

methodology being improved according to the previous reports (He et al. 2010; Wang 114 

et al. 2017). Rice straw and pine branch are typical materials for biomass burning in 115 

China (Zhou et al. 2017). In addition, the combustion of coal, gasoline, and diesel was 116 

representative of fossil fuel combustion (Yu et al. 2020). Accordingly, the smoke 117 

particles (PM2.5) emitted from rice straw, pine branch, coal combustion, gasoline 118 

vehicle exhausts, and diesel vehicle exhausts were separately collected using self-119 

made devices.  120 

Briefly, the smoke from the combustion of rice straw, pine branch, and coal was 121 

sampled through a combustion furnace pumped with ambient air (particulate matter is 122 

removed) (Figure S2a). It should be noted that introducing ambient air with removed 123 

particulate matter into the combustion furnace is to minimize the pollution of ambient 124 

particulate matter to the smoke particle samples. This is the most distinct difference 125 

from the previous combustion experiment (Zhang et al. 2022; Xu et al. 2023a). Each 126 

combustion experiment for straw, pine branch, and coal lasted for 30−40 min. 127 

Regarding the smoke particles emitted from gasoline vehicle exhausts and diesel 128 

vehicle exhausts, they were collected for 3 hours by directly connecting to the car 129 

exhaust pipe (Figure S2b). All smoke particle samples are collected onto prebaked 130 

quartz fiber filters via a high-volume air sampler (Series 2031, Laoying, China). Four 131 

repeated experiments were conducted for each combustion material, one of which was 132 
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collected as a blank sample. All smoke particle samples were stored at −30°C. 133 

 134 

2.3. Chemical analysis and predictions of aerosol acidity and water concentration 135 

The extraction, measurement procedures, and identification of OSs were 136 

described in detail in our recent publications (Yang et al. 2024). Briefly, the filter 137 

sample was extracted using methanol, then filtered through a 0.22 μm PTFE syringe 138 

filter and concentrated by a gentle stream of nitrogen gas. Subsequently, the 139 

concentrated sample with adding ultrapure water (300 μL) was thoroughly mixed 140 

using a mixer. The mixture was centrifuged to obtain the supernatant for analysis of 141 

UPLC-MS/MS system (Waters, USA) (Wang et al. 2021). The reverse-phase liquid 142 

chromatography (RPLC) method was used in this study. Although our method is quite 143 

effective in retaining and separating low molecular weight (MW) OSs, as 144 

demonstrated in our recent publication (Yang et al. 2024), we also acknowledge that 145 

the developed hydrophilic interaction liquid chromatography method may represent a 146 

optimized solution for the measurement of low-MW OSs (Cui et al. 2018; Hettiyadura 147 

et al. 2015).  148 

In addtion, it has been indicated in previous studies (Brüggemann et al. 2020a; 149 

Kristensen et al. 2016) that the levels of OSs can be affected by the sampling 150 

procedure, especially when SO₂ removal procedures are not employed. On the 151 

assumption that SO₂ reacts with organics on filters to form OSs, similar processes 152 

must also occur on ambient particles prior to sampling. Morover, there is currently no 153 

study evaluating the relative efficiency of OS generation in filters and ambient 154 
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particles. Consequently, the possible consequences of sampling without denuding SO₂ 155 

for the quantification of OSs were not taken into account in our studies (Brüggemann 156 

et al. 2020a; Kristensen et al. 2016). In total, 212 OSs were identified. However, only 157 

111 OS species were quantified using surrogate standards in this study (Table S2 and 158 

S3) (Wang et al. 2021; Hettiyadura et al. 2017). The study divided the several 159 

principal OS groups as follows: monoterpene-derived OSs (OSm), isoprene-derived 160 

OSs (OSi), C2−C3 OSs (i.e., OSs with two or three carbon atoms), and anthropogenic 161 

OSs (i.e, aliphatic and aromatic OSs) (Yang et al. 2023). The specific classification 162 

and quantification methods were detailed in our recent publications (Yang et al. 2023; 163 

Yang et al. 2024) and Supporting Information. 164 

An additional portion of each filter was extracted using ultrapure water for 165 

determining the inorganic ions (Huang et al. 2023). The concentrations of SO4
2-

, Ca2+,  166 

NO3
-

, Na+, K+,  Mg2+, Cl¯, and  NH4
+  were analyzed using ICS5000+ ion 167 

chromatography (Thermo, USA) (Yang et al. 2024). The mass concentration of 168 

aerosol liquid water (ALW) and pH value were calculated by a thermodynamic model 169 

(ISORROPIA-II) in the forward mode and thermodynamically metastable state, which 170 

was detailed in our previous studies (Liu et al. 2023; Lin et al. 2023; Xu et al. 2022; 171 

Xu et al. 2023b; Xu et al. 2020). The role of OSs in influencing ALW and pH was not 172 

included in this study because their impact on prediction outcomes was deemed to be 173 

insignificant. 174 

 175 

3. Results and Discussion 176 
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3.1. Spatial variations in concentrations and compositions of different OSs 177 

Figure 1a shows the spatial distributions in mass concentrations and mass 178 

fractions of OSi, OSm, aliphatic OSs, aromatic OSs, and C2–C3 OSs in PM2.5 collected 179 

in southern (KM and GZ) and northern (TY and XA) cities during winter. On average, 180 

OSi was the dominant OS subgroup, which accounted for 37% – 46% and 68% – 69% 181 

of the total OS mass in southern and northern cities, respectively. The predominance 182 

of OSi in aerosol OSs was also reported by previous studies in cities in northern (e.g., 183 

Beijing and Tianjin) (Wang et al. 2018; Ding et al. 2022) and southern (e.g., 184 

Guangzhou and Shanghai) (Wang et al. 2022; Wang et al. 2021) China, as well as in 185 

coastal (the Yellow Sea and Bohai Sea) (Wang et al. 2023) and European (Sweden) 186 

(Kanellopoulos et al. 2022) and American regions (Chen et al. 2021; Hettiyadura et al. 187 

2017; Hettiyadura et al. 2019) (Table S4). Moreover, the concentrations of OSi were 188 

significantly lower in southern cities (61 ± 38 ng m-3 – 87 ± 60 ng m-3) than in 189 

northern cities (171 ± 69 ng m-3 – 260 ± 71 ng m-3) (Table S1), showing a 190 

concentration range overlapped with previous observations (Table S4). From southern 191 

to northern cities, the mass concentrations and mass fractions of OSm tended to 192 

decrease, which was opposite to the spatial variation pattern of OSi (Figure 1a). Both 193 

OSi and OSm are generally considered as typical biogenic OSs (Hettiyadura et al. 194 

2019; Wang et al. 2018), the abundances of which were tightly associated with 195 

biogenic VOC emissions when acidity, sulfate,  atmospheric oxidation capacity, and 196 

ALW are not limiting factors (Bryant et al. 2021; Wang et al. 2022; Yang et al. 2024). 197 

Thus, these dissimilarities in the spatial variations of OSi and OSm can be attributed to 198 
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large differences in the intensity of biogenic VOC emissions (Wang et al. 2022) 199 

and/or the key factors that constrain OS formation between the northern and southern 200 

regions of China (Table S1). 201 

 202 

Figure 1 Box and whisker plots showing the variations in the concentration of 203 

different OS groups in PM2.5 collected in southern (GZ and KM) and northern (TY 204 

and XA) cities of China during winter. Each box encompasses the 25th–75th 205 

percentiles. Whiskers are the minimum and maximum values. The triangles and solid 206 

lines inside boxes indicate the mean and median. The spatial variation in average 207 

percentage distributions of various OS groups was shown in panel (a). Spatial 208 

variations in (b) SO2, (c)SO4
2-

, (d) ALW, and (e) Ox levels. 209 

 210 

The abundance of anthropogenic OSs (i.e., OSa, including aliphatic and aromatic 211 

OSs) in southern cities was lower than that of OSm, which was opposite to the case in 212 
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the northern cities showing higher anthropogenic OS abundance (Figure 1a and 213 

Table S1). Moreover, we found that the spatial variation patterns of OSi and OSa were 214 

similar to those of SO2, SO4
2-

, ALW, and Ox (Figures 1b–e), as indicated by significant 215 

(P < 0.05) correlations of OSi and OSa with those factors (Figure S3). However, OSm 216 

and C2–C3 OSs showed an opposite spatial variation pattern to SO2, SO4
2-

, ALW, and 217 

Ox (Figure 1). If both OSi and OSm are assumed to be formed mainly from the 218 

oxidation of biologically emitted VOCs, the higher SO2, SO4
2-

, ALW, and Ox levels 219 

could theoretically lead to higher OSm in northern cities, just as these factors leaded to 220 

higher OSi abundance in northern cities (Figure 1 and Figure S3). Accordingly, the 221 

above differentiated spatial variation patterns among different OS subgroups likely 222 

indicated that other sources of isoprene contributed to the formation of OSi in 223 

northern cities. Given the significant (P < 0.05) correlations between OSi and OSa 224 

(Figure S3), non biogenic isoprene emissions may play an important role in the 225 

formation of aerosol OSi in northern cities. This will be further demonstrated in the 226 

following discussion. 227 

 228 

3.2. Key factors affecting spatial differences in monoterpene-derived OS 229 

abundance 230 

Figure 2a shows the distribution of OSm concentration as a function of air 231 

temperature. We found that the OSm concentration tended to increase with the increase 232 

of air temperature. Specifically, the air temperature in the southern cities was mainly 233 

in the range of 7–14°C during the sampling period, corresponding to higher aerosol 234 
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OSm abundance. In contrast, the low temperature (< 7°C) in the northern cities 235 

corresponded to a significant decrease in OSm abundance. This finding was similar to 236 

the previously observed decrease in aerosol OSm compounds with decreasing 237 

temperature during winter in Guangzhou (Bryant et al. 2021). Furthermore, the 238 

indicator (CL× CT) of biogenic VOC emission rate was also higher in southern cities 239 

than in northern cities (Figure 2b), which implied higher monoterpene emissions in 240 

southern cities. It has been suggested that the emission rates of biogenic VOCs (e.g., 241 

monoterpene and isoprene) can be driven by increased air temperature and lighting 242 

(Ding et al. 2016a; Ding et al. 2016b). A previous study also found that the 243 

concentrations of atmospheric monoterpenes during the winter season were higher in 244 

warmer southern Chinese cities than in colder northern Chinese cities (Ding et al. 245 

2016b; Li et al. 2020). In particular, GZ and KM, which encompass extensive areas of 246 

coniferous and broad-leaved forests, have been identified as hotspots for monoterpene 247 

and isoprene emissions (Li and Xie 2014).  Considering the lower levels of key 248 

factors affecting OS formation observed in southern cities (Figures 1b–e and Table 249 

S1), it can be inferred that the significant spatial differences in OSm abundances were 250 

largely attributed to temperature dependent emission of monoterpenes.  251 
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 252 

Figure 2 Distribution of (a) OSm and (b) CL×CT data in different temperature ranges 253 

during winter. The triangles inside boxes indicate the mean. Principal component 254 

analysis result (c) deciphering the relationship among OSi, OSm, and key factors 255 

influencing OS formation. 256 

 257 

To further determine the key factors affecting the spatial differences of OSm, 258 

principal component analysis was conducted (Figure 2c). It can be easily determined 259 

that the abundance of aerosol OSm was closely related to changes in air temperature 260 

and CL×CT value. This precisely explained the changes in OSm data in the southern 261 

cities. In contrast, the abundance of aerosol OSi in the northern cities was more 262 

influenced by anthropogenic factors, as indicated by combustion source tracers such 263 

as nitrogen-containing bases (N-bases) and non-sea-salt Cl¯ (nss-Cl¯) (Wang et al. 264 

2017; Jiang et al. 2023) (Figure 2c). Thus, principal component analysis can perfectly 265 

distinguish the main factors causing changes in OSm and OSi abundances between the 266 

northern and southern cities. In general, the above results confirm that the spatial 267 

variation of OSm was predominantly controlled by temperature-related monoterpene 268 
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emissions. However, this cannot fully account for the observed spatial variation of 269 

OSi. Interestingly, the spatial distribution patterns of OSm and OSi in northern and 270 

southern China exhibited consistency during summer, closely resembling the spatial 271 

distribution of biogenic VOC emission intensities (Wang et al. 2022). Thus, this case 272 

together with our observations during winter further imply that non biogenic sources 273 

of isoprene were important contributors to the formation of OSi in northern China 274 

during winter. 275 

 276 

3.3. Significant contribution of biomass burning to isoprene-derived OSs in 277 

Northern China 278 

The previous principal component analysis has suggested that the abundance of 279 

OSi in northern cities was closely related to the levels of combustion source tracers 280 

(e.g., N-base compounds and nss-Cl⁻). To further confirm the potential contribution of 281 

combustion release to aerosol OSi, OSs in smoke particles (PM2.5) emitted from rice 282 

straw, pine branch, and coal combustion, as well as from gasoline vehicle exhausts, 283 

and diesel vehicle exhausts, were investigated. A total of 8 distinct OSi were identified 284 

in both the smoke particles emitted from biomass burning (rice straw and pine branch) 285 

and the ambient aerosol particles, including C4H7O6S ,̄ C5H9O6S ,̄ C5H11O6S ,̄ 286 

C5H7O7S ,̄ C4H7O5S ,̄ C5H11O7S ,̄ C5H9O7S ,̄ and C5H9O8S .̄ Moreover, the peak 287 

intensities of these 8 OSi in smoke particles emitted from fossil fuel combustion 288 

(gasoline and diesel vehicle exhausts and coal) were close to those in the blank 289 

sample. A previous investigation into CHOS compounds in smoke particles emitted 290 
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from residential coal combustion and biomass burning also failed to identify OSi 291 

species (Song et al. 2019; Song et al. 2018), which further supported the reliability of 292 

the combustion experiment conducted in this study. C5H9O6S  ̄ was dominant OSi 293 

species in pine-derived smoke particles (Figure 3a,c). We found that the average 294 

concentration of C5H9O6S  ̄in ambient aerosol samples was much higher in northern 295 

cities than in southern cities (Figure 3b). A reasonable explanation for this is that pine 296 

branches are commonly used as solid fuel for heating and cooking in northern suburbs 297 

and rural areas (Zhou et al. 2017). C5H7O7S  ̄and C4H7O5S  ̄dominated OSi species in 298 

straw-derived smoke particles (Figure 3a,c). However, these two types of OSi have 299 

relatively low abundance in ambient aerosol samples in both northern and southern 300 

cities. This may be attributed to the fact that straw burning was mainly concentrated 301 

in autumn rather than winter in China (Zhou et al. 2017; Yang et al. 2015). On 302 

average, the biomass burning-related OSi accounted for 58% ‒ 64% and 86% ‒ 87% 303 

of the total OSi concentration in southern and northern cities, respectively (Figure 3c). 304 

Although these biomass burning-related OSi can also be formed through atmospheric 305 

transformation of biogenic isoprene, the higher proportion of these OSi in northern 306 

cities together with previous principal component analysis results still support our 307 

previous consideration that non biogenic OSi may be an important contributor to 308 

aerosol OSi in northern cities. 309 
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 310 

Figure 3 Relative signal intensity of (a) identified major OSi species in different types 311 

of smoke particle samples. Spatial variation in the concentration of OSi identified in 312 

smoke particles in (b) ambient PM2.5 samples. Peak area and concentration fraction of 313 

(c) OSi species identified in both ambient PM2.5 samples collected in different cities 314 

and smoke particles. Comparison of (d) isoprene mixing ratios obtained from 315 

observation and modeling in different cities (Zhang et al. 2020).  316 

 317 

Previous laboratory studies have suggested that these identified OSi species in 318 

biomass burning-derived smoke particles are typically formed through heterogeneous 319 

and multiphase reactions associated with isoprene, its oxidation intermediates, and 320 

sulfate or sulfur dioxide (Surratt et al. 2008; Surratt et al. 2007; Darer et al. 2011). 321 

Specifically, C5H9O6S ,̄ as a sulfate ester of C5-alkene triols, was formed mainly 322 

through the uptake of gas-phase isoprene oxidation products onto acidified sulfate 323 

aerosol (Surratt et al. 2007). The formation of C5H7O7S  ̄and C5H9O7S  ̄begins with 324 
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the gas-phase oxidation of isoprene (Surratt et al. 2008). C4H7O6S¯ can be generated 325 

both from isoprene photooxidation and sulfate radical reaction with methacrolein 326 

(MACR) or methyl vinyl ketone (MVK) (Schindelka et al. 2013; Wach et al. 2019; 327 

Nozière et al. 2010). C5H11O7S  ̄was produced by reactive uptake of isoprene-derived 328 

epoxide (IEPOX) on sulfate under low-NOx conditions. Since our combustion 329 

experiments have excluded the direct contribution of ambient aerosol particles to OSi 330 

in smoke particles, it can be expected that these detected OSi compounds were mainly 331 

generated within smoke plumes through the isoprene oxidation pathway mentioned 332 

above. It has been demonstrated that directly emitted organic aerosols or VOCs can 333 

undergo a chemical reaction within smoke plumes, forming secondary organic 334 

compounds within a matter of hours (Wang et al. 2017; Song et al. 2018; Mason et al. 335 

2001). A field study conducted by Zhu et al. (2016) at a rural site (Yucheng) in the 336 

North China Plain (NCP) region has observed that the concentration of ambient 337 

isoprene during the period of straw combustion was approximately twice as high as 338 

that observed during periods of non combustion. In addition, Li et al. (2018) found 339 

that isoprene-derived epoxides increased significantly during field open burning of 340 

straw. Generally, despite the fact that a few of the mechanisms by which OSs are 341 

formed have been verified through field studies, the formation of CHOS and CHONS 342 

compounds has been observed to occur in the biomass burning plume (Zhang et al. 343 

2024; Song et al. 2018; Tang et al. 2020). Thus, these previous case studies further 344 

support our consideration that OSi compounds formed in biomass burning-derived 345 

smoke particles in this study can be attributed to increasing isoprene emission caused 346 

https://doi.org/10.5194/egusphere-2024-3823
Preprint. Discussion started: 9 December 2024
c© Author(s) 2024. CC BY 4.0 License.



18 
 

by field biomass burning (Zhu et al. 2016) and favorable aqueous secondary organic 347 

aerosols (SOA) formation during the aging process of the biomass burning plume 348 

(Gilardoni et al. 2016).  349 

Figure 3d presents a comparison between the isoprene mixing ratios derived 350 

from model simulations (plant functional type related model) and those observed in 351 

the field in different Chinese cities during winter (December and January) (Zhang et 352 

al. 2020). Overall, the levels of isoprene observed in northern cities during winter 353 

were higher than those in southern cities. In addition, the predicted values in southern 354 

cities were slightly higher than the observed values, which may be attributed to the 355 

lag in model prediction results caused by the rapid urbanization rates in these southern 356 

cities (Zhang et al. 2020). However, the observed values in these two northern cities 357 

were 53% to 63% higher than the predicted values, on average. Clearly, this plant 358 

functional type related isoprene prediction model cannot explain the large amount of 359 

“missing” isoprene sources in northern cities. Thus, the observed spatial differences in 360 

OSi (Figure 1) and field combustion experiments (Figure 3) can suggest that these 361 

“missing” isoprene sources were mainly derived from biomass burning, significantly 362 

contributing to the production of aerosol OSi in northern cities. This can be also 363 

supported by previous principal component analysis and correlation analysis among 364 

combustion source tracers and OSi species (Figure 2 and Figure S4). 365 

 366 

3.4. Formation of anthropogenic OSs mainly driven by fossil fuel and biomass 367 

combustion  368 
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Figures 4a,b show the average concentration distribution of anthropogenic OSs 369 

classified based on the number of O atoms in their molecules in southern (GZ and 370 

KM) and northern (TY and XA) cities. The O4S1 subgroup was the most abundant 371 

aromatic OSs in both southern and northern cities, among which C9H9O4S¯, phenyl 372 

sulfate (C6H5O4S¯), and benzyl sulfate (C7H7O4S¯) were dominant species (Table S3). 373 

C7H7O4S¯and C6H5O4S¯  have been suggested to be formed mainly through the 374 

photooxidation of 2-methylnaphthalene and naphthalene (Riva et al. 2015), or 375 

alternatively, by the sulfate radical reaction with aromatic compounds, including 376 

toluene and benzoic acid, in an aqueous phase environment (Riva et al. 2015). The 377 

formation mechanism of C9H9O4S¯ is rarely reported. However, C9H9O4S¯, C6H5O4S¯, 378 

and C7H7O4S¯  were also detected in both fossil fuel combustion-derived smoke 379 

particles and biomass burning-derived smoke particles (Figure S5 and Table S5), 380 

indicating that the aromatic VOCs produced by fuel combustion are closely related to 381 

the formation of these aromatic OSs. Overall, aerosol aromatic OS compounds in both 382 

southern and northern cities were mainly distributed between four and six O atoms 383 

(Figure 4c), which was similar to the distribution of aromatic OSs identified in 384 

various smoke particles emitted from different combustion sources (Figure 4d). 385 

However, the average abundances of aromatic O4‒6S1 compounds in northern cities 386 

were 3‒6 times higher than those in southern cities. The above results suggest that 387 

aromatic OSs originated from fossil fuel and biomass combustion activities are 388 

important contributors to urban aerosol anthropogenic OSs in winter in China, 389 

especially in northern cities. We found that the correlations between aromatic OSs and 390 
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anthropogenic indicators (SO2, SO4
2-

, N-base, and nss-Cl¯) were stronger in northern 391 

cities than in southern cities (Figure S6), and that the release of polycyclic aromatic 392 

hydrocarbons from fossil fuel combustion was also higher in northern cities (Figure 393 

S7). This further indicates that higher aerosol aromatic OSs in northern cities was 394 

mainly attributed to stronger combustion activities in those cities. 395 

 396 

Figure 4 Concentration distribution of different (a) aromatic and (b) aliphatic OS 397 

subgroups (classification based on oxygen atoms) in southern and northern cities. 398 

Ring charts (c,e) show the percentage contributions of O4-6S1 and O7-13S1 subgroups. 399 

Radial bar charts (d,f) illustrate the relative signal intensity of different OS subgroups 400 

in different smoke particle samples.  401 

 402 

Aliphatic OSs were also predominantly distributed between O4S1 and O6S1 403 
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subgroups in both southern and northern cities (Figures 4b,e), which was similar to 404 

the case found in both fossil fuel combustion-derived smoke particles and biomass 405 

burning-derived smoke particles (Figure 4f). It has been suggested that the long-chain 406 

alkanes derived from traffic emissions can largely contribute to the formation of 407 

CHOS compounds with aliphatic carbon chains (Tao et al. 2014). In addition, Tang et 408 

al. (2020) analyzed the molecular compositions of smoke particles from open biomass 409 

burning, household coal combustion and vehicle emissions and suggested that the 410 

aliphatic CHOS compounds can be derived from both vehicle emissions and coal and 411 

biomass combustion. In this study, aliphatic OSs showed a significant (P < 0.05) 412 

positive correlation with nss-Cl¯, SO2, NOx, and N-base compounds in both southern 413 

and northern cities (Figure S8), indicating aerosol aliphatic OSs were affected by a 414 

combination of biomass burning and vehicle emissions in those cities during winter. 415 

Thus, the significantly higher level of aliphatic O4‒6S1 species in northern cities 416 

indicated that the formation of aliphatic OSs in northern cities was more driven by 417 

pollutants released from the combustion of fossil fuels and biomass compared to 418 

southern cities. This consideration is highly consistent with the fact that the 419 

concentrations of air pollutants (e.g., SO2 and NO2) in northern cities with a large 420 

demand for heating during winter are usually higher than those in warmer southern 421 

cities (Figure S1b) (Yu et al. 2020; Ding et al. 2017; Ma et al. 2017; Zhou et al. 422 

2017).  423 

 424 

4. Conclusion and atmospheric implications 425 
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It has been previously suggested that isoprene can also be released into the 426 

atmosphere as a result of open burning of agricultural residues and forest fires 427 

(Andreae 2019; Simpson et al. 2011). A field study conducted by Wang et al. (2019) 428 

in Beijing during winter inferred that the prevalence of OSi compounds in total 429 

aerosol OSs may be partially attributable to biomass burning emissions, although 430 

there was a paucity of compelling evidence to support this hypothesis. This work 431 

combines strongly contrasting observational studies (northern Chinese Cities vs 432 

southern Chinese Cities) with in situ combustion modelling experiments to provide 433 

the first direct evidence that biomass burning emission, rather than fossil fuel 434 

combustion emission, is a significant contributor to aerosol OSi in northern cities 435 

(Figure 5). In Chinese cities, particularly those in the northern region, biomass 436 

materials are extensively utilized for domestic heating and cooking purposes during 437 

the winter season (Zhou et al. 2017). Clearly, the isoprene emissions from biomass 438 

combustion sources would result in higher isoprene mixing ratios than those 439 

simulated by the model (Zhang et al. 2020) that only considers natural isoprene 440 

emissions. Thus, isoprene prediction models applied to Chinese winters in the future 441 

should also take into account the various biomass combustion source releases. 442 

Furthermore, biogenic OSs are important SOA constituents and have been frequently 443 

serve as important tracers for biogenic SOA (Ding et al. 2014; Ding et al. 2016a). The 444 

overall results suggest that some OSi species may not be suitable as biogenic SOA 445 

markers, especially in areas with intensive biomass burning activities, such as 446 

northern Chinese cities during winter. 447 
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 448 

Figure 5 Conceptual picture showing the characteristics and main contributors of OSs 449 

in northern and southern China during winter. 450 

 451 

We found that different fossil fuel combustion emissions (e.g., vehicle emissions 452 

and coal combustion emissions) and biomass burning emissions can contribute to 453 

aerosol anthropogenic OSs. However, current studies have not been able to accurately 454 

distinguish between the contributions of various material combustion to different 455 

types of anthropogenic OSs. Future research is necessary to develop more 456 

comprehensive models to further explore the effects of various combustion sources on 457 

the generation and reduction of urban aerosol OS pollution. Of particular importance 458 

is that although the production of various OSs was directly observed through our 459 

simulated combustion experiments, it is not clear whether the chemical mechanisms 460 

involved are similar to those derived from the laboratory simulations. This is because 461 
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the combustion process is accompanied by the effects of high temperatures. In 462 

general, although our results provide direct evidence for the release of OSs from 463 

combustion of various combustion sources, further mechanistic studies and 464 

environmental impact assessment are still urgently needed. This may be important for 465 

effective control of urban wintertime organic aerosol pollution in China. 466 
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