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Abstract. This study investigates the role of large-scale atmospheric processes in the development of cyclones causing extreme

surface winds over the central North Atlantic basin (30◦ to 60◦ N, 10◦ to 50◦ W), focusing on the extended winter period

(October-March) from 1950 until 2020 and using the ERA5 reanalysis product. Extreme surface wind events are identified as

footprints of spatio-temporally contiguous 10 m wind exceedances over the local 98th percentile. Cyclones that cause the top

1% most intense wind footprints (‘top extremes’) are identified and selected for further analysis.
::::
After

::::::::
excluding

:::
16

::::::
(14%)5

::
of

:::::::
cyclones

::::
that

:::::::::
originated

:::
as

::::::
tropical

:::::::::
cyclones,

::::::
further

:::::::
analysis

::
is
:::::
done

:::
on

:::
the

:::::::::
remaining

::
99

:::::::::::
extratropical

::::::::
cyclones

:::::
(‘top

:::::::::
extremes’). These are compared to a set of cyclones yielding wind footprints with exceedances marginally above the 98th

percentile (‘moderate extremes’). Cyclones leading to top extremes are, from their time of cyclogenesis, characterized by the

presence of pre-existing downstream cyclones, a strong polar jet, and positive upper-level potential vorticity anomalies to the

north. All these features are absent or much weaker in the case of moderate extremes, suggesting that they play a key role in the10

top extreme’ explosive development and in the generation of spatially-extended wind footprints.
:::::
There

::
is

::::
also

::
an

:::::::::
indication

::
of

:::::::
cyclonic

::::::
Rossby

:::::
wave

:::::::
breaking

:::::::::
preceding

:::
the

:::
top

::::::::
extremes. Furthermore, analysis of the pressure tendency equation over the

cyclones’ evolution reveals that, although the leading contributions to surface pressure decrease vary from cyclone to cyclone,

top extremes have on average a greater diabatic contribution than moderate extremes.

1 Introduction15

The weather and climate of Europe is strongly influenced by the passage of extratropical cyclones. Cyclones are the main

cause of wind and precipitation extremes during the winter season over the Euro-Atlantic sector (Fink et al., 2009; Pfahl and

Wernli, 2012), and routinely generate heavy wind-related economic losses across the continent (Roberts et al., 2014). This

makes extreme cyclones and the associated windstorms one of the leading natural hazards in Europe (Berz, 2005; Ulbrich

et al., 2013a; Spinoni et al., 2020).20

1



Various aspects of extreme extratropical cyclones affecting Europe have been examined in previous work, including several

detailed case studies of some of the most damaging historical windstorms, like Lothar, Kyrill and Xynthia (Wernli et al., 2002;

Fink et al., 2009; Rivière et al., 2010; Ludwig et al., 2014, 2015), and studies focusing on identification of common features

::::
,from

::::::::::
large-scale

::
to

::::::::
mesoscale

::::
(see

:::
for

:::::::
example

:::::::::::::::
Earl et al. (2017)

::::
who

::::::
focused

:::
on

:::
UK

:::::
wind

:::::
gusts

::
by

::::::::
analyzing

::::::::::::
observational

::::
data), associated with extreme windstorms caused by cyclones. Hanley and Caballero (2012b) and Messori and Caballero25

(2015) concentrated on the structure
:::::::
analyzed

:::
the

::::
most

::::::
salient

:::::::
features of the large-scale atmospheric flow in which some of the

most destructive European windstorms were embedded. They showed that surface wind extremes over Europe often coincide

with simultaneous cyclonic and anti-cyclonic Rossby wave breaking events in the eastern part of North Atlantic basin. Gómara

et al. (2014) further demonstrated a close relationship
::::::
positive

:::::::::
correlation between Rossby wave breaking and the occurrence

of explosive cyclones in the Euro-Atlantic sector. They found that the most intense cyclones in the western North Atlantic were30

associated with cyclonic Rossby wave breaking over western Greenland, while the most intense cyclones in the eastern North

Atlantic were preceded by cyclonic Rossby wave breaking over eastern Greenland or anticyclonic Rossby wave breaking in the

subtropical North Atlantic. The physical basis of these results lies in how wave breaking events influence the orientation and

strength of the eddy-driven jet. Specifically, they can create favorable conditions for cyclone intensification by strengthening

upper-level divergence in the right-entrance and left-exit regions of the jet core (Uccellini, 1990). Dacre and Pinto (2020)35

showed that interactions between Rossby wave breaking and the eddy-driven jet are also important for cyclone clustering, i.e.

the passage of multiple cyclones over a fixed location within a given time period. Although the individual cyclones that pass

in succession through the same region might not be extreme, the accumulated impact of wind damage and/or precipitation can

be extreme when compared to individual events. Rossby wave breaking can further influence the strength and tilt of the jet,

which can then steer multiple cyclones towards the same region (Pinto et al., 2014; Messori and Caballero, 2015; Priestley40

et al., 2017).

It is common to study
:::
An

::::::::
approach

:::::::::::::
complementary

::
to

:::::
those

:::::
above

:::::
takes the potential vorticity (PV) perspective (Hoskins

et al., 1985). This framework evaluates cyclone evolution through the lens of interactions between positive PV anomalies at

different levels and positive potential temperature anomalies at the surface, which all induce a cyclonic circulation. This per-

spective has been used to study individual historical storms (like Lothar in Wernli et al., 2002) and to develop climatologies of45

cyclones (Čampa and Wernli, 2012). By studying PV towers (i.e. positive PV anomalies vertically aligned from the tropopause

to the surface) associated with extratropical cyclones in the Northern Hemisphere, Čampa and Wernli (2012) found that more

intense cyclones (in terms of lower sea level pressure) are, on average, associated with more prominent lower- and upper-level

PV anomalies. The PV framework was also applied to climate model simulations to study future changes in North Atlantic

cyclones and near surface winds associated with them (for example in Dolores-Tesillos et al., 2022).50

The hazard to life and property posed by land-falling cyclones and associated extreme winds motivates the broad literature

on the topic, part of which we have outlined above. However, land-falling cyclones constitute only a small fraction of the total

number of cyclones that occur over the oceanic basins. In particular, since Europe is located at the end of the Atlantic storm

track, cyclone track density there is lower compared to its peak in the central Atlantic (Wernli and Schwierz, 2006; Dacre and

Gray, 2009). Notwithstanding extensive research on various aspects of North Atlantic cyclones, there have been few studies55
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specifically focused on studying cyclones that cause extreme surface winds over the ocean
::::::::::::::::::::::::::
(de León and Bettencourt (2021)

:::::::
analyzed

:::::
wave

::::::
heights

::::
from

::::::::
altimetry

::::
data,

:::::
while

::::::::::::::::::::
Gentile and Gray (2023)

::::::::::
investigated

::::::
winds

::
in

:::
the

:::
part

::
of

:::
the

:::::::
Atlantic

::::::
Ocean

::::::::::
surrounding

:::
the

::::::
British

::::::
Aisles). However, such investigation

:
of

::::::::::
windstorms

::::
over

:::
the

::::::
ocean is of interest for several reasons.

:::::::
Focusing

:::
on

:::::::
extreme

::::::::::
windstorms

::::
over

:::
the

:::::
ocean

::::::::
provides

:::
the

::::::::::
opportunity

::
to

:::::
study

::::::::
cyclones

:::
that

:::::
cause

:::::::
extreme

:::
10

::
m

::::::
winds

::
in

:::
the

:::::
region

::
of

:::::
peak

::::::
cyclone

:::::
track

:::::::::
frequency.

:::
An

:::::::
analysis

::
of

:::
this

::::
kind

::
is
::::
thus

::::::
useful

::
to

:::::::
compare

:::::::::::
mechanisms

::::::
driving

:::::::
extreme60

:::::::::
windstorms

::::
over

:::
the

:::::
bulk

::
of

:::
the

::::::
oceanic

::::::
storm

:::::
track,

:::
and

::::
over

:::::::
Europe,

::::::
which

:
is
::

at
::::

the
:::
end

::
of

:::
the

:::::
North

::::::::
Atlantic

:::::
storm

:::::
track.

::::::::
Moreover,

:::
the

::::::
chosen

:::::
target

::::::
region

:::::::
provides

::
a
:::::
larger

::::::
sample

:::
of

::::::
intense

::::::::::
windstorms

::::
than

:
if
::::::::

focusing
::
on

::::
land

:::::::
regions,

::::::
which

::
is

::
an

::::::::
important

::::::
aspect

::
to

:::::::
consider

:::::
when

::::::::
studying

:::
any

:::::::
extreme

::::::
event.

:::
An

::::::::
additional

::::::
reason

:::
for

::::::::
choosing

::
an

::::::
ocean

:::::
region

::
is

::::
that

Focusing on extreme windstorms over the ocean provides a larger sample of intense windstorms, which is an important aspect

to consider when studying any extreme event. Moreover, it removes the sometimes confounding effects of topography and65

land surface properties, enabling a more direct link between cyclone characteristics and surface wind footprints. An analysis

of this kind would also be useful for comparisons of mechanisms driving the extreme windstorms over the ocean and Europe.

::
On

::
a
::::
more

::::::::
practical

::::
note,

::::::::
offshore

:::::::::::
infrastructure

:::
and

::::
busy

::::::::
shipping

:::::
routes

::::
over

:::
the

:::::
North

:::::::
Atlantic

::::
can

::
be

:::::::
severely

:::::::
affected

:::
by

::::::
extreme

::::::
winds,

::::::::
resulting

::
in

:::::::
sizeable

:::::::
insured

:::::
losses

:::::::::::::::::::
(Cardone et al., 2015). Finally, strong winds drive intermittent deepening

of the ocean mixed layer, affecting phytoplankton bloom dynamics in the North Atlantic (e.g. Lacour et al., 2017).70

Here, we aim to address the above knowledge gap, and specifically answer the following question: What are the large-scale

atmospheric factors favouring the development of extreme surface winds in the North Atlantic basin? The highest median and

98th percentiles of 10 m wind speed in the Atlantic sector occur in the central basin, approximately in the region covering

10-50◦ W and 40-60◦ N during the winter (Laurila et al., 2021b). In this study we thus focus on this region. In contrast to

many earlier studies that focused on explosive cyclones or cyclone clustering in this region, we apply a bottom-up approach,75

whereby we first identify extreme 10 m wind events, and then study the cyclones associated with them.
:::
We

::::::::
investigate

::::
how

:::::
these

:::::::
cyclones

:::::
differ

::::
from

::::::
weaker

::::::::
cyclones

::
as

::::::
regards

:::
the

::::::::::::
synoptic-scale

:::::::
features

::::::
present

::::::
during

::::
their

:::::::::::
development,

::::
their

::::::::::
connection

::::
with

::
the

::::::::::
upper-level

:::::::
potential

::::::::
vorticity

::::
fields

::::
and

::::
their

:::::::::
anomalies,

::
as

::::
well

::
as

:::
the

:::::::
strength

::
of

:::
the

::::::::::
eddy-driven

::
jet

::::
with

::::::
which

::::
they

::::::
interact.

:::::::::::
Additionally,

:::
we

:::::::
perform

:
a
:::::::
surface

:::::::
pressure

:::::::
tendency

:::::::
analysis

::
to

:::::::
quantify

:::
the

::::::
factors

::::::
behind

:::::::::
deepening

::
of

::::::::::
top-extreme

:::
and

:::::::::::::::
moderate-extreme

::::::::
cyclones. The data and methods used are described in Sections 2 and 3, respectively. In Section 4 we80

present results based on a composite analysis of the extreme 10 m wind events, alongside a quantitative decomposition of the

mechanisms driving the deepening of the associated cyclones. The results are discussed in Section 5, where we argue that

the presence of a pre-existing downstream cyclones is of critical importance for development of the extreme-wind-causing

cyclones. We summarise our conclusions in Section 6.

2 Data85

We use the ERA5 global atmospheric reanalysis from European Centre for Medium Range Weather Forecasts (Hersbach et al.,

2020). We consider hourly data from 1950 to 2020 with 0.25◦ (∼ 31 km) horizontal resolution. We analyse 10 m and 250 hPa

horizontal wind components, PV from 300 hPa up to 200 hPa (four levels) and mean sea level pressure (MSLP).
:
It
::::::
should

:::
be
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:::
note

::::
that

::::::
ERA5

:::
has

::::::
known

:::::
biases

:::::
when

::
it

:::::
comes

::
to
:::
10

::
m

:::::
wind

:::::
speed;

::
in

:::::::::
particular,

::::::
ERA5

::::
tends

::
to
:::::
have

::::
8-10

::
%

:::::
lower

::::::
values

::
of

:::
the

::::
most

:::::::
extreme

:::::
(95th

::::
and

::::
99th

:::::::::
percentile)

::
10

:::
m

:::::
winds

::::
over

:::
the

:::::
North

:::::::
Atlantic

::::::
ocean

::::::::
compared

::
to

:::::::
satellite

:::::::::::
observations90

::::::::::::::::::
(Campos et al., 2022).

::::::::
However,

:::::
since

:::::
biases

:::
are

::::::
similar

::::::
across

:::
the

:::::
target

:::::
region

::
of

::::
our

::::
study

::::::::::::::::::
(Campos et al., 2022)

:::
we

:::
do

:::
not

:::::
expect

:::::
these

:::::
biases

:::
to

:::::
affect

:::
the

:::::::
ranking

::
of

:::
our

::::::
events.

::::::::::::
Additionally,

::::::
studies

:::::::::
comparing

:::::::
extreme

:::
10

::
m

:::::
winds

:::::
from

::::::
ERA5

::
to

::::::::::
observations

::::
over

:::
the

:::::::::
continents

:::::::
suggest

:::
that

:::
the

:::::::::
variability

::
of

:::::::
extreme

:::
10

::
m

:::::
wind

::::::
speeds

:::::
across

:::::::
cyclone

::::::
centres

::
is

::::
still

::::
well

:::::::::
reproduced

::::
even

::::
with

::::::::::::::
underestimation

::
of

:::
10

::
m

::::
wind

:::::::
speeds,

::::::
despite

:::
the

:::::
much

:::::
more

:::::::
complex

::::::::::
topography

::::::::::::::::
(Chen et al., 2024).

::::
This

::::
gives

::::::
further

::::::::
assurance

::::
that

::
10

::
m
::::::
winds

::::
from

::::::
ERA5

:::
are

:
a
::::::
reliable

::::
tool

::
to

::::
rank

:::
the

:::::
most

::::::
extreme

:::::
wind

::::::
events.95

We focus only on cyclones originating in the extratropics, excluding tropical cyclones undergoing extratropical transitions

(see discussion in next section). To this end, we use post-storm analyses (best track intensity and position estimates) of Atlantic

tropical cyclones from HURDAT (HURricane DATabase; Jarvinen et al. (1984)). Although HURDAT goes back to 1851, the

accuracy and completeness of the dataset increase after the introduction of aircraft reconnaissance (1944 for western part of

the basin) and satellites (NOAA, 2023), so its use is appropriate for the 1950–2020 period studied here.100

3 Methods

3.1 Extreme 10 m wind speed event selection

We focus on the extended winter season (October-March) from 1950 until 2020. Figure 1 shows the target region, spanning

10◦ to 50◦ W and 30◦ to 60◦ N. Extreme event detection is based on a meteorological wind destructiveness
:::::::
severity index—for

brevity referred to simply as destructiveness
::::::
severity throughout the paper—defined following previous work on European105

windstorms (Klawa and Ulbrich, 2003; Pinto et al., 2012; Hanley and Caballero, 2012b).
:::
An

::::::::::::::
similarly-defined

:::::
index

:::
has

::::
also

::::
been

::::::
applied

::
to

:::::::
climate

:::::
model

::::::
outputs

:::
in

:::::::
previous

::::
work

::::::::::::::::::::::
(Leckebusch et al., 2008).

Our destructiveness
:::::::
severity index takes into consideration grid cells where the daily maximum 10 m wind speed exceeds

its local 98th percentile. We calculate destructiveness
::::::
severity for any given day as follows. First, we find if there are any

connected regions within the target domain where daily maximum 10 m wind speed has exceeded the local 98th percentile. We110

call those regions wind footprints. If wind footprints exist, destructiveness
:::::::
severity, D

:
S, for each one of them is calculated as:

S(region) =
∑
i

(
vi
v98i

− 1

)3

· I(vi,v98i), (1)

:::::
where

I(a,b) =

1 if vi > v98i

0 otherwise,

where i indexes all the grid cells within the connected wind footprint, vi is daily maximum wind speed at grid point i and v98i115

is the local 98th percentile
:::
with

:::::::
respect

::
to

:::
the

:::::::
extended

::::::
winter

::::::::::
climatology

:::::
from

::::
1950

::
to

:::::
2020. More than one wind footprint
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can exist for any given day over the study area. If that is the case, we take the largest destructiveness
::::::
severity value as the

destructiveness
::::::
severity for that day. The reason for calculating separate values of destructiveness

::::::
severity for different wind

footprints within the target region is that there can be multiple cyclones passing through the target region on the same day.

Identifying contiguous regions reduces the possibility of attributing a footprint to the wrong cyclone.
:
It
::::::

should
::::
also

:::
be

:::::
noted120

:::
that

::
if

:
a
:::::
given

:::::::::
windstorm

::::::
caused

:::::::::::
exceedances

::
in

:::::::::
connected

::::::
regions

::::::
outside

::
of
:::

the
::::::

target
::::::
region,

::::
those

:::::::
regions

:::
are

::::::::::
disregarded

::
in

::::
order

::
to

:::::
focus

:::
on

:::
the

:::::
target

::::::
region. A simplified illustration of our analysis procedure is shown in Figure 2.

We calculate destructiveness
::::::
severity for every day in our dataset, and select days on which destructiveness

::::::
severity is greater

than zero. We then retain the top 1% of these days for further analysis, which corresponds to 115 days.

The destructiveness
::::::
severity index we use was derived empirically to explain insured losses in Germany (Klawa and Ulbrich,125

2003), and has chiefly been adopted for studying European windstorms. As such, it could be seen as unsuitable for the central

Atlantic region. However, the index has a physical grounding
::::
since

:::
the

:::::
cube

::
of

:::
the

:::::
wind

:::::
speed

:::::::::
represents

:::
the

:::
flux

:::
of

::::::
kinetic

::::::
energy. The index can be used to obtain a windstorm ranking even in a context where insured losses are irrelevant. Moreover,

its use of a percentile threshold makes it appropriate to study extreme winds over a region such as the central North Atlantic

where climatological wind values vary markedly.130

It should be noted that the destructiveness
:::::::
severity index we use to rank event intensity is sensitive to cyclone traveling speed.

In particular, it favours fast-travelling cyclones, since they have more potential to exceed local 98th percentiles in a broader

area inside the target region within a day. Very extreme, but slowly moving cyclones would be down-ranked. As will be shown

later, top extremes are cyclones that travel rapidly because they are advected by a strong jet streak, which makes them more

likely to be detected by the algorithm used here.135

3.2 Detection and tracking of cyclones associated with the extreme 10 m winds

The basis for cyclone identification is a dataset of cyclone tracks computed using the cyclone tracking algorithm of Pinto et al.

(2005), based on Murray and Simmonds (1991), and applied to the same ERA5 data used in this study. The algorithm identifies

cyclones by first finding a maximum of MSLP Laplacian (a proxy for the maximum of relative vorticity) and then finding the

MSLP minima closest to it. Tracks are further filtered to exclude weak, short lived and non-developing lows by applying the140

criteria from Pinto et al. (2009). As was shown in Neu et al. (2013), this tracking method performs well compared to other

tracking schemes and was used in numerous studies before (Gómara et al., 2014; Priestley et al., 2017, 2020; Leeding et al.,

2023).

The cyclone track dataset from Pinto et al. (2005) was refined by additionally computing tracks of cyclones associated

with the top 1% of destructiveness
::::::
severity events using 1-hourly data, as described below. The main motivation behind this145

additional tracking is in the increased precision that it allows. As the tracks provided by the Pinto et al. (2005) algorithm are

computed using 6-hourly data, the exact hour when the peak 10 m winds occurred could be missed by up to five hours, yielding

potentially large errors in the position of these fast-moving cyclones. We therefore refine the tracks by applying the following

procedure. We first find the location of the peak 10 m wind speed within the strongest wind footprint for each day. After that,

we identify the location of the cyclone associated with the event as the MSLP minimum closest to the the peak wind speed150
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location. The identification is performed at the time of day when 10 m wind speed is strongest; in the composite analysis

described below, this instant is taken as t= 0. We then track every extreme cyclone back in time with an hourly time-step by

following the absolute MSLP minimum. For every hour before t= 0, we put a box (±4◦ latitude; +1◦, -5◦ longitude) around

the location of a cyclone at t= t+1 h step in time. To remove ambiguity in cases when several MSLP minima are close to each

other, we perform a Gaussian smoothing of the MSLP field with sigma of 0.1. We then look for an MSLP minimum within155

the box. As a check, we compare cyclone tracks obtained in this way with those produced by Pinto et al. (2005) and find no

qualitative differences (an example of the refined tracks being more precise than tracks from Pinto et al. (2005) can be seen on

Figure 3b, c). We also performed a manual verification of the cyclone tracks by plotting the cyclone locations on MSLP maps

(not shown). Tracks of the cyclones associated with the top 1% of 10 m wind footprints are shown in Figure 1.

The same tracking method was also used to track pre-existing downstream cyclones present after the cyclogenesis of the160

above top 1% cyclones. These pre-existing cyclones are tracked from the time of cyclogenesis of the extreme cyclone (yellow

triangle in the example in Figure 1) up to 12 h before the peak 10 m wind speeds. Tracking after this time period proved to be

less reliable since the proximity of two systems often seemed to produce multicentre cyclone-like structures (see Hanley and

Caballero, 2012a).

Of the 115 events that make up the top 1%, 16 are of tropical origin and match tracks from HURDAT2, and we discard them165

from further analysis. The reason for discarding them is the large differences in development between purely extratropical

cyclones and extratropical transitions. For example, we found that for the purely extratropical cyclones, cyclogenesis occurs

around two days before the peak 10 m wind speed within the wind footprint (at t=−2 days), while extratropical transitions

have their origin much further back in time.
:::::::::::
Additionally,

:::::
fields

::
of

:::::
upper

::::
level

:::
PV

::::
and

:::::
wind

::
at

:::
250

::::
hPa

::::
show

::::
less

:::::::::
coherence

::
for

:::::::::::
extratropical

::::::::::
transitions,

::::
thus

::::::
making

::::
the

::::::::
composite

::::::::
analysis

:::
less

::::::
useful. We hereafter refer to the remaining 99

:::::
purely170

::::::::::
extratropical events as top extremes.

::::
Top

::::::::
extremes

:::
are

::::::::
regularly

::::::::::
interspersed

:::::::
through

:::
the

:::::::::
1950-2020

::::::
period

:::
and

:::::
there

::
is

:::
no

:::::::
apparent

:::::
trend

::
in

:::
the

:::::::::
frequency

::
of

::::
their

::::::::::
occurrences

::::
(see

:::::::::
Apendix).

::
It

::
is

:::::::::
interesting

::
to

::::
note

::::
that

::::
year

:::::
1999

:::::
which

::::
had

:::::
many

:::::
severe

::::::::
European

::::::::::
windstorms

::::
(like

:::::::
Lothar)

:::
did

:::
not

:::::::
produce

:::
any

::::::
events

::
in

:::
the

::::::::::
top-extreme

:::::
class.

To assess features unique to top-extreme cyclones, we contrast them with a group of moderate extremes. This group consists

of cyclones in the same target region but associated with the bottom 10% of events with non-zero destructiveness
::::::
severity.175

These are cyclones that cause local exceedances of 98th percentiles, but by a modest amount. To facilitate the comparison

between moderate- and top-extreme cyclones, we only select those moderate extremes that had valid tracks for at least two

days before the occurrence of peak 10 m wind speed in the target region (as is typical for top extremes). We find moderate

extremes in tracks based on Pinto et al. (2005), because that allows for easier and more efficient application of pre-defined

criteria for selection of moderate extreme cyclones
::
as

::
the

:::::::
greater

::::::
number

::
of

::::::
events

:::::::
requires

:
a
:::::
more

:::::::
efficient

:::::
search

::
of

::::::::
cyclones180

::::::::
identified

::
in

:::::
ERA5

:::::::::
compared

::
to

:::
the

::::::::
tracking

::::
done

:::::::::
backwards

:::::
from

:::
the

:::::::
moment

::
of
:::::::::

maximum
:::
10

::
m

::::::
winds,

::
as

::::
was

:::::
done

:::
for

:::
top

:::::::
extremes.

:::::
Since

:::::
search

:::
for

::::::::
moderate

::::::::
extremes

::::
also

:::::::
includes

:
a
::::::::::
pre-defined

:::::::
criteria,

:::
the

::::
total

::::::
number

:::
of

:::::::
cyclones

:::::
found

::::
that

:::::
satisfy

::
it

::
is

::::
lower

::::
than

:::
the

:::::::
number

::
of

::::::::
moderate

:::::::
extreme

::::
days. This gives

::
At

:::
the

::::
end,

:::
we

:::::
obtain 117 moderate extremes matching

our criteria, a number of the same order of magnitude as the number of top extremes.
::::::
Because

:::
of

:::
the

::::::::
difference

::
in

:::
the

::::::::
detection

::
of

:::
top

:::::::
extreme

:::
and

::::::::
moderate

:::::::
extreme

::::::
events,

:::
we

:::
use

:::::::
1-hourly

::::
and

:::::::
6-hourly

:::::
tracks

:::
for

:::::
them,

:::::::::::
respectively.185
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:::
The

::::::
choice

::
of

:::::::
cyclone

:::::::
tracking

:::::::
method

:::
we

::::
used

:::::
could

:::::::::
potentially

::::::
impact

:::
the

::::::
results.

:::::::::
However,

:::::::::
alternative

::::::::
trackings

:::::
based

::
on

::
a

:::::::
different

:::::::
variable

:::::
(like

::::::
surface

::::::::
vorticity)

::::::
should

:::
not

:::::::::::
substantially

::::::
impact

:::
the

::::::
tracks

::
of

::::
top

::::::::
extremes.

:::
As

::::
was

:::::
shown

:::
in

:::::::
tracking

:::::::::::::
intercomparison

::::::
studies

::::
(like

:::::
those

:::
by

::::::::::::::
Neu et al. (2013)

::
or

:::::::::::::::::::
Ulbrich et al. (2013b)),

::::::::
different

:::::::
tracking

:::::::::
algorithms

::::
tend

::
to

::::
agree

::::
well

:::
for

::::::
deeper,

:::::
more

:::::::::
developed

:::::::
cyclones

::::
like

:::
top

::::::::
extremes.

::
A

::::::
similar

:::::
result

:::
was

::::
also

:::::::
obtained

:::
in

:
a
:::::
more

:::::
recent

:::::
study

::
by

::::::::::::::::::::::::::
Messmer and Simmonds (2021)

::::::
where

::::
two

:::::::
different

:::::::
tracking

::::::::
methods

::::
were

:::::
used

::
to

:::::
study

:::::::::
compound

:::::::
extreme

:::::
wind

::::
and190

::::::::::
precipitation

::::::
events.

:::::::::::
Additionally,

:
a
::::
bias

:::::::
towards

::::::::::::
slower-moving

:::::::
cyclones

:::::::
intrinsic

::
to
::::::::
methods

:::::
based

::
on

::::::
MSLP

:::::::::::::
(Sinclair, 1994)

:::::
should

:::
be

::::
less

:::::::::
prominent

:::::
when

:::::
using

::::::::
1-hourly

:::::
tracks

:::
as

:::
the

::::
box

:::::
within

::::::
which

:::
we

::::::
search

:::
for

::::::
MSLP

:::::::
minima

::::::::
between

:::
the

::::::::
time-steps

::::::
covers

::
a
:::::::
distance

::::::
larger

::::
than

:::::
60-70

::::
km

:::::
which

:::
the

::::::
fastest

:::::::
moving

::::::::
cyclones

:::::
cover

::
in

:::
an

::::
hour

::::::::::::::::
(Neu et al., 2013).

:::::::::
Differences

:::::::
between

:::
the

::::::::
tracking

:::::::
methods

:::::
could,

::::::::
however,

::
be

:::::
more

::::::::
important

:::
for

:::
the

:::
set

::
of

::::::::
moderate

::::::::
extremes

::
as

::::::::
cyclones

::
in

:::
this

:::::
group

:::
has

::
a

:::::::::
pre-defined

::::::::
condition

::
of
::::::

having
:::::::::::
cyclogenesis

::
at

::::
least

::::
two

::::
days

::::::
before

::
the

:::::
peak

::
10

::
m

:::::
wind

::::::
speeds

::
in

:::
the

:::::
target195

::::::
region.

:::::
Since

:::
one

::
of

:::
the

::::::
biggest

::::::::::
differences

:::::::
between

:::
the

:::::::
tracking

:::::::
methods

:::
lies

::
in

:::
the

:::::::::::
identification

::
of

:::
the

::::
time

:::
of

:::::::::::
cyclogenesis,

::::
with

::::::::::::
vorticity-based

:::::::
methods

:::::::
tending

::
to

:::::::
identify

::::::::::
cyclogenesis

::::::
earlier

:::::::::::::::
(Neu et al., 2013),

:::
the

:::::
group

::
of

::::::::
moderate

::::::::
extremes

:::::
could

:::::::::
potentially

::
be

:::::
larger

::
if

:
a
::::::::
different

::::::
cyclone

:::::::
tracking

:::::::
method

:::
was

:::::::::
employed.

:

3.3 Composite analysis

We perform a composite analysis to study the typical large scale features associated with our two groups of cyclones. We200

use both cyclone- and location-centered composites to study meteorological variables of interest (like PV, MSLP and wind at

250 hPa). Because 1◦ of longitude spans a distance that varies with latitude, compositing on latitude-longitude regions would

introduce a distortion. We thus perform the composites after regriding meteorological fields to radial grids centered on the

cyclone centers, or locations of interest in the case of location-centered composites. With this aim, we apply the method from

Bengtsson et al. (2007) (described in detail in their Appendix A) which has previously been used in other studies for similar205

purposes (for example Dacre et al., 2012; Laurila et al., 2021a; Dolores-Tesillos et al., 2022).

Anomalies
::::
Most

:::
of

:::
the

:::::::::
composite

:::::
fields

:::
we

:::::
show

:::
are

:::
the

:::::::::
anomalies

:::
of

::::::::::::
meteorological

::::::
fields from 1979

::::
1950 to 2020

climatology of meteorological fields are another part of the analysis.
::
To

:::
get

:::
the

::::::::::::
climatologies, we first calculate the daily

means for calendar days of each variable for every grid point and at every level of interest. Then, we obtain climatologies by

computing a 31-day running-mean from these data-sets.210

3.4 Pressure tendency equation analysis

::::
Since

::::::::
cyclones

:::::
within

:::
the

::::
two

:::::::
selected

::::::
groups

:::::::::
experience

::::::
surface

::::::
MSLP

:::::::
decrease

::
in

::::
days

:::::::
leading

::
to

::::
their

::::
peak

:::
10

::
m

:::::
winds

:::
(as

:::
will

:::
be

:::::
shown

::
in
:::::::

Section
::::
4.2), W

::
we apply the pressure tendency equation analysis to determine the main contributors to the

surface MSLP decrease of top and moderate extremes between t=−2 and t= 0. This approach analyses the expanded pressure

tendency equation as described in Fink et al. (2012) and Pirret et al. (2017). Most of the cyclones are predominantly driven215

by a combination of diabatic processes (radiation, latent heating) and baroclinic conversion (rising of warm air which moves

polewards and sinking of cold air which moves equatorwards). The pressure tendency equation decomposes the contribution
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of these processes by reformulating the classical pressure tendency equation and introducing virtual temperature as the main

variable.

In practice, the pressure tendency equation analysis takes six-hourly tracks of cyclones and evaluates each term of the220

pressure tendency equation by following a vertical column of air over a 3◦ × 3◦ longitude-latitude box centered on the surface

cyclone center.
::::
The

:::::::
equation

:::
has

:::
the

::::::::
following

:::::
form:

∂psfc
∂t

= ρsfc
∂ϕp2

∂t
+ ρsfcRd

p2∫
sfc

∂Tv

∂t
dlnp+ g(E−P )+RESPTE (2)

:::::
,where

:::::
psfc::

is
::::::
surface

::::::::
pressure,

::::
ρsfc::

is
::::::
surface

:::
air

::::::
density,

::::
ϕp2 ::::::::::

geopotential
::
at

:::
the

:::::
upper

::::::::
boundary

:::
p2,

:::
Rd:::

the
::::
gas

:::::::
constant

::
for

:::
dry

:::
air,

:::
Tv::::::

virtual
::::::::::
temperature,

::
g

::::::::::
gravitational

:::::::::::
acceleration,

::
E

::::::::::
evaporation,

::
P

:::::::::::
precipitation

:::
and

:::::::::
RESPTE ::::::::

residuum.
:::
As

:::
the225

::::
Eq.2

:::::
shows

:
, T

:
the tendency of the surface pressure is equal to the sum of: the change in geopotential at the upper boundary (100

hPa in this study, which was found to be the most sensible choice for extratropical cyclones by Fink et al., 2012), the vertically

integrated virtual temperature tendency, the mass change caused by the difference between evaporation and precipitation, and

residual due to the errors from vertical integration, discretization or the data model itself. Therefore, if the column of air does

not change its height, its warming will cause horizontal expansion, divergence of air and loss of mass. The end result of this230

process will be a surface pressure fall. Similarly, if nothing but the upper boundary of the column changes, its lowering will

cause pressure decrease.

The vertically integrated virtual temperature tendency in the pressure tendency equation can be expanded
:
in
:::
the

:::::::::
following

::::
way:

ρsfcRd

p2∫
sfc

∂Tv

∂t
dlnp= ρsfcRd

p2∫
sfc

−v · ∇pTvdlnp+ ρsfcRd

p2∫
sfc

(
RdTv

cpp
− ∂Tv

∂p
)ωdlnp+ ρsfcRd

p2∫
sfc

TvQ

cpT
dlnp+RES2 (3)235

:::::
,where

::
v
::::
and

::
ω

:::
are

:::
the

::::::::
horizontal

::::
and

:::::::
vertical

::::
wind

:::::::::::
components,

::
cp:::

the
:::::::

specific
::::
heat

:::::::
capacity

::
at
::::::::

constant
:::::::
pressure

::::
and

::
Q

::
the

:::::::
diabatic

::::::
heatin

::::
rate.

:::::::::
Expansion

::
of

:::
the

::::::::
vertically

::::::::
integrated

::::::
virtual

::::::::::
temperature

::::::::
tendency

::::
term

::::::
allows

:::
the

:::::::
pressure

::::::::
tendency

:::::::
equation to contain s terms that represent horizontal temperature advection (interpreted as "baroclinic" contribution

:::
,the

::::
first

::::
term

::
on

:::
the

:::::
RHS

::
of

::::
Eq.3), vertical motion (which typically cause surface pressure increases

:::
,the

::::::
second

::::
term

:::
on

:::
the

::::
RHS

:::
of

::::
Eq.3) and diabatic terms.

:::::
Since

:::::
ERA5

::::
does

:::
not

:::::::
contain

:::
the

::::::
diabatic

:::::::
heating

:::
rate

::::::::
products, T

:
the diabatic term

:::
(the

::::
third

::::
term

:::
on240

::
the

:::::
RHS

::
of

:::::
Eq.3) is calculated as a residual from subtracting the horizontal temperature advection and vertical motion terms

from the vertically integrated virtual temperature tendency, all of which are calculated explicitly. For more details about the

pressure tendency equation approach, see Fink et al. (2012).
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4 Results

4.1 Example of an extreme cyclone245

An illustrative example from the set of top extremes is shown in Figure 3, which presents the MSLP evolution from the time

of cyclogenesis until the time of peak 10 m wind speed for the selected event. Around two days before the cyclone caused

the extreme 10 m winds in the target region (27 November 2018 10 UTC), the system originated along the east coast of

North America as a shallow depression (Figure 3a). At the time of the cyclogenesis there was a pre-existing, well-developed

cyclone situated south of Greenland. This pre-existing downstream cyclone remained in the target region during the explosive250

deepening of the extreme cyclone during the next two days. Once the extreme cyclone reaches the target region, it produces a

large extreme wind footprint along the track (Figure 3c). During this day, the extreme and the pre-existing cyclones appear to

merge, forming a broad area of low MSLP that can be classified as a multicentre cyclone (Hanley and Caballero, 2012a). The

interaction between the pre-existing and the extreme cyclone shown in this example is common to all events belonging to the

top extremes group (see composites in Sect. 4.2 below).255

4.2 Composite analysis of extreme events

Composite MSLP anomalies centred on the top extremes and moderate extremes are shown in Figure 4. Like in the example

above, there are pre-existing downstream cyclones to the north-east of the top extremes around the time of their cyclogenesis

(Figure 4a). At this time both lows have anomalies of up to 10 hPa. As time proceeds, the top extreme cyclones deepen and

approach the pre-existing downstream cyclones. At the time of peak 10 m wind speeds (t= 0, Figure 4c), the two systems260

have merged in the composite. Negative MSLP anomalies also reach their minimum, with anomalies exceeding -35 hPa. The

rapid deepening of top extreme cyclones that occurs as they approach the pre-existing downstream cyclones is in line with the

result that majority of top extremes (87 out of 99
:
-
::
or

::::
88%) are explosively deepening cyclones with the normalised values of

24-hourly pressure decrease greater than 24 hPa (the criteria used in Sanders and Gyakum, 1980).

On the other hand, composites of moderate-extreme cyclones (Figure 4d-f) reveal an absence of pre-existing downstream265

cyclones at t=−2 days. In fact, a weak positive MSLP anomaly with values lower than 5 hPa is found in the region where

pre-existing cyclones are present for top extremes. Therefore, the presence of the pre-existing downstream cyclones appears to

be an essential feature in generating top extremes.

:::
Top

:::::::
extreme

:::::::
cyclones

:::
are

::::
also

::::::::
associated

::::
with

:::
an

::::::::::
anomalously

::::::
strong

::
jet

:::::
streak

:::::
from

::::::
t=−2

::
to

::::
t= 0

:::::
days

::::::
(Figure

:::::
4a–c).

::::
The

:::::::
cyclones

:::::
cross

:::
the

::
jet

:::::
streak

:::::
from

::::::
t=−2

:::::
days,

::::
when

::::
they

:::
are

::::::
located

:::::::
around

::
the

::::::::::::
right-entrance

::::::
region

::
of

:::
the

:::
jet,

::
to

:::::
t= 0

::::
days270

::::
when

::::
they

:::
are

::
in
:::
the

:::::::
left-exit

::::::
region

::
of

:::
the

:::
jet.

:::::::::::::
Right-entrance

:::
and

:::::::
left-exit

::::::
regions

::
of

:::
the

:::
jet

:::::
streak

:::
are

:::::::::
associated

::::
with

::::::
strong

:::::
upper

::::
level

::::::::::
divergence,

:::::
which

::::::
makes

:::::
them

:::::::::
favourable

:::
for

:::
the

::::::::::::
intensification

::
of

::::::::
cyclones

::::
(see

:::
for

:::::::
example

:::::::::::::::
Uccellini (1990),

:::::::::::::::::
Rivière et al. (2010)).

::::
The

:::::::
absolute

::::::
values

::
of

:::::::::
composite

:::::
wind

:::::
speed

::
at
::::
250

::::
hPa

:::
for

:::::::::::
top-extremes

:::
are

::::
over

:::
the

:::::
broad

:::::::
regions

:::::
where

:::
the

::::
wind

:::::
speed

:::::::
exceeds

:::
40

:::::
ms−1

::::::
(Figure

:::::
4a–c).

:

Figure 5 shows the evolution of upper-level fields corresponding to the surface composites in Figure 4. Positive upper275

level PV anomalies associated with top-extreme and pre-existing downstream cyclones after the cyclogenesis are shown in
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Figure 5a–c. Two days before the peak 10 m wind, there is a well-defined, zonally-extended area of positive PV anomalies

stretching to the north-east of the developing extreme cyclone (Figure 5a). At the same time, wind speed anomalies at 250

hPa show cyclonic upper level winds around the pre-existing downstream cyclone. This cyclonic flow is organised so as to

advect high-PV air southward, helping promote positive PV anomalies at the location of the top extreme cyclone. As the280

top extreme cyclone moves closer to the pre-existing downstream cyclone, positive upper-level PV anomalies associated with

the two systems merge into a broader area of statistically significant positive PV anomalies. The intensity of the anomalies

increases from t=−2 to t= 0. At t= 0, when the two composite systems have fully merged and surface winds reach their

peak, upper level PV anomalies reach a maximum of over 3 pvu.

The above PV development is associated with an anomalously strong jet streak from t=−2 to t= 0 days (Figure 4a–c),285

matching the region with strong-upper level PV gradients (Figure 5a–c). The top-extreme cyclones cross the jet streak from

t=−2 days, when they are located around the right-entrance region of the jet, to t= 0 days when they are in the left-exit

region of the jet. Right-entrance and left-exit regions of the jet streak are associated with strong upper level divergence, which

makes them favourable for the intensification of cyclones (for example see Uccellini (1990), Rivière et al. (2010)). The absolute

values of composite wind speed at 250 hPa for top-extremes are over the broad regions where the wind speed exceeds 40 ms−1290

(Figure 4a–c).

The moderate extremes (Figure 5d–f) display a small downstream region with positive upper-level PV anomalies, yet these

are not statistically significant, and are not connected with a surface low. Large positive upper-level PV anomalies are confined

to the area around the extreme cyclone itself, and never exceed 2 pvu even at t= 0. Consistently, wind speed anomalies at

250 hPa (Figure 5d–f) are weaker than those shown in Figure 5a–c, and substantial anomalies are only present in the region295

around the surface low. Absolute values of the jet streak at 250 hPa are much weaker for moderate- than for top-extreme

cyclones (Figure 4), making the jet streak less able to facilitate intensification of the cyclone.
:
It
::::::
should

::::
also

::
be

:::::::::
mentioned

::::
that

:::
PV

::::::::
anomalies

::
at

:::::
t= 0

::::
days

:::::::
averaged

::
in
::
a
:::::
circle

::::
with

:
a
::::::
radius

::
of

:::
300

:::
km

::::::
around

:::
the

:::::::
cyclone

::::::
centres

:::::
reveal

::::
that

:::
two

::::::
groups

::::
also

::::
differ

::
in
:::
the

:::::::
strength

::
of

:::
the

::::::::::
lower-level

:::
PV

:::::::
anomaly.

::::
Top

:::::::
extreme

:::::::
cyclones

::::
have

::
a

:::::
larger

::::::
median

::
of

:::::::
positive

:::
PV

::::::::
anomalies

:::::
from

:::
900

:::
hPa

:::
to

:::
200

:::
hPa

::::
(see

:::::::::
Appendix)

::::::
which

:::::
agrees

::::
with

:::
the

::::::::
previous

:::::::
findings

::
by

::::::::::::::::::::::
Čampa and Wernli (2012).300

To investigate the conditions leading to the development of extremes prior to their time of cyclogenesis, we compute lagged

composites centered on the location of cyclogenesis (Figure 6). At t=−6 days before cyclogenesis, the composite for top

extremes (Figure 6a) shows a broad lobe of high PV directly to the North of the cyclogenesis location. Considering that

cyclogenesis in all cases occurs near the east coast of North America, this lobe is consistent with the regional PV climatology,

which features a high-PV lobe over the Hudson Bay (Figure 1; mean location of top-extreme cyclogenesis is marked by a green305

cross). The composite PV field also displays a moderate positive PV anomaly to the east of the cyclogenesis location, which

corresponds to a surface MSLP anomaly. Both persist and strengthen in subsequent days (Figure 6b,c), and can be identified

as the pre-existing cyclone discussed above. This upper-level PV anomaly results from a deformation of the climatological PV

structure reminiscent of cyclonic Rossby wave breaking, which has been robustly identified as a precursor of extreme North

Atlantic cyclones in previous work (Hanley and Caballero, 2012b; Gómara et al., 2014).310
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In addition, at t=−6 days a positive PV anomaly appears to the west of the cyclogenesis location. This anomaly has

no surface footprint, suggestive of an open-wave upper-level anomaly which in subsequent days propagates eastward until it

reaches the location of cyclogenesis off the east coast of North America. Thereafter, it becomes the upper-level component of

the extreme cyclone (Figure 5a–c). In fact, from t=−3 days before cyclogenesis (Figure 6b), a band of positive PV anomalies

stretches between the incipient top extreme cyclone and the pre-existing downstream cyclone. This band can be identified after315

cyclogenesis as corresponding to the jet streak seen in Figure 4a.

Turning to moderate extremes (Figure 6d–f), we see that six and three days before cyclogenesis there are no statistically

significant MSLP anomalies, while upper-level PV anomalies are confined to small regions and anomalies of wind speed at

250 hPa are much weaker and less organised compared to top extremes. MSLP and upper level PV and wind anomalies only

strengthen one day before cyclogenesis (Figure 6f) and are associated with the moderate extreme cyclone itself: while there320

is a region of positive PV anomalies to the east of the incipient moderate extreme cyclone, it has no surface footprint and is

absent in subsequent days. Thus, as discussed above, the main difference between top and moderate extremes is that the latter

lack a well-organized, persistent pre-existing downstream cyclone to the east of the incipient cyclone.

4.3 Pressure tendency equation analysis

In this section we take a different perspective and quantitatively compare the mechanisms leading to deepening of top and325

moderate extremes using the surface pressure tendency decomposition approach. Figure 7 shows contributions of each term

in the pressure tendency equation averaged over the two days leading to the peak 10 m wind speed for both cyclone groups.

The vertical velocity term leads to surface pressure increase, i.e. to a weakening of the surface cyclone. Horizontal temperature

advection—the baroclinic term— is negative (strengthens the cyclone) and slightly smaller in magnitude than the vertical

velocity term. The absolute values of both terms are larger for top extremes than for moderate extremes (Figure 7), which is330

one difference between the groups.

The largest difference between the groups lies in the pressure decrease caused by the diabatic term. The diabatic term for

moderate extremes is around half of the baroclinic term. For top extremes, the diabatic term is as large as the baroclinic term.

With both terms being larger than for the moderate extremes, the total surface pressure drop for top extremes is around twice as

large. For all of these terms (vertical, baroclinic and , diabatic
::
and

::::
total

::::::::
pressure

:::::::
decrease) the mean values of top extremes are335

statstically different from moderate extremes at the 95% confidence level according to the two-sample t-test
::::::::
Wilcoxon

::::::
signed

::::
rank

:::
test.

Figure 7 also shows that other terms in the pressure tendency equation (the geopotential term and the term that arises from

changes in mass due to the difference between evaporation and precipitation) are on average of minor importance for cyclone

intensification. The residual for the selected storms is also close to zero, implying that the decomposition accurately captures340

the drivers of the observed surface pressure drop.

On an individual storm level, the pressure tendency equation analysis shows a large variability in the influence of the different

terms, as can be seen from uncertainty ranges in Figure 7. Even considering uncertainties, common features for both groups

are a small influence of evaporation/precipitation term, a vertical term which increases the surface pressure and the dominance
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of either baroclinic or diabatic terms for cyclone development. Which one of the latter two is the leading driver of surface345

pressure fall, however, changes from storm to storm. This is in line e.g. with the results of Pirret et al. (2017) who found a wide

range for the different contributions for cyclone deepening.

For top-extreme cyclones, a slightly larger group of cyclones is primarily driven by diabatic processes compared to baroclinic

processes (41 versus 35, respectively). The rest of the cyclones in the group have a difference between diabatic and horizontal

temperature advection smaller than 5% (the criterion we used to identify predominantly diabatic or baroclinic storms). Separate350

composites for diabatic versus baroclinic cyclones show no evident qualitative differences from the composites for all top

extremes, even when imposing a 10% difference between the two terms to identify the cyclones (not shown).

::
As

:::
the

::::
top

::::::::
extremes

:::::
occur

::::
over

::
a
::::::
period

:::::
under

::::::
which

:::
the

::::::
signal

::
of
:::::::

climate
:::::::
change

:::
has

:::::::
become

:::::
more

::::::::::
prominent,

::
it

::
is

::::::
relevant

:::
to

:::::::::
investigate

::::::::
potential

::::::
trends

::
in

:::
the

:::::::
surface

:::::::
pressure

::::::::
tendency

::::::
terms.

:::
To

:::
do

::::
this,

:::
we

::::::
divide

:::
the

::::::
events

::::
into

::::
two

::::::::::::::
sub-periods—one

:::::
from

:::::::::
1950-1985

:::
and

::::
other

:::::
from

::::::::::::::
1986-2020—with

:::
the

:::::::::
difference

:::::::
between

::
the

::::
two

::::::
periods

::::::::
providing

::::::::
evidence355

::
for

::
a
:::::::::::::
warming-related

::::::
trend.

::::::::::
Comparison

::
of

::::
PTE

:::::::
analysis

:::
for

:::
two

:::::::
periods

:::::
shows

::::
that

::::
there

::
is

:
a
::::::::::
statistically

:::::::::
significant

:::::::
increase

::
of

:::
the

::::::
diabatic

:::::::::::
contribution

::
to

::::::
surface

:::::::
pressure

::::::::
decrease

:::
and

::
of

:::
the

::::
total

::::::
surface

::::::::
pressure

:::::::
decrease

::
in

:::
the

:::::::
warmer

:::::
period

:::
(at

:::
the

::::
95%

:::::::::
confidence

::::
level

:::::::::
according

::
to

:::
the

::::::::
Wilcoxon

::::::
signed

::::
rank

::::
test)

:::
(see

:::::::::::
appendices).

:::::
There

::
is

::::
also

::
an

:::::::
increase

::
in

:::
the

:::::::::
baroclinic

::::::::::
contribution,

::::::
though

::
it

:
is
:::
not

::::::::::
statistically

:::::::::
significant.

::::::::
Moderate

::::::::
extremes,

:::
on

:::
the

::::
other

:::::
hand,

::
do

:::
not

:::::
show

:::
any

:::::::::
significant

:::::::
changes

:::::::
between

:::
the

::::::
periods,

::::::::::
suggesting

:::
that

:::
the

::::
most

:::::::
extreme

::::::::
cyclones

:::
are

::::
most

::::::::
sensitive

::
to

::::::::
warming.360

5 Discussion

The above analysis shows that the presence of a pre-existing downstream cyclone is the key feature distinguishing top-extreme

from moderate-extreme cyclones. A composite analysis of top-extreme cases shows a gradual build-up of positive upper-level

PV anomalies to the North of the cyclogenesis locations. After cyclogenesis and before the peak 10 m winds, top-extreme

cyclones cross the jet streak while approaching the pre-existing downstream cyclone. At the time of peak 10 m winds, there365

is a merging of top-extreme and pre-existing cyclones, as their MSLP and positive upper-level PV anomalies form a joint

large-scale system. On the other hand, the development of moderate-extreme cyclones generally occurs in the absence of pre-

existing downstream cyclones, both before and after their cyclogenesis. The jet and the upper-level PV anomalies are weaker

for moderate-extreme cyclones, as are the negative MSLP anomalies at the time of their peak 10 m wind speeds.

Pre-existing downstream cyclones may favour the intensification of top-extreme cyclones in at least two ways. One is through370

the intensification of the jet streak. Upper-level PV composites show a pattern reminiscent of cyclonic Rossby wave breaking

in the days before the genesis of top-extreme cyclones (Figure 6b). Before cyclogenesis, pre-existing downstream cyclones are

situated just to the east of the climatological high-PV reservoir centered over the Hudson Bay. Wind anomalies at 250 hPa as-

sociated with pre-existing downstream cyclones favour southward advection of high PV air, generating positive PV anomalies,

strengthening PV gradients and generating strong jet anomalies. As shown in previous work, positive jet anomalies are associ-375

ated with rapidly intensifying cyclones over the North Atlantic (e.g. Gómara et al., 2014) due to strong upper-level divergence

in the jet’s right-entrance and left-exit regions. Another reason why the presence of pre-existing downstream cyclones could be
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important is through direct cyclone-cyclone interactions and merging of the extreme and pre-existing cyclones. In particular,

Figure 5a–c suggests that the two cyclones become intertwined and combine their PV to yield a very strong upper-level PV

anomaly, which is typically associated with very intense MSLP anomalies (Čampa and Wernli, 2012). The precise dynamics of380

this merging process, and of the cyclone-jet streak interaction mentioned above, provide interesting avenues for future research.

The situation where one cyclone develops to the south-west of another pre-existing downstream cyclone, as occurs for the

top extremes, is reminiscent of cyclone families and secondary cyclogenesis, a concept originating from Bjerknes and Solberg

(1922). Composite analysis, however, is not the best tool to judge whether top-extreme cyclones are secondary cyclones because

of the smoothing of fields intrinsic to the compositing. Answering this question would require investigating each extreme385

cyclone individually, and assessing its relation to a trailing cold front generated by the pre-existing cyclone (for example using

the metrics of Priestley et al., 2020), which is another possible direction for future work.

We also analysed the development of top- and moderate-extreme cyclones using the pressure tendency decomposition frame-

work. Despite large storm-to-storm variability in the relative size of the terms in the pressure tendency equation, in line with

Fink et al. (2012) and Pirret et al. (2017), comparison of the factors that drive the deepening of storms between the two cy-390

clone groups identified here reveals a systematically greater influence of the diabatic term for top-extreme cyclones than for

moderate cyclones. All the leading terms have greater absolute values for top-extreme cyclones, but the diabatic term has a

greater relative importance as well compared to the baroclinic term. One possible explanation could be that stronger storms

have greater vertical velocities, which all else equal would imply an increase in condensation rates and in diabatic heating.

However, it remains unclear whether the increase in the absolute baroclinic contribution (that is also seen for top-extreme395

cyclones) is driving the increase in the diabatic contribution, or if the opposite is the case.

There are several ways in which this study could be expanded to further understand cyclones that cause extreme 10 m wind

over the ocean. Investigating whether the mechanisms identified here are important in other ocean basins (North Pacific and

Southern Ocean) is an obvious next step.
::::
This

:::::
could

::::
also

::::::
include

:::::::::::
investigation

:::
of

::::::::
long-term

::::::
trends

::
in

::::::::::
storminess,

:::::
along

:::
the

::::
lines

::
of

::::::::::::::::
Feser et al. (2015).

:
To quantitatify connections between the PV anomalies, 10 m wind speeds and cyclone-cyclone400

interactions identified here, a different kind of analysis would need to be performed, as PV inversion analysis or idealised

modeling studies. Additionally, near surface winds occur in the boundary layer, which makes them a multi-scale phenomenon

involving mesoscale and turbulence-scale processes. As this study only investigates large-scale dynamics that favour extreme

10 m winds, one route of further research could delve deeper into the mesoscale processes associated with these systems

to provide linkages that connect large-scale with boundary layer physics.
::::
Such

::::::
studies

:::::
could

:::::::::
implement

:::::
tools

::::
used

::
to

::::::
detect405

:::::::
sting-jets

:::::
(like,

:::
for

::::::::
example,

:::::
those

:::::::::
developed

::
in

:::::::::::::::::::
(Manning et al., 2022)

::
or

::::::::::::::::
Hart et al. (2017)),

:
a
:::::::::
mesoscale

:::::::::::
phenomenon

::::
that

:::
has

:::::::::
repeatedly

::::
been

:::::
linked

::
to
:::::::
extreme

:::::::::::
near-surface

:::::
winds

::::
(see

:::
for

:::::::
example

:::::::::::::::::::::
(Hewson and Neu, 2015))

::::
and

:::
not

:::::::
adressed

::
in

::::
this

:::::
study. Future studies with a focus on boundary layer processes could also investigate how mechanisms known to influence PV

in the boundary layer, like creation of PV with latent heating along the warm conveyor belt or destruction of it through heat

fluxes in the cold sectors (as shown in Plant and Belcher, 2007) act in the case of top-extreme cyclones.410
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6 Conclusions

We provide a large-scale perspective on extreme near-surface winds in the central North Atlantic. We select cyclones associated

with the top 1% of extreme 10 m wind events during boreal winter, and compared them with a group of moderate extremes—

cyclones that also caused strong winds but with weaker footprints. We analysed both groups of cyclones through time-lagged

composites and through the surface pressure tendency decomposition. We aimed to determine the large-scale circulation fea-415

tures favouring the development of the most extreme cyclones. We find that the latter feature the presence of a pre-existing

cyclone to the northeast. These pre-existing downstream cyclones can be identified at least 6 days prior to genesis of the top

1% extreme cyclones, but are generally absent for more moderate extremes.

The genesis of the most extreme cyclones occurs around two days before they reach peak destructiveness
::::::
severity. The pre-

existing downstream cyclones help to generate a jet streak to the east of the incipient extreme cyclones. As the extreme cyclones420

develop, they cross this jet streak and experience explosive deepening and intensification of upper level PV anomalies. The

pressure tendency equation analysis showed that the main difference between top and moderate extremes is the much larger

mean
::::::
median contribution of diabatic processes to cyclone growth in top extremes

:
,
::
a

::::::::
difference

::::::
found

::
to

:::
be

::::::::::
statistically

::::::::
significant. Although there is a large variation in the relative role of the terms contributing to surface deepening from storm to

storm, all the leading terms in the pressure tendency equation have, on average, larger absolute values for the more extreme425

cyclones.

Code and data availability. The ERA5 reanalysis data used in this study can be downloaded from https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis-

era5-pressure-levels?tab=form (last access: 26 March 2024) (Hersbach et al., 2020).
:::
We

::::
have

:::
also

::::::::::
downloaded

::::
parts

::
of
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ERA5
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data
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from
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Research
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Data
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Archive
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at
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the
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National

:::::
Center

:::
for

:::::::::
Atmospheric
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Research,
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Computational

:::
and

:::::::::
Information

::::::
Systems

:::::::::
Laboratory.

:::::::::::::::::::::::::::
https://doi.org/10.5065/BH6N-5N20.

:::::::
Accessed

::
26

:::::
March

:::::
2024. Storm tracks found in ERA5 by using the algorithm from Pinto et al. (2005), as well as the code used for this430

analysis, are available upon a request.
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Figure 1. Upper-level PV (200-300 hPa mean) climatology for extended winter season (Oct-Mar) from 1979
:::
1950 to 2020 (colors). The red

box shows the target region used to study windstorms. Storm tracks of extratropical/top-extreme cyclones (green lines) and tropical cyclones

(black lines) associated with the top 1 % 10 m wind destructiveness
:::::
severity events from two days before until the time of maximum 10 m

wind speed. Average 12-hourly track of top extremes is shown as a green thick line, with the green triangle representing the mean location of

cyclogenesis of top extremes. The average storm track of the pre-existing downstream cyclones from two days to 12 hours before the peak

10 m winds is shown as a yellow line, with the yellow triangle showing their mean location at the time of cyclogenesis of top-extremes.
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Figure 2. Visual depiction of how 10 m wind footprints are identified. (a) To calculate values of destructiveness
::::::
severity on a given day,

the daily maximum wind speed for each grid cell within the target region is calculated. Then, grid cells where the 10 m daily maximum

wind speed has exceeded the local 98th percentile are selected (grey grid cells; there may be no such cells for a given day). (b) Last,

connected regions of exceedances are found (green and red regions). Different connected regions are investigated separately. The value of

destructiveness
::::::
severity for each region is the sum of values of destructiveness

:::::
severity of all grids cells within the region. The daily value of

destructiveness
::::::
severity is equal to the largest single-region value.
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Figure 3. MSLP field evolution of the extreme extratropical storm that reached peak 10 m wind speed on 27 November 2018 10 UTC (a–c).

The location of the extreme cyclone centre at each time-step is shown as a green cross. The thin dashed red boxes in each panel show the

target region. Shading shows absolute MSLP, gray contours show MSLP anomalies relative to the 1979
::::
1950-2020 climatology, starting from

±5 hPa (dashed for negative anomalies). The wind footprint for the whole day of 27 November 2018 is shown as a thick red contour in (c).

Tracks from Pinto et al. (2005) applied on ERA5 (blue dashed line) and manually obtained tracks (green dashed line) are shown in (b,c).

MSLP evolution at the cyclone centre from using the two tracking methods is shown in (d), with the green crosses corresponding to the ones

in (a–c) and blue crosses showing the closest time available from storm tracks by Pinto et al. (2005).
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Figure 4. Composite MSLP anomalies relative to the 1979
:::
1950-2020 climatology for top extremes (a-c) and moderate extremes (d-f),

centered on the cyclone locations from t=−2 days to t= 0 days. Lags are relative to the time of maximum 10 m wind speeds on the day

with maximum destructiveness
:::::
severity. Green crosses denote locations of top- and moderate-extreme cyclone centers. Black dots show areas

where MSLP anomalies are statistically significant at the 1 % level computed with Monte-Carlo sampling (150 samples, each made from

averaging 99 and 117 samples for top and moderate extremes, respectively) and corrected for false discovery (Wilks, 2016). Grey contours

show the values of 250 hPa wind speeds, starting from 30 ms−1 and increasing in steps of 10 ms−1 .
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Figure 5. Upper-level composites for top extremes (a-c) and moderate extremes (d-f), centered on the cyclone locations from t=−2 days

to t= 0 days. Colors show upper level PV (200-300 hPa mean) values, while red and blue contours show positive and negative upper level

PV anomalies relative to the 1979
::::
1950-2020 climatology, respectively, starting from ±0.5 pvu, with thick contours at ±2 pvu. Black dots

show areas where upper-level PV anomalies are statistically significant at the 1 % level, computed as in Figure 4. Grey arrows show 250 hPa

wind speed anomalies from climatology. Black contours MSLP anomalies relative to the 1979
::::
1950-2020 climatology, starting from ±5 hPa

(dashed for negative anomalies) with thick contours at ±20 hPa . Green crosses have the same meaning as in Figure 4.
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Figure 6. Composites centered at the locations of cyclogenesis of top extremes (a-c) and moderate extremes (d-f). Lags are relative to the

time of cyclogenesis. Colors, contours, crosses and dots have the same meaning as in Figure 5.
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Figure 7. Box plots of contributions of each term of the pressure tendency equation to pressure decrease for top extremes (red boxes) and

moderate extremes (blue boxes).
::::
Boxes

:::::
show

:::::::::
interquartile

:::::
ranges,

:::::
black

::::::::
horizontal

:::
lines

::
in
::::
each

:::
box

::::
show

::
a
::::::
median. All terms are averaged

over the two days up to the time of maximum 10 m wind speed.
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Figure A1. Time series of the number of top extreme cyclones in each year from 1950-2020.
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Figure A2. Median of PV anomalies from 1950-2020 climatology averaged at all available ERA5 pressure levels from 900 hPa to 200 hPa

in a circle with a radius of 300 km around cyclone centers of top extremes (red lines) and moderate extremes (blue lines). Shading shows

interquartile ranges.
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Figure A3. Box plots of contributions of each term of the pressure tendency equation to pressure decrease for top extremes that occurred

from 1950-1985 (blue boxes) and top extremes that occurred from 1986-2020 (red boxes). Boxes have the same meaning as in 7. Diabatic

contribution and total pressure decrease are the only terms that show statistically significant difference between the two groups at the 95 %

confidence level according to the Wilcoxon signed rank test.
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Figure A4. Box plots of contributions of each term of the pressure tendency equation to pressure decrease for moderate extremes that

occurred from 1950-1985 (blue boxes) and moderate extremes that occurred from 1986-2020 (red boxes). Boxes have the same meaning as

in 7. No terms that show statistically significant difference between the two groups at the 95 % confidence level according to the Wilcoxon

signed rank test.
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