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Abstract: Previous measurement-model comparisons of atmospheric isoprene levels
showed a significant unidentified source of isoprene in some northern Chinese cities
during winter. Here, spatial variability in winter aerosol organosulfate (OS) formation
in typical southern (Guangzhou and Kunming) and northern (Xi’an and Taiyuan)
cities, China, was investigated to reveal the influence of potential non biogenic
contributor on aerosol OS pollution levels. Monoterpene-derived OSs were
significantly higher in southern cities than in northern cities, which was attributed to
temperature dependent emission of monoterpenes (i.e., higher temperatures in
southern cities drove more monoterpene emissions). However, isoprene-derived OSs
(OSi) showed the opposite trend, with significantly higher levels in northern cities.
Principal component analysis combined with field simulation combustion experiments
suggested that biomass burning rather than gasoline, diesel, and coal combustion
contributed significantly to the abundance of OS; in northern cities. The comparison
of anthropogenic OS molecular characteristics between particles released from
various combustion sources and ambient aerosol particles suggested that stronger
biomass and fossil fuel combustion activities in northern cities promoted the
formation of considerable anthropogenic OSs. Overall, this study provides direct
molecular evidence for the first time that non biogenic sources can significantly

contribute to the formation of OS; in China during winter.

Keywords: Acrosol organosulfates, Biogenic precursors, Anthropogenic precursors,

Spatial variation, Influencing factors, Biomass burning
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1. Introduction

Organosulfates (OSs) with a sulfate ester functional group typically contribute 3—
30% of the organic aerosol mass in atmospheric fine particles (PMzs) (LukAcs et al.
2009). Moreover, OSs have been estimated to account for up to 12% of the total sulfur
mass in fine particles, playing significant roles in the global biogeochemical cycling
of sulfur (Luk’Acs et al. 2009). In particular, OSs can impact the properties of
aerosols, such as hygroscopicity, acidity, viscosity, and morphology, which are closely
associated with the organic aerosol formation and urban air quality (Riva et al. 2019;
Fleming et al. 2019). Thus, aerosol OSs have attracted significant attention over the
years. However, the mechanisms and key factors impacting the formation and
abundance of aerosol OSs in the real world remain considerable uncertainty, despite
the important insights gained from laboratory simulation experiments (Wang et al.
2021; Yang et al. 2023; Wang et al. 2020).

Previous field studies have indicated that acidity (Duporté et al. 2019), sulfate
(Aoki et al. 2020), aerosol liquid water (Duporté et al. 2016), and oxidants (e.g.,
ozone) (Wang et al. 2021) represent critical factors controlling the formation of OSs
via heterogeneous and liquid phase processes (Briiggemann et al. 2020b). Precursor
emission intensities (e.g., isoprene, monoterpenes, polycyclic aromatic hydrocarbons,
and alkanes) also play an important role in impacting abundance of biogenic and
anthropogenic OSs in ambient aerosols (Wang et al. 2022; Bryant et al. 2021; Yang et
al. 2024). Furthermore, previous studies have identified a large number of CHOS

compounds in smoke particles (e.g., pine branches, corn straw, rice straw, and coal)
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(Song et al. 2019; Song et al. 2018; Tang et al. 2020). However, limited studies have
focused on the contribution of different smoke particles to urban aerosol OSs. This
may be an overlooked source of OSs. In general, few field studies have conducted a
comprehensive investigation into the relationship between biogenic and
anthropogenic impacting factors and regional differences in aerosol OS pollution.
This complicates our understanding of how aerosol OS pollution is formed and what
limits it in a complex polluted atmosphere across different cities in China.

The considerable variations in climatic conditions and air pollution levels in the
northern and southern regions of China during winter (Ding et al. 2014; Ding et al.
2016b) provide a distinctive opportunity to examine the complex influences of
precursors, humidity, acidity, atmospheric oxidants, and anthropogenic pollution on
the formation and abundance of aerosol OSs in the real world (Yang et al. 2024; Yang
et al. 2023; Wang et al. 2021; Hettiyadura et al. 2019). In this study, we conducted the
simultaneous observations of OSs and other chemical components in PMz 5 collected
from typical southern (Guangzhou and Kunming) and northern (Xi’an and Taiyuan)
cities in China during winter. Moreover, we also attempted to identify OSs in smoke
particles emitted from combustion of different materials (i.e., rice straw, pine branch,
diesel, gasoline, and coal). The principal aims of this study are 1) to investigate the
spatial differences in aerosol OS pollution in northern and southern China during
winter and 2) to elucidate the key factors that contribute to the spatial variability of

OS pollution, with a focus on the OSs derived from smoke particles.
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2. Materials and Methods
2.1. Site description and sample collection

The research sites are located in four urban areas in China, including Xi’an (XA)
Taiyuan (TY), Guangzhou (GZ), and Kunming (KM) (Figure S1a). XA and TY are
typical northern cities with cold winters (average temperature below 2 °C during the
study period; Table S1). Thus, burning coal and biomass for heating is prevalent in
these two cities during winter (Zhou et al. 2017; Ma et al. 2017), which significantly
deteriorated the local air quality (Figure S1b). GZ and KM represent typical southern
cities, with an average air temperature of over 10 °C during the winter sampling
period (Table S1). Clearly, the distinctive climatic conditions in the northern and
southern cities during winter may lead to significant spatial differences in the level of
air pollution and the emission intensity of biogenic volatile organic compounds
(VOCGs) (Ding et al. 2014; Xu et al. 2024b).

From 10 December 2017 to 8 January 2018, sampling was performed
simultaneously in four cities. Filters contained PM2.s were collected at regular two- to
three-day intervals, with the collection duration being 24 hours, using a high-volume
air sampler (Series 2031, Laoying, China) at a flow rate of ~1.05 m® min! (Xu et al.
2024a). A blank filter was sampled at each of the study sites. A total of 48 ambient
samples were collected and stored at a temperature of —30°C. Meteorological data,
including wind speed, relative humidity (RH), and temperature, were obtained from
nearby environmental stations. Concurrently, the concentrations of various pollutants,

such as O3, NO2, and SO, were also recorded.
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2.2. Smoke particle collection

The controlled burning experiments conducted in the field were designed to
simulate the emissions of “real world” burning cases in China (Figure S2), with the
methodology being improved according to the previous reports (He et al. 2010; Wang
et al. 2017). Rice straw and pine branch are typical materials for biomass burning in
China (Zhou et al. 2017). In addition, the combustion of coal, gasoline, and diesel was
representative of fossil fuel combustion (Yu et al. 2020). Accordingly, the smoke
particles emitted from rice straw, pine branch, coal combustion, gasoline vehicle
exhausts, and diesel vehicle exhausts were separately collected using self-made
devices (Figure S2).

Briefly, the smoke from the combustion of rice straw, pine branch, and coal was
sampled through a combustion furnace pumped with ambient air (particulate matter is
removed) (Figure S2a). It should be noted that introducing ambient air with removed
particulate matter into the combustion furnace is to minimize the pollution of ambient
particulate matter to the smoke particle samples. Each combustion experiment for
straw, pine branch, and coal lasted for 30—40 min. Regarding the smoke particles
emitted from gasoline vehicle exhausts and diesel vehicle exhausts, they were
collected for 3 hours by directly connecting to the car exhaust pipe (Figure S2b). All
smoke particle samples are collected onto prebaked quartz fiber filters via a high-
volume air sampler (Series 2031, Laoying, China). Four repeated experiments were
conducted for each combustion material, one of which was collected as a blank

sample. All smoke particle samples were stored at —30°C.
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2.3. Chemical analysis and predictions of aerosol acidity and water concentration

The extraction, measurement procedures, and identification of OSs were
described in detail in our recent publications (Yang et al. 2024). Briefly, the filter
sample was extracted using methanol, then filtered through a 0.22 pm PTFE syringe
filter and concentrated by a gentle stream of nitrogen gas. Subsequently, the
concentrated sample with adding ultrapure water (300 uL) was thoroughly mixed
using a mixer. The mixture was centrifuged to obtain the supernatant for analysis of
UPLC-MS/MS system (Waters, USA) (Wang et al. 2021). The reverse-phase liquid
chromatography (RPLC) method was performed on an Acquity UPLC HSS T3
column (2.Imm x 100 mm, 1.8 um particle size; Waters, USA) in this study. Although
our method is quite effective in retaining and separating low molecular weight (MW)
OSs, as demonstrated in our recent publication (Yang et al. 2024), we also
acknowledge that the developed hydrophilic interaction liquid chromatography
method may provide another solution for the measurement of low-MW OSs (Cui et al.
2018; Hettiyadura et al. 2015).

In addition, it has been indicated in previous studies (Briiggemann et al. 2020a;
Kristensen et al. 2016) that the levels of OSs can be affected by the sampling
procedure, especially when SO: removal procedures are not employed. On the
assumption that SO: reacts with organics on filters to form OSs, similar processes
must also occur on ambient particles prior to sampling. Moreover, there is currently
no study evaluating the relative efficiency of OS generation in filters and ambient

particles. Consequently, the possible consequences of sampling without denuding SO:
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for the quantification of OSs were not taken into account in our studies (Yang et al.
2024; Yang et al. 2023). In total, 212 OSs were identified. However, only 111 OS
species were quantified using surrogate standards in this study (Table S2 and S3). The
study divided the several principal OS groups as follows: monoterpene-derived OSs
(OSm), isoprene-derived OSs (0S;), Co—C3 OSs (i.e., OSs with two or three carbon
atoms), and anthropogenic OSs (i.e, aliphatic and aromatic OSs) (Yang et al. 2023).
The terms "OSy" and "OS;" refer to organosulfates generated from monoterpenes and
isoprene, respectively. These compounds were generally classified as biogenic OSs
due to their natural origin (Wang et al. 2021; Wang et al. 2018). The specific
classification and quantification methods were detailed in our recent publications
(Yang et al. 2023; Yang et al. 2024) and Supporting Information.

An additional portion of each filter was extracted using ultrapure water for
determining the inorganic ions (Huang et al. 2023). The concentrations of SO3, Ca*',
NO; , Na", K", Mg?', CI', and NH, were analyzed using ICS5000+ ion
chromatography (Thermo, USA) (Yang et al. 2024; Lin et al. 2023). The mass
concentration of aerosol liquid water (ALW) and pH value were calculated by a
thermodynamic model (ISORROPIA-II) in the forward mode and thermodynamically
metastable state, which was detailed in our previous studies (Liu et al. 2023; Xu et al.
2022; Xu et al. 2023b; Xu et al. 2020). The influence of OSs on ALW and pH was not
taken into account in the present study due to their negligible contribution to the

prediction outcomes, as indicated by Riva et al. (2019) and Yang et al. (2024).
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3. Results and Discussion
3.1. Spatial variations in concentrations and compositions of different OSs
Figure la shows the spatial distributions in mass concentrations and mass
fractions of OS;, OSn, aliphatic OSs, aromatic OSs, and C>—C3 OSs in PM 5 collected
in southern (KM and GZ) and northern (TY and XA) cities during winter. On average,
OS; was the dominant OS subgroup, which accounted for 37% — 46% and 68% — 69%
of the total OS mass in southern and northern cities, respectively. The predominance
of OS; in aerosol OSs was also reported by previous studies in cities in northern (e.g.,
Beijing and Tianjin) (Wang et al. 2018; Ding et al. 2022) and southern (e.g.,
Guangzhou and Shanghai) (Wang et al. 2022; Wang et al. 2021) China, as well as in
coastal (the Yellow Sea and Bohai Sea) (Wang et al. 2023) and European (Sweden)
(Kanellopoulos et al. 2022) and American regions (Chen et al. 2021; Hettiyadura et al.
2017; Hettiyadura et al. 2019) (Table S4). Moreover, the concentrations of OS; were
significantly lower in southern cities (61 £ 38 ng m™ — 87 + 60 ng m™) than in
northern cities (171 £ 69 ng m™> — 260 = 71 ng m>) (Table S1), showing a
concentration range overlapped with previous observations (Table S4). From southern
to northern cities, the mass concentrations and mass fractions of OS, tended to
decrease, which was opposite to the spatial variation pattern of OS; (Figure 1a). Both
OSi and OSn are generally considered as typical biogenic OSs (Hettiyadura et al.
2019; Wang et al. 2018), the abundances of which were tightly associated with
biogenic VOC emissions when acidity, sulfate, atmospheric oxidation capacity, and
ALW are not limiting factors (Bryant et al. 2021; Wang et al. 2022; Yang et al. 2024).
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Thus, these dissimilarities in the spatial variations of OS; and OSy, can be attributed to
large differences in the intensity of biogenic VOC emissions (Wang et al. 2022)
and/or the key factors that constrain OS formation between the northern and southern

regions of China (Table S1).
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Figure 1 Box and whisker plots showing the variations in the concentration of
different OS groups in PM2;s collected in southern (GZ and KM) and northern (TY
and XA) cities of China during winter. Each box encompasses the 25th—75th
percentiles. Whiskers are the minimum and maximum values. The triangles and solid
lines inside boxes indicate the mean and median. The spatial variation in average
percentage distributions of various OS groups was also shown in panel (a). The other

figures show the spatial variations in (b) SO, (c)SO7", (d) ALW, and () Ox levels.

The abundance of anthropogenic OSs (i.e., OS,, including aliphatic and aromatic
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OSs, Sect. S1) in southern cities was lower than that of OS, which was opposite to
the case in the northern cities showing higher anthropogenic OS abundance (Figure
1a and Table S1). Moreover, we found that the spatial variation patterns of OS; and
OS. were similar to those of SO», SOE{, ALW, and Oy (Figures 1b—e), as indicated by
significant (P < 0.05) correlations of OS; and OS, with those factors (Figure S3).
However, OSy, and C>—C3 OSs showed the opposite spatial variation pattern to SO»,
SO3’, ALW, and Oy (F igure 1). If both OS; and OSy, are assumed to be formed mainly
from the oxidation of biologically emitted VOCs, the higher SO, SO, ALW, and Ox
levels could theoretically lead to higher OSn in northern cities, just as these factors
leaded to higher OS; abundance in northern cities (Figure 1 and Table S1).
Accordingly, the above differentiated spatial variation patterns among different OS
subgroups likely indicated that other sources of isoprene contributed to the formation
of OS; in northern cities. Further given the significant (P < 0.05) correlations between
OSi and OS., non biogenic isoprene emissions may play an important role in the
formation of aerosol OS; in northern cities. This will be further demonstrated in the

following discussion.

3.2. Key factors affecting spatial differences in monoterpene-derived OS
abundance

Figure 2a shows the distribution of OSn concentration as a function of air
temperature. We found that the OS., concentration tended to increase with the increase

of air temperature. Specifically, the air temperature in the southern cities was mainly
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in the range of 7-14°C during the sampling period, corresponding to higher aerosol
OSm abundance. In contrast, the low temperature (< 7°C) in the northern cities
corresponded to a significant decrease in OSy, abundance. This finding was similar to
the previously observed decrease in aerosol OS, compounds with decreasing
temperature during winter in Guangzhou (Bryant et al. 2021). Furthermore, the
indicator (CrX Cr) of biogenic VOC emission rate (Ding et al. 2016a; Guenther et al.
1993) was also higher in southern cities than in northern cities (Figure 2b), which
implied higher monoterpene emissions in southern cities. It has been suggested that
the emission rates of biogenic VOCs (e.g., monoterpene and isoprene) can be driven
by increased air temperature and lighting (Ding et al. 2016a; Ding et al. 2016b). A
previous study also found that the concentrations of atmospheric monoterpenes during
the winter season were higher in warmer southern Chinese cities than in colder
northern Chinese cities (Ding et al. 2016b; Li et al. 2020). In particular, GZ and KM,
which encompass extensive areas of coniferous and broad-leaved forests, have been
identified as hotspots for monoterpene and isoprene emissions (Li and Xie 2014).
Considering the lower levels of key factors affecting OS formation observed in
southern cities (Figures 1b—e and Table S1), it can be inferred that the significant
spatial differences in OS,, abundances were largely attributed to temperature

dependent emission of monoterpenes.
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Figure 2 Distribution of (a) OSm and (b) CL>Ct data in different temperature ranges
during winter. The triangles inside boxes indicate the mean. Principal component
analysis result (c) deciphering the relationship among OSi, OSm, and key factors

influencing OS formation.

To further determine the key factors affecting the spatial differences of OSm,
principal component analysis was conducted (Figure 2c¢). It can be easily determined
that the abundance of aerosol OS,, was closely related to changes in air temperature
and Cp X Cr value. This further explained the changes in OSy, data in the southern
cities. In contrast, the abundance of aerosol OS; in the northern cities was more
influenced by anthropogenic factors, as indicated by combustion source tracers such
as nitrogen-containing bases (N-bases) and non-sea-salt CI (nss-CI") (Wang et al.
2017; Jiang et al. 2023) (Figure 2c¢). Thus, principal component analysis can perfectly
distinguish the main factors causing changes in OS,, and OS; abundances between the
northern and southern cities. In general, the above results confirm that the spatial

variation of OS, was predominantly controlled by temperature-related monoterpene
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emissions. However, this cannot account for the observed spatial variation of OS;
(Figure 2¢ and Figure S4). Interestingly, the spatial distribution patterns of OSy, and
OS; in northern and southern China exhibited consistency during summer, closely
resembling the spatial distribution of biogenic VOC emission intensities (Wang et al.
2022). Thus, this case together with our observations during winter further imply that
non biogenic sources of isoprene were important contributors to the formation of OS;

in northern China during winter.

3.3. Significant contribution of biomass burning to isoprene-derived OSs in
Northern China

The previous principal component analysis has suggested that the abundance of
OSi in northern cities was closely related to the levels of combustion source tracers
(e.g., N-base compounds and nss-Cl7). N-base compounds are CHN species that
contain exclusively C, H, and N atoms, and have been demonstrated to exhibit high
sensitivity as molecular indicators in identifying biomass burning (Wang et al. 2017).
To further confirm the potential contribution of combustion release to aerosol OS;,
OSs in smoke particles emitted from rice straw, pine branch, and coal combustion, as
well as from gasoline vehicle exhausts, and diesel vehicle exhausts (Figure S2), were
investigated. A total of 8 distinct OS; were identified in both the smoke particles
emitted from biomass burning (rice straw and pine branch) and the ambient aerosol
particles, including C4H706S , CsHgOsS , CsH1106S , CsH/0;S , Cs4H/OsS ,
CsH1107S , CsHeO7S | and CsHyOsS . Moreover, the peak intensities of these 8 OS;
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in smoke particles emitted from fossil fuel combustion (gasoline and diesel vehicle
exhausts and coal) were close to those in the blank sample. A previous investigation
into CHOS compounds in smoke particles emitted from residential coal combustion
and biomass burning also failed to identify OS; species (Song et al. 2019; Song et al.
2018), which further supported the reliability of the combustion experiment
conducted in this study. CsHyeOsS was dominant OS; species in pine-derived smoke
particles (Figure 3a,c). We found that the average concentration of CsHgOsS in
ambient aerosol samples was much higher in northern cities than in southern cities
(Figure 3b). A reasonable explanation for this is that pine branches are commonly
used as solid fuel for heating and cooking in northern suburbs and rural areas (Zhou et
al. 2017). CsH;07S and CsH7;0sS dominated OS; species in straw-derived smoke
particles (Figure 3a,c). However, these two types of OS; have relatively low
abundance in ambient aerosol samples in both northern and southern cities. This may
be attributed to the fact that straw burning was mainly concentrated in autumn rather
than winter in China (Zhou et al. 2017; Yang et al. 2015). On average, the biomass
burning-related OS; accounted for 58% — 64% and 86% — 87% of the total OS;
concentration in southern and northern cities, respectively (Figure 3c). Although
these biomass burning-related OS; can also be formed through atmospheric
transformation of biogenic isoprene, the higher proportion of these OS; in northern
cities together with previous principal component analysis results still support our
previous consideration that non biogenic OS; may be an important contributor to
aerosol OS; in northern cities.
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Figure 3 Relative signal intensity of (a) identified major OS; species in different types
of smoke particle samples. Spatial variation in the concentration of several specific
OSi (identified in smoke particles) in (b) ambient PM.s samples. Peak area and
concentration fraction of (c) OS; species identified in both ambient PM2s samples
collected in different cities and smoke particles. Comparison of (d) isoprene mixing

ratios obtained from observation and modeling in different cities (Zhang et al. 2020).

Previous laboratory studies have suggested that these identified OS; species in
biomass burning-derived smoke particles are typically formed through heterogeneous
and multiphase reactions involving isoprene, its oxidation intermediates, and sulfate
or sulfur dioxide (Surratt et al. 2008; Surratt et al. 2007; Darer et al. 2011).
Specifically, CsHqO6S , as a sulfate ester of Cs-alkene triols, was formed mainly
through the uptake of gas-phase isoprene oxidation products onto acidified sulfate
aerosol (Surratt et al. 2007). The formation of CsH;07S and CsHeO7S begins with
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the gas-phase oxidation of isoprene (Surratt et al. 2008). C4H706S™ can be generated
both from isoprene photooxidation and sulfate radical reaction with methacrolein
(MACR) or methyl vinyl ketone (MVK) (Schindelka et al. 2013; Wach et al. 2019;
Noziére et al. 2010). CsH1107S  was produced by reactive uptake of isoprene-derived
epoxide (IEPOX) on sulfate under low-NOx conditions. Since our combustion
experiments have excluded the direct contribution of ambient aerosol particles to OS;
in smoke particles, it can be expected that these detected OSi compounds were mainly
generated within smoke plumes through the isoprene oxidation pathway mentioned
above. It has been demonstrated that directly emitted organic aerosols or VOCs can
undergo a chemical reaction within smoke plumes, forming secondary organic
compounds within a matter of hours (Wang et al. 2017; Song et al. 2018; Mason et al.
2001). A field study conducted by Zhu et al. (2016) at a rural site (Yucheng) in the
North China Plain (NCP) region has observed that the concentration of ambient
isoprene during the period of straw combustion was approximately twice as high as
that observed during periods of non combustion. In addition, Li et al. (2018) found
that isoprene-derived epoxides increased significantly during field open burning of
straw. Generally, despite the fact that a few of the mechanisms by which OSs are
formed have been verified through field studies, the formation of CHOS and CHONS
compounds has been observed to occur in the biomass burning plume (Zhang et al.
2024; Song et al. 2018; Tang et al. 2020). Thus, these previous case studies further
support our consideration that OS; compounds formed in biomass burning-derived
smoke particles in this study can be attributed to increasing isoprene emission caused
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by field biomass burning (Zhu et al. 2016) and favorable aqueous secondary organic
aerosols (SOA) formation during the aging process of the biomass burning plume
(Gilardoni et al. 2016).

Figure 3d presents a comparison between the isoprene mixing ratios derived
from model simulations (plant functional type related model) and those observed in
the field in different Chinese cities during winter (December and January) (Zhang et
al. 2020). Overall, the levels of isoprene observed in northern cities during winter
were higher than those in southern cities. In addition, the predicted values in southern
cities were slightly higher than the observed values, which may be attributed to the
lag in model prediction results caused by the rapid urbanization rates in these southern
cities (Zhang et al. 2020). However, the observed values in these two northern cities
were 53% to 63% higher than the predicted values, on average. Clearly, this plant
functional type related isoprene prediction model cannot explain the large amount of
“missing” isoprene sources in northern cities. Thus, the observed spatial differences in
OSi (Figure 1) and field combustion experiments (Figure 3) can suggest that these
“missing” isoprene sources were mainly derived from biomass burning, significantly
contributing to the production of aerosol OS; in northern cities. This can also be
supported by previous principal component analysis involving combustion source

tracers and OS; compounds (Figure 2c).

3.4. Formation of anthropogenic OSs mainly driven by fossil fuel and biomass
combustion
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Figures 4a,b show the average concentration distribution of anthropogenic OSs
classified based on the number of O atoms in their molecules in southern (GZ and
KM) and northern (TY and XA) cities. The O4S: subgroup was the most abundant
aromatic OSs in both southern and northern cities, among which CoHsO4S™, phenyl
sulfate (CsHs04S™), and benzyl sulfate (C7H704S™) were dominant species (Table S3).
C7H704S™and CeHsO4S™ have been suggested to be formed mainly through the
photooxidation of 2-methylnaphthalene and naphthalene (Riva et al. 2015), or
alternatively, by the sulfate radical reaction with aromatic compounds, including
toluene and benzoic acid, in an aqueous phase environment (Riva et al. 2015). The
formation mechanism of CoHyO4S™ is rarely reported. However, CoHgO4S™, CeHs04S™,
and C7H704S™ were also detected in both fossil fuel combustion-derived smoke
particles and biomass burning-derived smoke particles (Figure S5 and Table S5),
indicating that the aromatic VOCs produced by fuel combustion are closely related to
the formation of these aromatic OSs. Overall, acrosol aromatic OS compounds in both
southern and northern cities were mainly distributed between four and six O atoms
(Figure 4c¢), which was similar to the distribution of aromatic OSs identified in
various smoke particles emitted from different combustion sources (Figure 4d).
However, the average abundances of aromatic O4-6S1 compounds in northern cities
were 3—6 times higher than those in southern cities. The above results suggest that
aromatic OSs originated from fossil fuel and biomass combustion activities are
important contributors to urban aerosol anthropogenic OSs in winter in China,

especially in northern cities. We found that the correlations between aromatic OSs and
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anthropogenic indicators (SO, SOE{, N-base, and nss-Cl) were stronger in northern
cities than in southern cities (Figure S6), and that the release of polycyclic aromatic
hydrocarbons from fossil fuel combustion was also higher in northern cities (Figure
S7). This further indicates that higher aerosol aromatic OSs in northern cities was

mainly attributed to stronger combustion activities in those cities.

[ Southern cities ["] Northern cities I Diesel exhaust [ Gasoline exhaust

Pine [l Coal Straw
A\
A\
0,455
0,55, - (a) 0-,_1351—‘ (b) 743917
0,,5; - ’
1221 ©) o, 0,8 (e)
0,657 94%
Southern cities Southern cities
01151 = 89% 96%
Northern cities Northern cities

SS0 oneWOoIY
sS0 aneydily

e
< O
@\P \c:\'o \19 0, Né
o o

01081 7
on o
(e X ‘ , v‘;
0,5, o2\ - 1
- p \
i (d )u 20 40 60 80100 ] (f) 0 20 40 60 80
. Relative intensity (%) - Relative intensity (%)

eS17 sorice s LT perklo sanpi
0,S, —t— HH
0811 1| = ks
T T T T — T T T T T 1
25 15 10 5 0 5 10 15 20 25
Aromatic OSs (ng m™) Aliphatic 0Ss (ng m™®)

Figure 4 Concentration distribution of different (a) aromatic and (b) aliphatic OS
subgroups (classification based on oxygen atoms) in southern and northern cities.
Ring charts (c,e) show the percentage contributions of O4-6S1 and O7-13S1 subgroups.
Radial bar charts (d,f) illustrate the relative signal intensity of different OS subgroups

in different smoke particle samples.

Aliphatic OSs were also predominantly distributed between O4S: and OsS:1
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subgroups in both southern and northern cities (Figures 4b,e), which was similar to
the case found in both fossil fuel combustion-derived smoke particles and biomass
burning-derived smoke particles (Figure 4f). It has been suggested that the long-chain
alkanes derived from traffic emissions can largely contribute to the formation of
CHOS compounds with aliphatic carbon chains (Tao et al. 2014). In addition, Tang et
al. (2020) analyzed the molecular compositions of smoke particles from open biomass
burning, household coal combustion and vehicle emissions and suggested that the
aliphatic CHOS compounds can be derived from both vehicle emissions and coal and
biomass combustion. In this study, aliphatic OSs showed a significant (P < 0.05)
positive correlation with nss-Cl~, SO, NOx, and N-base compounds in both southern
and northern cities (Figure S6 and S8), indicating aerosol aliphatic OSs were affected
by a combination of biomass burning and vehicle emissions in those cities during
winter. Thus, the significantly higher level of aliphatic O46S: species in northern
cities indicated that the formation of aliphatic OSs in northern cities was more driven
by pollutants released from the combustion of fossil fuels and biomass compared to
southern cities. This consideration is highly consistent with the fact that the
concentrations of air pollutants (e.g., SO2 and NOz) in northern cities with a large
demand for heating during winter are usually higher than those in warmer southern
cities (Table S1 and Figure S1b) (Yu et al. 2020; Ding et al. 2017; Ma et al. 2017,

Zhou et al. 2017).

4. Conclusion and atmospheric implications
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It has been previously suggested that isoprene can also be released into the
atmosphere as a result of open burning of agricultural residues and forest fires
(Andreae 2019; Simpson et al. 2011). A field study conducted by (Wang et al. 2019)
in Beijing during winter inferred that the prevalence of OS; compounds in total
aerosol OSs may be partially attributable to biomass burning emissions, although
there was a paucity of compelling evidence to support this hypothesis. This work
combines strongly contrasting observational studies (northern Chinese Cities vs
southern Chinese Cities) with in situ combustion modelling experiments to provide
the first direct evidence that biomass burning emission, rather than fossil fuel
combustion emission, is a significant contributor to aerosol OS; in northern cities
(Figure 5). In Chinese cities, particularly those in the northern region, biomass
materials are extensively utilized for domestic heating and cooking purposes during
the winter season (Zhou et al. 2017). Clearly, the isoprene emissions from biomass
combustion sources would result in higher isoprene mixing ratios than those
simulated by the model (Zhang et al. 2020) that only considers natural isoprene
emissions. Thus, isoprene prediction models applied to Chinese winters in the future
should also take into account the various biomass combustion source releases. Given
the potential for both biomass burning and biogenic isoprene to contribute to OS;
formation, separating their respective contributions remains challenging. Furthermore,
biogenic OSs are important SOA constituents and have been frequently serve as
important tracers for biogenic SOA (Ding et al. 2014; Ding et al. 2016a). The overall

results suggest that some OS; species may not be suitable as biogenic SOA markers,
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especially in areas with intensive biomass burning activities, such as northern Chinese

cities during winter.
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Figure 5 Conceptual picture showing the characteristics and main contributors of OSs

in northern and southern China during winter. It is noteworthy that OS;-BB can
originate not only from biomass combustion, but also from the secondary formation

of isoprene emitted from biogenic sources.

We found that different fossil fuel combustion emissions (e.g., vehicle emissions
and coal combustion emissions) and biomass burning emissions can contribute to
aerosol anthropogenic OSs. However, current studies have not been able to accurately
distinguish between the contributions of various material combustion to different

types of anthropogenic OSs. Future research is necessary to develop more
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comprehensive models to further explore the effects of various combustion sources on
the generation and reduction of urban aerosol OS pollution. Of particular importance
is that although the production of various OSs was directly observed through our
simulated combustion experiments, it is not clear whether the chemical mechanisms
involved are similar to those derived from the laboratory simulations. This is because
the combustion process is accompanied by the effects of high temperatures. In
general, although our results provide direct evidence for the release of OSs from
combustion of various combustion sources, further mechanistic studies and
environmental impact assessment are still urgently needed. This may be important for

effective control of urban wintertime organic aerosol pollution in China.
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