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Abstract. Temperate semi-natural grassland plant communities are expected to shift under global change, mainly due

to land use and climate change. However, the interaction of different drivers on diversity and the influence of diversity

on the provision of ecosystem services are not fully understood. To synthesise the knowledge on grassland dynamics

and to be able to predict community shifts under different land use and climate change scenarios, we developed the

GrasslandTraitSim.jl model. In contrast to previously published grassland models, we link morphological plant traits to5

species-specific processes via transfer functions, thus avoiding a large number of species-specific parameters that are

difficult to measure and calibrate. This allows any number of species to be simulated based on a list of commonly

measured traits: specific leaf area, maximum height, leaf nitrogen per leaf mass, leaf biomass per plant biomass, above-

ground biomass per plant biomass, root surface area per below-ground biomass, and arbuscular mycorrhizal colonisation

rate. For each species, the dynamics of the above- and below-ground biomass and its height are simulated with a daily10

time step. While the soil water content is simulated dynamically, the nutrient dynamics are kept simple, assuming that the

nutrient availability depends on total soil nitrogen, yearly fertilization with nitrogen and the total plant biomass. We present

a model description, which is complemented by online documentation with tutorials, flowcharts, and interactive graphics,

and calibrate and validate the model with two different datasets. We show that the model replicates seasonal dynamics

of productivity for experimental sites of the grass species Lolium perenne across Europe satisfactory well. Furthermore,15

we demonstrate that the model can be used to simulate the productivity and functional composition of grassland sites

with different number of mowing events and grazing intensity in three regions in Germany. Therefore, GrasslandTraitSim.jl

model is presented as a useful tool for predicting plant biomass production and plant functional composition of temperate

grasslands in response to management under climate change.
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1 Introduction20

Permanent semi-natural grasslands cover 30.5% of the agricultural area of the European Union (Eurostat, 2020) and

many of them are known to support high levels of biodiversity (Petermann and Buzhdygan, 2021). At small spatial scales

(< 100 m2), extensively managed grasslands have the highest recorded plant species richness per area in the world

(Wilson et al., 2012). These plant species-rich habitats can in turn support many other taxonomic groups, such as insects

(European Environment Agency et al., 2013; Fartmann, 2024), which are adapted to open habitats. Moreover, 29% of the25

European bird species are associated with grassland habitats (Nagy, 2009). In conclusion, temperate grasslands play an

important role in supporting biodiversity in agricultural landscapes.

The key factor in maintaining the semi-natural grasslands in the temperate zone is management, as well as regular

natural disturbances, such as low-intensity fires or avalanches, without which grasslands would become woodlands. This

is because the abiotic conditions on most grassland sites favour tree growth, by having the sufficient temperature, precip-30

itation, soil moisture and nutrients (Petermann and Buzhdygan, 2021). Mowing and/or grazing influence the plant species

composition of grasslands and prevent the encroachment of woody species (Tälle et al., 2016). Therefore, grasslands

and agriculture have been coevolving in Europe since the last glacial period (Hejcman et al., 2013; Pärtel et al., 2005).

The intensity and type of land use influence the level of grassland biodiversity. Both intensification and abandonment can

lead to a decline in grassland biodiversity (Gossner et al., 2016; Schils et al., 2020; Piseddu et al., 2021). Intensification,35

more specifically higher fertilization, more mowing events per year, and/or a higher livestock density lead to a dominance

of a few fast-growing plant species that are adapted to the high disturbance frequency by mowing and/or grazing. In

particular, high fertilisation results in the dominance of clonal species with wide runners and tall growth (Hejcman et al.,

2007; Gough et al., 2012; Gross and Mittelbach, 2017). Abandonment, on the other hand, leads to the growth of woody

species and a loss of specialists of open habitats (Hilpold et al., 2018). Management is therefore a key driver of plant40

community composition in the large majority of temperate grasslands.

Furthermore, climate change is expected to alter the plant community composition of grasslands, particularly during

periods of heat waves and droughts, for example by suppressing dominant species (Luo et al., 2025) and/or favouring

plants with drought avoidance strategies (Griffin-Nolan et al., 2019; Schils et al., 2020). In addition, diversity and com-

position of the plant community in grasslands affect the provision of ecosystem services, such as biomass production,45

resistance to climatic events, and pollination (Van Oijen et al., 2020; Buzhdygan et al., 2020). However, how different

drivers and their interactions impact the community composition and how the composition relates to ecosystem ser-

vice provision is poorly understood. In particular, the conditions under which a diverse plant community leads to higher

biomass production remain a topic of debate (Adler et al., 2011; Chen et al., 2018; Dee et al., 2023). This highlights the

need for a more comprehensive mechanistic understanding of the underlying processes. Simulation models can com-50

plement experimental and observational studies to predict the effects of management and climate change on grassland

community dynamics and ecosystem service provision, and can help provide a better mechanistic understanding of pro-

cesses. Current scientific knowledge is integrated into the models, and the models can be used to test hypotheses and to
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generate new knowledge (Clark et al., 2001; Jeltsch et al., 2008). Dynamic simulation models are therefore a useful tool

for disentangling the effects of land use and climate on the plant community composition and the provision of ecosystem55

services by grasslands.

Historically, different research questions on grasslands, ranging from ecology to biogeochemistry, have led to the de-

velopment of different grassland models by focusing on some parts of the grassland system while simplifying others (for

an overview of representative models, see Table 1 and for more details in Tables A1 and A2). In ecology, for example,

questions about plant coexistence in grasslands have led to models with a strong focus on species interactions. In the60

biogeochemical community, questions were asked about the emission of greenhouse gases from grasslands, leading

to the development of models with a focus on biogeochemical cycles in grasslands (Van Oijen et al., 2018). Ecological

models are often simpler models and can be divided into difference or differential equation models and individual-based

models. While individual-based models are characterised by a bottom-up approach by modelling the interactions of indi-

viduals, difference/differential equation models are characterised by a top-down approach by modelling the interactions65

of species, leading in both cases to the emergence of grassland community patterns. Examples of individual-based mod-

els are IBC-grass (May et al., 2009), originally developed to analyse the effects of grazing on plant communities, and

GRASSMIND (Taubert et al., 2012), which can simulate the effects of climate change, mowing, fertilization and irrigation

on plant community dynamics. Examples of ecological differential equation models are DynaGraM (Moulin et al., 2021)

and GraS (Siehoff et al., 2011), both of which can simulate the effect of mowing and grazing on the plant community.70

There are also more theoretical models that adopt the Lotka-Volterra differential equations for species competition to

simulate grassland dynamics (Geijzendorffer et al., 2011; Fort, 2018; Pulungan et al., 2019; Chalmandrier et al., 2021).

Competition between plant species is included in these models with interaction coefficients. The way species or plant

functional types are represented in all these models differ. The species in IBC-grass and GRASSMIND are described

by morphological and physiological traits. GraS represents species mostly by species indicator values and in DynaGraM75

species are represented by a combination of morphological and physiological traits and parameters derived from species

indicator values. While IBC-grass, GraS and the models using Lotka-Volterra type equations focus strongly on ecological

issues and are weak in representing biogeochemical cycles, GRASSMIND is coupled with a soil model and DynaGram

has a basic representation of nutrient and water cycles included.

In contrast, models developed by the biogeochemical scientific community have a thorough representation of the nutri-80

ent, water and carbon cycles in grasslands (Van Oijen et al., 2020). Examples include PaSim (Riedo et al., 1998), LPJmL

(Rolinski et al., 2018) and CENTURY/DayCent (Parton, 1996; Parton et al., 1998). However, the representation of plant

functional diversity in these models is limited. For example, in LPJmL only two plant functional types (C3 and C4 grasses)

are simulated in natural and managed grasslands (Rolinski et al., 2018). Recently, progress has been made to improve

the representation of plant functional diversity by simulating C-, S-, and R-plant functional types in correspondence with85

the CSR-model of plant strategies (Grime, 1977) in LPJmL (Wirth et al., 2024). Another approach to include a represen-

tation of plant functional diversity in a single species grassland model is described by the CoSMo-approach (Confalonieri,

2014). Before each time step, the relative abundance of several species is updated based on suitability functions of
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Table 1. Overview of representative grassland models simulating several plant species or plant functional types. A more comprehensive

overview, including models that simulate only one species, can be found in the appendix (Tables A1 and A2).

Model name with

reference

State variables of

vegetation

Climate

factors1

Water (W)

& nitrogen

(N) cycle2

Resource

competition

Management

factors

No.

species /

PFTs3

IBM?4 TFA?5

GrasslandTraitSim.jl,

presented here

above- and below-ground

biomass, height

T, PAR,

P, PET

W water, nitrogen,

light

mowing, grazing,

fertilization

25-70 ✓

Lotka-Volterra

competition model,

Chalmandrier et al. 2021

above-ground biomass T - - - 118 ✓

DynaGraM,

Moulin et al. 2021

above-ground biomass T, PAR,

P, PET

W, N water, nitrogen,

light

mowing, grazing,

fertilization

15

GraS,

Siehoff et al. 2011

cover - - space mowing, grazing,

trampling

10

LPJmL-CSR,

Wirth et al. 2024

above- and below-ground

biomass, number of

individuals

T, PAR,

P, PET

W, N water, nitrogen,

light, space

mowing, grazing,

fertilization,

irrigation

3

ModVege-CoSMo,

Confalonieri 2014,

Piseddu et al. 2022

reproductive and

vegetative above-ground

biomass with age

T, PAR,

P, PET

W water, nitrogen,

light (by suitability

functions)

mowing, grazing,

fertilization

8

GRASSMIND,

Taubert et al. 2012,

Taubert et al. 2020

reproductive and

vegetative above-ground

and below-ground

biomass, height

T, PAR,

P, PET

W, N water, nitrogen,

light

mowing,

fertilization,

irrigation

3-5 ✓

IBC-grass,

May et al. 2009

reproductive and

vegetative above-ground

and below-ground biomass

- - generic above-

and below-ground

resources

grazing 81 ✓

1We have reviewed whether air temperature (T), photosynthetically active radiation (PAR), precipitation (P), and potential evapotranspiration (PET) are used in a model.

Other external climate drivers, even if used in the specific model, are not shown in the table. 2We evaluated whether the soil water and the soil nitrogen cycle are explicitely

simulated in the models. 3We reviewed the number of simulated species or plant functional types (PFTs), regardless of whether the species parameters were calibrated to

data or whether the species were generated more theoretically. 4We distinguish between individual-based models (IBM), which directly simulate plant individuals, and

population-based models, which simulate plant populations. 5We distinguish between models in which parameters of transfer functions mapping morphological functional

traits to species demographic rates are calibrated (TFA: "transfer function approach"), and models in which species demographic parameters are calibrated directly

(Chalmandrier et al., 2021).

species to drivers. The relative abundance is used to calculate new community weighted mean traits which are used

as an input for the single species grassland model for one time step. Thereby, the plant competition and the community90

growth dynamics are decoupled. An example is the coupling of the ModVege model with the CoSMo approach (Jouven

et al., 2006; Piseddu et al., 2022). In summary, existing grassland models vary in their complexity in representing plant

diversity and biogeochemical cycles, and in how species are represented: by species indicator values, morphological

traits and/or physiological traits.

Modelling multi-species assemblages in grasslands has been identified as one of the key challenges in grassland mod-95

elling (Kipling et al., 2016). This is due to the fact that process-based grassland models require data on the physiological

and demographic processes of species, such as measurements of growth rates of species under different radiation in-
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tensities. However, as demographic and physiological data are not readily available for many species, the number of

species that can be modelled is limited (Jeltsch et al., 2008; Chalmandrier et al., 2021). To overcome the problem of

missing demographic and physiological data, measurable morphological trait data can be used instead. Morphological100

trait data can be measured more easily and are available for many plant species, for example from the plant trait database

TRY (Kattge et al., 2020). For many morphological traits, it is known from experimental and observational studies how

they affect species-specific processes (Funk et al., 2017). For example, a high specific leaf area is associated with high

photosynthetic activity per leaf mass and a high senescence rate (Wright et al., 2004). So-called transfer functions can

be built to map morphological parameters to physiological and demographic processes of species ("transfer function ap-105

proach (TFA)", see Table 1 and Chalmandrier et al. 2021). Parameters in the transfer function can control the strength of

the link between morphological traits and physiological processes, for example how strongly does the specific leaf area

correlate to the senescence rate of leaves. This has the technical advantage that the number of parameters for the model

calibration does not increase with the species number. While this morphological trait-based approach enables broader

species coverage and generality, it also comes with limitations. Morphological traits do not fully capture intra-specific110

genetic variation or phenotypic plasticity, both of which can be important for species’ responses to environmental change.

Additionally, environmental heterogeneity—such as soil texture, nutrient availability, and microclimate—may modulate the

functional effects of traits in context-dependent ways.

Here, we use this transfer function approach of linking morphological traits to species-specific processes to develop

the process-based model GrasslandTraitSim.jl. We extend the approach from Chalmandrier et al. (2021), which used115

a theoretical model with little or no representation of climate, management and resource competition (see Table 1), to

a model that can analyse the influence of management and climate on the productivity and plant functional composi-

tion of a grassland. The model is partly based on the DynaGraM model (Moulin et al., 2021), which in turn is based

on LINGRA (Schapendonk et al., 1998) and ModVege (Jouven et al., 2006). Both ModVege and LINGRA only simulate

one species or plant functional type (see Table A1). With DynaGraM it is possible to study the influence of climate and120

management on the productivity and plant functional composition and DynaGraM can simulate several species. How-

ever, DynaGraM does not rely solely on morphological species-specific parameters but uses instead a combination of

morphological, demographic and indicator values (see Table A2). This hinders the use of the transfer function approach

of linking morphological traits to species’ demographic rates and has the disadvantage that the species-specific demo-

graphic parameters are not available for many plant species. We decided to design a population-based model to not have125

the computational cost of calibrating an individual-based model. Moreover, we decided to keep the plant competition

directly in the growth dynamics as in the DynaGraM model and not update the relative abundance of the species based

on suitability functions as with the CoSMo-approach (Confalonieri, 2014). Our model is of intermediate complexity com-

pared to the above-mentioned models in terms of the number of equations, which is reflected in the number of simulated

state variables and the number of parameters (species-specific and global, non-species-specific, parameters, see Tables130

1, A1 and A2). Consequently, our GrasslandTraitSim.jl model addresses a gap in existing grassland simulation models

by simulating multi-species assemblages and predicting the functional composition of plant communities in response to
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management practices and climate change. As plant functional composition influences biomass supply in the model,

cascading effects from management and climate through plant functional composition to biomass supply can be anal-

ysed. We will present a comprehensive model description and a calibration and validation using two different datasets of135

managed grasslands in Europe.
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2 Description of the GrasslandTraitSim.jl model

The GrasslandTraitSim.jl model is designed to simulate the dynamics of grassland communities under different manage-

ment scenarios, soil and climatic conditions. The state variables of many plant species (denoted by the subscript s) are

simulated with daily time steps (indicated by the t subscript): above-ground dry biomass BA,ts [kg ·ha−1], below-ground140

dry biomass BB,ts [kg ·ha−1], height Hts [m]. The sum of the above-ground and below-ground dry biomass equals the

total dry biomass Bts [kg ·ha−1]. Additionally, the state variable soil water content in the rooting zone Wt [mm] is simu-

lated (Fig. 1). Changes in the state variables from one day to the next are described by a set of difference equations (for

details see Table A5). The morphological functional traits of all plant species are fixed (time-invariant inputs, for example

the maximum plant height) and linked by model parameters to the species’ demographic processes (Fig. 2). As a result145

of the differences in the demographic rates of all species, the performance of individual plant species differs (biomass

increase or decrease under particular conditions), leading to the emergence of plant community dynamics. While read-

ing the model description, we encourage the reader to have a look at the online documentation, which contains many

interactive graphics and flowcharts that make the model description more accessible (see data availability statement).

The required model inputs are the plant functional traits of each species, soil properties, daily climatic data and daily150

management data (e.g., timing and intensity of grazing, Table A3). The model has in total 54 global parameters (for

details see Table A4) that are neither site, time nor species dependent. Outputs include the state variables and the

grazed and mown biomass. The simulated abundance distribution can be summarised using taxonomic diversity indices

(e.g. Simpson diversity) and plant functional diversity indices (e.g. functional dispersion and functional evenness), as well

as community-weighted means and variances of each trait. All of these outputs can be calculated for each day. The model155

is not spatially explicit and does not account for spatial heterogeneity. As the assumption of spatial homogeneity is only

met approximately for smaller spatial dimensions, we suggest using the model for areas between 1 m2 and 1 ha.

The model procedure is divided into an initialisation and a simulation part. During the initialisation, the state variables

(height, above-ground and below-ground biomass of species, and soil water content) are set to user supplied initial values.

During the simulation, a loop is run over each day. For each day, very low or negative values (< 10−30) of the height Hts160

and biomass state variables (Bts, BA,ts, and BB,ts) are set to zero to avoid numerical problems. We have deliberately

kept the threshold at a low level because the plant species should be able to recover even from a very low biomass

level. After that, the main part of the model is executed with the calculation of growth (Sections 2.1-2.1.7, Eqs. 5-33),

senescence (Section 2.1.8, Eqs. 34-35), biomass removal by management (Section 2.1.9, Eqs. 36-42), height dynamics

(Section 2.2, Eq. 43), and soil water dynamics (Section 2.3, Eqs. 44-52).165

2.1 Biomass dynamics

The change in the total biomass B from day t to t+1 of species s [kg ·ha−1] is calculated based on the actual growth

Gact,ts [kg ·ha−1] (Eq. 5), and the losses by senescence Sts [kg ·ha−1] (Eq. 34) and management Mts [kg ·ha−1] (Eq.
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36):

Bt+1s =Bts+Gact,ts−Sts−Mts (1)170

The change in the total biomass Bts is divided into the change in above-ground BA,ts [kg ·ha−1] and below-ground

biomass Bts [kg ·ha−1]. We assume that plants aim to achieve a similar level of above-ground biomass per total biomass

similar to the time-invariant trait above-ground biomass per total biomass abps [−]. We therefore calculate Ats [−] the

ratio between the actual biomass ratio and the trait abps:

Ats =

(
BA,ts

Bts

)
abps

(2)175

Ats is less than one if the above-ground biomass per total biomass is less than expected by the trait abps, for example

after a mowing event. This variable can be used to allocate biomass changes by growth and senescence to above-ground

and below-ground biomass. Biomass loss by mowing and grazing affects only the above-ground biomass:

BA,t+1s =BA,ts+Ats ·Gact,ts− (1−Ats) ·Sts−Mts (3)

BB,t+1s =BB,ts+(1−Ats) ·Gact,ts−Ats ·Sts (4)180

This formulation allows for rapid regrowth of above-ground biomass after a grazing period or a mowing event, as little of

the growth is allocated to below-ground biomass and most is allocated to above-ground biomass.

The actual growth is derived from the community potential growth Gpot,t [kg ·ha−1] (Eq. 6) and the multiplicative effect

of five growth adjustment factors:

Gact,ts =Gpot,t ·LIGts ·NUTts ·WATts ·ROOTts ·ENVt (5)185

where LIGts [−] is the species-specific competition for light (Eq. 12), NUTts [−] is the species-specific competition for

nutrients (Eq. 15),WATts [−] is the species-specific competition for soil water (Section 2.1.5),ROOTts [−] is the species-

specific cost for maintaining roots and mycorrhiza (Eq. 26), and ENVt [−] is the non-species-specific adjustment based

on environmental and seasonal factors (Eq. 29).

2.1.1 Community potential growth190

The model follows the concept of the light use efficiency (Monteith, 1972) that describes how much dry matter the plants

can build based on the solar radiation. This concept was widely adopted in grassland modelling studies (Schapendonk

et al. 1998; Jouven et al. 2006; Moulin et al. 2021; for a review see Pei et al. 2022). The community potential growth

Gpot,t is described by:

Gpot,t = PARt · γRUEmax ·FPARt (6)195

with the photosynthetic active radiation PARt [MJ ·ha−1], maximal radiation use efficiency γRUEmax [kg ·MJ−1], and

the fraction of PARt that is intercepted by the plants FPARt [−].
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Figure 1. Structure of the GrasslandTraitSim.jl model. Boxes represent state, intermediate, and input variables (forcing functions), and

arrows indicate the influence of one variable on another. We use the term intermediate variables to describe variables that are neither

inputs nor state variables, but are important intermediate results in the calculation of the change in state variables. While the green

areas show calculations that influence the change in above- and below-ground biomass and height, the blue area shows the calculation

of the change in soil water content in the rooting zone. The arrows originating from the biomass and height of the species indicate

that both the biomass and height play a role in the processes outlined in the green and blue areas. However, for simplicity, they do not

indicate the exact position within the areas. Species-specific variables are represented by a series of offset boxes positioned behind

one another, indicating the presence of multiple species within the model. We show how the distribution of community traits can be

calculated from the model output; other model outputs include the state variables and the grazed and mown biomass, which can be

summarised at the community level.
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Species Morphological traits Species-specific Processes

Arbuscular mycorrhizal
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Coping with water stress

Below-ground competition
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Light interception
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Figure 2. The GrasslandTraitSim.jl model links morphological plant functional traits to processes. Arrows indicate which process or

variable is influenced by each plant functional trait. Each plant functional trait can have species-specific values, allowing for species-

specific responses in many of the model’s processes.

The modelled fraction of radiation intercepted by the plants is determined by the number of leaves and the height of

the community. A saturation function is used to describe the relationship between leaf area per ground area (leaf area

index) and light interception. We argue that light interception is less effective when all plants are rather short, because the200

leaves are more densely packed. Individual plants avoid shading by growing taller (Heger, 2016). Therefore, we include

the height of the community in the light interception calculation, also to prevent that a community with short plants can

build up a very high biomass. More technically, we use the Beer-Lambert equation to model the non-linear response

of the fraction of light intercepted FPARt to the total leaf area index LAItot,t (Monsi, 1953; Monsi and Saeki, 2005).

This relationship is governed by the light extinction coefficient γRUE,k [−], which determines how quickly the fraction205

of absorbed radiation approaches one as the leaf area index increases. Reduction of radiation use efficiency because

of densely packaged leaves is a function of the community-weighted mean height and influenced by the parameter

αRUE,cwmH ∈ [0,1] [−], which specifies the growth reduction at Hcwm,t = 0.2 m. The 0.2 m has been arbitrarily set, and

the parameter αRUE,cwmH is inversely calibrated. If Hcwm,t is greater than 0.2 m, less self-shading will occur because

the leaves are less densely packed and therefore the growth reduction is less than αRUE,cwmH :210

FPARt = (1− exp(−γRUE,k ·LAItot,t)) · exp
(
log(αRUE,cwmH) · 0.2m

Hcwm,t

)
(7)
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with the community-weighted mean height, calculated by weighting the height Hts [m] of each species by its share of

above-ground biomass BA,ts of the total above-ground biomass BtotA,t [kg ·ha−1]:

Hcwm,t =

S∑
s=1

BA,ts
BtotA,t

·Hts (8)

The total leaf area index LAItot,t is the sum of the species-specific leaf area indices LAIts:215

LAItot,t =

S∑
s=1

LAIts, (9)

where LAIts is defined as

LAIts =BA,ts · slas · lbps · 0.1, (10)

with above-ground biomass BA,ts [kg ·ha−1], specific leaf area slas [m2 · g−1], and leaf biomass per above-ground

biomass lbps [−]. As BA,ts and slas must be converted to the same unit, Eq. 10 is multiplied by 0.1.220

2.1.2 Species-specific light competition

In our model, the proportion of total community biomass growth attributed to each species is determined by its leaf area

index and height. Plant species with a high leaf area index per unit of biomass transfer more above-ground biomass to

their leaves and have thinner leaves. These species can build a greater leaf area, allowing them to use the photosynthetic

active radiation more efficiently per unit of biomass. Moreover, plant species that are taller than other species receive225

greater light exposure and are less affected by shading from other plant species (Falster and Westoby, 2003; Anten and

Hirose, 1999). Situations in which taller species exploit relatively more light for growth than their biomass proportions are

described by the term ’size-asymmetric competition’ (Weiner, 1990; Schwinning and Weiner, 1998). Some plant species

devote more resources to supporting tissue (such as stems), resulting in taller plants that are less affected by shading.

Other species invest more in leaves, resulting in a higher leaf area per unit of biomass. It is not possible to maximise230

both characteristics simultaneously, demonstrating a common trade-off in plant strategies (Westoby et al., 2002). Which

strategy dominates depends on abiotic factors and biotic interactions. For example, fertilisation can cause a shift in the

grassland plant community towards taller, clonal species (Gough et al., 2012; Dickson et al., 2014).

The proportion of light intercepted by each species out of the total light intercepted is derived by dividing the sward

into vertical height layers of constant width, by default 0.05 m, to account for shading (similar to Taubert et al., 2012). We235

want to calculate how much light is intercepted in each height layer l INTt,l [−]. Therefore, we need to calculate how

much light is intercepted in the layers above and the interception in layer l. We assume that the biomass, and therefore

also the leaf area index, is uniformly distributed over the height of the plant. Thus, we can calculate the leaf area index of

each species in each height layer LAIts,l [−] and the total leaf area index of all species in each layer LAItot,t,l [−]. For

each layer we can calculate the total leaf area index above the layer up to the maximum height layer L. The maximum240

height layer can be reached by the tallest plants with the highest maxheight [m]. The reduction in incoming light based
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Figure 3. General form of growth reducer as a function of resource density (plant available nutrients and soil water). The function is

governed by the four parameters βRED (slope of the logistic function), ϕtrait (usually the mean trait value), αRED,05 (growth reduction

at half the resource density for species with a trait value of ϕtrait, marked by a red dot), and δRED (controls how much the species-

specific inflection points differ from the inflection point of a species with value of ϕtrait). We show two different curves for different

parameter values: A with αRED,05 = 0.95 and δRED = 0.25; B with αRED,05 = 0.55 and δRED = 0.1. In both cases we used βR = 9,

ϕtrait = 20 and the trait values 16, 18, 20, 22 and 24 (from dark purple to yellow). We include dynamic versions with sliders for the

parameters for the three growth reducers NUTamc,ts, NUTrsa,ts, and WATts in the supplementary material (see data accessibility

statement).

on the total leaf area index of the layers above and the interception of layer l is used to calculate the proportion of light

intercepted in layer l INTt,l:

INTt,l = exp

(
γRUE,k ·

L∑
z=l+1

LAItot,t,z

)
· (1− exp(γRUE,k ·LAItot,t,l)) (11)

The proportion of light intercepted in the layer can be used to obtain the proportion of light intercepted for each species245

in each layer by multiplying INTt,l by the leaf area index proportion of the layer. The sum of all species-specific light

interception proportions across all layers can be used to calculate the light competition factor LIGts [−]:

LIGts =

L∑
z=l

INTt,l ·
LAIts,z
LAItot,t,z

· 1

1− exp(γRUE,k ·LAItot,t)
(12)
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We divide the term by the total interception of all layers (compare Eq. 7) to ensure that the sum of all species-specific

light competition factors is equal to one.250

2.1.3 General form of the growth reducer for nutrient and water stress

We use the same equations with different parameters to relate the plant-available nutrients and plant-available soil water

to the growth reducers of nutrient and water stress. Therefore, we show here the general form of the equations (see

Fig. 3) to avoid repetition and define the specific variables and parameters used in the next two sections on nutrient and

water stress. The derivation of the equations is shown in more detail in Appendix A. We use a logistic function to relate255

the resource density Rt (general symbol for the plant-vailable nutrients Np,ts and the plant-available water Wp,t) to the

growth reducer REDts (general symbol for the growth reducers for nutrients stress NUTamc,ts and NUTrsa,ts and water

stress WATts). The growth reducer REDts lies between zero (no growth possible) and one (no growth reduction at all).

While the inflection points of the logistic function x0,RED,ts (general symbol for x0,NUT,rsa,s, x0,NUT,amc,s, and x0,WAT,s)

are species-specific depending on the trait values traitts (general symbol for the root surface area per total biomass260

TRSAts and the arbuscular mycorrhizal colonisation rater per total biomass TAMCts), the slope βRED (general symbol

for βNUT,rsa, βNUT,amc, and βWAT,rsa) is not species-specific. We assume that if the plant has a trait value equal to the

parameter ϕtrait (general symbol for ϕTRSA and ϕTAMC ), then the growth reduction at 0.5 resource density is αRED,05

(general symbol for αNUT,rsa,05, αNUT,amc,05, and αWAT,rsa,05). The parameter ϕtrait can be set to the mean trait of a

community, then the parameter αRED,05 can be interpreted as the mean response at half the maximum resource density.265

How much the inflection points deviate from this mean response can be controlled by the parameter δRED (general

symbol for δNUT,rsa, δNUT,amc, and δWAT,rsa). If δRED is zero, there is no difference in the growth reduction between

the species. If δRED larger than zero, species with higher trait values are less affected by nutrient or water stress:

x0,RED,ts =
1

βRED
·
(
−δRED ·

(
traitts−

(
1

δRED
· log

(
1−αRED,05
αRED,05

)
+ϕtrait

)))
+0.5 (13)

REDts =


0 if Rt = 0

1/(1+ exp(−βRED · (Rt−x0,RED,ts))) if 0<Rt < 1

1 if Rt >= 1

(14)270

2.1.4 Species-specific nutrient stress

Plant growth may be reduced when soil nutrient availability is low and plants are inefficient at taking up nutrients. We

assume that the arbuscular mycorrhizal colonisation rate (Marschner and Dell, 1994; George et al., 1995; Van Der Heijden

et al., 2015) and the root surface area per total biomass (Barber and Silberbush, 1984) represent strategies in the

nutrient uptake. High values of these traits lead to increased nutrient uptake rates and, consequently, reduced nutrient275

stress. Here, we only consider nutrient deficit as nutrient stress. The growth reducer NUTts [−] is composed out of the

maximum out of two nutrient stress factors that are linked to the arbuscular mycorrhizal colonisation rate Namc,ts [−] and
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the root surface area per total biomass Nrsa,ts [−]:

NUTts =max(NUTamc,ts, NUTrsa,ts) (15)

The maximum of the two nutrient stress factors is used because, for simplicity, we assume that plants can invest either280

in a high root surface area per total biomass or in a high rate of arbuscular mycorrhizal colonisation. Plants with a higher

root surface area per total biomass follow the strategy of taking up nutrients themselves, while plants with high arbuscular

mycorrhizal colonisation rates follow the strategy of outsourcing nutrient uptake to arbuscular mycorrhizal fungi in the

context of the root collaboration gradient (Bergmann et al., 2020). Since growth is reduced by how well plants follow their

best strategy, the maximum of the two reduction factors is used to calculate the reduction in growth due to soil nutrients.285

For the calculation of the growth reducers for nutrients stress based on the arbuscular mycorrhizal colonisation rate

NUTamc,ts [−] we use the parameters ϕTAMC [−], βNUT,amc [−], αNUT,amc,05 [−], δNUT,amc [−] and for nutrients stress

based on the root surface area per total biomass NUTrsa,ts [−] we use ϕTRSA [m2 · g−1], βNUT,rsa [−], αNUT,rsa,05 [−],

and δNUT,rsa [g ·m−2]. Moreover, we still need trait values and the plant available nutrients (to replace traits and Rt in

Eqs. 13-14).290

For the traits that influence the nutrient growth reducer, we consider that plants with high below-ground biomass per

total biomass are less affected by low nutrient levels because they have relatively more root tissue to supply nutrients to

the above-ground biomass. It has been shown that the root-to-shoot ratio increases in many plants under nitrogen-poor

conditions (Jiang et al., 2016; Meurer et al., 2019; Lopez et al., 2023). Therefore, we calculate the root surface area per

total biomass TRSAts [m2 · g−1] and the arbuscular mycorrhizal colonisation rate per total biomass TAMCts [−] from295

the fixed traits root surface area per below-ground biomass rsas and arbuscular mycorrhizal colonisation rate per root

tissue amcs with the dynamic proportion of the below-ground biomass BB,ts per total biomass Bts:

TAMCts =
BB,ts
Bts

· amcs (16)

TRSAts =
BB,ts
Bts

· rsas (17)

where the below-ground biomass is cancelled out. TAMCts and TRSAts are used to replace trait in Equation 13 for300

the calculation of NUTamc,ts and NUTrsa,ts.

The nutrients available to plants depend on the total soil nitrogen of a site N [gN · kg−1], the fertilization with nitrogen

F [kgN ·ha · yr−1] and the density effect, which accounts for stronger competition for nutrients if many plant species have

a high biomass. The fertilization rate can vary between years and is the sum of organic and inorganic fertilization with

nitrogen per year. More technically, the empirical parameters ωNUT,N [gN−1 · kg] and ωNUT,F [kgN−1 ·ha−1 · yr] control305

how strongly the variables total soil nitrogen and the fertilization rate, respectively, contribute to the value of the nutrient

index (∈ [0,1]). The nutrient index is multiplied by the nutrient adjustment factor NUTadj,ts [−], which accounts for the

biomass density, to get the plant available nutrients Np,ts [−]:

Np,ts = (1− exp(−ωNUT,N ·N −ωNUT,F ·F )) ·NUTadj,ts (18)
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The plant available nutrients Np,ts are used in Equation 14 for the resource Rt to calculate the growth reducers of310

NUTamc,ts and NUTrsa,ts. Np,ts can be greater than one, if the total biomass is low, then growth is not reduced (see

Eq. 14). In contrast to the plant available water (Eq. 25), the plant available nutrients are species-specific.

Plants are most strongly affected by below-ground competition if conspecifics and plants with similar traits have a high

biomass and share the below-ground resources. This is summarized with the nutrient adjustment factor NUTadj,ts [−]

that takes into account the biomass and the trait similarity between all species:315

NUTadj,ts = αNUT,maxadj · exp

(
log

(
1

αNUT,maxadj

)
·
S∑
i=1

TSs,i ·Bti ·
1

αNUT,TSB

)
(19)

with the trait similarity TSs,i [−] between species s and i, the biomass of species i Bti [kg ·ha−1] and the parameters

αNUT,TSB [kg ·ha−1] and αNUT,maxadj [−]. A high nutrient adjustment factor NUTadj,ts is favourable for a species

because the factor is multiplied by the site nutrients (Eq. 18), which means that the species has to share the resources

with fewer competitors. More specifically, a high NUTadj,ts of a species indicates that either the total biomass is low320

or the plant has traits that are very different from the traits of the abundant plant species. The parameter αNUT,TSB is

a reference value for the sum of the product of trait similarity and biomass of all species. If the sum of the product of

trait similarity and biomass of all species is equal to αNUT,TSB , the nutrient adjustment factor is one. The parameter

αNUT,maxadj (≥ 1) controls the maximum of the nutrient adjustment factor. The parameter can be greater than one to

allow the plant available nutrients to be increased when the total biomass is low.325

The trait similarity is derived by calculating the dissimilarity of the root surface area per above-ground biomass rsas

[m2 · g−1] and the arbuscular mycorrhizal colonisation rate amcs [−] between all species and converting it to a similarity

index. These two traits are chosen to calculate the trait dissimilarity index, because both traits encompass unique plant

strategies for the acquisition of nutrients and water (Bergmann et al., 2020). The trait dissimilarity TDs,i [−] between

species s and species i is calculated with the euclidean distance between the normalized traits of the species:330

AMCnorm,s =
amcs−mean(amc)

sd(amc)
(20)

RSAnorm,s =
rsas−mean(rsa)

sd(rsa)
(21)

TDs,i =

√
(RSAnorm,s−RSAnorm,i)

2
+(AMCnorm,s−AMCnorm,i)

2 (22)

15



This gives the dissimilarity matrix TD [−], which is transformed and scaled by the parameter βNUT,TS [−] to a trait

similarity matrix TS [−]:335

TS=

(
1− TD

max(TD)

)βNUT,TS

(23)

TS=


1 TS1,2 . . . TS1,S

TS2,1 1
...

. . .

TSS,1 1

 (24)

If βNUT,TS is zero, the trait similarity has no influence in the calculation of the nutrient adjustment factor in Eq. 19.

2.1.5 Species-specific water stress

Plant growth may be restricted under conditions of low soil water content, particularly if the plants exhibit a limited water340

uptake efficiency. We consider the root surface area per total biomass TRSAts [m2 · g−1] (see Eq. 17) as the trait that

influences how strong plants are exposed to the water stress at a certain soil water level. Here, we only consider too little

water leading to water stress conditions, not too much water, as our primary goal of our model is not to model systems

with regular flooding or waterlogging. We use the same equations for the water stress reducer WATts [−] as for the

nutrient reducer (see Eqs. 13-14) with the parameters ϕTRSA [m2 · g−1], βWAT,rsa [−], αWAT,rsa,05 [−], and δWAT,rsa345

[g ·m−2]. The same explanation for the parameters applies as for the nutrient reducer.

The plant available water is the rescaled soil water content (to replace R in Eq. 14): The soil water content Wt [mm] is

scaled by the water holding capacity WHC [mm] (Eq. 51) and the permanent wilting point PWP [mm] (Eq. 52) to scale

water availability between 0 (soil water content at or below the permanent wilting point) and 1 (soil water content at or

above the water holding capacity). The plant available water Wp,t [−] is defined as:350

Wp,t =
Wt−PWP

WHC −PWP
(25)

This formulation of plant available water does not take into account some short-term temporal dynamics. For example,

after a rainfall event, plants are often not water stressed at all, even if the soil water content is not replenished to the water

holding capacity.

2.1.6 Species-specific maintenance costs for roots and mycorrhizae355

Maintaining a fine root structure and symbiosis with mycorrhizal fungi costs energy. These costs include respiration

(Caldwell, 1979), the production of metabolites for nutrient uptake (Canarini et al., 2019), and the supply of photosynthetic

products to the mycorrhizal fungi (Konvalinková et al., 2017). Similarly to Taubert et al. (2012), who consider the costs

of maintaining a symbiosis with nitrogen-fixing rhizobia, we include a cost term for root surface area per total biomass

ROOTrsa,ts [−] and the mycorrhizal colonisation rate per total biomass ROOTamc,ts [−]. This means that part of the360
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potential growth cannot be used to produce new biomass:

ROOTts =ROOTrsa,ts ·ROOTamc,ts (26)

where ROOTts [−] is the root investment factor that lowers the actual growth in (Eq. 5).

ROOTrsa,ts = 1−κROOT,rsa+κROOT,rsa · exp
(

log(0.5)

ϕTRSA ·TRSAts

)
(27)

ROOTamc,ts = 1−κROOT,amc+κROOT,amc · exp
(

log(0.5)

ϕTAMC ·TAMCts

)
(28)365

where TRSAts is the root surface area per total biomass [m2 · g−1] (see Eq. 17) and TAMCts is the arbuscular my-

corrhizal colonisation rate per total biomass [−] (see Eq. 16). Therefore, the cost of maintaining fine and roots and

mycorrhizae does change with time depending on the ratio between above-ground and below-ground biomass.

The parameters κROOT,rsa [−] and κROOT,amc [−] define the maximum possible growth reduction from zero to one,

where zero means no growth reduction at all. The parameters ϕTRSA [m2 · g−1] and ϕTAMC [−] define the trait values370

of TRSAts and TAMCts at which the growth reducer is half in between 1 (no growth reduction) and the maximal growth

reduction that is defined by κROOT,rsa and κROOT,amc. Note that the same values for ϕTRSA and ϕTAMC are also used

for water and nutrient stress reducers.

2.1.7 Community environmental and seasonal factors

The growth is adjusted for environmental and seasonal factors ENVt that apply in the same way to all species (Eq. 5).375

For simplicity, we do not consider the effect of specific-specific plant traits on the following functions:

ENVt =RADt ·TEMPt ·SEAt (29)

with the radiation RADt [−] (Eq. 30), temperature TEMPt [−] (Eq. 31), and seasonal SEAt [−] (Eq. 32) growth adjust-

ment factors.

Plant growth increases with photosynthetically active radiation (as formulated in Eq. 6), but excess radiation can lead380

to oxidative damage and photoinhibition (Long et al., 1994). We have therefore included the equation and parametrisation

from Schapendonk et al. (1998) that reduces the growth due to excess radiation. The radiation adjustment factor RADt

[−] is calculated as follows:

RADt =min(1, 1− γRAD,1 (PARt− γRAD,2)) (30)

with the photosynthetic active radiation PARt [MJ ·ha−1] and the parameters γRAD,1 [MJ−1 ·ha] and γRAD,2 [MJ ·ha−1].385

A linear decrease of radiation use efficiency with a steepness of γRAD,1 is assumed if the photosynthetic active radiation

is above γRAD,2.

Temperature is one of the fundamental environmental factors that influence plant growth (Went, 1953). Thus, a temper-

ature adjustment factor TEMPt [−] is included in the model. The temperature adjustment factor is based on the empirical
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step functions by Schapendonk et al. (1998) that were adjusted by Jouven et al. (2006):390

TEMPt =



0 if Tt < ωTEMP,T1

Tt−ωTEMP,T1

ωTEMP,T2
−ωTEMP,T1

if ωTEMP,T1
< Tt < ωTEMP,T2

1 if ωTEMP,T2
< Tt < ωTEMP,T3

ωTEMP,T4
−Tt

ωTEMP,T4
−ωTEMP,T3

if ωTEMP,T3
< Tt < ωTEMP,T4

0 if Tt > ωTEMP,T4

(31)

with the minimum temperature requirement for growth ωTEMP,T1 [◦C], the optimum temperature for growth between

ωTEMP,T2
[◦C] and ωTEMP,T3

[◦C] and the maximum temperature for growth ωTEMP,T4
[◦C]. The temperature adjust-

ment factor increases linearly from zero to one between ωTEMP,T1
and ωTEMP,T2

, stays at one between ωTEMP,T2
and

ωTEMP,T3
, decreases linearly from one to zero between ωTEMP,T3

and ωTEMP,T4
and stays at zero above ωTEMP,T4

.395

A seasonal factor accounts for growth patterns that would not be expected from an analysis of daily abiotic conditions

alone. Plants usually grow more strongly in spring than in autumn, even if the radiation and temperature values are similar.

Therefore, in addition to the influence of radiation (Eqs. 6, 30) and temperature (Eq. 31) a seasonality factor is added.

Jouven et al. (2006) build the following empirical step functions for the seasonal factor SEAt [−] based on the yearly

accumulated degree days STt [◦C] and the parameters ζSEAmin [−], ζSEAmax [−], ζSEA,ST1
[◦C], and ζSEA,ST2

[◦C]:400

SEAt =



ζSEAmin if STt < 200◦C

ζSEAmin +(ζSEAmax − ζSEAmin) · STt−200◦C
ζSEA,ST1

−400◦C if 200◦C< STt < ζSEA,ST1 − 200◦C

ζSEAmax if ζSEA,ST1
− 200◦C< STt < ζSEA,ST1

− 100◦C

ζSEAmin +(ζSEAmin − ζSEAmax) ·
STt−ζSEA,ST2

ζSEA,ST2
−ζSEA,ST1

−100◦C if ζSEA,ST1 − 100◦C< STt < ζSEA,ST2

ζSEAmin if STt > ζSEA,ST2

(32)

STt =

t∑
i=t mod 365

max(0◦C, Ti) (33)

The seasonality factor starts to increases from ζSEAmin to ζSEAmax with a yearly accumulated temperature of above 200
◦C and reaches the maximum at ζSEA,ST1 −200 ◦C. From ζSEA,ST1 −100 ◦C to ζSEA,ST2 of the yearly accumulated the

temperature the seasonality factor decreases from ζSEAmax to ζSEAmin.405

2.1.8 Species-specific senescence

Removal of plant biomass occurs through senescence and through management. The biomass removed by senescence

Sts [kg ·ha−1] depends on the basic senescence rate αSEN [month−1], a seasonality factor SENt [−], an effect of
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specific leaf area of the species slas [m2 · g−1], and the biomass of the species Bts [kg ·ha−1]:

Sts =
(
1− (1−αSEN )

1/30.44
)
·SENt ·max

((
slas
ϕsla

)βSEN,sla

,0.5

)
·Bts (34)410

While the basic senescence rate and seasonality factor are consistent across the plant community, the contribution of

specific leaf area and biomass to the senescence rate varies between species. To facilitate interpretation, we have chosen

to use the basic senescence rate per month αSEN . Consequently, αSEN has been converted to a senescence rate per

day, assuming a monthly duration of 30.44 days. The influence of specific leaf area on senescence is controlled by two

parameters: ϕsla [m2 · g−1] and βSEN,sla [−]. βSEN,sla controls how much the senescence rate differs between species.415

If βSEN,sla is zero, there is no difference, and if βSEN,sla is large, there is a large difference in senescence rate between

species. ϕsla is used as a reference for the specific leaf area values: if slas < ϕsla the senescence rate is less than αSEN ,

if slas = ϕsla the senescence rate is equal to αSEN and if slas > ϕsla the senescence rate is greater than αSEN .

We linked the senescence rate to the specific leaf area in order to represent the underlying trade-off in the leaf economic

spectrum. Plants that employ the ’fast strategy’ of the spectrum are highly photosynthetically efficient. They are modelled420

here with a higher leaf area index per unit of biomass, which is influenced by the specific leaf area (Eq. 10). However,

species with a high specific leaf area have a short leaf lifespan and therefore a high senescence rate (Eq. 34). Conversely,

plants representing the ’slow strategy’ of the spectrum exhibit the opposite characteristics (Reich et al., 1992; Wright et al.,

2004; Onoda et al., 2017).

A seasonality factor is used to account for the higher senescence in autumn. Depending on the cumulative temperate425

since the beginning of the current year STt [◦C] (Eq. 33) the seasonality factor increases from one [−] to a maximum

ψSENmax [−]:

SENt =


1 if STt < ψSEN,ST1

1+ (ψSENmax − 1)
STt−ψSEN,ST1

ψSEN,ST2
−ψSEN,ST1

if ψSEN,ST1
< STt < ψSEN,ST2

ψSENmax if STt > ψSEN,ST2

, (35)

where ψSEN,ST1 [◦C] and ψSEN,ST2 [◦C] are the temperature thresholds at which the seasonality factor starts to increase

and reaches its maximum, respectively. The equation and the parameter values are based on Moulin et al. (2021) which430

is turn based on Jouven et al. (2006).

2.1.9 Biomass removal due to management

Biomass losses Mts [kg ·ha−1] due to management are caused by mowing MOWts [kg ·ha−1] (Eq. 37) and grazing

GRZts [kg ·ha−1] (Eq. 38) :

Mts =MOWts+GRZts (36)435

The biomass removed by mowing MOWts [kg ·ha−1] depends on the cutting height of the mowing machine and the

height of the plant species. The proportion of above-ground plant biomass removed by mowing is defined by calculating
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the fraction of the plant height Hts [m] above the cutting height CUTt [m] (see Table A3):

MOWts =
max(Hts−CUTt, 0)

Hts
·BA,ts, (37)

thereby assuming a uniform distribution of the biomass along the height of the plant.440

The amount of biomass of one species that is fed by grazers depends on the livestock density, the palatability of the

plant species that is linked to the leaf nitrogen content and the height of the plants. The grazing functionGRZts [kg ·ha−1]

is divided into two parts: the first part defines the total grazed biomass and the second part the proportion between the

grazed biomass of each species and the total grazed biomass:

GRZts =
κGRZ ·LDt · (BF,t)2

(κGRZ ·LDt · ηGRZ)2 +(BF,t)2
· LNCGRZ,ts ·HGRZ,ts ·BF,ts∑S

i=1LNCGRZ,ti ·HGRZ,ti ·BF,ti
(38)445

The variables and parameters are explained in the following two paragraphs.

For the total grazed biomass, we assume that grazers can only feed on plant biomass that is above a certain height

ϵGRZ,minH [m] (usually set to 0.05 m), because it has been shown that the intake rate of cattle decreases strongly with

low sward height (Hirata et al., 2010; Silva et al., 2018; Kunrath et al., 2020; Boval and Sauvant, 2021). Therefore, we

calculate the above-ground biomass that can be fed by grazers BF,ts [kg ·ha−1] with the proportion of the above-ground450

biomass that is above the height ϵGRZ,minH :

BF,ts =max

(
1− ϵGRZ,minH

Hts
, 0

)
·BA,ts (39)

BF,t =

S∑
s=1

BF,ts (40)

whereBF,t [kg ·ha−1] is the total above-ground biomass that can be consumed by grazers. Furthermore, we assume that

if the overall reachable above-ground biomass is low, the farmers will gradually increase the supply of additional fodder455

resulting in less grazed biomass. If no reachable above-ground biomass is left, the farmers will fully compensate the

requirements of the livestock animals. We do not include the fodder supply as an input in the model, but rather calculate it

based on the above-ground biomass that is available to grazers. To incorporate this, we use a function that works similarly

to a Holling type III response curve. The consumption of the grazers is determined by the product of the livestock density

LDt [LU ·ha−1] (see Table A3) and the consumption per livestock and day κGRZ [kg ·ha−1]. We assume that the fodder460

supply equals half of the consumption of the grazers if the reachable above-ground biomass is equal to LDt ·κGRZ ·ηGRZ .

The parameter ηGRZ [−] is a scaling parameter in the term. For example, if ηGRZ equals two, the total grazed biomass is

reduced to half of the consumption at a reachable above-ground biomass that equals two times the consumption of the

grazers.

The distribution of grazed biomass among plant species depends on their leaf nitrogen content, height, and the biomass465

accessible to grazers. The leaf nitrogent content factor LNCGRZ,ts [−] is based on the trait leaf nitrogen content per leaf
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mass lncs [mg · g−1] relative to the community-weighted mean leaf nitrogen content per leaf mass LNCcwm,t [mg · g−1]

LNCGRZ,ts =

(
lncs

LNCcwm,t

)βGRZ,lnc

(41)

LNCcwm,t =

S∑
s=1

BF,ts
BF,t

· lncs (42)

with βGRZ,lnc [−] acting as a scaling exponent that defines how strongly the LNCGRZ,ts values deviate from one. This470

parameter thus controls the strength of the grazer’s preference for plant species with high leaf nitrogen content. Empirical

studies have demonstrated that cattle prefer plant species with high leaf nitrogen content (Pauler et al., 2020; Atkinson

et al., 2024) and a high carbon to nitrogen ratio in leaves is associated with a grazing avoidance strategy (Archibald et al.,

2019). Furthermore, we include a height factor because grazers feed more on plants that are tall and easily reachable

(Hodgson et al., 1994). The height factor HGRZ,ts follows a similar equation as the leaf nitrogen factor, utilizing plant475

species Hts in place of leaf nitrogen content relative to the community-weighted mean height Hcwm,t [m] and scaled by

the exponent βGRZ,H [−]. In summary, the distribution of grazed biomass among plant species is driven by the biomass

of the plant species, but can be altered by their relative leaf nitrogen content and height.

2.2 Plant height dynamics

Plant height Hts increases due to growth but decreases with mowing and grazing. The height can increase until the plant480

reaches the maximum height maxheights [m]. The growth rate is the ratio of above-ground biomass growth Ats ·Gact,ts
(Eq. 3) to above-ground biomass BA,ts. We consider the proportion of mown MOWts (Eq. 37) or grazed biomass GRZts

(Eq. 38) on the above-ground biomass as the proportion of height lost, assuming an even distribution of biomass along

the height of the plant. Since leaves can die without reducing height, we assume that senescence has no effect on plant

height:485

Ht+1s =Hts ·
(
1+

Ats ·Gact,ts
BA,ts

−MOWts

BA,ts
− GRZts

BA,ts

)
(43)

2.3 Soil water dynamics

The change in the soil water content is influenced by multiple factors, including precipitation, evaporation, transpiration,

and drainage and surface run-off. The equations follow Moulin et al. (2021) that are based on Schapendonk et al. (1998).

The change in the soil water content Wt [mm] is described by490

Wt+1 =Wt+Pt−AETt−Rt (44)

where Pt is the precipitation [mm],AETt is the actual evapotranspiration [mm], andRt is the surface run-off and drainage

of water from the soil [mm].

How strongly the soil surface is covered by vegetation influence whether more evaporation or transpiration occurs. This

is modelled by the total leaf area index LAItot,t (Eqs. 9,10). If the soil is barely covered with vegetation, evaporation is495
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higher than transpiration. Conversely, if the soil is well covered with vegetation, transpiration is higher than evaporation.

Water can continue to evaporate from the soil as long as it contains water. Therefore, the potential evapotranspiration

PETt [mm], which is a forcing function influencing both evaporation and transpiration (see Table A3), is multiplied by the

fraction between the soil water content Wt and the water holding capacity WHC [mm] (Eq. 51) to obtain the evaporation

Et:500

Et =
Wt

WHC
·PETt ·

[
1−min

(
1,
LAItot,t

3

)]
(45)

On the other hand, plants can only transpire water that is available to them, so transpiration can only deplete the soil

water content to the permanent wilting point. Therefore, the soil water content is rescaled by the permanent wilting point

PWP [mm] (Eq. 52) and the water holding capacityWHC [mm] (Eq. 51) to a factor between zero and one that influences

the amount of transpiration TRt:505

TRt =max

(
0,

Wt−PWP

WHC−PWP

)
·PETt ·min

(
1,
LAItot,t

3

)
(46)

Additionally, in contrast to Moulin et al. (2021), the transpiration depends here on a factor of the community-weighted

mean specific leaf area SLAt [m2 · g−1]. It was shown that species reduce the specific leaf area under drought stress

(Wright et al., 1993; Liu and Stützel, 2004) most likely to reduce transpiration. Therefore, it is here assumed that thinner

leaves transpire more water. This relationship is modelled by the parameter αTR,sla [m2 · g−1] that is the community-510

weighted mean specific leaf area where the factor equals one and βTR,sla [−] that simulates how strongly the factor

deviates from one if the community-weighted mean specific leaf area is below or above αTR,sla.

The actual evapotranspiration AETt [mm] is the sum of the evaporation Et [mm] and the transpiration TRt [mm] but

cannot exceed the soil water content Wt [mm]:

AETt =min(Wt,Et+TRt) (47)515

and any excess water above the water holding capacity WHC [mm] (Eq. 51) is removed by surface run-off and drainage

Rt [mm]:

Rt =max(0mm,Wt+Pt−AETt−WHC) (48)

Water holding capacity and permanent wilting point are derived from soil properties. Gupta and Larson (1979) show

how the fraction of soil that can be filled with water F can be related to particle size distribution, organic matter content520

and bulk density for different matrix potentials. This fraction was calculated for a matrix potential of -7 kPa for the water

holding capacity (FWHC,) and for a matrix potential of -1500 kPa for the permanent wilting point (FPWP,). The respective

fraction was multiplied by the rooting depth to derive the water holding capacity and the permanent wilting point for the
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part of the soil that plants can reach with their roots:

FWHC = βSND,WHC ·SND+βSLT,WHC ·SLT+βCLY,WHC ·CLY+525

βOM,WHC ·OM+βBLK,WHC ·BLK (49)

FPWP = βSND,PWP ·SND+βSLT,PWP ·SLT+βCLY,PWP ·CLY+

βOM,PWP ·OM+βBLK,PWP ·BLK (50)

WHC = FWHC ·RD (51)

PWP = FPWP ·RD (52)530
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3 Calibration and validation of the model

We calibrated and evaluated the model performance independently using two datasets. Firstly, we used an experimental

dataset on the biomass production of a single species to compare intraannual observations and simulations (see Section

3.1). Secondly, we compared the observed and simulated interannual dynamics in terms of both the biomass production

and the plant functional composition in plant communities, using a dataset of real managed grasslands (see Section 3.2).535

3.1 FAO dataset - seasonal dynamics of productivity
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Figure 4. Time series from the independent validation experiments with the highest (FAO45) and the lowest (FAO55) mean absolute

error in predicting the above-ground dry biomass of the FAO dataset (panel A). Predictions from the mode of the posterior distribution

(maximum a posteriori estimate) and predictions from draws of the posterior distribution are shown to compare them with the measured

above-ground biomass. In addition, the mean absolute error between the predicted and observed biomass is shown separately for the

calibration (training set) and validation (testing set) experiments, both before and after calibration (panel B). The mean absolute error

is calculated for each observation and then averaged across each experiment. The improvement in prediction before calibration, based

on the mean error calculated with 50 draws from the prior distribution, is compared to the error after calibration, based on the mean

error calculated with 50 draws from the posterior distribution.

First, we used the dataset of the project "Predicting production from grassland" in the framework of an FAO Subnetwork

for lowland grassland, which was carried out from 1982 to 1986. The dataset was used to calibrate the LINGRA grassland

model (Schapendonk et al., 1998) and is described in detail in Bouman et al. (1996). The project consisted of several

sites across Europe in which the productivity of the grass Lolium perenne L. was measured weekly over one year. For540

some sites, experiments were repeated over several years. All experiments were fertilized and we only used the irrigated

experiments to evaluate whether our model can predict for one species the seasonal patterns under growth conditions

with high water and nutrient supply. No site-specific soil data was measured, nor is it required for the model simulation

without water and nutrient limitation. We used site-specific climate data that was supplied with the dataset. We used the

trait data for Lolium perenne that we prepared for the Biodiversity Exploratories dataset (for details see Appendix C). We545
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used initial values for Lolium perenne of 200 kg ·ha−1 and 250 kg ·ha−1 for above-ground and below-ground biomass,

respectively, as well as an initial height of 0.4 m. We selected the initial values so that the simulated above-ground biomass

is close to the first data point. The 26 experiments were split into nine experiments for calibration and 17 experiments for

validation (see Table A7). We calibrated the parameters for senescence (αSEN , ψSENmax, ϕSEN,ST1 , and ϕSEN,ST2 ),

seasonality in growth (ζSEAmin, ζSEAmax, ζSEA,ST1 , and ζSEA,ST2 ) and for the reduction factor of radiation use efficiency550

based on the community height (αRUE,cwmH ). All other parameters were kept constant (for their parameter values see

Table A4).

We applied the Haario-Bardenet Adaptive Markov Chain Monte Carlo method (Haario et al. 2001; Johnstone et al.

2016, as implemented in Clerx et al. 2019) for calibrating our parameters given the priors and the experimental data (for

technical details see Appendix E). We set moderately informative priors (for details see Table A6) that were based on the555

values used by Jouven et al. (2006) and Moulin et al. (2021). We used a likelihood function based on a normal distribution,

where the mean is given by the simulated above-ground biomass, the measured above-ground biomass is treated as the

data, and the variance is a parameter estimated during calibration. We calculated the total likelihood as the product of

the likelihoods over all time points and all nine experiments. During the calibration, we reset the simulated above-ground

biomass after evaluating the likelihood for one time point to the measured above-ground biomass (see Figure 5 step 3).560

This approach allowed us to assess how well the model can predict changes in biomass from one data point to the next,

given a set of parameters.

After the calibration, our model can reproduce the seasonal patterns for the species Lolium perenne for independent

validation sites across Europe satisfactory well (see Figure 4). The mean absolute error in above-ground biomass was

reduced from approximately 750 kg ·ha−1 of the prior to 500 kg ·ha−1 of the mode of the posterior (respectively the565

median of all validation experiments). The uncertainty in the posterior estimates of parameters was reduced greatly

compared to the prior (see Figures A1 and A2). Therefore, also the uncertainty in the prediction from the prior compared

to predictions from the posterior was lowered clearly (see Figure A3).

We conducted a local sensitivity analysis to identify the parameters to which the above-ground biomass of Lolium

perenne is most sensitive (see Table A12 for details). The analysis revealed that the most sensitive parameters were570

those relating to the processes of radiation use efficiency (γRUEmax, γRUE,k, γRAD,1 and αRUE,cwmH ), seasonal adjust-

ment for growth (ζSEAmin and ζSEAmax) and senescence (βSEN,sla and αSEN ), indicating that small variations in these

parameter values lead to substantial changes in the above-ground biomass of Lolium perenne.

3.2 Biodiversity Exploratories dataset - dynamics of community traits and biomass

Second, we used data from the Biodiversity Exploratories project (Fischer et al., 2010). It is an observational dataset575

of permanent grassland sites from three different regions in Germany, and we used the subset from 2006 to 2022.

Farmers documented their land use practices, and vegetation composition and above-ground biomass were documented

annually by researchers. We assessed whether our model could reproduce patterns in total biomass production and in

the development of the community trait distribution. We used site-specific climate, management and soil data (for details
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Figure 5. Calibration workflow. For the Biodiversity Exploratories dataset, we reduced the number of species from 70 to 25 to lower

the computation time in the calibration. We created virtual observations for the 25 species by finding the biomass proportion of the 25

species so that the community trait distribution closely resembles the trait distribution of the community with 70 species (step 1). The

biomass proportion of the 25 species can be multiplied with the measured total biomass to create virtual observations for our modelled

species (step 2). For the calibration of the global model parameters, the model can be used to simulate a trajectory for one parameter

combination. The simulated trajectory is compared with the virtual observation to calculate the likelihood and then reset to the virtual

observation. Due to the resetting, we can evaluate how good is the model in predicting from one observation to another. We evaluate

the likelihood starting from the second data point to minimise the influence of the initial values, which were not calibrated (step 3). The

resetting is not used for the evaluation of the model after the calibration. For the calibration with the FAO dataset, only one species was

grown and is simulated and therefore we only used step 3 for the calibration.

on data preparation and references see Appendix C). In total, 150 sites are included the project. We selected those that580

were mainly used as meadows (mown) or a mixture of pasture (grazed) and meadow and excluded those that were used

as pasture only, resulting in 92 sites over all three regions. We decided to exclude the pasture sites because farmers

often decided to provide supplementary feeding on these sites and the information on supplementary feeding is not

detailed enough to be included in the simulation model. The 82 sites were split into 12 sites for calibration and 70 sites

for validation (see Tables A9, A10, and A11). For calibration, we selected four sites from each of the three regions, some585

of which were mown only, while others were grazed and mown. We calibrated parameters of the water growth reducers

(αWAT,rsa,05 and δWAT,rsa), nutrient growth reducers (αNUT,rsa,05, αNUT,amc,05, δNUT,rsa and δNUT,amc), investment

into roots (κROOT,rsa and κROOT,amc) and the reference traits that influence all just mentioned processes (ϕTRSA and

ϕTAMC ). All other parameters were kept constant and are based on literature, based on the calibration with the FAO

dataset, or are set manually by comparing simulated trajectories with measured data of the calibration sites.590

We compiled trait data for 70 plant species that occurred on the Biodiversity Exploratories sites partly from measure-

ments from the project and partly from trait databases (for details see Appendix C). For the calibration, we wanted to lower
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Figure 6. Time series of the community weighted mean (CWM) trait values for the independent validation sites with the highest

(AEG31) and the lowest (AEG41) mean absolute error for the distance between simulated and observationally derived community

trait distribution (panel A). Predictions from the mode of the posterior (maximum a posteriori estimate) and from draws from the

posterior distribution are shown to compare them with the observationally derived community weighted mean traits. In addition, the

mean absolute error between predicted and observationally derived community trait distribution is shown separately for the calibration

(training set) and validation (testing set) sites, both before and after calibration (panel B). The mean absolute error is calculated for each

observation and then averaged across each site. The predictive performance before calibration, based on the mean error calculated

with 50 draws from the prior distribution, is compared to the error after calibration, based on the mean error calculated with 50 draws

from the posterior distribution.
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Figure 7. Time series from the independent validation sites with the highest (SEG04) and the lowest (AEG45) mean absolute error in

predicting the above-ground dry biomass of the Biodiversity Exploratories dataset (panel A). Predictions from the mode of the posterior

distribution (maximum a posteriori estimate) and draws from the posterior distribution are shown to compare them with the measured

above-ground biomass. In addition, the mean absolute error between predicted biomass and measured biomass is shown separately

for the calibration (training set) and validation (testing test) sites, both before and after calibration (panel B). The mean absolute error

is calculated for each observation and then averaged across each site. The predictive performance before calibration, based on the

mean error calculated with 50 draws from the prior distribution, is compared to the error after calibration, based on the mean error

calculated with 50 draws from the posterior distribution.

the computation time. That is why we reduced the number of plant species to 25 by applying hierarchical clustering and

calculating the mean trait values for the 25 groups (for details see Appendix C1). Lowering the number of species did not

change the general patterns in community dynamics (see Figure A4). We derived virtual observations for these 25 virtual595

plant species by finding a community trait distribution with the 25 virtual species that closely ressembles the community

trait distribution with the 70 species by minimizing the earth mover’s distance (also called Wasserstein distance, Rubner

et al. 2000) between these two community trait distributions (for details about distance between community trait distribu-

tions see Appendix D). Thereby, we optimized the relative abundance of the 25 virtual species (see step 1 in Figure 5)

and calculated the biomass of each virtual species by multiplying the relative abundance with the total biomass (see step600

2 in Figure 5). These virtual observations help to reset the biomass of the simulated species after the evaluation of the

likelihood for one time point (see step 3 in Figure 5). We used a likelihood function based on a normal distribution with

zero mean, where the distance between the simulated and the observationally derived community trait distribution (our
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virtual observations), as calculated by the earth mover’s distance, is treated as the data, and the variance is a parameter

estimated during calibration. We did not use the total above-ground biomass in the calibration, but evaluated it after the605

calibration. We used the same Markov Chain Monte Carlo method as for the calibration with FAO dataset to derive the

posterior distribution for the parameters.

Each species is initialised with the same above- and below-ground biomass (200 kg ·ha−1) and a height equal to half

of their maximum height. This sets the total biomass at a rather high initial value (5000 kg ·ha−1 of above-ground biomass

in winter; see Figure 7). Environmental conditions, management practices and biotic interactions with other plant species610

lead to the site-specific community assembly. While the biomass of most simulated species decreases rapidly due to their

functional traits, the biomass of a few species increases over time.

The calibration resulted in a slight decrease in the mean absolute error for predicting the community trait distribution

(see Figure 6) and greatly reduced the mean absolute error for predicting the above-ground biomass (see Figure 7). The

time series of the community weighted mean traits for the independent validation sites with the lowest distance between615

predicted and observationally derived community trait distribution (AEG41 in Figure 6) show that the general trends are

captured well for all traits except the root surface area per below-ground biomass. For the site with highest error in

predicting the community trait distribution (AEG31 in Figure 6), the trend for for most community weighted mean traits are

not well captured. The development of the whole community trait distribution over time for the same sites show that the

simulated functional diversity is lower than the observed functional diversity (variance in the community trait distributions,620

see Figures A8, A9 and A10). For most data points, the simulated and measured total above-ground biomass at the

independent validation sites with the highest and lowest predictive error correspond closely (see Figure 7).

We applied a local sensitivity analysis and calculated the sensitivity of the total above-ground biomass to small changes

of parameter values (for details see Table A13). We identified that the total above-ground biomass is most sensitive to

changes in parameters dealing with senescence (ϕsla, αSEN and βSEN,sla), the calculation of the permanent wilting point625

and the water holding capacity (βCLY,PWP , βSLT,WHC and βCLY,WHC ), radiation use efficiency (γRUEmax, γRUE,k and

αRUE,cwmH ) and seasonal growth adjustment (ζSEAmax and ζSEAmin).
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4 Discussion

4.1 Validation of GrasslandTraitSim.jl

The validation of the GrasslandTraitSim.jl model demonstrated its ability to relate the morphological traits of plant species630

to their species-specific physiological and demographic rates. Changes in these rates lead to changes in species biomass

and, consequently, changes in plant community composition. We proved that the model could satisfactorily reconstruct

seasonal biomass production for one species, biomass production of plant communities, and with minor limitations, func-

tional community composition for various grassland sites.

One of the key advantages of our modelling approach is that we can compare the simulated morphological trait distri-635

butions with measured morphological trait distributions at the community level. In contrast to previous grassland models

(e.g., DynaGraM; Moulin et al. 2021 or GRASSMIND; Taubert et al. 2012) that require demographic or physiological rates

as species-specific parameters, our model only requires commonly measured morphological traits (compare Figure 2). In

this way, our model can be applied to a much larger set of species and communities for which such trait data are available

from on-site measurements or databases.640

In our model, we tried to keep a balance between a model that can reproduce the basic patterns in biomass production

and functional community composition, but does not have too many global parameters, so that it is possible to calibrate

all parameters with datasets that are readily available. However, already with the complexity that we presented here, it

was not possible to calibrate all global parameters by the Markov Chain Monte Carlo method at once. We had to fix some

parameter values beforehand manually, and we had to set informative priors on the parameters so that all chains from645

random starting positions of the prior distribution converged to the posterior distribution within a reasonable number of

iterations.

In general, it was much easier to calibrate the model parameters with the FAO dataset, because biomass was measured

weekly rather than annually, as was the case with the Biodiversity Exploratories’ observations of biomass and composi-

tion. Annual observations are not optimal because many different trajectories, simulated by sets of parameter values, can650

lead to the same simulated point after one year. This highlights the need for datasets with several measurements per year

for the calibration of process-based grassland models (Taubert et al., 2020). These detailed datasets could also reduce

the widespread problem of parameter identifiability in the calibration of ecosystem models (Luo et al., 2009).

Another limitation of the Biodiversity Exploratories dataset is that we used species mean traits derived from the project

or trait databases to calculate the community trait distribution (see Appendix C). However, using species mean traits re-655

sults in the loss of intra-specific trait variability from the observations. We expect the realised community trait distributions

to vary more between sites than is reflected in the dataset (Violle et al., 2012; Siefert et al., 2015).

We included grazing in our model because grazing is an important land use factor in semi-natural grasslands. Some

of the grassland models did not take this factor into account (see Table 1 or A2). However, in this study, we were not able

to fully calibrate and evaluate grazing in our model, as the sites of the Biodiversity Exploratories lack accurate data to660

quantify supplementary feeding. Supplementary feeding is an important factor, for example, on year-round grazing sites.
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For the independent validation site with the highest error of the FAO dataset (FAO45 in Spain, see Figure 4), our model

predicts too high above-ground biomass in spring. Thereby, we see that the model is not flexible enough to simulate

production in a very wide range of regions. Our step function for seasonal growth adjustment assumes that the growth

increases in spring after 200 °C have been accumulated (see Eq. 32). This might be a reasonable assumption for Lolium665

perenne in the Netherlands, but not for sites in Spain. The strong growth starts too early for the site in Spain. For the

calibration of the LINGRA model with the same dataset, it was assumed that species-specific parameters are different

for the northern and southern sites (Bouman et al., 1996). We did not calibrate the model here for spatial subsets of the

sites, as we wanted to analyse whether our model is in general applicable to a variety of sites.

4.2 Discussion of the concept670

We chose the morphological functional traits that represent main trade-offs in plant physiology. Rather than reflecting

one process in detail with many traits (e.g., more traits dealing with water stress, such as stomatal conductance and

rooting depth), we aimed to represent the following main trade-offs of plants: (1) The slow-fast continuum of the leaf

economic spectrum states that plants with thinner leaves have a higher light use efficiency per unit of biomass, but also

a higher senescence rates (as reflected by specific leaf area; Reich et al. 1992; Wright et al. 2004). (2) Taller plant675

species can overtop other plant species and are therefore less affected by shading. However, they are more susceptible

to mowing and grazing (as reflected by maximum plant height; Díaz et al. 2007; Klimešová et al. 2008). (3) Investing in

roots and mycorrhizae enhances nutrient and water uptake, but this comes at the cost of maintaining fine roots and the

collaboration with mycorrhiza (as reflected by above-ground biomass per plant biomass, root surface per below-ground

biomass, arbuscular mycorrhizal colonisation rate; Reich 2014; Prieto et al. 2015; Bergmann et al. 2020).680

To some extent, our model can simulate intra-specific trait variability based on the functional representation rather

than species identity. In our model, two simulated species can represent one species in the real world that exhibits

different traits on different sites. However, this approach is not applicable to plant species whose traits change dynamically

depending on variable environmental conditions. Furthermore, our model does not reflect changes in traits during the life

stages of plant species.685

The number of coexisting species (e.g., with biomass > 2 %) is rather low, with three to five species accounting for

most of the biomass in most scenario analyses. This is a common challenge in grassland models. For example, in a

model comparison study with the GRASSMIND and LPJmL models, it was noted that in a two-species simulation always

one species always accounted for most of the biomass (Wirth et al., 2021). We noticed that by including a density-

dependent senescence rate (not shown in the model equations above), the simulated functional diversity is increased,690

and the distance between modelled and observed community trait distributions can be lowered. A density-dependent

senescence rate can be explained, for example, by negative plant-soil feedbacks (Bonanomi et al., 2005; Liu et al.,

2022; Goossens et al., 2023). This shows the potential to explore in future studies how the incorporation of coexistence

mechanisms can lead to more realistic predictions of functional community composition.
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We argue that our model is well suited for analysing the effects of management (grazing, mowing and fertilization), of695

edaphic factors (soil nitrogen, permanent wilting point and water holding capacity), and of climatic factors (temperature,

radiation, potential evapotranspiration and precipitation) on the productivity and the functional composition of diverse

plant communities of temperate semi-natural grasslands. We envisage the model as a useful tool for conducting scenario

analyses (e.g., what would happen if the input X were to change, and why?), rather than as a model with superior

predictive performance compared to conventional statistical models. For example, the influence of management type and700

intensity on achieving a balance between creating highly productive grasslands and maintaining plant diversity could

be analysed. Furthermore, the influence of the initial species composition on the productivity under fluctuating climate

conditions (e.g., years with drought) could be studied by answering the question whether a more diverse community can

buffer extreme climatic events. Moreover, we consider the potential application of including or excluding certain processes

(e.g., a specific transfer function, which links traits to demographic rates) and analyse whether the agreement between705

simulations and measured data improves.
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5 Conclusions

We presented GrasslandTraitSim.jl, a process-based model that can be used to simulate the effects of land use and

climate change on the plant functional composition and biomass production of permanent semi-natural grasslands. We

have extended the approach of Chalmandrier et al. (2021) by linking measurements of morphological plant traits with710

demographic and physiological species-specific processes. Our model uses only morphological traits as species-specific

inputs to simulate the biomass of many plant species over time. Therefore, the study is a step towards modelling highly

diverse plant communities in grasslands. Further simulation studies, for example, the analysis of different land use sce-

narios, are required to fully explore the potential of the GrasslandTraitSim.jl model. We hope that the accompanying

documentation, tutorials, and open-source code will encourage collaboration and discussion on this topic.715
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Appendix A: Derivation of the species-specific water and nutrient growth reducers

The response curves (growth reducers) REDts for different nutrient and water availabilities, denoted as Rt, are imple-

mented via logistic equations with a minimum of zero (no growth is possible) and a maximum of one (no growth reduction).

While the species-specific part of the response curves is implemented by different inflection points x0,RED,ts, the slope

βRED is the same for all species:720

REDts =
1

1+exp(−βRED · (Rt−x0,RED,ts))
(A1)

We then used another logistic equation that relates the trait values to the inflection point of the response curve. We

wanted to control how much the response curves should differ when the trait values differ from x0,prep,s, this is imple-

mented with the parameter δRED. The equation could be written as:

x0,RED,ts = x0,RED,min +
x0,RED,max −x0,RED,min

1+ exp(−δRED · (traitts−x0,prep,s))
(A2)725

However, this equations and their parameter x0,prep,s, x0,RED,min, and x0,RED,max are hard to understand and to inter-

pret, therefore we reformulated the equation. Instead of calculating the inflection point x0,RED,ts directly, we calculated

the growth reduction at 0.5 of the maximal resource availability:

RED05,ts =
1

1+exp(−δRED · (traitts−x0,RED,05))
(A3)

This has the advantage that we have natural boundaries ∈ [0,1], because the growth reduction cannot be larger than one730

(REDts = 0) or lower than zero (REDts = 1). We introduce one parameter αRED,05 that is the growth reducer for the

mean trait ϕtrait at half of the maximal resource availability:

αRED,05 =
1

1+exp(−δRED · (ϕtrait−x0,R,05))
(A4)

and rearranged the equation to:

x0,R,05 =
1

δRED
· log

(
1−αRED,05
αRED,05

)
+ϕtrait (A5)735

This leads to an equation that we can use to calculate the growth reducer for all trait values at half of the maximal resource

availability:

RED05,ts =
1

1+exp
(
−δRED ·

(
traitts−

(
1

δRED
· log

(
1−αRED,05

αRED,05

)
+ϕtrait

))) (A6)

Now, we need again the full equation to calculate the growth reducer for any resource availability. We use the Equation

A1 and solve for x0,RED,ts with REDts = 0.5:740

RED05,ts =
1

1+exp(−βRED · (0.5−x0,RED,ts))
(A7)
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to get the inflection point x0,RED,ts:

x0,RED,ts =
1

βR
· log

(
1−RED05,ts

RED05,ts

)
+0.5 (A8)

Thus, the full equation to calculate the growth reducer for any resource availability is:

REDts =
1

1+exp
(
−βRED ·

(
Rt−

(
1

βRED
· log

(
1−RED05,ts

RED05,ts

)
+0.5

))) (A9)745

and with everything combined and simplified:

REDts =
1

1+exp
(
−βRED ·

(
Rt−

[
1

βRED
·
(
−δRED ·

(
traitts−

(
1

δRED
· log

(
1−αRED,05

αRED,05

)
+ϕtrait

)))
+0.5

])) (A10)

Note the species-specific inflection point x0,RED,ts in square brackets.
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Appendix B: Technical details of the GrasslandTraitSim.jl model

The model is implemented as a Julia package and can be used with the Julia programming language (Bezanson et al.,750

2017). It can be used on all major operating systems (Linux, MacOS, Windows). The model can be run on computers with

low hardware requirements. For example, a 10-year simulation involving 70 species typically takes less than half a second

to run on a standard personal computer. A graphical user interface allows you to manually change parameter values and

see the influence of each parameter on the simulation results (explained in more detail in the online documentation, see

data accessibility statement). The model can be run on headless systems, but then the graphical user interface is not755

available. Throughout the model, units are used directly in the programming code using Unitful.jl, making the model easier

to understand and debug. The outputs of the model have labelled axes using DimensionalData.jl, making it easy to know

which is the space, time or species axis. The package has extensive online documentation with all the equations, tutorials

on how to set up the input data and how to analyse the output (see data accessibility statement). For each equation there

are interactive plots to visualise the relationship between the variables and the influence of the parameters. Flowcharts are760

also available online to give a quick overview of the sub-processes. The model version described here can be installed in

Julia using import Pkg; Pkg.add("GrasslandTraitSim", version = "1.0.0"). The newest version can

be installed using the same command without the version argument. All dependencies will be installed with this command.

The model is open-source and licensed under the GNU GPLv3. Contributions are welcome and can be made via GitHub.

The development of the model is hosted at https://github.com/felixnoessler/GrasslandTraitSim.jl and new versions will be765

published in the General Julia package registry.
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Appendix C: Detailed description and data preparation for the Biodiversity Exploratories dataset

We compiled input data for the model from different sources. Management data was used directly from the Biodiversity

Exploratories project (timing and intensity of grazing and timing and height of mowing events and total fertilization of

nitrogen per year, Vogt et al. 2024). The exact dates of grazing were not available, only the type of grazing, the number770

of days and the start and end month of a grazing period. We assumed different numbers of consecutive grazing days (2

for rotational grazing type I - "Portionsweide", rotational grazing, 5 for rotational grazing type II - "Umtriebsweide" and all

days for permanent grazing) and distributed them equally over the whole grazing period. Potential evapotranspiration was

used from AMBAV, an agro-meteorological model that outputs "potential evaporation over grass" from weather stations

are in the three regions (DWD Climate Data Center, 2019) and is therefore the same for all sites of one region. Air775

temperature and precipitation were obtained for each site from the Biodiversity Exploraties project (Wöllauer et al., 2023).

Photosynthetic activate radiation (PAR) was download with a three hours resolution from Wang (2021), the daily sum of

PAR was obtained by calculating the integral of a quadratic regression to the PAR values. We calculated the PAR values

per region. We created region-specific PAR inputs due to the coarse resolution of the PAR data. Soil texture (Schöning

et al., 2021c), rooting depth (Herold et al., 2021), bulk density (Schöning et al., 2021d) and organic matter content780

(Schöning et al., 2021b) were used from soil sampling campaigns of the Biodiversity Exploratories project. The total

nitrogen concentration was aggregated from four years to get a mean overall total nitrogen concentration (Schöning et al.,

2021b, e, a; Schöning, 2023). The trait data was compiled from species that are present in grasslands of the Biodiversity

Exploratories project. Leaf area and leaf dry weight was sampled from individuals from sites of the Exploratories (Prati

et al., 2021) to calculate the specific leaf area. The root surface area per below-ground biomass, arbuscular mycorrhizal785

colonisation rate and above-ground biomass per total biomass were obtained from individuals that were grown in a

greenhouse experiment on sand (Bergmann and Rillig, 2022). The maximum height was obtained from Jäger et al.

(2017) and the leaf nitrogen per leaf mass from the TRY database (Kattge et al. 2020, mainly from Gubsch et al. 2010;

Pakeman et al. 2008; Schroeder-Georgi et al. 2016). We decided to set leaf biomass per above-ground biomass to 80

% for all species, as values for the trait leaf biomass per plant biomass were not available for many species. For 70790

species we had values for all the traits. We used a reduced set of 25 species as input for the simulation (see Appendix

C1). During initialisation, the initial above-ground and below-ground biomass of 5000 kg ·ha−1 was evenly distributed

across all species. The initial height was set to half of the maximum height of each plant species. The initial soil water

content was set to 180 mm, which assumes no drought stress in the beginning of the simulation. For the calibration and

validation data we used the cut above-ground biomass and the cover to compare observed and simulated community795

trait distributions. The biomass was cut once per year on every site at 4 cm height (Hinderling et al., 2024). Each year,

the cover of plant species was estimated on an area of 16 m2 (Hinderling and Keller, 2023). Whereas we used input data

from 2006 to 2022, we only used calibration data from 2010 to 2022 to allow for an initialisation phase of the grassland

model.
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C1 Reducing the number of species from 70 to 25 for the Biodiversity Exploratories dataset800

For calibration, we reduced the number of simulated species from 70 to 25. We calculated new trait values for the 25

species by forming groups of species with similar trait values and calculating the mean trait values within each of the 25

groups. To do this, we first standardised the trait values by min-max normalisation to a range of [0, 1] to give each trait

value equal weight in the distance calculation. We then calculated the Manhattan distance between all 70 species. We

applied hierarchical clustering ("hclust" function from "stats" package, R Core Team 2024) and formed 25 groups and805

calculated the mean of the non-standardised trait values to obtain the trait values for 25 virtual species. A comparison of

the simulated community dynamics with 70 and 25 species showed that lowering the number of species did not change

the general community patterns (see Figure A4).
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Appendix D: Calculating the distance between two community trait distributions

The earth mover’s distance, which is also called Wasserstein distance, can be used to calculate the distance between810

two discrete distributions (Rubner et al. 2000; Villani 2009; Bernton et al. 2019, for applications in movement ecology

see Potts et al. 2014; Kranstauber et al. 2017). The cost is computed as the product of the amount of probability

mass transported and the distance it is moved. We used the implementation in the Python package "scipy" ("wasser-

stein_distance_nd" function, Virtanen et al. 2020). With this function the trait values of both distributions are given as

"u_values" and "v_values" (matrices, each row with trait values for one species) and the respective cover or biomass pro-815

portions are given as "u_weights" and "v_weights". Always, when we write in the text, that we calculate the earth mover’s

distance, we standardise the trait value by z-score normalisation ((x− x̄)/std(x)) to give all traits an equal weight in the

calculation.
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Appendix E: Technical details on running the MCMC routine

For both datasets, we used the Haario-Bardenet Markov Chain Monte Carlo with the Python software package PINTS820

(Clerx et al., 2019). We called our Julia package GrasslandTraitSim.jl from Python. We ran four independent chains for

75 thousand iterations (150 thousand for FAO dataset) and discarded the first half of the iterations as warm-up. The first

five thousand iterations were used as an adaption free initial phase. We checked that all four chains converged to the

same posterior region by visually examining the trace plots (see Figures A2 and A7) and by checking that all rhat values

were less than 1.01 (not shown, Vehtari et al. 2021). We compared how much the posterior shifted in comparison to the825

prior densities and interpreted it as how much uncertainty was reduced. We also compared how much uncertainty was

reduced while simulating trajectories with GrasslandTraitSim.jl from the prior and from the posterior (comparing the prior

predictive with the posterior predictive distribution).

For both datasets, we used the one step ahead prediction method (predict until next datapoint, evaluate prediction,

reset state variables to data point and repeat procedure). By using this method and not explicitly estimating the hidden830

state of the above-ground biomass (e.g., by a state space model), we ignored the observational error and only considered

the process error. We assumed that the observational error is small and decided to keep the calibration method simpler

by not estimating the hidden states.
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Figure A1. Pair plot of the posterior densities for the calibration with the FAO dataset. In the right upper plots, the marginal posterior

densities (histograms) are shown together with the prior densities (red lines). The first half of the iterations were discarded as warm-up.
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Figure A2. Trace plot, prior and posterior densities for the calibration with the FAO dataset. Different colours represent the different

MCMC chains. In the density plot, the prior density (red line) and the posterior densities are visible. The first half of the iterations were

discarded as warm-up.
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Figure A3. Prior and posterior predictive checks for the FAO dataset. Simulations with parameters drawn from the prior distribution or

from the posterior distribution (grey lines) are compared to measured above-ground biomass (blue dots).
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Figure A4. Comparison of community dynamics (above-ground biomass and community weighted mean traits) with 70 species and

with the reduced set of 25 species. The trait values of the 25 species were derived by calculating mean trait values of 25 groups that

were built from the dataset with the trait values of all 70 species (see Appendix C1).
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Figure A5. Prior and posterior predictive checks for two sites of the Biodiversity Exploratories dataset. The predicted above-ground

biomass, based on simulations with parameters drawn from either the prior or posterior distributions, is compared to the measured

above-ground biomass.
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Figure A6. Pair plot of the posterior densities for the calibration with the Biodiversity Exploratories dataset. In the right upper plots,

the marginal posterior densities (histograms) are shown together with the prior densities (red lines). The first half of the iterations were

discarded as warm-up.
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Figure A7. Trace plot, prior and posterior densities for the calibration with the Biodiversity Exploratories dataset. Different colours

represent the different MCMC chains. In the density plot, the prior density (red line) and the posterior densities are visible. The first half

of the iterations were discarded as warm-up.
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Figure A8. Development of the community trait distribution over time for validation sites with the highest (SEG20) and the lowest

(HEG47) mean absolute error for the distance between simulated and observed community trait distribution (for the selection, see

Figure 6). The simulated (red) and observed (grey) densities are calculated by kernel density estimation by including the biomass

proportion of the species as weights. The trait values of the species are constant (black horizontal lines on the left). To analyse

correlations between traits, the observed and simulated trait distributions are shown in a pair plot for 2018 in Figure A9 and A10.

48



Figure A9. Simulated (red) and observationally derived (black) community trait distribution for the grassland site AEG31 of the

Schwäbische Alb region (Germany) in 2018. The AEG31 site has the highest distance between the simulated and observationally

derived community trait distribution over all years (see Figure 6).
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Figure A10. Simulated (red) and observationally derived (black) community trait distribution for the grassland site AEG41 of the

Schwäbische Alb region (Germany) in 2018. The AEG41 site has the lowest distance between the simulated and observationally

derived community trait distribution over all years (see Figure 6).
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Table A3. Input variables of the GrasslandTraitSim.jl model. The dimensions of the variables are given in the subscript of the symbols:

t per day and s per species.

Symbol Variable description Unit

Climate

PARt Photosynthetic active radiation MJ · ha−1

Tt Mean air temperature ◦C

Pt Precipitation mm

PETt Potential evapotranspiration mm

Management

CUTt Cutting height for mowing m or NaN

LDt Livestock density ha−1 or NaN

F Fertilization (may vary from year to year) kgN · ha−1 · yr−1

Soil

SND Sand content (proportion ∈ [0,1]) −

SLT Silt content (proportion ∈ [0,1]) −

CLY Clay content (proportion ∈ [0,1]) −

OM Organic matter content (proportion ∈ [0,1]) −

BLK Bulk density g · cm−3

RD Rooting depth of plants mm

N Total nitrogen in the soil gN · kg−1

Morphological plant traits

maxheights Maximum plant height m

slas Specific leaf area m2 · kg−1

lncs Leaf nitrogen content per leaf mass mg · g−1

rsas Root surface area per below-ground biomass m2 · g−1

amcs Arbuscular mycorrhizal colonisation rate −

abps Above-ground biomass per total biomass −

lbps Leaf biomass per above-ground biomass −
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Table A4. Parameters of the model and the references for the parameter values. In the reference column we denote whether a

parameter is calibrated with the Biodiversity Exploratories (BE) or the FAO dataset, whether the parameter is set manually by comparing

time series with data or if the parameter value is derived from literature. For the parameters calibrated using the FAO dataset, we set

prior distributions based on the literature, as shown in Table A6.

Symbol Parameter Value Unit Reference

Reference traits

ϕTRSA Reference root surface area per total biomass,

used in nutrient stress function and maintenance

costs for roots function

≈ 0.023 m2 · g−1 calibrated with BE dataset

ϕTAMC Reference arbuscular mycorrhiza colonisation rate

per total biomass, used in nutrient stress function

and maintenance costs for mycorrhizae function

≈ 0.11 − calibrated with BE dataset

ϕsla Reference specific leaf area, used in senescence

function

0.012 m2 · g−1 manually adjusted for BE

dataset, close to community

mean

Light interception and competition

γRUEmax Maximum radiation use efficiency 0.003 kg ·MJ−1 Schapendonk et al. (1998)

γRUE,k Light extinction coefficient 0.6 − Schapendonk et al. (1998)

αRUE,cwmH Reduction factor of radiation use efficiency at a

height of 0.2 m ∈ [0,1]

≈ 0.989 − calibrated with FAO dataset

Water stress

αWAT,rsa,05 Water stress growth reduction factor for species

with mean trait: TRSA= ϕTRSA, when the plant

available water equals: Wp,t = 0.5

≈ 0.41 − calibrated with BE dataset

βWAT,rsa Slope of the logistic function that relates the plant

available water to the water stress growth reduction

factor

7.5 − manually adjusted for BE

dataset

δWAT,rsa Controls how strongly species differ in their water

stress growth reduction from the mean response

≈ 4.1 g ·m−2 calibrated with BE dataset

Nutrient stress

ωNUT,F Controls the influence of the fertilization rate on the

nutrient index

0.4 kgN−1·

ha−1 · yr

manually adjusted for BE

dataset

ωNUT,N Controls the influence of the total soil nitrogen on

the nutrient index

2 gN−1 · kg manually adjusted for BE

dataset

835
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Symbol Parameter Value Unit Reference

αNUT,TSB Reference value, if the sum of the product of trait

similarity and biomass of all species equals:∑
TS ·B < 1,

∑
TS ·B = 1,

∑
TS ·B > 1 the

nutrient adjustment factor NUTadj,ts is higher than

one, one and lower than one, respectively

5000 kg · ha−1 manually adjusted for the

BE dataset

αNUT,maxadj Maximum of the nutrient adjustment factor 2 − manually adjusted for BE

dataset

βNUT,TS Scaling factor for the trait similarity matrix 2 − manually adjusted for BE

dataset

αNUT,amc,05 Nutrient stress based on arbuscular mycorrhiza

colonisation growth reduction factor for species

with mean trait: TAMC = ϕTAMC , when the plant

available nutrients equal: Np,ts = 0.5

≈ 0.79 − calibrated with BE dataset

αNUT,rsa,05 Nutrient stress based on root surface area growth

reduction factor for species with mean trait:

TRSA= ϕTRSA, when the plant available

nutrients equal: Np,ts = 0.5

≈ 0.76 − calibrated with BE dataset

βNUT,amc Slope of the logistic function that relates the plant

available nutrients to the nutrient stress growth

reduction factor based on arbuscular mycorrhiza

colonisation

7.5 − manually adjusted for BE

dataset

βNUT,rsa Slope of the logistic function that relates the plant

available nutrients to the nutrient stress growth

reduction factor based on root surface area

7.5 − manually adjusted for BE

dataset

δNUT,amc Controls how strongly species differ in their

nutrients stress growth reduction based on

arbuscular mycorrhiza colonisation from the mean

response

≈ 6.1 − calibrated with BE dataset

δNUT,rsa Controls how strongly species differ in their nutrient

stress growth reduction based on root surface area

from the mean response

≈ 19.2 g ·m−2 calibrated with BE dataset

Maintenance costs for roots and mycorrhizae

κROOT,amc Maximum growth reduction due to maintenance

costs for mycorrhizae based on arbuscular

mycorrhiza colonisation rate

≈ 0.28 − calibrated with BE dataset
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Symbol Parameter Value Unit Reference

κROOT,rsa Maximum growth reduction due to maintenance

costs for fine roots based on root surface area

≈ 0.07 − calibrated with BE dataset

Environmental and seasonal growth adjustment

γRAD,1 Controls the steepness of the linear decrease in

radiation use efficiency for high PARt values

4.45 · 10−6 MJ−1 · ha Schapendonk et al. (1998)

γRAD,2 Threshold value of PARt from which starts a

linear decrease in radiation use efficiency

5 · 104 MJ · ha−1 Schapendonk et al. (1998)

ωTEMP,T1 Minimum temperature for growth 4 ◦C Jouven et al. (2006)

ωTEMP,T2 Lower limit of optimum temperature for growth 10 ◦C Schapendonk et al. (1998)

ωTEMP,T3 Upper limit of optimum temperature for growth 20 ◦C Jouven et al. (2006)

ωTEMP,T4 Maximum temperature for growth 35 ◦C Moulin et al. (2021)

ζSEA,ST1 Threshold of the cumulative temperature since the

beginning of the current year, the seasonality factor

starts to decrease from ζSEAmax to ζSEAmin

above ζSEA,ST1 − 100 ◦C

≈ 400 ◦C calibrated with FAO dataset

ζSEA,ST2 Threshold of the cumulative temperature since the

beginning of the current year, above which the

seasonality factor is set to ζSEAmin

≈ 1460 ◦C calibrated with FAO dataset

ζSEAmin Minimum value of the seasonal growth effect ≈ 0.84 − calibrated with FAO dataset

ζSEAmax Maximum value of the seasonal growth effect ≈ 2.16 − calibrated with FAO dataset

Senescence

αSEN Basic senescence rate ≈ 0.012 month−1 calibrated with FAO dataset

βSEN,sla Controls the influence of the specific leaf area on

the senescence rate

2.5 − manually adjusted for BE

dataset

ψSEN,ST1 Threshold of the cumulative temperature since the

beginning of the current year above which the

senescence begins to increase

≈ 1731 ◦C calibrated with FAO dataset

ψSEN,ST2 Threshold of the cumulative temperature since the

beginning of the current year above which the

senescence reaches the maximum senescence

rate ψSEN max

≈ 2933 ◦C calibrated with FAO dataset

ψSEN max Maximum senescence rate ≈ 1.77 − calibrated with FAO dataset

Management

βGRZ,lnc Controls the influence of leaf nitrogen per leaf

mass on grazer preference

3 − manually adjusted for BE

dataset
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Symbol Parameter Value Unit Reference

βGRZ,H Controls the influence of height on grazer

preference

1 − manually adjusted for BE

dataset

ηGRZ Scaling factor that controls at which biomass

density additional feed is supplied by farmers, fixed

for calibration

2 − manually adjusted for BE

dataset

κGRZ Consumption of dry biomass per livestock and day 22 kg · ha−1 Gillet (2008)

ϵGRZ,minH Minimum height that is reachable by grazers 0.05 m cf. Hirata et al. (2010)

Water dynamics

βSND,WHC ,

βSLT,WHC ,

βCLY,WHC ,

βOM,WHC ,

βBLK,WHC

Slope parameter relating the sand, silt, clay,

organic matter content and the bulk density to the

soil water content at the water holding capacity

0.5678,

0.9228,

0.9135,

0.6103,

−0.2696

−,

−,

−,

−,

cm3 · g−1

Gupta and Larson (1979) for

all five parameter values

βSND,PWP ,

βSLT,PWP ,

βCLY,PWP ,

βOM,PWP ,

βBLK,PWP

Slope parameter relating the sand, silt, clay,

organic matter content and the bulk density to the

soil water content at the permanent wilting point

−0.0059,

0.1142,

0.5766,

0.2228,

0.02671

−,

−,

−,

−,

cm3 · g−1

Gupta and Larson (1979) for

all five parameter values
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Table A5. Overview of the model equations and their references. New means that the equations are newly composed for the grassland

model and were not adopted from other grassland models.

Eq. Topic References

Main biomass dynamic

1 main biomass dynamic similar to Schapendonk et al. (1998); Moulin et al.

(2021)

2 ratio between above-ground and below-ground biomass new

3 change in above-ground biomass new

4 change in below-ground biomass new

5 actual growth similar to Schapendonk et al. (1998); Moulin et al.

(2021)

Light interception and competition

6 potential growth Eq. (1) of Lacasa et al. (2021), Monsi and Saeki

(2005)

7 fraction of the radiation that is intercepted for Beer-Lambert equation see Monsi and Saeki

(2005); Lacasa et al. (2021), added the influence of

the community height

8 community-weighted mean height general equation

9 total leaf area index general equation

10 leaf area index Watson (1947)

11 light interception in vertical layers of the sward similar to Taubert et al. (2012)

12 vertical layers method for light competition similar to Taubert et al. (2012)

General form of the growth reducer for nutrient and water stress

13 species-specific inflection point of logistic growth reduction

function for nutrient and water stress

new

14 logistic growth reduction function for nutrient and water

stress

new

Nutrient stress

15 nutrient stress growth reduction factor new

16 arbuscular mycorrhizal colonisation rate per total biomass new

17 root surface area per total biomass new

18 plant available nutrients

19 nutrient adjustment factor based on biomass and trait

similarity

new

840
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Eq. Topic References

20 normalized arbuscular mycorrhizal colonisation rate general equation

21 normalized root surface area per below-ground biomass general equation

22 trait dissimilarity index new

23 trait similarity calculation new

24 trait similarity as matrix new

Water stress

25 plant available water Moulin et al. (2021)

Maintenance costs for roots and mycorrhizae

26 costs for roots and mycorrhizae growth reduction factor new

27 costs for fine roots reduction factor new

28 costs for mycorrhizae growth reduction factor new

Environmental and seasonal growth adjustment

29 environmental and seasonal growth adjustment Moulin et al. (2021)

30 growth reduction based on too high radiation Schapendonk et al. (1998)

31 temperature growth reducer function Schapendonk et al. (1998), Jouven et al. (2006),

Moulin et al. (2021)

32 seasonal growth adjustment Jouven et al. (2006), Moulin et al. (2021)

33 yearly accumulated temperature Jouven et al. (2006), Moulin et al. (2021)

Senescence

34 senescence rate Moulin et al. (2021), added influence of specific leaf

area

35 seasonality of senescence Moulin et al. (2021)

Management

36 biomass losses due to management similar to Moulin et al. (2021)

37 mown biomass influence of plant height to mowing tolerance similar

to the λ in Moulin et al. (2021)

38 grazed biomass partly based on Moulin et al. (2021); added influence

of leaf nitrogen content and height on grazer

preference

41 influence of leaf nitrogen per leaf mass on grazer preference new

42 community-weighted mean leaf nitrogen content general equation

Plant height dynamics

43 change in the plant height new

Water dynamic
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Eq. Topic References

44 main soil water dynamic Schapendonk et al. (1998), Moulin et al. (2021)

45 evaporation Moulin et al. (2021)

46 transpiration simplified/modified from Moulin et al. (2021)

47 actual evapotranspiration Moulin et al. (2021)

48 water drainage and run-off Moulin et al. (2021)

49 fraction of the soil that can be filled with water at the water

holding capacity

Gupta and Larson (1979)

50 fraction of the soil that can be filled with water at the

permanent wilting point

Gupta and Larson (1979)

51 water holding capacity in the rooting zone Gupta and Larson (1979)

52 permanent wilting point in the rooting zone Gupta and Larson (1979)
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Table A6. Prior distributions for the calibration with the FAO dataset.

Parameter Prior Distribution Reference for Prior

αSEN truncated(Normal(0.01, 0.002);

lower = 0.005, upper = 0.02)

we assumed a relatively low basis senescence rate per

month

ψSEN max truncated(Normal(1.5, 0.5);

lower = 1, upper = 3)

Moulin et al. (2021) used 3 [−]

ψSEN,ST1 truncated(Normal(1800, 200);

lower = 1200, upper = 2500)1

Moulin et al. (2021) used 775 [°C]

ψSEN,ST2 truncated(Normal(3000, 200);

lower = 2500, upper = 4000)

Moulin et al. (2021) used 3000 [°C]

ζSEAmin Beta(3, 1) Jouven et al. (2006) used 0.67 [−]

ζSEAmax truncated(Normal(1, 2);

lower = 1, upper = 5)

Jouven et al. (2006) used 1.33 [−]

ζSEA,ST1 truncated(Normal(800, 200);

lower = 250, upper = 1200)

Jouven et al. (2006) used 775 [°C]

ζSEA,ST2 truncated(Normal(1800, 200);

lower = 1200, upper = 2500)

Jouven et al. (2006) used 1450 [°C]

αRUE,cwmH Beta(8, 2) we assumed a small effect, if the parameter is one, the

process would have no effect

σ2 truncated(Normal(0, 5);

lower = 0.0)

wide prior, we compared measured and simulated biomass

in [t · ha−1]

1Note that we assumed higher values for ϕSEN,ST1
because we calibrated our model for lower altitudes compared to Moulin et al. (2021), as more heat

is accumulated over the year before the senescence starts to increase in autumn.
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Table A7. Overview of experiments with location, year and whether an experiment is used for calibration for the FAO dataset. If an

experiment is not used for calibration, it is used for validation. We only used the subset of the experiments that were irrigated.

experiment number location (lat, lon) year used for calibration?

FAO01 UK, Crossnacreevy (54.53, -5.85) 1982 x

FAO05 Switzerland, Changins (46.4, 6.23) 1983 x

FAO07 Switzerland, Changins (46.4, 6.23) 1984 x

FAO09 Switzerland, Changins (46.4, 6.23) 1985 x

FAO19 France, Rennes (48.12, -1.68) 1984 x

FAO21 France, Rennes (48.12, -1.68) 1985 x

FAO28 Romania, Cluj-Napoca (46.77, 23.6) 1986 x

FAO33 Belgium, Michamps (50.05, 5.8) 1984 x

FAO35 Belgium, Michamps (50.05, 5.8) 1985 x

FAO43 Spain, La Coruna (43.37, -8.4) 1983

FAO45 Spain, La Coruna (43.37, -8.4) 1984

FAO47 Spain, La Coruna (43.37, -8.4) 1985

FAO51 Italy, Carmagnola (44.85, 7.72) 1983

FAO53 Italy, Carmagnola (44.85, 7.72) 1984

FAO55 Netherlands, Wageningen (51.97, 5.67) 1983

FAO57 Netherlands, Wageningen (51.97, 5.67) 1984

FAO59 Italy, Lodi (45.32, 9.5) 1983

FAO61 Italy, Lodi (45.32, 9.5) 1984

FAO63 Italy, Lodi (45.32, 9.5) 1985

FAO65 UK, North Wyke (50.77, -3.9) 1983

FAO67 UK, North Wyke (50.77, -3.9) 1984

FAO69 UK, North Wyke (50.77, -3.9) 1985

FAO71 Netherlands, Zegveld (52.12, 4.85) 1984

FAO73 Netherlands, Zegveld (52.12, 4.85) 1985

FAO75 UK, Crossnacreevy (54.53, -5.85) 1983

FAO77 UK, Crossnacreevy (54.53, -5.85) 1984
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Table A8. Prior distributions for the calibration with the Biodiversity Exploratories dataset. The prior distributions for the parameters,

which are rather theoretical, were set so that the simulated trajectories were close to the measured above-ground biomass and to the

community weighted mean traits.

Parameter Prior Distribution

αWAT,rsa,05 Beta(4, 1)

δWAT,rsa Uniform(0, 25)

αNUT,rsa,05 Beta(4, 1)

αNUT,amc,05 Beta(4, 1)

δNUT,rsa Uniform(0, 25)

δNUT,amc Uniform(0, 12.5)

κROOT,rsa truncated(Normal(0.0, 0.05); lower = 0, upper = 0.5)

κROOT,amc truncated(Normal(0.25, 0.05); lower = 0, upper = 0.5)

ϕTRSA truncated(Normal(0.02, 0.01); lower = 0.0, upper = 0.1)

ϕTAMC truncated(Normal(0.1, 0.02); lower = 0.05, upper = 0.25)

σ2
wasserstein truncated(Normal(0, 5); lower = 0.0)
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Table A9. Overview of sites with location, dominant land use and whether a site is used for calibration of the Biodiversity Exploratories

dataset from the Schwäbische Alb region. If a site is not used for calibration, it is used for validation.

Site code Location (lat, lon) Dominant land use Used for calibration?

AEG01 Schwäbische Alb (48.4, 9.34) mainly mown x

AEG02 Schwäbische Alb (48.38, 9.47) mainly mown x

AEG03 Schwäbische Alb (48.41, 9.53) mainly mown x

AEG04 Schwäbische Alb (48.38, 9.42) mown and grazed x

AEG05 Schwäbische Alb (48.4, 9.44) mown and grazed

AEG06 Schwäbische Alb (48.4, 9.44) mown and grazed

AEG08 Schwäbische Alb (48.42, 9.49) mown and grazed

AEG10 Schwäbische Alb (48.38, 9.21) mainly mown

AEG11 Schwäbische Alb (48.49, 9.35) mainly mown

AEG12 Schwäbische Alb (48.39, 9.35) mainly mown

AEG13 Schwäbische Alb (48.39, 9.36) mainly mown

AEG14 Schwäbische Alb (48.38, 9.52) mainly mown

AEG15 Schwäbische Alb (48.49, 9.45) mainly mown

AEG17 Schwäbische Alb (48.4, 9.52) mainly mown

AEG18 Schwäbische Alb (48.38, 9.52) mainly mown

AEG22 Schwäbische Alb (48.4, 9.51) mainly mown

AEG23 Schwäbische Alb (48.42, 9.51) mainly mown

AEG24 Schwäbische Alb (48.4, 9.49) mown and grazed

AEG29 Schwäbische Alb (48.42, 9.36) mown and grazed

AEG31 Schwäbische Alb (48.46, 9.46) mown and grazed

AEG35 Schwäbische Alb (48.48, 9.29) mainly mown

AEG36 Schwäbische Alb (48.48, 9.3) mainly mown

AEG37 Schwäbische Alb (48.4, 9.41) mainly mown

AEG38 Schwäbische Alb (48.44, 9.43) mainly mown

AEG39 Schwäbische Alb (48.39, 9.43) mainly mown

AEG40 Schwäbische Alb (48.41, 9.57) mainly mown

AEG41 Schwäbische Alb (48.37, 9.4) mainly mown

AEG42 Schwäbische Alb (48.4, 9.38) mown and grazed

AEG45 Schwäbische Alb (48.4, 9.46) mainly mown

AEG50 Schwäbische Alb (48.41, 9.47) mainly mown
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Table A10. Overview of sites with location, dominant land use and whether a site is used for calibration of the Biodiversity Exploratories

dataset from the Hainich region. If a site is not used for calibration, it is used for validation.

Site code Location (lat, lon) Dominant land use Used for calibration?

HEG01 Hainich (50.97, 10.41) mainly mown x

HEG02 Hainich (51.0, 10.43) mown and grazed x

HEG03 Hainich (51.0, 10.43) mown and grazed x

HEG06 Hainich (51.21, 10.39) mown and grazed x

HEG04 Hainich (51.11, 10.44) mainly mown

HEG05 Hainich (51.22, 10.32) mown and grazed

HEG10 Hainich (51.28, 10.45) mainly mown

HEG11 Hainich (51.28, 10.46) mainly mown

HEG13 Hainich (51.26, 10.38) mown and grazed

HEG14 Hainich (51.29, 10.44) mown and grazed

HEG15 Hainich (51.07, 10.49) mown and grazed

HEG22 Hainich (51.03, 10.32) mown and grazed

HEG23 Hainich (51.13, 10.34) mown and grazed

HEG24 Hainich (51.1, 10.35) mown and grazed

HEG26 Hainich (51.28, 10.37) mainly mown

HEG27 Hainich (51.09, 10.6) mainly mown

HEG28 Hainich (51.27, 10.5) mainly mown

HEG29 Hainich (51.26, 10.5) mown and grazed

HEG30 Hainich (51.2, 10.36) mainly mown

HEG31 Hainich (51.17, 10.22) mown and grazed

HEG32 Hainich (51.08, 10.57) mown and grazed

HEG33 Hainich (51.11, 10.43) mown and grazed

HEG34 Hainich (51.21, 10.39) mown and grazed

HEG37 Hainich (51.03, 10.51) mown and grazed

HEG47 Hainich (51.28, 10.37) mown and grazed

HEG48 Hainich (51.29, 10.38) mainly mown

HEG49 Hainich (51.28, 10.39) mainly mown

HEG50 Hainich (51.28, 10.42) mown and grazed
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Table A11. Overview of sites with location, dominant land use and whether a site is used for calibration of the Biodiversity Exploratories

dataset from the Schorfheide-Chorin region. If a site is not used for calibration, it is used for validation.

Site code Location (lat, lon) Dominant land use Used for calibration?

SEG01 Schorfheide-Chorin (53.09, 13.97) mainly mown x

SEG02 Schorfheide-Chorin (53.09, 13.98) mown and grazed x

SEG03 Schorfheide-Chorin (53.1, 13.99) mainly mown x

SEG08 Schorfheide-Chorin (53.11, 14.02) mown and grazed x

SEG04 Schorfheide-Chorin (53.11, 14.0) mainly mown

SEG05 Schorfheide-Chorin (53.11, 14.0) mainly mown

SEG10 Schorfheide-Chorin (53.11, 14.0) mainly mown

SEG11 Schorfheide-Chorin (53.11, 13.99) mainly mown

SEG12 Schorfheide-Chorin (53.09, 13.97) mainly mown

SEG13 Schorfheide-Chorin (52.97, 13.82) mainly mown

SEG14 Schorfheide-Chorin (53.09, 13.98) mown and grazed

SEG15 Schorfheide-Chorin (53.11, 14.01) mainly mown

SEG17 Schorfheide-Chorin (53.1, 13.63) mown and grazed

SEG18 Schorfheide-Chorin (53.14, 13.88) mainly mown

SEG19 Schorfheide-Chorin (53.12, 14.01) mown and grazed

SEG23 Schorfheide-Chorin (53.11, 14.03) mainly mown

SEG24 Schorfheide-Chorin (53.09, 14.0) mainly mown

SEG25 Schorfheide-Chorin (53.11, 13.62) mainly mown

SEG26 Schorfheide-Chorin (53.11, 14.02) mainly mown

SEG27 Schorfheide-Chorin (53.12, 13.71) mainly mown

SEG28 Schorfheide-Chorin (53.09, 14.01) mainly mown

SEG29 Schorfheide-Chorin (53.09, 14.0) mainly mown

SEG30 Schorfheide-Chorin (53.15, 13.83) mainly mown

SEG31 Schorfheide-Chorin (53.15, 13.84) mainly mown

SEG32 Schorfheide-Chorin (53.15, 13.83) mainly mown

SEG39 Schorfheide-Chorin (52.98, 13.82) mown and grazed

SEG41 Schorfheide-Chorin (53.12, 13.85) mainly grazed
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Table A12. Sensitivity of above-ground biomass of Lolium perenne to changes in parameter values for all experiments in the FAO

dataset. The default parameter values are listed in Table A4. We decreased (θ−) and increased (θ+) each parameter one-at-a-time

by 1 % (local sensitivity analysis). We calculated the output variable (denoted by Y ) with one parameter decreased, one parameter

increased and the default parameters to calculate the following quotient:
(
Y (θ+)−Y (θ−)

)
/(2 · 0.01 ·Y (θ)). We calculated the ratio

for each time point and for all the experiments and took the overall average. All parameters not listed here have no influence on the

biomass dynamic without soil water and nutrient growth limitation. The parameters are ordered from positive, to small positive/negative

effect, to negative effect on the above-ground biomass.

Parameter Sensitivity of

above-ground biomass to

parameter changes

γRUEmax 1.465

αRUE,cwmH 1.251

ζSEAmin 0.836

γRUE,k 0.680

ζSEAmax 0.628

ϕsla 0.454

ζSEA,ST2 0.354

γRAD,2 0.339

ϕTAMC 0.124

ωTEMP,T3 0.047

ψSEN,ST2 0.043

ψSEN,ST1 0.031

ωTEMP,T4 0.015

ϕTRSA 0.004

ζSEA,ST1 -0.012

ωTEMP,T1 -0.012

ωTEMP,T2 -0.047

ψSEN max -0.066

κROOT,rsa -0.076

κROOT,amc -0.152

αSEN -0.183

γRAD,1 -0.283

βSEN,sla -0.333
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Table A13. Sensitivity of the total above-ground biomass to changes in parameter values for all sites in the Biodiversity Exploratories

dataset. The default parameter values are listed in Table A4. We decreased (θ−) and increased (θ+) each parameter one-at-a-time

by 1 % (local sensitivity analysis). We calculated the output variable (denoted by Y ) with one parameter decreased, one parameter

increased and the default parameters to calculate the following quotient:
(
Y (θ+)−Y (θ−)

)
/(2 · 0.01 ·Y (θ)). We calculated the ratio

for each time point and for all the sites and took the overall average. The parameters are sorted into positive (left columns) and negative

effect or almost no effect (right columns) on the total above-ground biomass.

Parameter Sensitivity of total

above-ground biomass to

parameter changes

Parameter Sensitivity of total

above-ground biomass to

parameter changes

ϕsla 2.91 βCLY,PWP -1.26

γRUEmax 2.32 αSEN -1.23

αRUE,cwmH 1.84 βSEN,sla -1.11

γRUE,k 1.49 βBLK,WHC -0.69

βSLT,WHC 1.46 ψSEN max -0.67

ζSEAmax 1.41 ωTEMP,T2 -0.39

βCLY,WHC 1.26 γRAD,1 -0.39

αWAT,rsa,05 1.11 βWAT,rsa -0.3

ζSEAmin 0.9 βSLT,PWP -0.28

γRAD,2 0.45 κROOT,rsa -0.17

ζSEA,ST2 0.45 κROOT,amc -0.16

δWAT,rsa 0.44 ωTEMP,T1 -0.13

ψSEN,ST2 0.24 βBLK,PWP -0.11

ζSEA,ST1 0.22 κGRZ -0.09

ϵGRZ,minH 0.18 ϕTRSA -0.06

ψSEN,ST1 0.12 βOM,PWP -0.05

ϕTAMC 0.1 αNUT,maxadj -0.05

βSND,WHC 0.1 βGRZ,lnc -0.02

βOM,WHC 0.09 βNUT,rsa -0.01

αNUT,rsa,05 0.07 ωTEMP,T4 0.0

αNUT,TSB 0.07 δNUT,amc 0.0

ηGRZ 0.07 αNUT,amc,05 0.0

δNUT,rsa 0.05 βNUT,amc 0.0

ωTEMP,T3 0.01 ωNUT,F 0.0

ωNUT,N 0.01 βSND,PWP 0.0

βNUT,TS 0.01

βGRZ,H 0.01
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Code and data availability. The model code, scripts for calibration, and raw and processed data for the calibration and validation

can be found on Zenodo with DOI: 10.5281/zenodo.14011849 (Nößler, 2025). This work is partly based on data of the Biodiversity

Exploratories program (DFG Priority Program 1374). These datasets are publicly available in the Biodiversity Exploratories Information845

System (http://doi.org/10.17616/R32P9Q), with links to the specific datasets in the reference section, and are included in the Zenodo

repository. The documentation of the model with installation instructions and tutorials can be found online at https://felixnoessler.github.

io/GrasslandTraitSim.jl/.
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