1	Non biogenic source is an important but
2	overlooked contributor to aerosol isoprene-
3	derived organosulfates during winter in
4	northern China
5	
6	Ting Yang ¹ , Yu Xu ^{1,2} *, Yu-Chen Wang ³ , Yi-Jia Ma ¹ , Hong-Wei Xiao ^{1,2} , Hao Xiao ^{1,2} ,
7	Hua-Yun Xiao ^{1,2}
8	
9	¹ School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240,
10	China
11	² Shanghai Yangtze River Delta Eco-Environmental Change and Management
12	Observation and Research Station, Ministry of Science and Technology, Ministry of
13	Education, Shanghai 200240, China
14	³ Division of Environment and Sustainability, Hong Kong University of Science and
15	Technology, Hong Kong SAR 00000, China
16	
18	
19	*Corresponding authors
20	Yu Xu
21	E-mail: xuyu360@sjtu.edu.cn
22	
23	
24	

25	Table of Contents	
26	Text S1–S3	
27	Table S1	Page 8
28	Table S2	Page 9
29	Table S3	Page 10
30	Table S4	Page 12
31	Table S5	Page 13
32	Figure S1	Page 15
33	Figure S2	Page 16
34	Figure S3	Page 17
35	Figure S4	Page 18
36	Figure S5	Page 17
37	Figure S6	Page 19
38	Figure S7	Page 20
39	Figure S8	Page 21
40 41 42		
43		
44		

S1. Classification of Organosulfates

46 Organosulfates (OSs) were identified using an UPLC-ESI-QToFMS (Waters, 47 USA) in negative (-) ion mode (Wang et al. 2021a; Yang et al. 2023). The obtained 48 data were processed with a MassLynx v4.1 software to obtain the m/z ratios, formulas, 49 retention times, and peak areas of identified OSs. A mass spectral library was built 50 using the compound database function; moreover, the identified compounds can be 51 expressed as $C_cH_hO_oN_nS_s$ with a mass tolerance of ± 10 ppm (where c, h, o, n, and s 52 represent the number of carbon, hydrogen, oxygen, nitrogen, and sulfur atoms, 53 respectively). Compounds with oxygen atoms equal to or greater than $4n_{\rm S} + 3n_{\rm N}$ (i.e., 54 $n_{\rm O}/(4n_{\rm S} + 3n_{\rm N}) \ge 1)$ were tentatively classified as OSs (Cai et al. 2020). The 55 assignments of most OSs were further conducted based on their loss of the sulfur-56 containing fragment ions (e.g., m/z 80, 81, and 96) by MS/MS analysis (Hettiyadura 57 et al. 2015), which was detailed in our recent publication (Yang et al. 2023). The Double Bond Equivalent value (DBE), indicating the number of rings and double 58 59 bonds in an organic molecule, can be calculated using the following equation (Han et 60 al. 2023).

62 where $n_{\rm N}$, $n_{\rm H}$, and $n_{\rm C}$ indicate the numbers of N, H, and C atoms in a molecular 63 formula, respectively.

64 All potential OSs were further classified into five categories according to their 65 carbon number ($n_{\rm C}$), nitrogen number ($n_{\rm N}$), oxygen number ($n_{\rm O}$), and unsaturation 66 degree indexed by DBE, including isoprene-derived (OS_i), monoterpene-derived 67 (OS_m), C₂–C₃ OSs, aromatic OSs and aliphatic OSs (Yang et al. 2023). The list of OS_i 68 was obtained through the following method: (1) molecules with $n_{\rm C} = 4$ and 5 were 69 selected; (2) C₄ OSs with DBE range of 1–2, $n_{\rm O} \le 6$, and $n_{\rm H} \ge 6$ and C₅ OSs with DBE 70 range of 0–2, $n_{\rm O} \le 7$, and $n_{\rm H} \ge 8$. The detailed workflow was provided by Yang et al. 71 (2023). It should be noted that C₇H₉O₇S⁻ was classified as OS_i based on a previous 72 study by Nozière et al. (2010b).

73 According to previous laboratory studies, most of OS_m contain 10 carbon atoms, with effective oxygen atoms ($n_{\text{Oeff}} = n_{\text{O}} - 2n_{\text{N}}$) exceeding 4, and $2 \leq \text{DBE} \leq 4$ (Guo et 74 al. 2022; Ehn et al. 2012; Yan et al. 2016; Jokinen et al. 2014; Boyd et al. 2015; 75 76 Berndt et al. 2016; Berndt et al. 2018). Additionally, C₉H₁₅O₆S⁻, C₇H₁₁O₇S⁻, 77 C₉H₁₄NO₈S⁻, C₇H₁₁O₆S⁻, and C₈H₁₃O₇S⁻were classified into the OS_m category based 78 on previous studies (Yassine et al. 2012; Nozière et al. 2010a; Wang et al. 2017b; 79 Surratt et al. 2008). Furthermore, a correlation analysis was conducted between the selected OSs and representative OS_m (e.g., $C_{10}H_{17}O_5S^-$) (Bryant et al. 2021). 80 81 Accordingly, if a significant correlation (r > 0.6 and P < 0.01) was found between 82 them, the corresponding OS compound was subsequently classified as OS_m.

We further classified the remaining OSs based on their DBE values, aromaticity equivalent (X_C), n_{O-eff} and n_N . The aromaticity equivalent (X_c) describes potential monocyclic and polycyclic aromatic compounds. It has been suggested that OSs with DBE ≥ 2 and aromaticity equivalent (X_C) ≥ 2.5 can be classified as aromatic OSs (Jiang et al. 2022; Xie et al. 2021; Xie et al. 2020; Ma et al. 2022). The X_C can be calculated as the following equation (Yassine et al. 2014).

89
$$X_{C} = [3(DBE - (f_{m}n_{O} - f_{n}n_{S})) - 2] / [DBE - (f_{m}n_{O} - f_{n}n_{S})]$$
(2)

90 where the symbols f_n and f_m correspond to the fractions of S and O atoms involved in 91 the π -bond structure of the compound, respectively (Yassine et al. 2014). The negative 92 ion mode exhibits a preferential detection capability for compounds such as 93 carboxylic acids and esters (Ye et al. 2021). Thus, the calculation for Xc of 94 organosulfates can be simplified as the following equation (Ye et al. 2021).

95
$$X_{\rm C} = [3({\rm DBE} - 0.5(n_{\rm O} - 4)) - 2] / [{\rm DBE} - 0.5(n_{\rm O} - 4)])$$
 (3)

Nonetheless, previous studies have suggested that a DBE value of 2 for OS_m 96 97 species can be formed via the oxidation of monoterpene by NO₃• or •OH (Yan et al. 98 2016; Ehn et al. 2014; Trostl et al. 2016). Clearly, it is difficult to completely 99 distinguish aromatic OSs from OS_m based on DBE values. Hence, aromatic OSs with 100 a DBE value of 2 were further screened according to correlation analysis between 101 unidentified aromatic OSs and identified aromatic OSs and OS_m (Yang et al. 2023). 102 The acceptance threshold for the above screening was r > 0.6 and P < 0.01 (Yang et al. 103 2023).

The observed OSs with a DBE < 2, such as alkanes and some other unsaturated compounds, were classified as aliphatic OSs (Xie et al. 2020; Tao et al. 2014). Recently, some aliphatic oxygenated organic molecules were found to have a DBE value of 2 (Wang et al. 2021b). Thus, a correlation analysis was conducted between OSs with DBE = 2 and identified aliphatic species. If a significant correlation (r > 0.6and P < 0.01) was found between them, the corresponding OS compound was

110	assigned t	to aliphatic	OSs.	Additionally,	both	aliphatic	and	aromatic	OSs	were
111	classified a	as anthropo	genic C	OSs (OS _a) (Riva	a et al.	2016; Riv	va et a	al. 2015).		

113 S2. Quantification of OSs

114 The accurate quantification of OSs is difficult owing to a lack of authentic 115 standards. Consequently, the majority of the identified OSs were quantified using 116 surrogate standards.(Hettiyadura et al. 2019b; Bryant et al. 2021; Wang et al. 2018; 117 Ding et al. 2022a) The surrogate standards utilized in this study were as follows. Glycolic acid sulfate (GAS, C₂H₃O₆S⁻), lactic acid sulfate (LAS, C₃H₅O₆⁻), 118 119 limonaketone sulfate ($C_9H_{15}O_6S^-$), and α -pinene sulfate ($C_{10}H_{17}O_5S^-$) were self 120 synthesized according to previous studies (Olson et al. 2011; Wang et al. 2017a). 121 Methyl sulfate ($CH_3O_4S^-$, 99%, Macklin), potassium phenyl sulfate ($C_6H_5O_4S^-$, 98%, 122 Tokyo Chemical Industry), and sodium octyl sulfate (C₈H₁₇O₄S⁻, 95%, Sigma-123 Aldrich) are commercial standards (Olson et al. 2011; Huang et al. 2018b; Wang et al. 124 2018; Wang et al. 2020). Our previous studies have validated the reliability of these 125 surrogates (Wang et al. 2021a; Yang et al. 2023). In this study, 111 OS were quantified 126 using the aforementioned surrogate standards. More details of the methods were 127 described in our previous studies (Yang et al. 2023). The recoveries for these OS 128 standards ranged from 84% to 94%. Further information on the data quality control 129 can be referred to our recent work (Yang et al. 2023). It is crucial to highlight that the 130 OS species quantified in this study should not be interpreted as an exact measurement of OS compounds. Instead, this method represents the optimal approach in theabsence of authentic OS standards (Yang et al. 2023; Huang et al. 2023).

133

134 S3. Estimating of Isoprene Emission Rate

135 The isoprene emission rate (I) can be calculated using the following equation136 (Guenther et al. 1993).

137
$$\mathbf{I} = \mathbf{Is} \times \mathbf{C_L} \times \mathbf{C_T} \qquad (4)$$

where the Is value is the constant at 30°C leaf temperature and 1000 μ mol m⁻² s⁻¹ photosynthetically active radiation (PAR). C_L and C_T denote the factors that influence light and temperature, respectively. C_L and C_T can be simply estimated as:

141
$$C_{L} = \frac{\alpha C_{LIL}}{\sqrt{\alpha^{2}L^{2} + I}}$$
(5)

142

143
$$C_{T} = \frac{\exp \frac{C_{T1}(T-T_{S})}{RT_{S}T}}{1 + \exp \frac{C_{T2}(T-T_{M})}{RT_{S}T}}$$
(6)

144

where $C_{T2} = 230000 \text{ J mol}^{-1}$, $T_M = 314 \text{ K}$, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, $\alpha = 0.0027$, $T_S =$ 145 303 K, C_{L1} = 1.066, and C_{T1} = 95000 J mol⁻¹. Furthermore, T is leaf temperature (K), 146 and L denotes photosynthetically active radiation (PAR) in µmol m⁻² s⁻¹ (Guenther et 147 148 al. 1993). Data on daily mean temperature and solar radiation during the sampling 149 periods were downloaded from the National Meteorological Science Data Center 150 (https://data.cma.cn/). PAR was calculated by solar radiation multiplying photon flux efficacy of 1.86 μ mol J⁻¹ (Ding et al. 2016). The value of C_L × C_T was employed as an 151 152 indicator for estimating isoprene emission (Ding et al. 2016; Guenther et al. 1993). 153

	Souther	rn cities	Northern cities			
	GZ	KM	TY	XA		
T (°C)	15.9 ± 3.25	9.63 ± 2.52	-2.56 ± 2.14	1.69 ± 2.24		
RH (%)	62.04 ± 21.39	68.25 ± 7.73	42.74 ± 8.78	49.27 ± 17.47		
Wind speed (m/s)	3.27 ± 2.07	4.17 ± 1.11	2.44 ± 1.07	6.33 ± 3.36		
$NO_2 (\mu g m^{-3})$	71.07 ± 26.89	44.01 ± 16.15	61.11 ± 33.72	79.02 ± 26.17		
O ₃ (µg m ⁻³)	34.62 ± 22.76	37.55 ± 16.19	30.07 ± 22.84	24.67 ± 13.35		
O_x (µg m ⁻³)	105.69 ± 40.9	81.55 ± 20.2	91.19 ± 15.42	103.69 ± 17.13		
$C_L \times C_T$	0.16 ± 0.07	0.07 ± 0.03	0.01 ± 0.00	0.02 ± 0.01		
SO ₂ (µg m ⁻³)	15.87 ± 6.29	18.45 ± 5.34	60.36 ± 40.28	31.73 ± 12.13		
ALW (μg m ⁻³)	19.62 ± 25.35	8.18 ± 6.42	21.18 ± 21.21	51.63 ± 81.74		
pH	2.65 ± 0.76	4.06 ± 1.61	5.99 ± 0.92	5.13 ± 0.9		
NO ₃ ⁻ (µg m ⁻³)	6.43 ± 3.53	4.83 ± 3.80	14.95 ± 14.27	40.56 ± 31.79		
SO ₄ ²⁻ (μg m ⁻³)	8.96 ± 6.11	8.09 ± 4.53	14.12 ± 13.66	21.58 ± 17.3		
Ca ²⁺ (µg m ⁻³)	1.01 ± 0.51	2.91 ± 1.07	6.09 ± 1.72	6.69 ± 5.72		
Mg^{2+} (µg m ⁻³)	0.05 ± 0.02	0.08 ± 0.03	0.34 ± 0.13	0.36 ± 0.36		
Nss-K ⁺ (µg m ⁻³)	0.76 ± 0.59	0.53 ± 0.36	1.20 ± 0.98	2.64 ± 1.99		
Na ⁺ (µg m ⁻³)	0.17 ± 0.11	0.08 ± 0.07	1.69 ± 0.85	1.59 ± 2.36		
NH_4^+ (µg m ⁻³)	4.88 ± 2.41	3.78 ± 2.67	12.11 ± 11.66	20.58 ± 17.78		
Nss-Cl ⁻ ($\mu g m^{-3}$)	0.46 ± 0.43	0.74 ± 0.36	6.39 ± 5.55	5.90 ± 3.80		
PM _{2.5} (µg m ⁻³)	56.41 ± 33.06	47.62 ± 30.50	81.02 ± 65.20	115.33 ± 88.85		
Total OS _i (ng m ⁻³)	86.65 ± 60.25	61.12 ± 37.75	170.69 ± 68.75	260.32 ± 71.13		
Total OS _m (ng m ⁻³)	57.81 ± 40.77	58.9 ± 29.70	22.34 ± 7.71	40.09 ± 12.31		
Total aromatic-OSs (ng m ⁻³)	10.31 ± 4.64	7.81 ± 2.25	27.10 ± 17.30	34.75 ± 8.91		
Total aliphatic-OSs (ng m ⁻³)	8.23 ± 3.77	10.41 ± 5.33	14.13 ± 7.91	19.46 ± 8.11		
Total C ₂ -C ₃ OSs (ng m ⁻³)	25.22 ± 15.09	28.55 ± 16.4	13.43 ± 2.34	25.81 ± 10.76		

154 **Table S1.** The mean values $(\pm SD)$ of the major parameters observed in different 155 cities.

Formula		Southern of	cities	Northern cities			
Formula [M_H]-	MW (Da)	GZ	KM	TY	XA		
		(ng m ⁻³)	(ng m ⁻³)	(ng m ⁻³)	$(ng m^{-3})$		
OSi							
$C_4H_7O_5S^-$	167.0014	2.7 ± 1.53	2.77 ± 1.71	3.07 ± 0.72	4.74 ± 1.72		
$C_4H_6O_5S^-$	165.9936	7.86 ± 4.70	5.97 ± 4.78	29.54 ± 19.77	23.40 ± 13.74		
$C_5H_9O_6S^-$	197.0120	15.94 ± 10.59	11.82 ± 8.42	75.92 ± 46.15	71.09 ± 24.18		
$C_4H_7O_7S^-$	198.9912	12.63 ± 10.16	10.38 ± 9.11	10.42 ± 8.97	13.50 ± 3.81		
$C_5H_{11}O_6S^-$	199.0276	1.69 ± 1.32	2.04 ± 1.52	2.43 ± 0.85	1.60 ± 0.48		
$C_5H_7O_7S^-$	210.9912	6.03 ± 8.30	3.74 ± 2.51	7.65 ± 3.92	10.93 ± 6.24		
$C_5H_9O_7S^-$	213.0069	10.07 ± 8.88	6.21 ± 4.34	24.49 ± 12.27	104.72 ± 44.75		
$C_5H_{11}O_7S^-$	215.0225	3.22 ± 3.36	2.83 ± 1.76	0.73 ± 0.19	1.93 ± 0.62		
$C_7H_9O_7S^-$	237.0069	4.74 ± 3.69	1.56 ± 1.27	1.57 ± 0.96	3.35 ± 1.40		
$C_5H_8NO_{10}S^-$	273.9869	0.25 ± 0.04	0.29 ± 0.05	0.32 ± 0.07	0.29 ± 0.12		
$C_5H_7O_8S^-$	226.9862	10.18 ± 7.12	3.80 ± 2.90	2.25 ± 1.72	5.33 ± 3.26		
$C_4H_8NO_7S^-$	243.9763	0.79 ± 0.35	0.74 ± 0.40	1.34 ± 0.53	3.91 ± 1.97		
$C_4H_7O_8S^-$	214.9862	0.87 ± 0.41	1.76 ± 1.63	3.62 ± 3.96	1.28 ± 0.78		
$C_4H_5O_7S^-$	196.9756	2.40 ± 1.28	1.58 ± 0.70	1.33 ± 0.44	2.36 ± 1.90		
$C_4H_6NO_9S^-$	243.9763	0.28 ± 0.06	0.28 ± 0.04	0.24 ± 0.04	0.27 ± 0.06		
$C_5H_9O_8S^-$	229.0018	3.07 ± 1.90	3.71 ± 2.49	3.62 ± 2.46	6.86 ± 2.70		
$C_{5}H_{10}NO_{9}S^{-}$	260.0076	0.18 ± 0.00	0.23 ± 0.03	0.19 ± 0.01	0.18 ± 0.00		
C ₅ H ₈ NO ₇ S ⁻	226.0021	3.74 ± 2.81	1.41 ± 1.00	1.98 ± 1.43	4.59 ± 2.62		
OSm							
$C_7H_{11}O_6S^-$	223.0276	9.51 ± 6.01	6.48 ± 4.59	7.07 ± 3.40	7.67 ± 2.80		
$C_7H_{11}O_7S^-$	239.0225	10.23 ± 9.22	5.65 ± 4.62	4.49 ± 2.18	6.68 ± 2.86		
$C_9H_{15}O_6S^-$	251.0589	0.23 ± 0.06	0.68 ± 0.24	0.25 ± 0.05	0.41 ± 0.13		
$C_8H_{13}O_7S^-$	253.0382	2.05 ± 1.65	0.51 ± 0.13	2.59 ± 1.96	2.56 ± 0.81		
$C_{10}H_{15}O_7S^-$	279.0538	8.23 ± 8.25	3.96 ± 3.05	1.87 ± 0.52	3.54 ± 1.88		
$C_{10}H_{16}NO_7S^-$	294.0647	18.26 ± 14.43	15.88 ± 11.68	2.62 ± 0.82	6.81 ± 3.17		
$C_9H_{14}NO_8S^-$	296.0440	4.58 ± 2.19	20.15 ± 8.81	1.62 ± 0.80	8.92 ± 3.59		
$C_{10}H_{16}NO_{10}S^{-}$	342.0495	1.18 ± 0.52	3.50 ± 2.03	0.71 ± 0.37	1.73 ± 1.67		
$C_{10}H_{15}O_5S^-$	247.0640	2.45 ± 2.54	0.58 ± 0.37	0.24 ± 0.02	0.55 ± 0.17		
$C_{10}H_{15}O_6S^-$	263.0589	0.26 ± 0.09	0.46 ± 0.17	0.16 ± 0.03	0.37 ± 0.09		
$C_{10}H_{17}O_6S^-$	265.0746	0.11 ± 0.01	0.15 ± 0.02	0.11 ± 0.02	0.11 ± 0.01		
$C_{10}H_{17}O_8S^-$	297.0644	0.17 ± 0.08	0.19 ± 0.04	0.16 ± 0.04	0.22 ± 0.08		
$C_{10}H_{15}O_8S^-$	295.0488	0.13 ± 0.04	0.18 ± 0.04	0.10 ± 0.01	0.12 ± 0.02		
$C_{10}H_{17}NO_9S^-$	326.0546	0.10 ± 0.00	0.13 ± 0.02	0.13 ± 0.02	0.11 ± 0.01		
$C_9H_{11}O_8S^-$	279.0175	0.23 ± 0.09	0.28 ± 0.07	0.12 ± 0.01	0.17 ± 0.04		
C_2 - C_3 OSs							
$C_3H_5O_4S^-$	136.9909	1.92 ± 0.64	2.03 ± 0.51	2.52 ± 0.61	3.16 ± 1.04		
$C_2H_3O_5S^-$	138.9701	1.39 ± 0.28	1.53 ± 0.26	1.16 ± 0.08	1.16 ± 0.14		
$C_3H_5O_5S^-$	152.9858	5.07 ± 2.89	4.12 ± 1.43	2.82 ± 0.55	4.72 ± 1.73		
$C_2H_3O_6S^-$	154.9650	8.45 ± 5.52	9.8 ± 6.65	2.25 ± 0.35	5.36 ± 1.94		
$C_3H_7O_5S^-$	155.0014	2.31 ± 0.99	3.84 ± 1.81	2.77 ± 1.61	5.47 ± 4.61		
$C_3H_5O_6S^-$	168.9807	6.07 ± 5.22	7.24 ± 6.38	1.91 ± 0.69	5.95 ± 2.49		

Table S2. The mean mass concentrations (\pm SD) of identified OS_i, OS_m, and C₂-C₃158OSs in PM_{2.5} collected in different cities.

171				•.•	XT .1	•,•
			South	nern cities	Norther	n cities
	Formula[M-H]	MW(Da)	GZ	KM	TY	XA
			(ng m ⁻³)	(ng m ⁻³)	(ng m ⁻³)	(ng m ⁻³)
	Aliphatic OSs					
	$C_{12}H_{21}O_7S^-$	309.1008	0.07 ± 0.04	0.04 ± 0.03	0.04 ± 0.04	0.05 ± 0.05
	$C_8H_{17}O_4S^-$	210.0926	0.07 ± 0.05	0.45 ± 0.36	0.49 ± 0.21	0.49 ± 0.16
	$C_{14}H_{29}O_5S^-$	309.1736	0.15 ± 0.11	0.21 ± 0.07	0.53 ± 0.55	0.46 ± 0.43
	$C_7H_{15}O_4S^-$	195.0691	0.12 ± 0.24	0.25 ± 0.18	1.18 ± 0.56	0.87 ± 0.41
	$C_7H_{15}O_5S^-$	211.064	0.05 ± 0.04	0.06 ± 0.03	0.06 ± 0.02	0.15 ± 0.10
	$C_9H_{19}O_4S^-$	223.1004	0.26 ± 0.11	0.67 ± 0.65	0.90 ± 0.57	$1.2.6 \pm 0.74$
	$C_{10}H_{21}O_4S^-$	237.1161	0.27 ± 0.11	0.44 ± 0.90	0.82 ± 0.34	1.01 ± 0.97
	$C_7H_{13}O_5S^-$	209.0484	0.20 ± 0.08	0.16 ± 0.09	0.36 ± 0.10	0.67 ± 0.13
	$C_9H_{17}O_5S^-$	237.0797	0.09 ± 0.09	0.09 ± 0.04	0.56 ± 0.26	0.46 ± 0.26
	$C_{10}H_{19}O_5S^-$	251.0953	0.82 ± 0.42	0.18 ± 0.12	0.31 ± 0.11	0.39 ± 0.15
	$C_{9}H_{17}O_{7}S^{-}$	269.0695	0.18 ± 0.23	0.06 ± 0.06	0.02 ± 0.01	0.09 ± 0.06
	$C_{12}H_{23}O_5S^-$	279.1266	0.05 ± 0.04	0.03 ± 0.01	0.08 ± 0.06	0.11 ± 0.04
	$C_9H_{17}O_4S^-$	221.0848	0.23 ± 0.39	0.57 ± 0.60	0.79 ± 0.46	1.20 ± 0.40
	$C_9H_{17}O_6S^-$	253.0746	0.30 ± 0.32	0.21 ± 0.15	0.13 ± 0.06	0.31 ± 0.26
	$C_{13}H_{25}O_5S^-$	293.1423	0.43 ± 0.32	0.26 ± 0.18	0.56 ± 0.32	0.88 ± 0.34
	$C_{14}H_{27}O_5S^-$	307.1579	0.49 ± 0.31	0.32 ± 0.24	0.62 ± 0.41	0.88 ± 0.38
	$C_{13}H_{25}O_6S^-$	309.1372	0.04 ± 0.04	0.04 ± 0.03	0.09 ± 0.07	0.16 ± 0.14
	$C_{14}H_{27}O_6S^-$	323.1528	0.09 ± 0.08	0.13 ± 0.07	0.23 ± 0.21	0.43 ± 0.36
	$C_{16}H_{31}O_5S^-$	335.1892	0.10 ± 0.11	0.17 ± 0.15	0.42 ± 0.43	0.44 ± 0.39
	$C_{17}H_{33}O_5S^-$	363.2205	0.04 ± 0.01	0.23 ± 0.11	0.13 ± 0.10	0.16 ± 0.10
	$C_{16}H_{31}O_6S^-$	351.1841	1.43 ± 0.92	2.64 ± 1.55	2.75 ± 2.39	4.87 ± 3.81
	$C_{18}H_{35}O_5S^-$	363.2205	0.06 ± 0.06	0.06 ± 0.04	0.19 ± 0.19	0.31 ± 0.26
	$C_{21}H_{41}O_5S^-$	405.2675	0.01 ± 0.01	0.01 ± 0.01	0.02 ± 0.03	0.02 ± 0.01
	$C_8H_{15}O_5S^-$	223.0640	0.11 ± 0.05	0.18 ± 0.14	0.24 ± 0.10	0.29 ± 0.12
	$C_7H_{13}O_6S^-$	225.0433	0.18 ± 0.18	0.12 ± 0.11	0.16 ± 0.16	0.30 ± 0.09
	$C_8H_{15}O_6S^-$	239.0589	0.26 ± 0.17	0.54 ± 0.28	0.26 ± 0.10	0.46 ± 0.31
	$C_{11}H_{21}O_5S^-$	265.1110	0.15 ± 0.06	0.14 ± 0.08	0.29 ± 0.14	0.49 ± 0.22
	$C_{10}H_{19}O_6S^-$	267.0902	0.11 ± 0.08	0.12 ± 0.06	0.20 ± 0.08	0.21 ± 0.14
	$C_7H_{13}O_9S^-$	273.0280	0.08 ± 0.07	0.30 ± 0.33	0.55 ± 0.29	0.38 ± 0.31
	$C_{15}H_{29}O_5S^-$	321.1736	0.46 ± 0.40	0.27 ± 0.28	0.33 ± 0.38	0.47 ± 0.11
	$C_{10}H_{17}O_6S^-$	265.0746	0.05 ± 0.02	0.06 ± 0.04	0.05 ± 0.03	0.11 ± 0.06
	$C_9H_{15}O_5S^-$	235.0640	0.34 ± 0.24	0.41 ± 0.12	0.10 ± 0.06	0.15 ± 0.06
	$C_{10}H_{17}O_5S^-$	249.0797	0.13 ± 0.07	0.55 ± 0.32	0.11 ± 0.04	0.28 ± 0.14
	$C_9H_{15}O_6S^-$	251.0589	0.30 ± 0.29	0.19 ± 0.12	0.41 ± 0.27	0.43 ± 0.15
	$C_{11}H_{19}O_6S^-$	279.0902	0.03 ± 0.02	0.03 ± 0.02	0.07 ± 0.04	0.10 ± 0.04
	$C_8H_{13}O_6S^-$	237.0433	0.13 ± 0.06	0.09 ± 0.05	0.04 ± 0.01	0.08 ± 0.03
	$C_9H_{15}O_7S^-$	267.0538	0.33 ± 0.39	0.10 ± 0.08	0.01 ± 0.01	0.05 ± 0.03
	Aromatic OS					
	$C_0H_0O_4S^-$	213.0222	1.88 ± 1.62	0.91 ± 0.50	6.22 + 3.54	18.88 ± 7.88
	C ₆ H ₅ O ₄ S ⁻	172,9909	0.24 ± 0.08	0.27 ± 0.22	1.42 ± 0.01	0.72 ± 0.33
	$C_{7}H_{7}O_{4}S^{-}$	187 0065	0.24 ± 0.00	0.27 ± 0.022 0.25 ± 0.07	1.12 = 1.02 1.31 ± 0.55	0.72 ± 0.33 0.56 ± 0.22
	$C_{11}H_{10}O_{11}S^{-}$	359 0648	0.15 ± 0.05	0.25 ± 0.07 0.16 ± 0.05	0.18 ± 0.07	0.38 ± 0.22 0.38 + 0.12
	$C_{10}H_{17}O_{12}S^{-}$	361 0441	0.09 ± 0.01	0.11 ± 0.02	0.10 ± 0.01	0.10 ± 0.012
	$C_7H_{11}O_{10}S^-$	287 0073	0.14 ± 0.05	0.14 ± 0.02	0.10 ± 0.01 0.10 + 0.02	0.12 ± 0.01
	$C_{8}H_{12}O_{0}S^{-}$	285 0280	0.34 ± 0.03	0.23 ± 0.04	0.89 ± 0.02	0.44 + 0.18
	$C_8H_{13}O_{10}S^-$	301 0229	0.16 ± 0.08	0.15 ± 0.12	0.13 ± 0.04	0.17 ± 0.16
	$C_{11}H_{17}O_{11}S^{-}$	357 0492	0.16 ± 0.06	0.10 ± 0.00 0.21 ± 0.08	0.20 ± 0.04	0.12 ± 0.00
	$C_0H_{11}O_{12}S^-$	358 9920	0.11 ± 0.10	0.21 ± 0.00 0.12 ± 0.02	0.20 ± 0.10 0.11 ± 0.02	0.12 ± 0.02 0.12 ± 0.05
	$C_{\circ}H_{12}NO_{13}C^{-}$	330.0131	0.20 ± 0.03	0.12 ± 0.02 0.12 ± 0.02	0.11 ± 0.02 0.14 ± 0.06	0.12 ± 0.03 0.20 ± 0.12
	$C_7H_7SO_4S^-$	218 9786	0.11 + 0.04	0.12 ± 0.03 0.14 ± 0.02	0.29 ± 0.08	0.19 ± 0.12
	C/11/0040	_ 10.//00	···· _ ··· ·	···· _ ···· _ ···· _ ··· / _		···· _ ····

Table S3. The mean mass concentrations $(\pm SD)$ of identified anthropogenic OSs in 160 161 PM_{2.5} collected in different cities.

$C_8H_7O_5S^-$	215.0014	0.57 ± 0.30	0.33 ± 0.18	4.04 ± 3.58	1.77 ± 1.36
$C_8H_7NO_5S^-$	229.0045	0.61 ± 0.35	0.68 ± 0.41	0.87 ± 0.52	1.13 ± 0.47
$C_9H_9O_6S^-$	245.0120	0.29 ± 0.33	0.20 ± 0.06	0.70 ± 0.45	0.82 ± 0.41
$C_8H_7O_4S^-$	199.0065	0.73 ± 0.47	0.28 ± 0.13	2.51 ± 2.10	2.13 ± 0.79
$C_9H_7O_7S^-$	258.9912	0.54 ± 0.48	0.12 ± 0.03	0.35 ± 0.26	0.69 ± 1.34
$C_8H_5O_6S^-$	228.9807	0.38 ± 0.27	0.14 ± 0.03	0.58 ± 0.50	0.67 ± 0.91
$C_9H_7O_6S^-$	242.9963	0.48 ± 0.27	0.28 ± 0.13	1.61 ± 1.47	0.87 ± 0.73
$C_9H_3O_{11}S^-$	318.9396	0.08 ± 0.01	0.10 ± 0.01	0.09 ± 0.01	0.08 ± 0.00
$C_{10}H_5O_{12}S^-$	348.9502	0.08 ± 0.00	0.10 ± 0.01	0.08 ± 0.00	0.08 ± 0.01
$C_{34}H_{49}O_5S^-$	569.3301	0.11 ± 0.04	0.23 ± 0.20	0.57 ± 0.36	0.38 ± 0.26
$C_{43}H_{63}O_5S^-$	691.4396	0.33 ± 0.41	0.52 ± 0.34	0.11 ± 0.03	0.08 ± 0.01
$C_7H_{11}O_9S^-$	271.0124	0.27 ± 0.20	0.23 ± 0.12	0.17 ± 0.07	0.19 ± 0.08
$C_{10}H_7O_{11}S^-$	334.9709	0.08 ± 0.01	0.10 ± 0.01	0.08 ± 0.01	0.08 ± 0.01
$C_{10}H_5O_{11}S^-$	332.9553	0.08 ± 0.00	0.10 ± 0.01	0.09 ± 0.01	0.08 ± 0.00
$C_{10}H_5O_{10}S^-$	316.9603	0.07 ± 0.00	0.09 ± 0.01	0.08 ± 0.00	0.07 ± 0.00
$C_{12}H_7O_{13}S^-$	390.9607	0.08 ± 0.00	0.10 ± 0.01	0.08 ± 0.00	0.08 ± 0.00
$C_7H_5O_5S^-$	200.9858	0.84 ± 0.55	0.42 ± 0.36	3.18 ± 3.76	2.12 ± 2.18
$C_{18}H_{13}O_6S^-$	357.0433	0.11 ± 0.08	0.15 ± 0.05	0.13 ± 0.03	0.11 ± 0.02
$C_{23}H_{19}O_7S^-$	439.0851	0.22 ± 0.14	0.27 ± 0.15	0.14 ± 0.03	0.22 ± 0.11
$C_{25}H_{21}O_7S^-$	465.1008	0.08 ± 0.00	0.11 ± 0.02	0.08 ± 0.00	0.08 ± 0.00
$C_{24}H_{17}O_4S^-$	401.0848	0.38 ± 0.13	0.36 ± 0.14	0.40 ± 0.16	0.90 ± 0.25
$C_{27}H_{21}O_7S^-$	489.1008	0.11 ± 0.03	0.13 ± 0.04	0.10 ± 0.03	0.13 ± 0.03

^aAliphatic and aromatic OSs were generally considered as anthropogenic OSs (Riva et

al. 2016; Riva et al. 2015). All aliphatic and aromatic OSs and other anthropogenic

164 OSs were collectively referred to as anthropogenic OSs (OS_a) .

	Sampling site	Period	Season	OS _i (ng m ⁻³)	OS _m (ng m ⁻³)	C_2-C_3 (ng m ⁻³)	OS _a (ng m ⁻³)	Total (ng m ⁻³)	Ref.
	Atlanta, GA, USA	2014	Summer	1122.98	67.9	58.5	-	1249.38	(Hettiyadura et al. 2019a)
	Tianjing, China	2019	Winter	400.00	-	-	-	400.00	(Ding et al. 2022b)
	Lahore, Pakistan	2007	Winter	3.80	-	-	2.02	5.82	(Kundu et al. 2013)
Urban site	Hong Kong, China	2017	Winter	97.96	17.26	-	-	115.22	(Wong at al. 2022)
	Guangzhou, China	2017	Winter	88.03	20.96	-	-	108.99	(wallg et al. 2022)
	Xian, China	2014	Winter	-	0.14	77.30	-	77.44	(Huang et al. 2018a)
	Shanghai, China	2021	Summer	85.38	30.61	19.31	23.38	158.68	(Yang et al. 2023)
	Urumqi, China	2018	Winter	62.21	23.33	41.85	168.54	295.93	(Yang et al. 2024)
Suburban site	Zion, Illinois, USA	2013	Spring	121.10	8.70	-		129.80	(Hughes et al. 2021)
	Look Rock, TN, USA	2013	Summer	1256.75	-	-	-	1256.75	(Budisulistiorini et al. 2015)
	Centreville,AL, USA	2013	Summer	15.40	-	20.83	1.16	37.39	(Hettiyadura et al. 2017)
Dural site	Yorkville, GA, USA	2010	Summer	115.11	-	-	-	115.11	(Lin et al. 2013)
Kurai site	Copenhagen, Denmark	2011	Summer	11.31	0.87	-	-	12.18	(Nguyen et al. 2014)
	National Park, CO, USA	2016	Summer	19.00	-	-	-	-	(Chan at al. 2021)
	Seashore, CA, USA	2016	Summer	22.00	-	-	-	-	(Chen et al. 2021)
	Melpitz, Germany	2013	Winter	11.12	49.33		32.83	93.28	
Rural site	Vavihill, Sweden	2013	Winter	2.75	6.39		4.15	13.29	(Glasius et al. 2018)
	Birkenes, Norway	2013	Winter	2.28	6.39		2.16	10.83	
Coastal site	The Yellow Sea and Bohai Sea	2019	Summer	22.98	7.53	12.7	-	43.21	(Wang et al. 2023)
Urban site	Guangzhou, China	2017	Winter	86.65	57.81	25.22	18.54	188.22	In this study

165 **Table S4.** The mean mass concentrations of various OSs in PM_{2.5} at different locations.

Kuming, China	61.12	58.9	28.55	18.22	166.79
Taiyuan, China	170.69	22.34	13.43	41.23	247.69
Xi'an, China	260.32	40.09	25.81	54.21	380.43

Table S5. The relative signal intensity of identified anthropogenic OSs in different smoke particle samples. The relative signal intensity refers to the percentage of the target OS signal intensity in the total signal intensity of the OS group to which it belongs.

Formula	Rice	Pine	Coal	Gasoline	Diesel
[M-H] ⁻	straw	branch	combustion	vehicle	vehicle
Aliphatic OSs					
$C_8H_{17}O_4S^-$	2.91	0.09	11.23	1.62	0.86
$C_7H_{15}O_4S^-$	4.87	34.02	17.24	1.02	2.90
$C_{9}H_{19}O_{4}S^{-}$	2.92	3.27	2.57	3.81	1.21
$C_{10}H_{21}O_4S^-$	0.40	0.00	0.02	2.86	0.53
$C_9H_{17}O_4S^-$	3.80	0.09	7.35	7.59	59.32
$C_{14}H_{29}O_5S^-$	4.44	0.02	0.00	3.52	0.48
$C_7H_{15}O_5S^-$	0.98	1.02	2.08	0.30	0.47
$C_{7}H_{13}O_{5}S^{-}$	3.40	14.52	1.50	28.70	3.40
$C_9H_{17}O_5S^-$	1.76	3.55	1.27	0.48	0.59
$C_{10}H_{19}O_5S^-$	5.33	0.88	0.31	1.41	0.68
$C_{12}H_{23}O_5S^-$	0.66	1.22	0.02	1.34	1.72
$C_{13}H_{25}O_5S^-$	0.25	0.69	0.12	6.11	3.13
$C_{14}H_{27}O_5S^-$	0.29	2.12	0.00	0.70	0.64
$C_{16}H_{31}O_5S^-$	0.23	0.00	0.00	1.15	6.03
$C_{17}H_{33}O_5S^-$	16.49	7.62	0.17	0.68	0.49
$C_{18}H_{35}O_5S^-$	10.70	0.20	0.02	1.39	0.00
$C_{21}H_{41}O_5S^-$	3.44	0.01	0.02	0.20	0.00
$C_8H_{15}O_5S^-$	0.23	4.09	0.17	0.27	0.24
$C_{11}H_{21}O_5S^-$	0.07	0.48	0.05	0.62	0.28
$C_{15}H_{29}O_5S^-$	1.58	4.10	0.00	1.53	0.00
$C_9H_{15}O_5S^-$	0.68	2.59	0.82	1.98	1.69
$C_{10}H_{17}O_6S^-$	2.91	3.22	0.24	0.47	1.23
$C_9H_{17}O_6S^-$	1.77	2.84	0.11	0.98	0.72
$C_{13}H_{25}O_6S^-$	0.23	0.03	0.36	0.16	2.89
$C_{14}H_{27}O_6S^-$	0.17	0.00	0.24	1.08	5.60
$C_{16}H_{31}O_6S^-$	16.03	0.00	0.24	23.34	0.07
$C_7H_{13}O_6S^-$	0.35	2.65	0.08	0.41	0.21
$C_8H_{15}O_6S^-$	1.97	1.70	0.54	1.95	1.52
$C_{10}H_{19}O_6S^-$	3.47	0.97	47.71	0.44	1.00
$C_{10}H_{17}O6S^{-}$	0.47	0.55	0.08	0.07	0.03
$C_9H_{15}O_6S^-$	0.16	1.20	0.33	1.08	0.93
$C_{11}H_{19}O_6S^-$	0.51	0.61	1.61	0.27	0.22
$C_{12}H_{21}O_6S^-$	0.10	0.00	0.00	0.02	0.03
$C_{14}H_{25}O_6S^-$	1.25	0.16	0.87	0.14	0.03
$C_8H_{13}O_6S^-$	0.51	0.89	1.41	0.87	0.28
$C_{12}H_{21}O_7S^-$	1.89	0.01	0.23	0.42	0.04
$C_9H_{17}O_7S^-$	2.18	0.47	0.69	0.36	0.33
$C_9H_{15}O_7S^-$	0.03	4.10	0.09	0.52	0.09
$C_7H_{13}O_9S^-$	0.43	0.03	0.16	0.04	0.06
$C_{26}H_{51}O_{12}S^{-}$	0.18	0.00	0.00	0.10	0.00
$C_{24}H_{51}N_2O_{13}S^-$	0.00	0.00	0.04	0.00	0.06

Aromatic OSs					
$C_{24}H_{17}O_4S^-$	4.88	0.21	0.08	28.12	9.48
$C_6H_5O_4S^-$	0.50	0.79	3.16	0.10	4.92
$C_7H_7O_4S^-$	1.65	0.95	12.12	1.37	14.60
$C_8H_7O_4S^-$	0.43	0.65	1.11	1.16	49.85
$C_9H_9O_4S^-$	75.53	25.38	71.45	1.80	86.58
$C_{34}H_{49}O_5S^-$	0.22	0.00	0.00	0.12	0.00
$C_{43}H_{63}O_5S^-$	0.05	0.22	0.00	0.00	0.17
$C_7H_5O_5S^-$	0.26	1.00	0.10	0.77	0.37
$C_8H_7NO_5S^-$	1.12	12.38	2.73	26.95	6.28
$C_8H_7O_5S^-$	1.67	2.04	2.32	0.86	9.55
$C_{18}H_{13}O_6S^-$	0.02	1.59	0.33	0.09	0.23
$C_8H_5O_6S^-$	0.25	0.09	0.15	0.11	0.83
$C_9H_7O_6S^-$	0.78	13.07	0.67	0.35	2.37
$C_9H_9O_6S^-$	1.67	5.31	0.86	0.39	6.95
$C_{23}H_{19}O_7S^-$	0.01	7.11	0.26	0.62	8.85
$C_{25}H_{21}O_7S^-$	0.02	0.10	0.01	0.09	0.01
$C_{27}H_{21}O_7S^-$	1.43	2.59	2.66	1.80	3.82
$C_9H_7O_7S^-$	0.06	0.09	0.02	0.12	0.70
$C_7H_{11}O_9S^-$	0.07	0.54	0.05	0.47	0.24
$C_8H_{13}O_9S^-$	0.94	4.31	0.26	0.60	0.77
$C_{10}H_5O_{10}S^-$	0.00	0.00	0.00	0.00	0.00
$C_7H_{11}O_{10}S^-$	0.00	0.37	0.00	0.09	0.01
$C_8H_{13}O_{10}S^-$	0.04	0.61	0.06	0.16	0.38
$C_{10}H_5O_{11}S^-$	0.00	0.09	0.01	0.00	0.00
$C_{10}H_7O_{11}S^-$	0.03	0.12	0.14	0.01	0.25
$C_{11}H_{17}O_{11}S^{-}$	0.18	1.68	0.38	0.70	2.71
$C_{11}H_{19}O_{11}S^{-}$	3.13	14.58	0.22	4.46	0.37
$C_{12}H_{21}N_2O_{11}S^-$	4.88	0.21	0.17	28.12	9.48
$C_8H_{12}NO_{11}S^-$	0.10	2.37	0.59	0.15	0.00
$C_9H1_3O_{11}S^-$	0.06	1.55	0.04	0.17	0.84
$C_{9}H_{3}O_{11}S^{-}$	0.02	0.01	0.00	0.19	0.07
$C_{10}H_{17}O_{12}S^{-}$	0.00	0.00	0.07	0.01	0.07
$C_{10}H_5O_{12}S^-$	0.01	0.01	0.01	0.04	0.00

172 **Figure S1.**

173

Figure S1. The locations of the sampling sites showing (a) the vegetation coverage in
China and (b) the PM_{2.5} pollution situation during winter. The map was derived from
©MeteoInfoMap (version 3.6.2) (Chinese Academy of Meteorological Sciences,

- 177 China).
- 178

179 Figure S2.

Figure S2. Schematic showing the collections of smoke particles derived from the combustion of (a) rice straw, pine branches, and coal as well as from (b) liquid fuel combustion (the gasoline vehicle was the Audi Q3, while the diesel vehicle features the R180 diesel engine) (Tang et al. 2020). The samples were collected through a combustion furnace pumped with filtered ambient air (particulate matter is removed).

Figure S3. Diagrams presenting Pearson correlations among the concentrations of OSs, O_x , SO₂, and SO₄²⁻. The numbers in the matrix refer to the correlation coefficients (*r*). Symbols * and ** indicate *P* < 0.05 and *P* < 0.01, respectively.

191

193

Figure S4.

Figure S5. Mean relative signal intensities of typical aromatic OSs (i.e., $C_6H_5O_4S^-$,

 $C_7H_7O_4S^-$, $C_8H_7O_4S^-$, and $C_9H_9O_4S^-$) in different smoke particle samples.

206 **Figure S6.**

207

Figure S6. Diagrams presenting Pearson correlations among the different OS subgroups and important parameters. The numbers in the matrix refer to the correlation coefficients (*r*). Symbols * and ** indicate P < 0.05 and P < 0.01, respectively.

Figure S7.

Figure S8. Diagrams presenting Pearson correlations among the different OS subgroups and important parameters. The numbers in the matrix refer to the correlation coefficients (*r*). Symbols * and ** indicate P < 0.05 and P < 0.01, respectively.

227 **References**

- 228 Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and 229 Hansel, A.: Accretion Product Formation from Ozonolysis and OH Radical Reaction of alpha-Pinene: Mechanistic Insight and the Influence of Isoprene 230 Ethylene, 231 and Environ. Sci. Technol., 52, 11069-11077, 232 10.1021/acs.est.8b02210, 2018.
- Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurten, T., Otkjaer, R. V.,
 Kjaergaard, H. G., Stratmann, F., Herrmann, H., Sipila, M., Kulmala, M., and
 Ehn, M.: Hydroxyl radical-induced formation of highly oxidized organic
 compounds, Nat. Commun., 7, 13677, 10.1038/ncomms13677, 2016.
- Boyd, C. M., Sanchez, J., Xu, L., Eugene, A. J., Nah, T., Tuet, W. Y., Guzman, M. I.,
 and Ng, N. L.: Secondary organic aerosol formation from the β-pinene+NO3
 system: effect of humidity and peroxy radical fate, Atmos. Chem. Phys., 15,
- 240 7497-7522, 10.5194/acp-15-7497-2015, 2015.
- 241 Bryant, D. J., Elzein, A., Newland, M., White, E., Swift, S., Watkins, A., Deng, W.,
- Song, W., Wang, S., Zhang, Y., Wang, X., Rickard, A. R., and Hamilton, J. F.:
 Importance of Oxidants and Temperature in the Formation of Biogenic
 Organosulfates and Nitrooxy Organosulfates, ACS Earth and Space Chemistry,
 5, 2291-2306, 10.1021/acsearthspacechem.1c00204, 2021.
- 246 Budisulistiorini, S. H., Li, X., Bairai, S. T., Renfro, J., Liu, Y., Liu, Y. J., McKinney, K.
- 247 A., Martin, S. T., McNeill, V. F., Pye, H. O. T., Nenes, A., Neff, M. E., Stone,
- E. A., Mueller, S., Knote, C., Shaw, S. L., Zhang, Z., Gold, A., and Surratt, J.

D.: Examining the effects of anthropogenic emissions on isoprene-derived
secondary organic aerosol formation during the 2013 Southern Oxidant and
Aerosol Study (SOAS) at the Look Rock, Tennessee ground site, Atmos.
Chem. Phys., 15, 8871-8888, 10.5194/acp-15-8871-2015, 2015.

- 253 Cai, D., Wang, X., Chen, J., and Li, X.: Molecular Characterization of Organosulfates
- in Highly Polluted Atmosphere Using Ultra-High-Resolution Mass
 Spectrometry, J. Geophys. Res. Atmos., 125, 10.1029/2019jd032253, 2020.
- 256 Chen, Y., Dombek, T., Hand, J., Zhang, Z., Gold, A., Ault, A. P., Levine, K. E., and
- Surratt, J. D.: Seasonal Contribution of Isoprene-Derived Organosulfates to
 Total Water-Soluble Fine Particulate Organic Sulfur in the United States, ACS
 Earth and Space Chemistry, 5, 2419-2432,
 10.1021/acsearthspacechem.1c00102, 2021.
- 261 Ding, S., Chen, Y., Devineni, S. R., Pavuluri, C. M., and Li, X.-D.: Distribution 262 characteristics of organosulfates (OSs) in PM2.5 in Tianjin, Northern China:
- Quantitative analysis of total and three OS species, Sci. Total Environ., 834,
 10.1016/j.scitotenv.2022.155314, 2022a.
- Ding, S., Chen, Y., Devineni, S. R., Pavuluri, C. M., and Li, X. D.: Distribution
 characteristics of organosulfates (OSs) in PM2.5 in Tianjin, Northern China:
 Quantitative analysis of total and three OS species, Sci. Total. Environ., 834,
 155314, 10.1016/j.scitotenv.2022.155314, 2022b.
- Ding, X., He, Q.-F., Shen, R.-Q., Yu, Q.-Q., Zhang, Y.-Q., Xin, J.-Y., Wen, T.-X., and
 Wang, X.-M.: Spatial and seasonal variations of isoprene secondary organic
 - S25

- aerosol in China: Significant impact of biomass burning during winter,
 Scientific Reports, 6, 10.1038/srep20411, 2016.
- 273 Ehn, M., Kleist, E., Junninen, H., Petäjä, T., Lönn, G., Schobesberger, S., Dal Maso,
- M., Trimborn, A., Kulmala, M., Worsnop, D. R., Wahner, A., Wildt, J., and
 Mentel, T. F.: Gas phase formation of extremely oxidized pinene reaction
 products in chamber and ambient air, Atmos. Chem. Phys., 12, 5113-5127,
 10.5194/acp-12-5113-2012, 2012.
- 278 Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M.,
- 279 Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I. H.,
- 280 Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J.,
- 281 Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G.,
- 282 Canagaratna, M., Maso, M. D., Berndt, T., Petaja, T., Wahner, A., Kerminen, V.
- 283 M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source
- of low-volatility secondary organic aerosol, Nature, 506, 476-479,
 10.1038/nature13032, 2014.
- Glasius, M., Hansen, A. M. K., Claeys, M., Henzing, J. S., Jedynska, A. D., KasperGiebl, A., Kistler, M., Kristensen, K., Martinsson, J., Maenhaut, W., Nøjgaard,
- 288 J. K., Spindler, G., Stenström, K. E., Swietlicki, E., Szidat, S., Simpson, D.,
- and Yttri, K. E.: Composition and sources of carbonaceous aerosols in
- 290 Northern Europe during winter, Atmos. Environ., 173, 127-141,
 291 10.1016/j.atmosenv.2017.11.005, 2018.
- 292 Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall, R.:

Isoprene and monoterpene emission rate variability J. Geophys. Res.Atmos.,
98, 12609-12617, 1993.

295 Guo, Y., Yan, C., Liu, Y., Qiao, X., Zheng, F., Zhang, Y., Zhou, Y., Li, C., Fan, X., Lin,

- 296 Z., Feng, Z., Zhang, Y., Zheng, P., Tian, L., Nie, W., Wang, Z., Huang, D.,
- Daellenbach, K. R., Yao, L., Dada, L., Bianchi, F., Jiang, J., Liu, Y., Kerminen,
 V.-M., and Kulmala, M.: Seasonal variation in oxygenated organic molecules
 in urban Beijing and their contribution to secondary organic aerosol, Atmos.
- 300 Chem. Phys., 22, 10077-10097, 10.5194/acp-22-10077-2022, 2022.
- Han, Y., Zhang, X., Li, L., Lin, Y., Zhu, C., Zhang, N., Wang, Q., and Cao, J.:
 Enhanced Production of Organosulfur Species during a Severe Winter Haze
 Episode in the Guanzhong Basin of Northwest China, Environ. Sci. Technol.,
 57, 8708-8718, 10.1021/acs.est.3c02914, 2023.
- Hettiyadura, A. P. S., Al-Naiema, I. M., Hughes, D. D., Fang, T., and Stone, E. A.:
 Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic
 secondary organic aerosol formation, Atmos. Chem. Phys., 19, 3191-3206,
 10.5194/acp-19-3191-2019, 2019a.
- Hettiyadura, A. P. S., Al-Naiema, I. M., Hughes, D. D., Fang, T., and Stone, E. A.:
 Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic
 secondary organic aerosol formation, Atmos. Chem. Phys., 19, 3191-3206,
 10.5194/acp-19-3191-2019, 2019b.
- Hettiyadura, A. P. S., Stone, E. A., Kundu, S., Baker, Z., Geddes, E., Richards, K., and
 Humphry, T.: Determination of atmospheric organosulfates using HILIC

316

chromatography with MS detection, Atmos. Meas. Tech., 8, 2347-2358, 10.5194/amt-8-2347-2015, 2015.

- Hettiyadura, A. P. S., Jayarathne, T., Baumann, K., Goldstein, A. H., de Gouw, J. A.,
- Koss, A., Keutsch, F. N., Skog, K., and Stone, E. A.: Qualitative and
 quantitative analysis of atmospheric organosulfates in Centreville, Alabama,
 Atmos. Chem. Phys., 17, 1343-1359, 10.5194/acp-17-1343-2017, 2017.
- 321 Huang, L., Wang, Y., Zhao, Y., Hu, H., Yang, Y., Wang, Y., Yu, J. Z., Chen, T., Cheng,
- 322 Z., Li, C., Li, Z., and Xiao, H.: Biogenic and Anthropogenic Contributions to
- Atmospheric Organosulfates in a Typical Megacity in Eastern China, J.
 Geophys. Res. Atmos., 128, 10.1029/2023jd038848, 2023.
- 325 Huang, R.-J., Cao, J., Chen, Y., Yang, L., Shen, J., You, Q., Wang, K., Lin, C., Xu, W.,
- Gao, B., Li, Y., Chen, Q., Hoffmann, T., O'Dowd, C. D., Bilde, M., and
 Glasius, M.: Organosulfates in atmospheric aerosol: synthesis and quantitative
 analysis of PM2:5 from Xi'an, northwestern China, Atoms. Meas. Tech., 11,
 3447-3456, 10.5194/amt-11-3447-2018, 2018a.
- Huang, R.-J., Cao, J., Chen, Y., Yang, L., Shen, J., You, Q., Wang, K., Lin, C., Xu, W.,
 Gao, B., Li, Y., Chen, Q., Hoffmann, T., O'Dowd, C. D., Bilde, M., and
 Glasius, M.: Organosulfates in atmospheric aerosol: synthesis and quantitative
 analysis of PM2.5 from Xi'an, northwestern China, Atmos. Meas. Tech., 11,
- 334 3447-3456, 10.5194/amt-11-3447-2018, 2018b.
- 335 Hughes, D. D., Christiansen, M. B., Milani, A., Vermeuel, M. P., Novak, G. A., Alwe,
- 336 H. D., Dickens, A. F., Pierce, R. B., Millet, D. B., Bertram, T. H., Stanier, C.

- O., and Stone, E. A.: PM2.5 chemistry, organosulfates, and secondary organic
 aerosol during the 2017 Lake Michigan Ozone Study, Atmos. Environ., 244,
 10.1016/j.atmosenv.2020.117939, 2021.
- 340 Jiang, H., Li, J., Tang, J., Cui, M., Zhao, S., Mo, Y., Tian, C., Zhang, X., Jiang, B.,
- Liao, Y., Chen, Y., and Zhang, G.: Molecular characteristics, sources, and formation pathways of organosulfur compounds in ambient aerosol in Guangzhou, South China, Atmos. Chem. Phys., 22, 6919-6935, 10.5194/acp-22-6919-2022, 2022.
- Jokinen, T., Sipila, M., Richters, S., Kerminen, V. M., Paasonen, P., Stratmann, F.,
 Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H., and Berndt, T.: Rapid
 autoxidation forms highly oxidized RO2 radicals in the atmosphere, Angew.
 Chem. Int. Ed. Engl., 53, 14596-14600, 10.1002/anie.201408566, 2014.
- Kundu, S., Quraishi, T. A., Yu, G., Suarez, C., Keutsch, F. N., and Stone, E. A.:
 Evidence and quantitation of aromatic organosulfates in ambient aerosols in
 Lahore, Pakistan, Atmos. Chem. Phys., 13, 4865-4875, 10.5194/acp-13-48652013, 2013.
- Lin, Y. H., Knipping, E. M., Edgerton, E. S., Shaw, S. L., and Surratt, J. D.:
 Investigating the influences of SO2 and NH3 levels on isoprene-derived
 secondary organic aerosol formation using conditional sampling approaches,
 Atmos. Chem. Phys., 13, 8457-8470, 10.5194/acp-13-8457-2013, 2013.
- Ma, J., Ungeheuer, F., Zheng, F., Du, W., Wang, Y., Cai, J., Zhou, Y., Yan, C., Liu, Y.,
 Kulmala, M., Daellenbach, K. R., and Vogel, A. L.: Nontarget Screening

359	Exhibits a Seasonal Cycle of PM2.5 Organic Aerosol Composition in Beijing,
360	Environ. Sci. Technol., 56, 7017-7028, 10.1021/acs.est.1c06905, 2022.
361	Nguyen, Q. T., Christensen, M. K., Cozzi, F., Zare, A., Hansen, A. M. K., Kristensen,
362	K., Tulinius, T. E., Madsen, H. H., Christensen, J. H., Brandt, J., Massling, A.,
363	Nøjgaard, J. K., and Glasius, M.: Understanding the anthropogenic influence
364	on formation of biogenic secondary organic aerosols in Denmark via analysis
365	of organosulfates and related oxidation products, Atmos. Chem. Phys., 14,
366	8961-8981, 10.5194/acp-14-8961-2014, 2014.
367	Nozière, B., Ekström, S., Alsberg, T., and Holmström, S.: Radical-initiated formation
368	of organosulfates and surfactants in atmospheric aerosols, Geophys. Res. Lett.,
369	37, n/a-n/a, 10.1029/2009gl041683, 2010a.
370	Nozière, B., Ekström, S., Alsberg, T., and Holmström, S.: Radical-initiated formation
371	of organosulfates and surfactants in atmospheric aerosols, Geophys. Res. Lett.,
372	37, n/a-n/a, 10.1029/2009g1041683, 2010b.
373	Olson, C. N., Galloway, M. M., Yu, G., Hedman, C. J., Lockett, M. R., Yoon, T.,
374	Stone, E. A., Smith, L. M., and Keutsch, F. N.: Hydroxycarboxylic Acid-
375	Derived Organosulfates: Synthesis, Stability, and Quantification in Ambient
376	Aerosol, Environ. Sci. Technol., 45, 6468-6474, 10.1021/es201039p, 2011.
377	Riva, M., Budisulistiorini, S. H., Zhang, Z., Gold, A., and Surratt, J. D.: Chemical
378	characterization of secondary organic aerosol constituents from isoprene
379	ozonolysis in the presence of acidic aerosol, Atmos. Environ., 130, 5-13,
380	10.1016/j.atmosenv.2015.06.027, 2016.

381	Riva, M., Tomaz, S., Cui, T., Lin, Y. H., Perraudin, E., Gold, A., Stone, E. A.,
382	Villenave, E., and Surratt, J. D.: Evidence for an unrecognized secondary
383	anthropogenic source of organosulfates and sulfonates: gas-phase oxidation of
384	polycyclic aromatic hydrocarbons in the presence of sulfate aerosol, Environ.
385	Sci. Technol., 49, 6654-6664, 10.1021/acs.est.5b00836, 2015.
386	Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M.,
387	Kleindienst, T. E., Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M.
388	Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Organosulfate
389	Formation in Biogenic Secondary Organic Aerosol, J. Phys. Chem. A., 112,

- 390 8345-8378, 10.1021/jp802310p, 2008.
- 391 Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J.,
- Song, J., Peng, P. a., and Zhang, G.: Molecular compositions and optical
 properties of dissolved brown carbon in biomass burning, coal combustion,
 and vehicle emission aerosols illuminated by excitation–emission matrix
 spectroscopy and Fourier transform ion cyclotron resonance mass
 spectrometry analysis, Atmos. Chem. Phys., 20, 2513-2532, 10.5194/acp-202513-2020, 2020.
- Tao, S., Lu, X., Levac, N., Bateman, A. P., Nguyen, T. B., Bones, D. L., Nizkorodov,
 S. A., Laskin, J., Laskin, A., and Yang, X.: Molecular characterization of
 organosulfates in organic aerosols from Shanghai and Los Angeles urban areas
 by nanospray-desorption electrospray ionization high-resolution mass
 spectrometry, Environ. Sci. Technol., 48, 10993-11001, 10.1021/es5024674,

2014.

404	Trostl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L.,
405	Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K., Williamson, C.,
406	Craven, J. S., Duplissy, J., Adamov, A., Almeida, J., Bernhammer, A. K.,
407	Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C., Franchin,
408	A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen, T.,
409	Junninen, H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kurten, A.,
410	Laaksonen, A., Lawler, M., Leiminger, M., Mathot, S., Mohler, O., Nieminen,
411	T., Onnela, A., Petaja, T., Piel, F. M., Miettinen, P., Rissanen, M. P., Rondo, L.,
412	Sarnela, N., Schobesberger, S., Sengupta, K., Sipila, M., Smith, J. N., Steiner,
413	G., Tome, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D.,
414	Winkler, P. M., Ye, P., Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J.,
415	Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and Baltensperger,
416	U.: The role of low-volatility organic compounds in initial particle growth in
417	the atmosphere, Nature, 533, 527-531, 10.1038/nature18271, 2016.
418	Wang, Y., Ren, J., Huang, X. H. H., Tong, R., and Yu, J. Z.: Synthesis of Four
419	Monoterpene-Derived Organosulfates and Their Quantification in
420	Atmospheric Aerosol Samples, Environ. Sci. Technol., 51, 6791-6801,
421	10.1021/acs.est.7b01179, 2017a.
422	Wang, Y., Ren, J., Huang, X. H. H., Tong, R., and Yu, J. Z.: Synthesis of Four
423	Monoterpene-Derived Organosulfates and Their Quantification in
424	Atmospheric Aerosol Samples, Environ. Sci. Technol., 51, 6791-6801,

10.1021/acs.est.7b01179, 2017b.

- 426 Wang, Y., Ma, Y., Kuang, B., Lin, P., Liang, Y., Huang, C., and Yu, J. Z.: Abundance
- 427 of organosulfates derived from biogenic volatile organic compounds: Seasonal
 428 and spatial contrasts at four sites in China, Sci. Total Environ., 806,
 429 10.1016/j.scitotenv.2021.151275, 2022.
- Wang, Y., Zhao, Y., Wang, Y., Yu, J.-Z., Shao, J., Liu, P., Zhu, W., Cheng, Z., Li, Z.,
 Yan, N., and Xiao, H.: Organosulfates in atmospheric aerosols in Shanghai,
 China: seasonal and interannual variability, origin, and formation mechanisms,
 Atmos. Chem. Phys., 21, 2959-2980, 10.5194/acp-21-2959-2021, 2021a.
- 434 Wang, Y., Hu, M., Wang, Y.-C., Li, X., Fang, X., Tang, R., Lu, S., Wu, Y., Guo, S., Wu,
- Z., Hallquist, M., and Yu, J. Z.: Comparative Study of Particulate
 Organosulfates in Contrasting Atmospheric Environments: Field Evidence for
 the Significant Influence of Anthropogenic Sulfate and NOx, Environmental
- 438 Science & Technology Letters, 7, 787-794, 10.1021/acs.estlett.0c00550, 2020.
- 439 Wang, Y., Hu, M., Lin, P., Guo, Q., Wu, Z., Li, M., Zeng, L., Song, Y., Zeng, L., Wu,
- Y., Guo, S., Huang, X., and He, L.: Molecular Characterization of NitrogenContaining Organic Compounds in Humic-like Substances Emitted from
 Straw Residue Burning, Environ. Sci. Technol., 51, 5951-5961,
 10.1021/acs.est.7b00248, 2017c.
- Wang, Y., Zhang, Y., Li, W., Wu, G., Qi, Y., Li, S., Zhu, W., Yu, J. Z., Yu, X., Zhang,
 H.-H., Sun, J., Wang, W., Sheng, L., Yao, X., Gao, H., Huang, C., Ma, Y., and
 Zhou, Y.: Important Roles and Formation of Atmospheric Organosulfates in

- 447 Marine Organic Aerosols: Influence of Phytoplankton Emissions and
 448 Anthropogenic Pollutants, Environ. Sci. Technol., 57, 10284-10294,
 449 10.1021/acs.est.3c01422, 2023.
- 450 Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X.,
- 451 Liu, Y., Le Breton, M., Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S.,
- Hallquist, M., and Yu, J.: The secondary formation of organosulfates under
 interactions between biogenic emissions and anthropogenic pollutants in
 summer in Beijing, Atmos. Chem. Phys., 18, 10693-10713, 10.5194/acp-1810693-2018, 2018.
- Wang, Z., Ehn, M., Rissanen, M. P., Garmash, O., Quéléver, L., Xing, L., MongePalacios, M., Rantala, P., Donahue, N. M., Berndt, T., and Sarathy, S. M.:
 Efficient alkane oxidation under combustion engine and atmospheric
 conditions, Commun. Chem., 4, 10.1038/s42004-020-00445-3, 2021b.
- 460 Xie, Q., Su, S., Chen, J., Dai, Y., Yue, S., Su, H., Tong, H., Zhao, W., Ren, L., Xu, Y.,
- 461 Cao, D., Li, Y., Sun, Y., Wang, Z., Liu, C.-Q., Kawamura, K., Jiang, G., Cheng,
- Y., and Fu, P.: Increase of nitrooxy organosulfates in firework-related urban
 aerosols during Chinese New Year's Eve, Atmos. Chem. Phys., 21, 1145311465, 10.5194/acp-21-11453-2021, 2021.
- 465 Xie, Q., Li, Y., Yue, S., Su, S., Cao, D., Xu, Y., Chen, J., Tong, H., Su, H., Cheng, Y.,
- 466 Zhao, W., Hu, W., Wang, Z., Yang, T., Pan, X., Sun, Y., Wang, Z., Liu, C. Q.,
- Kawamura, K., Jiang, G., Shiraiwa, M., and Fu, P.: Increase of High
 Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the

- 469 Megacity Beijing, J. Geophys. Res.: Atmos. , 125, 10.1029/2019jd032200,
 470 2020.
- 471 Yan, C., Nie, W., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli, P., 472 Junninen, H., Jokinen, T., Sarnela, N., Häme, S. A. K., Schobesberger, S., Canonaco, F., Yao, L., Prévôt, A. S. H., Petäjä, T., Kulmala, M., Sipilä, M., 473 474 Worsnop, D. R., and Ehn, M.: Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive 475 matrix factorization, Atmos. Chem. Phys., 16, 12715-12731, 10.5194/acp-16-476 477 12715-2016, 2016. 478 Yang, T., Xu, Y., Ma, Y.-J., Wang, Y.-C., Yu, J. Z., Sun, Q.-B., Xiao, H.-W., Xiao, H.-Y., and Liu, C.-Q.: Field Evidence for Constraints of Nearly Dry and Weakly 479 480 Acidic Aerosol Conditions on the Formation of Organosulfates, Environmental Science & Technology Letters, 10.1021/acs.estlett.4c00522, 481 482 2024. Yang, T., Xu, Y., Ye, Q., Ma, Y.-J., Wang, Y.-C., Yu, J.-Z., Duan, Y.-S., Li, C.-X., Xiao, 483 H.-W., Li, Z.-Y., Zhao, Y., and Xiao, H.-Y.: Spatial and diurnal variations of 484 485 aerosol organosulfates in summertime Shanghai, China: potential influence of 486 photochemical processes and anthropogenic sulfate pollution, Atmos. Chem.
- 487 Phys., 23, 13433-13450, 10.5194/acp-23-13433-2023, 2023.
- Yassine, M. M., Dabek-Zlotorzynska, E., Harir, M., and Schmitt-Kopplin, P.:
 Identification of weak and strong organic acids in atmospheric aerosols by
 capillary electrophoresis/mass spectrometry and ultra-high-resolution Fourier

- 491 transform ion cyclotron resonance mass spectrometry, Anal. Chem., 84, 6586492 6594, 10.1021/ac300798g, 2012.
- Yassine, M. M., Harir, M., Dabek-Zlotorzynska, E., and Schmitt-Kopplin, P.:
 Structural characterization of organic aerosol using Fourier transform ion
 cyclotron resonance mass spectrometry: aromaticity equivalent approach,
 Rapid. Commun. Mass. Spectrom., 28, 2445-2454, 10.1002/rcm.7038, 2014.
- Ye, Y., Zhan, H., Yu, X., Li, J., Wang, X., and Xie, Z.: Detection of organosulfates and
 nitrooxy-organosulfates in Arctic and Antarctic atmospheric aerosols, using
 ultra-high resolution FT-ICR mass spectrometry, Sci. Total Environ., 767,
 10.1016/j.scitotenv.2020.144339, 2021.
- 501 Yu, Q., Ding, X., He, Q., Yang, W., Zhu, M., Li, S., Zhang, R., Shen, R., Zhang, Y., Bi,
- 502 X., Wang, Y., Peng, P. a., and Wang, X.: Nationwide increase of polycyclic
- aromatic hydrocarbons in ultrafine particles during winter over China revealed
- 504 by size-segregated measurements, Atmos. Chem. Phys., 20, 14581-14595,
- 505 10.5194/acp-20-14581-2020, 2020.