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Abstract. Temperate semi-natural grassland plant communities are expected to shift under global change, mainly due to
land use and climate change. However, the interaction of different drivers on diversity and the influence of diversity on the
provision of ecosystem services are not fully understood. To synthesise the knowledge on grassland dynamics and to be able
to predict community shifts under different land use and climate change scenarios, we developed the GrasslandTraitSim.jl
model. In contrast to previously published grassland models, we link morphological plant traits to species-specific processes
via transfer functions, thus avoiding a large number of species-specific parameters that are difficult to measure and calibrate.
This allows any number of species to be simulated based on a list of commonly measured traits: specific leaf area, maximum
height, leaf nitrogen per leaf mass, leaf biomass per plant biomass, above-ground biomass per plant biomass, root surface
area per below-ground biomass, and arbuscular mycorrhizal colonisation rate. For each species, the dynamics of the above-
and below-ground biomass and its height are simulated with a daily time step. While the soil water content is simulated
dynamically, the nutrient dynamics are kept simple, assuming that the nutrient availability depends on total soil nitrogen,
yearly fertilization with nitrogen and the total plant biomass. We present a model description, which is complemented by
online documentation with tutorials, flowcharts, and interactive graphics, and calibrate the-medel-to-grasstand-sites-with

datasets. We show that the model replicates seasonal dynamics of productivity for experimental sites of the grass species
Lolium perenne across Europe satisfactory well. Furthermore, we shew-hew-demonstrate that the model can be used to

ar—d aren N o intan a A

believe-that-the-simulate the productivity and functional composition of grassland sites with different number of mowin

events and grazing intensity in three regions in Germany. Therefore, GrasslandTraitSim.jl model is presented as a useful
tool for predicting plant biomass production and plant functional composition of temperate grasslands in response to

management under climate change.
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1 Introduction

Permanent semi-natural grasslands cover 30.5% of the agricultural area of the European Union (Eurostat, 2020) and
many of them are known to support high levels of biodiversity (Petermann and Buzhdygan, 2021). At small spatial scales
(< 100 m?), extensively managed grasslands have the highest recorded plant species richness per area in the world (Wil-
son et al., 2012). These plant species-rich habitats can in turn support many other taxonomic groups, such as butterflies
(European-Environment Ageney-et-ak;-2013)insects (European Environment Agency et al., 2013; Fartmann, 2024), which
are adapted to open habitats. Moreover, 29% of the European bird species are associated with grassland habitats (Nagy,
2009). In conclusion, temperate grasslands ean—play—a—play an important role in supporting biodiversity in agricultural
landscapes.

The key factor in maintaining ¢

W@MWQ%M—%&because the abiotic conditions on most
M&WWW@MMWWMM&Q 'Vlowmg

and/or grazing influence the plant species composition of grasslands and prevent the encroachment of woody species
Talle et al., 2016). Therefore, grasslands and agriculture have been coevolving in Europe since the last glacial period
(Hejcman et al., 2013; Partel et al., 2005). The intensity and type of land use influence the level of grassland biodiversity.

Both intensification and abandonment can lead to a decline in grassland biodiversity {Gessrer-et-al—2016:Sehilset-al—2020)

Gossner et al., 2016; Schils et al., 2020; Piseddu et al., 2021). Intensification, more specifically higher fertilization, more

grassland sites a

mowing events per year, and/or a higher livestock density teads-lead to a dominance of a few fast-growing plant species
that are adapted to the high disturbance frequency by mowing and/or grazing. Abandonment, on the other hand, leads
to the growth of woody species and a loss of specialists of open habitats (Hilpold et al., 2018). Management is therefore
a key driver of plant community composition in the large majority of temperate grasslands.

Furthermore, climate change is expected to shift—the-alter the plant community composition of grasslands, partic-
ularly during periods of heat waves and droughts, for example by suppressing dominant species (Luo et al., 2025)
and/or favouring plants with drought avoidance strategies (Griffin-Nolan et al., 2019; Schils et al., 2020). In addi-
tion, the-community-composition-of grasstands-affects-diversity and composition of the plant community in_grasslands

affect the provision of ecosystem services, such as biomass production, resistance to climatic events, and pollination
Van-Oijenet=at2020)(Van Oijen et al., 2020; Buzhdygan et al., 2020). However, how different drivers and their inter-
actions impact the community composition and how the composition relates to ecosystem service provision is poorly
understood. In particular, the conditions under which a diverse plant community leads to higher biomass production
remain a topic of debate (Adler et al., 2011; Chen et al., 2018; Dee et al., 2023). This highlights the need for a more
comprehensive mechanistic understanding of the underlying processes. Simulation models can complement experimental

and observational studies to predict the effects of management and climate change on grassland community dynamics
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and ecosystem service provision, and can help provide a better mechanistic understanding of processes. Current scientific
knowledge is integrated into the models, and the models can be used to test hypotheses and to generate new knowledge
(Clark et al., 2001; Jeltsch et al., 2008). Dynamic simulation models are therefore a useful tool for disentangling the
effects of land use and climate on the plant community composition and the provision of ecosystem services by grasslands.

Historically, different research questions on grasslands, ranging from ecology to biogeochemistry, have led to the develop-
ment of different grassland models by focusing on different-some parts of the model-and-simplifying-other-partsgrassland
system while simplifying others (for an overview of representative models, see Table 1 and for more details in Tables

Al and A2). In ecology, for example, questions about plant coexistence in grasslands have led to models with a strong
focus on species interactions. In the biogeochemical community, ferexample,—questions were asked about the emission
of greenhouse gases from grasslands, leading to the development of models with a focus on biogeochemical cycles in
grasslands (Van Oijen et al., 2018). Ecological models are often simpler models and can be divided into difference or
differential equation models and individual-based models. While individual-based models are characterised by a bottom-
up approach by modelling the interactions of individuals, difference/differential equation models are characterised by a
top-down approach by modelling the interactions of species, leading in both cases to the emergence of grassland com-
munity patterns. Examples of individual-based models are IBC-grass (May et al., 2009), originally developed to analyse
the effects of grazing on plant communities, and GRASSMIND (Taubert et al., 2012), which can simulate the effects
of climate change, mowing, fertilisation-fertilization and irrigation on plant community dynamics. Examples of ecological
differential equation models are DynaGraM (Moulin et al., 2021) and GraS (Siehoff et al., 2011), both of which can
simulate the effect of mowing and grazing on the plant community. There are also more theoretical models that feltew
adopt the Lotka-Volterra differential equations for species competition to simulate grassland dynamics (Geijzendorffer
et al., 2011; Fort, 2018; Pulungan et al., 2019; Chalmandrier et al., 2021). Competition between plant species is included

in these models with interaction coefficients. The way species or plant functional types are represented in all these models

and GRASSMIND are described by morphological and
physiological traits. GraS represents species mostly by species indicator values and in DynaGraM species are represented
by a combination of morphological and physiological traits and parameters derived from species indicator values. While
IBC-grass, GraS and the models using Lotka-Volterra type equations focus strongly on ecological issues and are weak in
representing biogeochemical cycles, GRASSMIND is coupled with a soil model and DynaGram has a basic representation
of nutrient and water cycles included.

In contrast, models developed by the biogeochemical scientific community have a thorough representation of the nutrient,
water and carbon cycles in grasslands (Van Oijen et al., 2020). Examples include PaSim (Riedo et al., 1998), LPJmL
(Rolinski et al., 2018) and CENTURY /DayCent (Parton, 1996; Parton et al., 1998). However, the representation of plant

functional diversity in these models is limited. For example, in LPJmL only two plant functional types (C3 and C4 grasses
are simulated in natural and managed grasslands (Rolinski et al., 2018). Recently, progress has been made to improve the

representation of plant functional diversity in
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simulating C-, S-, and R-plant functional types in correspondence with the CSR-model of plant strategies (Grime, 1977

in LPJmL (Wirth et al., 2024). Another approach to include a representation of plant functional diversity in a single

species grassland model is described by the CoSMo-approach (Confalonieri, 2014). Before each time step, the relative

abundance of several species is updated based on suitability functions of species to drivers. The relative abundance is
used to calculate new community weighted mean traits which are used as an input for the single species grassland model

for one time step. Thereby, the plant competition and the community growth dynamics are decoupled. An example is
the coupling of the ModVege model with the CoSMo approach (Jouven et al., 2006; Piseddu et al., 2022). In summary,

existing grassland models vary in their complexity in representing plant diversity and biogeochemical cycles, and in how
species are represented: by species indicator values, trait-eategeries,morphological traits and/or physiological traits.
Modelling multi-species assemblages in grasslands has been identified as one of the key challenges in grassland modelling
(Kipling et al., 2016). This is due to the fact that process-based grassland models require data on the physiological and
demographic processes of species, such as measurements of growth rates of species under different radiation intensities. As
However, as demographic and physiological data are not readily available for many species, the number of species that can
be modelled is limited (Jeltsch et al., 2008; Chalmandrier et al., 2021). To overcome the problem of missing demographic
and physiological data, measurable morphological trait data can be used instead. Morphological trait data can be measured
more easily and are available for many plant species, for example from the plant trait database TRY (Kattge et al., 2020).
For many morphological traits, it is known from experimental and observational studies how they affect species-specific
processes (Funk et al., 2017). For example, a high specific leaf area is associated with high photosynthetic activity per
leaf mass and a high senescence rate (Wright et al., 2004). So-called transfer functions can be built to map morphological
arameters to physiological and demographic processes of species ("transfer function approach (TFA)", see Table 1 and

Chalmandrier et al. 2021). Parameters in the transfer function can control the strength of the link between morphological

plasticity, both of which can be important for species’ responses to environmental change. Additionally, environmental

in_context-dependent ways,
Here, we use exactly-this—this transfer function approach of linking morphological traits to species-specific processes to

develop the process-based model GrasslandTraitSim.jl. We extend the approach from Chalmandrier et al. (2021), which
used a theoretical model with little or no representation of climate, management and resource competition (see Table 1

to a model that can analyse the influence of management and climate on the productivity and plant functional composition
of a grassland. The model is partly based on the DynaGraM model (Moulin et al., 2021), which in turn is based on LINGRA

(Schapendonk et al., 1998) and ModVege (Jouven et al., 2006);-but-is-now-able-to-simulate-anynumberof species—as




Table 1. Overview of representative grassland models simulating several plant species or plant functional types. A more

comprehensive overview, including models that simulate onl

one species, can be found in the a

endix (Tables Al and A2).

Model name with State variables of Climate  Water Resource Management No. 1BM?% - TRA?
reference vegetation factors’ (W) & Competition. factors species
nitrogen LPETS
N) cycle?
GrasslandTraitSim.jl, v
resented here above: and below-ground T, PAR, W water nitrogen,  mowing, grazing,  25:70
R/WVVWV\ O R 2 2 2 % AN ~ AN
competition model above-ground biomass N - - - 118
Chalmandrier et al. 2021
DynaGraM,_
Moulin et al. 2021 above-ground biomass TRAR, W N water, nitrogen,  mowing, grazing, 15
GraS,_
Siehoff et al. 2011 cover, ~ ~ space. mowing, grazing, 10,
Siehoff et al. 2011 ampling
LRImL-CSR,
Wirth et al, 2024 above: and below-ground T, PAR, W, N water, nitrogen,  mowing, grazing, 3
ModVege-CoSMo,
Confalonieri 2014 reproductive and LRAR, W, water, nitrogen,  mowing, grazing, 8
Piseddy et al. 2022 vegetative aboverground P, PET light (by fertilization
functions)

CRASSMIND, v
Taubert et al. 2012 reproductive and LRAR, W N water, nitrogen,  mowing, 5
Taubert et al. 2020 RSO iniation
1BC-grass, v

reproductive and ~ = generic above:  grazing 28

May et al. 2009

vegetative above-ground
and below-ground

biomass
R

and
¢

below-ground

resources
AR

!We have reviewed whether air temperature (T), photosynthetically active radiation (PAR), precipitation (P), and potential evapotranspiration (PET) are used in a

model. Other external climate drivers, even if used in the specific model, are not shown in the table. 2We evaluated whether the soil water and the soil nitrogen

cycle are explicitely simulated in the models. 3We reviewed the number of simulated species or plant functional types (PFTs), regardless of whether the species

parameters were calibrated to data or whether the species were generated more theoretically. *We distinguish between individual-based models (IBM), which directly

simulate plant individuals, and population-based models, which simulate plant populations. >We distinguish between models in which parameters of transfer

functions mapping morphological functional traits to species demographic rates are calibrated (TFA: "transfer function approach”), and models in which species

demographic parameters are calibrated directly (Chalmandrier et al., 2021).
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that-. Both ModVege and LINGRA only simulate one species or plant functional type (see Table Al). With DynaGraM

and DynaGraM can simulate several species. However, DynaGraM does not rely solely on morphological species-specific
parameters but uses instead a combination of morphological, demographic and indicator values (see Table A2). This
we decided to keep the plant competition directly in_the growth dynamics as in the DynaGraM model and not update

Our model is of intermediate complexity compared to the above-mentioned models in terms of the number of equations
which is reflected in the number of simulated state variables and the number of parameters (species-specific and global

non-species-specific, parameters, see Tables 1, Al and A2). Consequently, our Grassland TraitSim.jl model ean-fitk-addresses
a gap in existing grassland simulation models for-by simulating multi-species assemblages and predicting the functional
composition of plant communities in grasslands-in-response to management practices and climate change. As plant func-

tional composition influences biomass supply in the model, cascading effects from management and climate through plant

functional composition to biomass supply can be analysed. We will present a comprehensive model description —ealibration

on-grasstand-community-dynamies—and a calibration and validation using two different datasets of managed grasslands in
Europe.
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2 Description of the GrasslandTraitSim.jl model

The GrasslandTraitSim.jl model is designed to simulate the dynamics of grassland communities under different management

eae#pateh—%@mWMmany plant species (denoted by the subscnpt s) ea%grew—iheﬂﬂedeHaa&%uF%ype&ef
[kg-ha~!], below-ground dry biomass BrrrysBps [ke-ha™1], height %Mm]ﬁﬁdﬁm%e%%%ﬁhe
rooting—zoreWim—{Fig—1). The sum of the above-ground and below-ground dry biomass equals the total dry biomass

Brry—Bys_[kg-ha™']. Additionally, the state variable soil water content in the rooting zone W; [mm)] is simulated (Fig.
1). Changes in the state variables from one day to the next are described by a set of coupled-difference equations (for an

everview-details see Table A5). The morphological functional traits of all plant species are fixed (time-invariant inputs, for
example the maximum plant height) and linked by model parameters to the species’ demographic processes (Fig. 2). As a
result of the differences in the demographic rates of all species, the performance of individual plant species differs (biomass
increase or decrease under particular conditions), leading to the emergence of plant community dynamics. While reading
the model description, we encourage the reader to take-have a look at the online documentation, which contains many
interactive graphics and flowcharts that make the model description more accessible (see data accessibility statement).

The-required-input—variables—The required model inputs are the plant functional traits of each species, soil properties,
daily climatic data and daily management data (e.g., timing and intensity of grazing, Table A3). The model has in total 5+

global-parameter-54 global parameters (for details see Table A4) that are neither site, time nor species dependent{seeFable

A4Y}. Outputs include the state variables, grazed and mown biomass, community-weighted mean and variance of each trait.

Additionally, taxonomic diversity indices (e.g., Simpson diversity) -and plant functional diversity indices (e.g., Functional

dispersion and Functional evenness) and-are provided. Both state variables and diversity metrics can be calculated for

reasonable—is—. The model is not spatially explicit and does not account for spatial heterogeneity. As the assumption

of spatial homogeneity is only met approximately for smaller spatial dimensions, we suggest using the model for areas
between 1 m? and 1 ha. i i i i

and below-ground biomass a

and soil water contenti
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are set to user supplied initial values. During the simulation, a loop is run over each dayevereach—patech—Very— For
each day, very low or negative values (< 1073%) of the height HrysH;s and biomass state variables (BrrysBarryss
and-BrrrysBis, Bats, and B i) are set to zero to avoid numerical problems. We have deliberately kept the threshold
at a low level because the plant species should be able to recover even from a very low biomass level. After that, the
main part of the model is executed in—thefollowing-order—growth—{with the calculation of growth (Sections 2.1-2.1.7,

Egs. 5-33), senescence (Section 2.1.8, Eqgs. 34-35), management{biomass removal by management (Section 2.1.9, Egs.
36-42), height dynamics (Section 2.2, Eq. 43), and soil water dynamics (Section 2.3, Eqs. 44-52). Hewever—the-orderof

ARAAAAAANA

2.1 Biomass dynamics

The change in the total biomass B from day ¢ to t+1 of species s in-pateh-z;4-[kg - ha=!] is calculated based on the actual
rrrs-Gact ts [kg -ha™!] (Eq. 5), and the losses by senescence Sry+-Sys [kg-ha™'] (Eq. 34) and management
MMy, kg -ha~!] (Eq. 36):

growth

act,

Bt+l:1;yst+1s = Bt.’lrystf + Ga,(tt,ta:ysact,ts - St:z:ysté' - Mf,:l:ysf (1)

LS
=

The change in the total biomass BBy is divided into the change in above-ground Barrys—Ba s [kg-ha™!]
and below-ground biomass Brz-B;s [kg-ha™!]. We assume that plants aim to achieve a similar level of above-ground
biomass per total biomass similar to the time-invariant trait above-ground biomass per total biomass abps [—]. We

therefore calculate A=A, [—] the ratio between the actual biomass ratio and the trait abp,:

(BA,MW> (BA,ts )

Biays Bys

Aipysts = 2
rouote abps  abp, )

Arzys—Ars_is less than one if the above-ground biomass per total biomass is less than expected by the trait abps, for
example after a mowing event. This variable can be used to allocate biomass changes by growth and senescence to

above-ground and below-ground biomass. Biomass loss by mowing and grazing affects only the above-ground biomass:

BA,t+l:1:ysA,t+1s = BA.t:tysA,ts + At.’nystws : Ga,«t.t,’zfysact,ts - (1 - At:l;yséé) . Stmysté - Mt:z:ystws (3)
BB‘t+11ysB,t+ls = BB,t:r,ysB,ts + (1 - At:r,ysﬁé) . Gact.tﬂcysact,ts - Atz}cyséé . Stmysg\@ (4)

This formulation allows for rapid regrowth of above-ground biomass after a grazing period or a mowing event, as little of
the growth is allocated to below-ground biomass and most is allocated to above-ground biomass.
The actual growth is derived from the community potential growth GporrzyGpors [kg-ha™!] (Eq. 6) and the multi-

plicative effect of five growth adjustment factors:

Ga,(:t,t:l:ysact,ts = Gp()t.tfl:ypot,t : LIGt.’lJySté : NUTt:L‘ystf.j : WATt:L‘ysf;f : ROOTfIyStj : ENVt:I:yt (5)




where LFG55-L1Gy [—] is the species-specific competition for light (Eq. 22N 555-12), NUT}, [—] is the species-
specific competition for nutrients (Eq. 15), WAL 77=W AT, [—] is the species-specific competition for soil water (Section
215 2.1.5), ROOTFROOT;, [—] is the species-specific cost for maintaining roots and mycorrhiza (Eq. 26), and ENV7;

ENYV, [-] is the non-species-specific adjustment based on environmental and seasonal factors (Eq. 29).
2.1.1 Community potential growth

The model follows the concept of the light use efficiency (Monteith, 1972) that describes how much dry matter the plants
can build based on the solar radiation. This concept was widely adopted in grassland modelling studies {Schapendenk-et-al—1998:Jouv
220 (Schapendonk et al. 1998; Jouven et al. 2006; Moulin et al. 2021; for a review see Peiet-ak-{2022)Pei et al. 2022). The

community potential growth GrorryGpor s is described by:

Gpol,.,l;z:yw = PAR/IJZ‘/ *YRU Emazx * FPAR/IJt (6)

with the photosynthetic active radiation PAR-PAR; [MJ-ha~'], maximal radiation use efficiency Yrv pmaz [kg - MI 7],
and the fraction of PARzP AR, that is intercepted by the plants F-PAR-FPAR; [—].

225 The modelled fraction of radiation intercepted by the plants is determined by the number of leaves and the height of
the community. A saturation function is used to describe the relationship between leaf area per ground area (leaf area
index) and light interception. We argue that light interception is less effective when all plants are rather short, because
the leaves are more densely packed. Individual plants avoid shading by growing taller (Heger, 2016). Therefore, we include
the height of the community in the light interception calculation, also to prevent that a community with short plants can

230 build up a very high biomass. More technically, we use the Beer-Lambert equation to model the non-linear response of the
fraction of light intercepted FPARz;F PAR; to the total leaf area index LA 51z LALg . (Monsi, 1953; Monsi and
Saeki, 2005). This relationship is governed by the light extinction coefficient Yry g i [—], which determines how quickly
the fraction of absorbed radiation approaches one as the leaf area index increases. Reduction of radiation use efficiency

because of densely packaged leaves is a function of the community-weighted mean height and influenced by the parameter

235  apuEcomi € [0,1] [—], which specifies the growth reduction at H.pm.: = 0.2m. The

cwm,try

0.2 m has been arbitrarily set

a-specifiec-height—HHepmmzy—,_and the parameter o Ji_is_inversely calibrated. If H, is greater than 0.2 m,
less self-shading will occur because the leaves are less densely packed and therefore the growth reduction is less than

QRUE,cwmH -

log(aruE,cwmm) - 0.2m log(aru E,cwm) - 0.2m 7)

240 FPAR;yye= | 1—exp| —vruEk  LALiot taytot,t - exp
— - H(',’U! m,txy ch m,t
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Figure 1. Structure of the Grassland TraitSim.jl modelfor-ene-pateh. Boxes represent state, intermediate, and input variables (forcing
functions), and arrows indicate the influence of one variable on another. We use the term intermediate variables to describe variables
that are neither inputs nor state variables, but are important intermediate results in the calculation of the change in state variables.
While the green areas show calculations that influence the change in above- and below-ground biomass and height, the blue area
shows the calculation of the change in soil water content in the rooting zone. The arrows originating from the biomass and height
of the species indicate that both the biomass and height play a role in the processes outlined in the green and blue areas. However,
for simplicity, they do not indicate the exact position within the areas. Species-specific variables are represented by a series of offset
boxes positioned behind one another, indicating the presence of multiple species within the model. We show how the distribution
of community traits can be calculated from the model output; other model outputs include the state variables and the grazed and

mown biomass, which can be summarised at the community level.
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Figure 2. The GrasslandTraitSim.jl model links morphological plant functional traits to processes. Arrows indicate which process
or variable is influenced by each plant functional trait. Each plant functional trait can have species-specific values, allowing for

species-specific responses in many of the model’s processes.

with the community-weighted mean height, calculated by weighting the height Hrs-H;s [m] of each species by its share
of above-ground biomass Bzys—B4 4 of the total above-ground biomass BrorarzyBiara s [kg - ha’l]:

S
/1 DAtays BA ts
H( wm,txy (11;777 H/;I:'z sts (8)
Y B B Yysis

o—1 tot A txy DtotA,t

The total leaf area index LZAF o7z LAl 4 is the sum of the species-specific leaf area indices LATmys-LAL:

19)

LAItot,tryio,i{: ZLAI%§7 (9)
s=1

where LAy LAl is defined as

lbps
abps ~~

LAIf/I?;l/Ste‘ = BA,t:I:ysA,ts . Slas . lbps 0. 1 (10)

with above-ground biomass BB is [kg - ha™!], specific leaf area slas [m? - g '], and leaf biomass per plant-biemass

thps——above-ground biomass ﬁeﬁeﬁ*—b@mﬂ&s—&%%[f] As Barays By s and slag must be converted to the same
unit, Eq. 10 is multiplied by 0.1.

11
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Figure 3. General form of growth reducer as a function of resource density (plant available nutrients and soil water). The function
is governed by the four parameters Srep (slope of the logistic function), ¢irqst (usually the mean trait value), arep,05 (growth
reduction at half the resource density for species with a trait value of ¢¢rqit, marked by a red dot), and drep (controls how much
the species-specific inflection points differ from the inflection point of a species with value of ¢¢rqit). We show two different curves
for different parameter values: A with arep,05 =0.95 and drep = 0.25; B with arep,05 = 0.55 and drgp = 0.1. In both cases we
used Br =9, dirait = 20 and the trait values 16, 18, 20, 22 and 24 (from dark purple to yellow). We include dynamic versions with
rsatrys VU Trsa s, and WALy W AT,

sliders for the parameters for the three growth reducers A Ten

sl U Tune s
in the supplementary material (see data accessibility statement).

2.1.2 Species-specific light competition

We-haveshownhew-te—ealetdate-The proportion of the potential growth of each plant species to the potential growth

of the community is based on the tetal-leaf area index and

to—the-plant-speciesbased-on—theirleafarea—index—and-heightheight of the species. Species with a higher leaf area index
can incept-intercept more light and taller species receive greater light exposure and are less affected by shading from

other plant species. The leaf area index of the species considers that plant species which transfer more biomass to their
leaves, and have thinner leaves, can build a greater leaf area. This allows them to use the photosynthetic active radiation

more efficiently. Being overtopped by other plants or investing more in supporting tissue and less in leaves is a common
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In-thesecond-method-we-derive-the-The proportion of light intercepted by each species out of the total light intercepted
is derived by dividing the sward into vertical height layers of constant width, by default 0.05 m, to account for shading
(similar to Taubert et al., 2012). We want to calculate how much light is intercepted in each height layer | FNFmyr
INT,; [-]. Therefore, we need to calculate how much light is intercepted in the layers above and the interception in
layer [. We assume that the biomass, and therefore also the leaf area index, is uniformly distributed over the height of the
plant. Thus, we can calculate the leaf area index of each species in each height layer £AFz71LAI; [—] and the total
leaf area index of all species in each layer EAFor7my1-LAL o1 [—]. For each layer we can calculate the total leaf area
index above the layer up to the maximum height layer L. The maximum height layer can be reached by the tallest plants
with the highest mazheight [m]. The reduction in incoming light based on the total leaf area index of the layers above

and the interception of layer [ is used to calculate the proportion of light intercepted in layer | + Ny NT; i

L
INTt:z;y,]t’Ll = €exXp <F)/RUE7]€ : Z LAItot,t:::y,ztot[\/\ﬁ/,f) : <1 — €exp <'—YRUE,k : LAItnt.t:I:y,lM)) (11)
z=Il+1

The proportion of light intercepted in the layer can be used to obtain the proportion of light intercepted for each species
in each layer by multiplying Nyl N T} i by the leaf area index proportion of the layer. The sum of all species-specific
light interception proportions across all layers can be used to calculate the light competition factor Z+G77-LIG;, [—]:

L
LAIf’I‘1 S,z LAItg P 1 1
LIG rysts — INT z1 . LLrYSs,z S, . ”
trysts ZZ::Z twy,lt,l M%ﬁf 1-— eXp("/RUE,k . LAItot,tary) mw%w (12)

We divide the term by the total interception of all layers (compare Eq. 7) to ensure that the sum of all species-specific

light competition factors is equal to one. The parameter 81r¢ g is not used in this method.
2.1.3 General form of the growth reducer for nutrient and water stress

We use the same equations with different parameters to relate the plant-available nutrients and plant-available soil water to

the growth reducers of nutrient and water stress. Therefore, we show here the general form of the equations (see Fig. 3) to
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avoid repetition and define the specific variables and parameters used in the next two sections on nutrient and water stress.
The derivation of the equations is shown in more detail in Appendix A. We use a logistic function to relate the resource
density Rr-R; (general symbol for the plant-vailable nutrients Np7z75=IN,, s and the plant-available water ¥ W, 1)
to the growth reducer REDvs—RED,, (general symbol for the growth reducers for nutrients stress

amc,txys

N sy NU T ynees and NUT, and water stress WAL= AT},). The growth reducer RED7-—RED;; lies

between zero (no growth possible) and one (no growth reduction at all). While the inflection points of the logistic function

L0, BED 5. (general symbol for £o NUT rsa,s: To,NUT,ame,s, and To w ar,s) are species-specific depending on

the trait values treaitmys—trait,, (general symbol for the root surface area per total biomass FRSArzsT RS A, and the

arbuscular mycorrhizal colonisation rater per total biomass FAME =T AMC\;), the slope Srep (general symbol for
BNUT rsar BNUT,ame, and Bw aT.rsq) iS not species-specific. We assume that if the plant has a trait value equal to the
parameter ¢;q;: (general symbol for ¢rrsa and ¢ranrc), then the growth reduction at 0.5 resource density is argp o5
(general symbol for aNUT rsa,05: ANUT,ame,05, aNd QW AT rsq,05)- T he parameter ¢y,q; can be set to the mean trait of a
community, then the parameter argp o5 can be interpreted as the mean response at half the maximum resource density.
How much the inflection points deviate from this mean response can be controlled by the parameter drpp (general
symbol for SNy T rsar ONUT,ame: and w AT rsq). If OrED is zero, there is no difference in the growth reduction between

the species. If drpp larger than zero, species with higher trait values are less affected by nutrient or water stress:

T0,RED,tzys0,RED,ts = ﬂ};D . <—5RED' <traittmyst§ - <5RLD -log (m) +<f>tmit>>> +0.5 (13)
0 if R =0
RED yysts = 1/ (14 exp(—Brep - (Ri — %0 rED1s))) fO0< Ry <1 (14)
1 if Ry >=1

2.1.4 Species-specific nutrient stress

Plant growth may be reduced when soil nutrient availability is low and plants are poorly—adaptedinefficient at taking
up nutrients. We consider arbuscular mycorrhizal colonisation rate (Marschner and Dell, 1994; George et al., 1995; Van
Der Heijden et al., 2015) and root surface area per total biomass (Barber and Silberbush, 1984) as traits that help plants
to take up nutrients and reduce nutrient stress. Here, we only consider teo-littlenutrients—nutrient deficit as nutrient
stress. The growth reducer Ny NU Ty, [—] is composed out of the maximum out of two nutrient stress factors that

are linked to the arbuscular mycorrhizal colonisation rate Nyucrs [—] and the root surface

= TTYS

area per total biomass Nrsgrzys Nrsats [—):

NUTtacysté = maX(NUTamc,ta‘,ysamc,ts7 NUTrsaAtacysrsa,ts) (15)

The maximum of the two nutrient stress factors is used —becauseplants—ean—either—invest-because, for simplicity, we

assume that plants can invest either in a high root surface area per total biomass or in a high arbusetlar—myeerrhizal
colonization—raterate of arbuscular mycorrhizal colonisation. Plants with a higher root surface area per total biomass follow
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the strategy of taking up nutrients themselves, while plants with a-high arbuscular mycorrhizal colonisation rate-rates
follow the strategy of outsourcing nutrient uptake to arbuscular mycorrhizal fungi in the context of the root collaboration
gradient (Bergmann et al., 2020). Since growth is reduced by how well plants follow their best strategy, the maximum of
the two reduction factors is used to calculate the reduction in growth due to soil nutrients.

For the calculation of the growth reducers for nutrients stress based on the arbuscular mycorrhizal colonisation rate
N etz NU Ly ss |—] we use the parameters ¢ranic [—], BNUT,ame [—): ONUT,ame,05 [—], ONUT,ame [—] and for

FTYS M_] we use QSTRSA [m2 : gill'

BNUT.wsa =], ANUT.rsa05 [=], and dnuT.rsa [g-m™2]. Moreover, we still need trait values and the plant available

7

nutrients stress based on the root surface area per total biomass

rsa,

nutrients (to replace traits and Re-Ry in Egs. 13-14).

For the traits that influence the nutrient growth reducer, we consider that plants with high below-ground biomass per
total biomass are less affected by low nutrient levels because they have relatively more root tissue to supply nutrients to
the above-ground biomass. It has been shown that the root-to-shoot ratio increases in many erops-plants under nitrogen-
poor conditions {Lepezet-al-—2023}(Jiang et al., 2016; Meurer et al., 2019; Lopez et al., 2023). Therefore, we calculate
the root surface area per total biomass FRSAr=1T RS A [m?-g~!] and the arbuscular mycorrhizal colonisation rate
per total biomass FAM Crys T AMCy [—] from the fixed traits root surface area per below-ground biomass rsa, and
arbuscular mycorrhizal colonisation rate per root tissue amc, with the dynamic proportion of the below-ground biomass

BpazysBp,is per total biomass Bzys—Bg

BB,t:z:ys BB,ts

TAMC 515 = 5 7 ames (16)
- trys W\t/§/¥
B TYs B s

TRSA[/,’z:ysz’S\s: == M Bt ‘rSas (17)

Bioys  Bis

where the below-ground biomass is cancelled out.

s T AMCys and TRS Ay s are used to replace
trait in Equation 13 for the calculation of rsataysdYU T, and NUT e, ¢s-
The nutrients available to plants depend on the total soil nitrogen of a site N [gN - kg ™!, the fertilization with nitrogen

F [kgN -ha-yr~!] and the density effect, which accounts for stronger competition for nutrients if many plant species have

a high biomass. The fertilization rate can vary between years and is the sum of organic and inorganic fertilization with

amc,lxys

nitrogen per year. More technically, the i =-empirical parameters wyuz,y [gN ' - ke] is-scaled-between
zero-and-one-by-theparameterantrvmar—and wyyr e [keN—!-ha™! - yr| and-control how strongly the variables total

soil nitrogen and the fertilization rate, respectively, contribute to the value of the nutrient index (€ [0,1]). The nutrient

index is multiplied by the nutrient adjustment factor N T qg57z55V U Tgg5.45_[—], which accounts for the biomass density,
to get the plant available nutrients N7z Np.¢s [—]:

N’lﬁ’(
2 (1zex (convra: N —ovvne ) ) NUTus oy (19)

N[),ﬁ:l:ys[),ts =
- ONUT,Nmazx
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The plant available nutrients Npzzy5—Np 15 are used in Equation 14 for the resource R—R; to calculate the growth

reducers of

ame,tTys reatays—Vpazys YU T, and NUT,sq.t5. Npis can be greater than one, if the

total biomass is low, then growth is not reduced (see Eq. 14). In contrast to the plant available water (Eq. 25), the plant
available nutrients are species-specific.

Plants are most strongly affected by below-ground competition if conspecifics and plants with similar traits have a
high biomass and share the below-ground resources. This is summarized with the nutrient adjustment factor N qar7ys

NUT,gi1s [—] that takes into account the biomass and the trait similarity between all species:

QANUT,mazxadj )

5 1
> TSei Brayiti - ) (19)

NUTU,dj,t.’l:ysadj,ts = ONUT,mazadj " €XP log (
A i1 QONUT, TSB

with the trait similarity 7S ; [—] between species s and i, the biomass of species i Br;-By; [kg - ha™!] and the parameters
anur,rss |kg-ha™'] and anUT mazadj [—]- A high nutrient adjustment factor M gy NU T, 4; 15 is favourable for
a species because the factor is multiplied by the site nutrients (Eq. 18), which means that the species has to share the
resources with fewer competitors. More specifically, a high N a7y N U1, 45,45 Of a species indicates that either the
total biomass is low or the plant has traits that are very different from the traits of the abundant plant species. The
parameter anyT,TsB is a reference value for the sum of the product of trait similarity and biomass of all species. If the
sum of the product of trait similarity and biomass of all species is equal to anyr, 755, the nutrient adjustment factor is
one. The parameter ANUT mazad; (> 1) controls the maximum of the nutrient adjustment factor. The parameter can be
greater than one to allow the plant available nutrients to be increased when the total biomass is low.

The trait similarity is derived by calculating the dissimilarity of the root surface area per above-ground biomass rsas
[m?-g~!] and the arbuscular mycorrhizal eefenization—colonisation rate amcs [—] between all species and converting it
to a similarity index. These two traits are chosen to calculate the trait dissimilarity index, because both traits encompass
unique plant strategies for the acquisition of nutrients and water (Bergmann et al., 2020). The trait dissimilarity TD, ;

[—] between species s and species 7 is calculated with the euclidean distance between the normalized traits of the species:

amcs — mean(amc)

AM norm,s — 2
Crorm, sd(amc) (20)
rsas — mean(rsa)
Anorm s — 21
RS ' sd(rsa) (21)
TDs,i = \/(RSAnorm,s - RSAnorm,i)2 + (AMCnorm,s - A’4A]\4ctnorm,i)2 (22)
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This gives the dissimilarity matrix TD [—], which is transformed and resealed-scaled by the parameter Syur.rs [—] to a
trait similarity matrix TS [—]:

TD
— e — /BNUT,TS
TS <1 maX(TD)> (23)
1 TS, .. TSig
TSQJ 1
TS=| (24)
TSs1 1

is zero, the trait similarity has no influence in the calculation of the nutrient adjustment factor in Eq.

2.1.5 Species-specific water stress

Plant growth may be reduced if soil water is low and the plants are peerly-adaptedpoor at taking up water. We consider
the root surface area per total biomass 7RS4+ TRSA;s [m?-g!] (see Eq. 17) as the trait that influences how strong

plants are exposed to the water stress at a certain soil water level. Here, we only consider too little water leading to water
stress conditions, not too much water, as our primary goal of our model is not to model systems with regular flooding or
waterlogging. We use the same equations for the water stress reducer WA =W AT, [—] as for the nutrient reducer
(see Egs. 13-14) with the parameters ¢rrsa [m% g7, BwaTrsa [—], OwaT rsa05 [=], and Swar.rsa [g-m™2]. The
same explanation for the parameters applies as for the nutrient reducer.

The plant available water is the rescaled soil water content (to replace R in Eq. 14): The soil water content ¥4~
[mm] is scaled by the water holding capacity WHEC-W HC [mm] (Eq. 51) and the permanent wilting point PPy
PW P [mm] (Eq. 52) to scale water availability between 0 (soil water content at or below the permanent wilting point)
and 1 (soil water content at or above the water holding capacity). The plant available water ¥5—z-W,,, [—] is defined
as:

Wigy — PW P, W, —PWP
WHCyy — PW Py, WHC — PIVP

Wp,twyp,t = (25)

This formulation of plant available water does not take into account some short-term temporal dynamics. For example
after a rainfall event, plants are often not water stressed at all, even if the soil water content is not replenished to the
water holding capacity.

2.1.6 Species-specific maintenance costs for roots and mycorrhizae

Maintaining a fine root structure and symbiosis with mycorrhizal fungi costs energy. These costs include respiration
(Caldwell, 1979), the production of metabolites for nutrient uptake (Canarini et al., 2019), and the supply of photosynthetic
products to the mycorrhizal fungi (Konvalinkova et al., 2017). Similarly to Taubert et al. (2012), who consider the costs

of maintaining a symbiosis with nitrogen-fixing rhizobia, we include a cost term for root surface area per total biomass
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ROOT 57775 ROOT 50 1< [—] and the mycorrhizal colonisation rate per total biomass ROOT rcrzys ROO T yneis [—]-

This means that part of the potential growth cannot be used to produce new biomass:

ROOTt;zrystws = ROOTrsafz‘,:z:ysrsa,ts : ROOT{l'rrI,(,:.txysamc,ts (26)

where ROOT73-ROOT,, [—] is the root investment factor that lowers the actual growth in (Eq. 5).

log(0.5) log(0.5)
ROOTTS'(I trysrsa,ts — 1 - rsa rsa ’ ‘ 27
wtryarseds = LT RROOT s TRROOTrsa "SR\ G o TR Arays drsa - TRSAry 0
log(0.5 log(0.5
ROOTUWCM??/SM =1- KROOT,ame + KROOT,amc - €XP g( ) g( ) (28)

dramc TAMCiays ¢rape TAMCrs

where FRS AT RSA; is the root surface area per total biomass [m? - g=1] (see Eq. 17) and FAMECr TAMCyy is
the arbuscular mycorrhizal colonisation rate per total biomass [—] (see Eq. 16). Therefore, the cost of maintaining fine and

The parameters KrooT,rsa [—] and KROOT,amc [—] define the maximum possible growth reduction from zero to one,
where zero means no growth reduction at all. The parameters ¢rrsa [m?-g~!] and ¢ranc [—] define the trait values
of

reduction) and the maximal growth reduction that is defined by KrooT,rsa and KrRoOT,amc. Note that the same values

TRSA;s and TAMCy, at which the growth reducer is half in between 1 (no growth

FTYS FTYS

for ¢rrsa and ¢ranc are also used for water and nutrient stress reducers.
2.1.7 Community environmental and seasonal factors

The growth is adjusted for environmental and seasonal factors AV z~E NV, that apply in the same way to all species

(Eq. 5). For simplicity, we do not consider the effect of specific-specific plant traits on the following functions:

ENmet = RA.thyt . TEMPtIyt . SEAtwyt (29)

with the radiation RAP—RAD, [—] (Eq. 30), temperature FEMPTEMDP, [-] (Eq. 31), and seasonal SEAr
SEA, [-] (Eq. 32) growth adjustment factors.

Plant growth increases with photosynthetically active radiation (as formulated in Eq. 6), but excess radiation can lead
to oxidative damage and photoinhibition (Long et al., 1994). We have therefore included the equation and parametrisation
from Schapendonk et al. (1998) that reduces the growth due to excess radiation. The radiation adjustment factor RADr

RAD, [—] is calculated as follows:
RAD;¢ = min (L 1—7rap1 (PARWt - ’YRAD,Q)) (30)

with the photosynthetic active radiation PAR:~PAR, [MJ-ha~'] and the parameters Yyrap 1 [MJ ™! -ha] and yrap o
[MJ-ha=!]. A linear decrease of radiation use efficiency with a steepness of yrap, 1 is assumed if the photosynthetic

active radiation is above yYrap 2.
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Temperature is one of the fundamental environmental factors that influence plant growth (Went, 1953). Thus, a
temperature adjustment factor FEAM P~ TEMP, [—] is included in the model. The temperature adjustment factor is
430 based on the equation—empirical step functions by Schapendonk et al. (1998) that was-were adjusted by Jouven et al.

(2006):
0 if T} <wrempemn
Ti—wrEMP,T, .
Ty if wremp,r <1y <wrempr,
TEMPipye =1 if wrempr, <1y <wWrEMmMPT, (31)

wreEMP,T, Tt
WTEMP,Ty —WTEM P, Ty

if wremp, <1y <wremper,

0 if Ty > wremp,r,

with the minimum temperature requirement for growth wreapr [°C|, the optimum temperature for growth between

wrempt, [°C| and wrgap,ry, [°C] and the maximum temperature for growth wrgapr, [°C|. The temperature adjust-

435 ment factor increases linearly from zero to one between wrgapr, and wrgap,T,, stays at one between wrgyp 1, and
wrEMP,T,. decreases linearly from one to zero between wrgyp 1y, and wreap,r, and stays at zero above wreymp T, -

A seasonal factor accounts for growth patterns that would not be expected from an analysis of daily abiotic conditions

alone. Plants usually grow more strongly in spring than in autumn, even if the radiation and temperature values are

similar. Therefore, in addition to the influence of radiation (Egs. 6, 30) and temperature (Eq. 31) a seasonality factor is

440 added. Jouven et al. (2006) build the following empirical step functions for the seasonal factor SEA~SEA, [—] based

on the yearly accumulated degree days SF7—ST; [°C] and the parameters (sgAmin [—): (sEAmax [—): CsEa,s1 [°C],

and (sga,sT, [°Cl:

(SEAmin if ST, <200°C
(sEAmin + ((sEAmax — (SEAmin) - % if 200°C < ST; < (sga,sy —200°C
SEA“;Ut = § (SEAmax if (spa,sm, —200°C < STy <(spa,sT, —100°C

. STy —CsEA,sTy
CsEa,sT,—CsEA,sT; —100°C

CsEAmin + ((SEAmin — (SEAmax) if (spa,sm, —100°C < ST} < (spa.sT»

(SEAmin if STy > (spa,sT

(32)

STyt = Y, max<o°c,TW) (33)

i=t mod 365

445 The seasonality factor starts to increases from (sgAmin t0 (sEAmax With a yearly accumulated temperature of above 200
°C and reaches the maximum at (sga s, —200 °C. From (sga,s, —100 °C to (sga,st, of the yearly accumulated

the temperature the seasonality factor decreases from (sgAmax 10 (SEAmin-
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2.1.8 Species-specific senescence

Removal of plant biomass occurs through senescence and through management. The biomass removed by senescence
Strys-Sts [kg - ha™'] depends on the basic senescence rate aggy [month™!], a seasonality factor SEN~SEN; [-], an
effect of specific leaf area of the species slas [m? - g~!], and the biomass of the species B+ Bis [kg-ha™1]:

1/30.44 slas BSEN,sla
Stayte = (1= (1= aspw) ") - SEN e (m) Braysts (34)

While the basic senescence rate and seasonality factor are consistent across the plant community, the contribution of
specific leaf area and biomass to the senescence rate varies between species. To facilitate interpretation, we have chosen
to use the basic senescence rate per month asgy. Consequently, agpny has been converted to a senescence rate per
day, assuming a monthly duration of 30.44 days. The influence of specific leaf area on senescence is controlled by two
parameters: ¢gq [m?-g7'] and Bsen sia [—]- BsEN, sia controls how much the senescence rate differs between species.
If BsEnN,sia is zero, there is no difference, and if Bsgn siq is large, there is a large difference in senescence rate between
species. ¢y, is used as a reference for the specific leaf area values: if slas; < ¢4, the senescence rate is less than aggy,
if slas = ¢4 the senescence rate is equal to aggy and if slas > ¢4, the senescence rate is greater than aggy. We
included the effect of specific leaf on senescence rate because plant species with high specific leaf area are at the fast end
of the leaf economic spectrum. This means that they tend to be highly photosynthetically efficient, modelled here with a
higher leaf area index per biomass, but have a short leaf lifespan and therefore a high senescence rate {Wright-etal—2004}
1992; Wright et al., 2004; Onoda et al., 2017).

A seasonality factor is used to account for the higher senescence in autumn. Depending on the cumulative temperate

Reich et al.

1 !

since the beginning of the current year STiz—ST; [°C|] (Eq. 33) the seasonality factor increases from one [—] to a

maximum YsgN max [—]:

1 if STy <tsen,sT

SENtayt = 14 (YsENmax — 1) STi—VspN STy if Ysen st < STy <Ysen,sT, (35)

YSEN,STy —WSEN,sT;

WS EN max it STy > YseN,sT,

where Yspn sty [°C| and Ysgn s7, [°C] are the temperature thresholds at which the seasonality factor starts to increase
and reaches its maximum, respectively. The equation and the parameter values are based on Moulin et al. (2021) which

is turn based on Jouven et al. (2006).

2.1.9 ManagementBiomass removal due to management

MOW,, [kg-ha~'] (Eq. 37)

Biomass losses #7755~ Mys [kg-ha™'] due to management are caused by mowing 44

and grazing GR%r;+GRZy, |kg-ha™'] (Eq. 38) :

M pyars = MOW tyyps + GRZ sy (36)
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The biomass removed by mowing A4-OW; M OW, [kg-ha~!] depends on the cutting height of the mowing machine
and the height of the plant species. The proportion of above-ground plant biomass removed by mowing is defined by
calculating the fraction of the plant height Hrs—Hy, [m] above the cutting height €8 L~CUT; [m] (see Table A3):

max (Hyyys — CUTyyy, 0) max (Hy,s — CUTY, 0)
Htacys Hy,

MOWMQ = : BA,f:z:ysfl/,\E(\sy (37)

480 thereby assuming a uniform distribution of the biomass along the height of the plant.
The amount of biomass of one species that is fed by grazers depends on the livestock density, the palatability of the
plant species that is linked to the leaf nitrogen content and the height of the plants. The grazing function GRZrys
GRZy [kg-ha~1] is divided into two parts: the first part defines the total grazed biomass and the second part distribtites

the proportion between the grazed biomass ameng-theplant-speeies—of each species and the total grazed biomass:

GRZt o= RGRZ - LDta‘,y . (BF,t:l‘,y)Q RGRZ - L-Dt . (BF,t)2 . L]VCGRZja:ys . HGRZ,tx;l/s : BF,t:r,yS LN
it LA (KGRZ : LDt:I:y : 77GRZ)2 + (BF,t:I:y)Q (HGRZ LDy - UGRZ)Q + (BF,t)2 Z;‘,S:L LNCGRZ,tryi . HGRZ.tzyi . Bp,myi Z;'S:l-
485 (38)

The variables and parameters are explained in the following two paragraphs.

For the total grazed biomass, we assume that grazers can only feed on plant biomass that is above a certain height
€Grzming [m] (usually set to 0.05 m), because it has been shown that the intake rate of cattle decreases strongly with
low sward height (Hirata et al., 2010; Silva et al., 2018; Kunrath et al., 2020; Boval and Sauvant, 2021). Therefore,

490 we calculate the above-ground biomass that can be fed by grazers B+ Brys [kg-ha™!] with the proportion of the

above-ground biomass that is above the height egrz min 1:

€GRZ,min H €GRZ,min H

BF,f:I:ysF,ts =max | 1-— 5 0] - BA,t:L‘ysA,ts (39)
S Huy ") Phimesse
S
BRt:l:yF,t = E BFil'ysF,ts (40)
s=1

where Brr;By, [kg-ha™1] is the total above-ground biomass that can be consumed by grazers. Furthermore, we
495 assumed—assume that if the overall reachable above-ground biomass is wvery—low, the farmers will decide—to—provide

radually increase the supply of additional fodder resulting in less grazed biomass. If no reachable above-ground biomass

is left, the farmers will fully compensate the requirements of the livestock animals. We do not include the fodder supply
as an input in the model, but rather calculate it based on the above-ground biomass that is available to grazers. To

incorporate this, we use a function that works similarly to a Holling type Il response curve. The consumption of the
500 grazers is determined by the product of the livestock density £5+;-LD; [LU-ha™!] (see Table A3) and the consumption

per livestock and day kgrz [kg-ha~!]. We assume that the fodder supply equals half of the consumption of the grazers if

the reachable above-ground biomass is equal to EDmy—t+orzHorz—By-incorporating-the-livestock-density-in-the-term;
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The parameter ngrz [—] is a scaling parameter in the term. For example, if ngrz equals two, the total grazed biomass
is reduced to half of the consumption at a reachable above-ground biomass that equals two times the consumption of the
grazers.

The distribution of grazed biomass among plant species depends on their leaf nitrogen content, height, and the biomass
accessible to grazers. The leaf nitrogent content factor ENCerzrmyLN Carz.is [—] is based on the trait leaf nitrogen
content per leaf mass Incg [mg-g’l] relative to the community-weighted mean leaf nitrogen content per leaf mass

BGRZ,inc
Incg Incg
LNCGRrz taysGRZ ts = — : 41
Rty GR2L ™ \ LN Cawm tay ENComy (41)
BFfll s BFt
LNC( wm,tx cwm,teycwm,t t = Z BF UJU BF ; : lTLCS (42)
with BaRrz,mc [—] acting as a scaling exponent that defines how strongly the ENCorzrmys LN Cgpz.4s Vvalues deviate

from one. This parameter thus controls the strength of the grazer's preference for plant species with high leaf nitrogen
content. Empirical studies have demonstrated that cattle prefer plant species with high leaf nitrogen content (Pauler et al.,
2020; Atkinson et al., 2024) and a high carbon to nitrogen ratio in leaves is associated with a grazing avoidance strategy
(Archibald et al., 2019). Furthermore, we include a height factor because grazers feed more on plants that are tall and easily
reachable (Hodgson et al., 1994). The height factor Herzrmg—Hgrz.s follows a similar equation as the leaf nitrogen
factor, utilizing plant species Hwy5—Hy, in place of leaf nitrogen content relative to the community-weighted mean height
HegmrzmHewmt Jm] and scaled by the exponent Bgrz,r [—]. In summary, the distribution of grazed biomass among
plant species is driven by the biomass of the plant species, but can be altered by their relative leaf nitrogen content and

height.
2.2 Plant height dynamics

Plant-height-Hzys— Plant height H, increases due to growth but decreases with mowing and grazing. The height can

increase until the plant reaches the maximum height maxzheights [m]. The growth rate is the ratio of above-ground

biomass growth Az g Atrs - Gaerrs (EQ. 3) to above-ground biomass Bz B4.+s. We consider the proportion
of mown VoM OW,s (Eq. 37) or grazed biomass &RZ-GRZ;s (Eq. 38) on the above-ground biomass as the

proportion of height lost, assuming an even distribution of biomass along the height of the plant. Since leaves can die

alongthe-stem-without reducing height, we assume that senescence has no effect on plant height:

Atl‘ys : Gact,trys Ats : Gact,ts N ]\[()”Ttlyb J\{OWts 7 GHZf.ll/b GRZts

Hl+lT’ ] =Hizysts | 1+
t+1lxyst+1s lxysts
- I BA,tzrys BA,ts BA,t;z:ys BA,ts BA,t;zrys BA,ts
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2.3 Soil water dynamics

_The change in the soil water content is influenced by multiple factors, including precipitation, evaporation, transpiration,
and drainage and surface run-off. The equations follow Moulin et al. (2021) that are based on Schapendonk et al. (1998).
The change in the soil water content ¥~V [mm] is described by

Wt+1a:yt¢3 = Wtﬂt + Pmlt — AETﬂt - Rtr%yt (44)

where PP, is the precipitation [mm)], A&~ AET, is the actual evapotranspiration [mm], and R, is the surface
run-off and drainage of water from the soil [mm].

How strongly the soil surface is covered by vegetation influence whether more evaporation or transpiration occurs. This
is modelled by the total leaf area index EA5rrzyLALiq e (Egs. 9,10). If the soil is barely covered with vegetation,
evaporation is higher than transpiration. Conversely, if the soil is well covered with vegetation, transpiration is higher
than evaporation. Water can continue to evaporate from the soil as long as it contains water. Therefore, the potential
evapotranspiration PET P ET, [mm], which is a forcing function influencing both evaporation and transpiration (see
Table A3), is multiplied by the fraction between the soil water content ¥4z, and the water holding capacity W-HE;
WHC [mm)] (Eq. 51) to obtain the evaporation Fry-Fy:

Wizy W,

t .
"PET ;- |1— 1,
WHC., WHC “”[ mm(

(45)

Eﬂf — LA[?‘,()t.t,’l;y LAIt()t,t>‘|

3 3

On the other hand, plants can only transpire water that is available to them, so transpiration can only deplete the soil
water content to the permanent wilting point. Therefore, the soil water content is rescaled by the permanent wilting point
PWP—PW P [mm] (Eq. 52) and the water holding capacity WHEW HC [mm] (Eq. 51) to a factor between zero
and one that influences the amount of transpiration T-Rpy+TRy:

Wiy — PWP,,  W,—PWP
WHC,, ~ PW Py, WHC - PWP

TRy, = max | 0, (46)

LATLis 40y LAI
- PETyy+ - min (17 tot,txy tot,f,)

3 3

Additionally, in contrast to Moulin et al. (2021), the transpiration depends here on a factor of the community-weighted

mean specific leaf area SEA;—-SLA; [m?-g~!]. It was shown that species reduce the specific leaf area under drought

stress (Wright et al., 1993; Liu and Stiitzel, 2004) most likely to reduce transpiration. Therefore, it is here assumed
that thinner leaves transpire more water. This relationship is modelled by the parameter arg siq [m?-g~1] that is the
community-weighted mean specific leaf area where the factor equals one and 7R sia [—] that simulates how strongly the
factor deviates from one if the community-weighted mean specific leaf area is below or above arg 5.

The actual evapotranspiration AEF~AET, [mm] is the sum of the evaporation £r~F; [mm] and the transpiration
FRrT R, [mm] but cannot exceed the soil water content ¥z, [mm]:
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560 and any excess water above the water holding capacity W-HE5;-W HC' [mm] (Eq. 51) is removed by surface run-off and
drainage Ryz—R; [mm]:

Rl:L‘yt — max <Omm, WL:):yt + PL.ryt - AETLT'yt - WHCTy> (48)

Water holding capacity and permanent wilting point are derived from soil properties. Gupta and Larson (1979) show

how the fraction of soil that can be filled with water +5;—F can be related to particle size distribution, organic matter

565 content and bulk density for different matrix potentials. This fraction was calculated for a matrix potential of -0:07—-7
kPa for the water holding capacity (FivmoayFwre,) and for a matrix potential of -15—-1500 kPa for the permanent
wilting point (FpwrzyEpwp.). The respective fraction was multiplied by the rooting depth to derive the water holding

capacity and the permanent wilting point for the part of the soil that plants can reach with their roots:

Fwuc =PBsnpwac - SND + Bsprwae - SLT+ Borywae - CLYH+

570 Bomwnc -OM+ Bprix,wuc - BLK (49)
Fpwp =Bsnp,pwp-SND+Bsrrpwp - SLT+ Bery,pwp - CLY+

Bom,pwp-OM+ Bpri,pwp - BLK (50)

WHC., = Fwic.aywic-RD., (51)

PWPH - FPVl/’P,.’l;yEAW\/Iz : RD:I:y (52)
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3 Technical-details-Calibration and validation of the GrasstandTraitSim-jl-model

We calibrated and evaluated the model performance independently using two datasets. Firstly, we used an experimental

dataset on the biomass production of a single species to compare intraannual observations and simulations (see Section
3.1). Secondly, we compared the observed and simulated interannual dynamics in terms of both the biomass production

and the plant functional composition in plant communities, using a dataset of real managed grasslands (see Section 3.1).

3.1 FAO dataset - seasonal dynamics of productivit

before calibration (prior)
A Spain, La Coruna, FAO45 Netherlands, Wageningen, FAO55 B A after calibration (posterior)

_T‘:U e data i 15001
simulated from mode <
26000 " of posterior 2
173 — simulated from posterior| S 3
£ 8 £ 10001 FAO45
4 4 Q
S 4000 gs | A .
> o 2, .
hel g S i
° [Sie} N H
500 - A
5 2000 1 §3 : :
> =5 '
¢ ¢ FAOS5
K] ceo ! 3 ol
< 0 7] ©
1984-01 1984-05 1985-011983-01 1983-05 1984-01 calibration validation
Date (Start of month) Date (Start of month) (training set) (testing set)

Experiment type

Figure 4. Time series from the independent validation experiments with the highest (FAO45) and the lowest (FAO55) mean
absolute error in predicting the above-ground dry biomass of the FAO dataset (panel A). Predictions from the mode of the posterior

distribution (maximum a posteriori estimate) and predictions from draws of the posterior distribution are shown to compare them

shown separately for the calibration (training set) and validation (testing set) experiments, both before and after calibration (panel
B). The mean absolute error is calculated for each observation and then averaged across each experiment. The improvement in

First, we used the dataset of the project "Predicting production from grassland” in the framework of an FAO Subnetwork
for lowland grassland, which was carried out from 1982 to 1986. The dataset was used to calibrate the LINGRA grassland

25



590

595

600

605

610

615

620

model (Schapendonk et al., 1998) and is described in detail in Bouman et al. (1996). The project consisted of several

sites across Europe in which the productivity of the grass Lolium perenne L. was measured weekly over one year. For
some sites, experiments were repeated over several years. All experiments were fertilized and we only used the irrigated
without water and nutrient limitation. We used site-specific climate data that was supplied with the model-havetabelied

e e DimensionalD makine—ite o-know-which he-space—time-oer-specie hep se-has-extensive

Lolium perenne that we prepared for the Biodiversity Exploratories dataset (for details see Appendix C). We used initial

values for Lolium perenne of 200 kg-ha~! and

for_above-ground and below-ground biomass, respectively, as well as an initial height of 0.4 kg-ha~', We selected the
initial values so that the simulated above-ground biomass is close to the latest—version—ean—be-installed—using-the-same

a ho I\ D ol on h N

and-collaberation—are-welcome—The-development-of-first data point. The 26 experiments were split into nine experiments

for calibration and 17 experiments for validation (see Table A7). We calibrated the parameters for senescence («

, , and . ), seasonality in growth i and and for the
reduction factor of radiation use efficiency based on the community height (« c . All other parameters were kept
constant (for their parameter values see Table A4).

We applied the Haario-Bardenet Adaptive Markov Chain Monte Carlo method (Haario et al. 2001; Johnstone et al. 2016
as implemented in Clerx et al. 2019) for calibrating our parameters given the priors and the experimental data (for
technical details see Appendix E). We set moderately informative priors (for details see Table A6) that were based

on the values used by Jouven et al. (2006) and Moulin et al. (2021). We used a likelihood function based on a normal

the product of the likelihoods over all time points and all nine experiments. During the calibration, we reset the simulated
above-ground biomass after evaluating the likelihood for one time point to the model-is-hosted-at-and new-versions-will
parameters.

After the calibration, our model can reproduce the seasonal patterns for the species Lolium perenne for independent
reduced from approximately 750 kg-ha™" of the prior to 500 kg-ha~" of the mode of the posterior (respectively the
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median of all validation experiments). The uncertainty in the posterior estimates of parameters was reduced greatl

compared to the prior (see Figures A1l and A2). Therefore, also the uncertainty in the prediction from the prior compared

to predictions from the posterior was lowered clearly (see Figure A3).

4 Calibrati | validati £ 4l el

For—the—calibration—of-the-Grassland FraitSim—j-medel-\We identified the parameter groups to which the above-ground

biomass of Lolium perenne is most sensitive to small changes in parameter values (local sensitivity analysis, for details

see Table A12). These groups are about the radiation use efficienc . 2 and « the

seasonal adjustment for growth in_and ax) and senescence 1o.and o

3.1 Biodiversity Exploratories dataset - dynamics of community traits and biomass

. Observations 0 Calibrate model parameters
Observed community .
trait distribution

1) predict until next data point

for one site Observed cover (or biomass)! 2 @ H 5 - 4) repeat
. : . . . ' £ S 1+ 2) evaluate prediction until end
' atone time point proportions of plant species S|
' | a5 g \ | 3)reset biomass to of time
. ' 5 g o ' ‘\ '\\ virtual observation series
PN Measured trait values ; 2238 ‘\“\t\[——/’
| S of plant species | £ ,/I
L i S
: I o £
! : o 3=
i . Measured total -
: Trait 1 ) Time
! above-ground biomass
Minimize Biomass proportion Virtual community
earth mover's of plant species o it distributi
di b p p . = trait distribution

istance between in the model = for one site
observed and virtual . : .

) . . . > at one time point

trait community Plant species e
distributions for each site  “in the model ~ ------""" Trait 1

and each time point with fixed traits

Figure 5. Calibration workflow. For the Biodiversity Exploratories dataset, we reduced the number of species from 70 to 25 to lower

the computation time in the calibration. We created virtual observations for the 25 species by finding the biomass proportion of the

25 species so that the community trait distribution closel

resembles the trait distribution of the community with 70 species (ste

1). The biomass proportion of the 25 species can be multiplied with the measured total biomass to create virtual observations for

our modelled species (step 2). For the calibration of the global model parameters, the model can be used to simulate a trajectory for

one parameter combination. The simulated trajectory is compared with the virtual observation to calculate the likelihood and then

reset to the virtual observation. Due to the resetting, we can evaluate how good is the model in predicting from one observation to

another. We evaluate the likelihood starting from the second data point to minimise the influence of the initial values, which were

not calibrated (step 3). The resetting is not used for the evaluation of the model after the calibration. For the calibration with the

FAO dataset, only one species was grown and is simulated and therefore we only used step 3 for the calibration.
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Figure 6. Time series of the community weighted mean (CWM) trait values for the independent validation sites with the highest

AEG31) and the lowest (AEG41) mean absolute error for the distance between simulated and observationally derived communit

trait distribution (panel A). Predictions from the mode of the posterior (maximum a posteriori estimate) and from draws from the

calibration (training set) and validation (testing set) sites, both before and after calibration (panel B). The mean absolute error
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Figure 7. Time series from the independent validation sites with the highest (SEG04) and the lowest (AEG45) mean absolute error

redicting the above-ground dry biomass of the Biodiversity Exploratories dataset (panel A). Predictions from the mode of the
osterior distribution (maximum a posteriori estimate) and draws from the posterior distribution are shown to compare them with
shown separately for the calibration (training set) and validation (testing test) sites, both before and after calibration (panel B).

Second, we used data from the Biodiversity Exploratories project (Fischer et al., 2010)from—temperategrasstands—of

’ehese~59~srtes—wefrom three different regions in Germany, and we used the subset from 2006 to 2022. Farmers documented
their land use practices, and vegetation composition and above-ground biomass were documented annually by researchers.
We assessed whether our model could reproduce patterns in total biomass production and in the development of the

community trait distribution. We used site-specific climate, management and soil data (for details on data preparation

and references see Appendix C). In total, 150 sites are included the project. We selected those that were mainly used
as meadows (mown) or a mixture of pasture (grazed) and meadow and excluded those that were used as pasture only,
resulting in 28-sites-92 sites over all three regions. We decided to exclude the pasture sites because farmers often decided

to provide supplementary feeding on these sites and the information on supplementary feeding is not detailed enough to
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be included in the simulation model.

a—yearly—preeipitation—sum—of 700—T he 82 sites were split into 12 sites for calibration and 70 sites for validation (see
Tables A9, A10, and All). For calibration, we selected four sites from each of the three regions, some of which were

mown only, while others were grazed and mown. We calibrated parameters of the water growth reducers («

and & , nutrient growth reducers (« e , 0 and § investment into roots

K and K and the reference traits that influence all just mentioned processes and

All other parameters were kept constant and are based on literature, based on the calibration with the FAO dataset, or
are set manually by comparing simulated trajectories with measured data of the calibration sites.

sites partly from measurements from the project
and partly from trait databases (for details see Appendix C). For the calibration, we wanted to lower the computation

time. That is why we reduced the number of plant species to 25 by applying hierarchical clustering and calculating the
mean trait values for the
had-valuesfor—al-the—traits—\We—used—these 25 groups (for details see Appendix C1). Lowering the number of species

did not change the general patterns in community dynamics (see Figure A4). We derived virtual observations for these
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25 virtual plant species by finding a community trait distribution with the 25 virtual species that closely ressembles the

between the simulated and the observationally derived community trait distribution (our virtual observations), as calculated

by the earth mover's distance, is treated as the data, even-if-thesespecies-had-missing-valuesfor-othertraits—\Whereas-we

random-K-fold-cross-validationvariance is a parameter estimated during calibration. We did not use the total above-ground

as for the calibration with FAQ dataset to derive the posterior distribution for the parameters.

with the same above- and below-ground biomass (200 kg-ha™!) and a height equal to_half of their maximum height.
This sets the total biomass at a rather high initial value (5000 kg-ha™! of above-ground biomass in winter; see Figure
7). Environmental conditions, management practices and biotic interactions with other plant species lead to the traits
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The calibration resulted in a slight decrease in the mean absolute error for predicting the community trait distribution
see Figure 6) and greatly reduced the mean absolute error for predicting the above-ground biomass areegualy-important:

We-ineluded-23-parametersin-(see Figure 7). The time series of the community weighted mean traits for the independent

statementwhole community trait distribution over time for the same sites show that the simulated functional diversity is
lower than the observed functional diversity (variance in the community trait distributions, see Figures A8, A9 and A10).
i i v st i y most data points, the parameterBrrgrhas

For

ohvon he—hieh—rAt
. [

\/

statement)—For-example—highest and lowest predictive error correspond closely (see Figure 7).
We applied a local sensitivity analysis and calculated the sensitivity of the total above-ground biomass to small changes
of parameter values (for details see Table A13). We identified that the total above-ground biomass for-the-site HEGO4-is

fesis most sensitive to changes in parameters dealing with
senescence (g, « and the calculation of the permanent wilting point and the water holding capacit

B and , radiation use efficienc and « and seasonal
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4 Hlustrative-simulation-experimentsDiscussion

4.1 Validation of GrasslandTraitSim.jl

demonstrated its ability to relate the morphological
traits of plant species to their species-specific physiological and demographic rates. Changes in these rates lead to changes

relative-abundance-change-ofconsequently, changes in plant community composition. We proved that the model could
One of the key advantages of our modelling approach is that we can compare the simulated morphological trait

distributions with measured morphological trait distributions at the community level. In contrast to previous grassland
models (e.g., DynaGraM; Moulin et al. 2021 or GRASSMIND; Taubert et al. 2012) that require demographic or physiological

rates as species-specific parameters, our model only requires commonly measured morphological traits (compare Figure
2). In this way, our model can be applied to a much larger set of species and communities for which such trait data are

random starting positions of the prior distribution converged to the species-for-all-scenarios{Fig—77-and-foral-other sites
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n general, it was much easier to

calibrate the model parameters with the FAQ dataset, because biomass was measured weekly rather than annually, as
was the case with the Biodiversity Exploratories’ observations of biomass and composition. Annual observations are not

rassland models (Taubert et al., 2020). These detailed datasets could also reduce the widespread problem of parameter

Another limitation of the Biodiversity Exploratories dataset is that we used species mean traits derived from the project
or trait databases to calculate the community trait distribution (see Appendix C). However, using species mean traits results
vary more between sites than is reflected in the dataset (Violle et al., 2012: Siefert et al., 2015).
the grassland models did not take this factor into account (see Table 1 or A2). However, in this study, we were not able to
fully calibrate and evaluate grazing in our model, as the sites of the Biodiversity Exploratories plots lack accurate data to

For_the independent validation site with the highest error of the FAQ dataset (FAQ45 in_Spain, see Figure 4), our
simulate production in a very wide range of regions. Our step function for seasonal growth adjustment assumes that the
growth increases in spring after 200 °C have been accumulated (see Eq. 32). This lends support-—to-theguick—return

speeies—with—-might be a reasonable assumption for Lolium perenne in the Netherlands, but not for sites in Spain. The
strong growth starts too early for the site in Spain. For the calibration of the LINGRA model with the same dataset, it
was assumed that species-specific parameters are different for the northern and southern sites (Bouman et al., 1996). We
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did not calibrate the model here for spatial subsets of the sites, as we wanted to analyse whether our model is in general
applicable to a variety of sites,

4.2 Discussion of the concept

We chose the morphological functional traits that represent main trade-offs in plant physiology. Rather than reflecting one
depth), we aimed to represent the following main trade-offs of plants: (1) The slow-fast continuum of the leaf economic
eaf-area—arefed-morebutalse-haveahigherregrowthrateInlinewith-eturresults—mowing-inerease “

indiees; Reich et al. 1992: Wright et al. 2004). (2) Taller plant species can overtop other plant species and are therefore

enhances nutrient and water uptake, but this comes at the cost of maintaining fine roots and the collaboration with
mycorrhiza (as reflected by above-ground biomass per plant biomass, root surface per below-ground biomass, arbuscular
mycorrhizal colonisation rate; Reich 2014; Prieto et al. 2015; Bergmann et al. 2020).

simulate
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Hewever,—the-The number of coexisting species (e.g., with biomass > 2 %) is stitt-rather low, with three to five

species accounting for most of the biomass in most scenario analyses. Futurestudies—eould—analyse-therole-of-different

grassland models_ For example, in a_model comparison study with the GRASSMIND and LPJmL models, it was noted
noticed that by including a density-dependent senescence rate (not shown in the model equations above), the simulated
lowered. A density-dependent senescence rate can be explained, for example, by negative plant-soil feedbacks may-play
an-impertant-rolein-plant-coexistence-ingrasslands-(Bonanomi et al., 2005; Liu et al., 2022; Goossens et al., 2023). This

use—and—climate—changecan—in—futurestudies—shows the potential to explore in future studies how the incorporation of
coexistence mechanisms can lead to more realistic predictions of functional community composition.

of-applicability-of-the-We argue that our model is well suited for analysing the effects of management (grazing, mowin

and fertilization), of edaphic factors (soil nitrogen, permanent wilting point and water holding capacity), and of climatic

factors (temperature, radiation, potential evapotranspiration and precipitation) on the productivity and the functional

composition of diverse plant communities of temperate semi-natural grasslands. We envisage the model -weplan-to
conduet-a-subsequent-calibration—study-with-multiple-data—sets—as_a useful tool for conducting scenario analyses (e.g.,
what would happen if the input X were to change, and why?), rather than as a model with superior predictive performance

a balance between creating highly productive grasslands and maintaining plant diversity could be analysed. Furthermore

the influence of the initial species composition on the productivity under fluctuating climate conditions (e.g.

drought) could be studied by answering the question whether a more diverse community can buffer extreme climatic

roCesses (€.

events. Moreover, we consider the potential application of including or excluding certain ., a specific transfer
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function, which links traits to demographic rates) and analyse whether the agreement between simulations and measured

885 data improves.
Fhis-study-can-beseen-as-
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5 Conclusions

890 have extended the approach of Chalmandrier et al. (2021) by linking measurements of morphological plant traits with
demographic_and physiological species-specific_processes. Our_model uses only morphological traits as species-specific

inputs to simulate the biomass of many plant species over time. Therefore, the study is a step towards modelling highly
diverse plant communities in grasslands. We hope that the accompanying documentation, tutorialsand-epen-seurece-—code

witHead-to-collaborations—,_and open-source code will encourage collaboration and discussion on the-this topic.
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Appendix A: Derivation of the species-specific water and nutrient growth reducers

The response curves (growth reducers) REDyzs-RE D, for different nutrient and water availabilities, denoted as Rz Ry,
are implemented via logistic equations with a minimum of zero (no growth is possible) and a maximum of one (no
growth reduction). While the species-specific part of the response curves is implemented by different inflection points

o, RED.ts: the slope BrEp is the same for all species:

TTYS

1 1
L+ P (=Prpp - (Bray = 20.RED tays)) 1+ eXP(=PrED - (Bt ~ Zo REDs))

REDt(r,ysté = (Al)

We then used another logistic equation that relates the trait values to the inflection point of the response curve.
We wanted to control how much the response curves should differ when the trait values differ from z¢ prep s, this is

implemented with the parameter g p. The equation could be written as:

T0,RED,max — L0,RED,min L0,RED,max — L£0,RED,min
1 + €xp (_ORED : (m'aittxys - fl;().pre.p.s)) 1 + exp (_5RED : (traitts - x(),prep,s))

Z0,RED txys0,RED,ts — T0,RED min +

(A2)

However, this equations and their parameter 2 prep,s, £0,RED,min, aNd Zo, RED,max are hard to understand and to interpret,
therefore we reformulated the equation. Instead of calculating the inflection point #yrEpzzysTo.rEDss directly, we
calculated the growth reduction at 0.5 of the maximal resource availability:

1 1

Lt exp (Z0rpD - (traitieys = 20.rED.05)) 1 1P (Z0rED  (traits; — To.rED0))

RED()B,txz/s(l% = (A3)

This has the advantage that we have natural boundaries € [0,1], because the growth reduction cannot be larger than one
(REPmys="0RED,;; =0) or lower than zero (REDmys=1RED,;; = 1). We introduce one parameter argp,os5 that is

the growth reducer for the mean trait ¢;,4;¢+ at half of the maximal resource availability:

1
QRED,05 = A4
% 1t exp(—0reDp  (Brait — To,R,05)) (A4)
and rearranged the equation to:
1 1-— QXRED
Lo,R,05 = 5 ' IOg ( 2 ,05) + ¢trait (A5)
RED QRED,05

This leads to an equation that we can use to calculate the growth reducer for all trait values at half of the maximal

resource availability:

1

1

REDOS,f/.’I;ys 05,ts —

R 1+ €Xp (76RED . (tra/itt.’l;ys - <# : l()g (M> + (be,’l‘(l,’it))) 1+ exXp <_6RED : (tra‘itts - (# :

ORED

ORED QRED,05

(A6)
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Now, we need again the full equation to calculate the growth reducer for any resource availability. We use the Equation

Al and solve for g ~To rEDts With RED. . =0.5;
1 1
RED. 2139508 = T4 exp (B - (05 — Toumminys) 1+ exp (—Bren - (05 — o npn)) (A7)
to get the inflection point ®#greprzys—To RED s
e o enin = 5198 gy ED ) 00 &
Thus, the full equation to calculate the growth reducer for any resource availability is:
REDyys1s = Lt oxp (—Brmn - B 11 o [ 1=REDos5, 1ays - B . B 11 ] 1—REDos,¢+
P( BrED (Rmy <5RED 10&%( REDos, tnys ) +0~0>)) 1 +6XP( BrED (Rt (BRED log( REDos 1 )
(A9)
and with everything combined and simplified:
RED, 515 = L
T 14exp (—ﬂRED . (Rf,;,;y - [ﬁ . (—6RED . (tra,z'tmys — (ﬁ -log (%) + ¢tmaﬁt>>) + 0.5} >> 14exp (—
(A10)
Note the species-specific inflection point #yrromys 2o, rED.Ls IN Square brackets.
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Appendix B: Technical details of the GrasslandTraitSim.jl model

The model is implemented as a Julia package and can be used with the Julia programming language (Bezanson et al., 2017

. It can be used on all major operating systems (Linux, MacOS, Windows). The model can be run on computers with

to run on a standard personal computer. A graphical user interface allows you to manually change parameter values and
data accessibility statement). The model can be run on headless systems, but then the graphical user interface is not
easier to understand and debug. The outputs of the model have labelled axes using DimensionalData jl, making it easy
tutorials on how to set up the input data and how to analyse the output (see data accessibility statement). For each
be installed in Julia using import Pkg; Pkg.add("GrasslandTraitSim", version = "1.0.0"). The newest version
can be installed using the same command without the version argument. All dependencies will be installed with this
command. The model is open-source and licensed under the GNU GPLv3. Contributions are welcome and can be made
via_GitHub. The development of the model is hosted at https://github.com/felixnoessler/Grassland TraitSim.jl and new

41


https://github.com/felixnoessler/GrasslandTraitSim.jl

950

955

960

965

970

975

Appendix C: Speciesresponse-te-tand-use-intensityDetailed description and data preparation for the
Biodiversity Exploratories dataset

We compiled input data for the model from different sources. Management data was used directly from the Biodiversit
Exploratories project (timin

nitrogen per year, Vogt et al. 2024). The exact dates of grazing were not available, only the type of grazing, the number

of days and the start and end month of a grazing period. We assumed different numbers of consecutive grazing days (2 for

rotational grazing type | - "Portionsweide”, rotational grazing, 5 for rotational grazing type Il - "Umtriebsweide” and all
days for permanent grazing) and distributed them equally over the whole grazing period. Potential evapotranspiration was
used from AMBAV, an agro-meteorological model that outputs "potential evaporation over grass” from weather stations

are in the three regions (DWD Climate Data Center, 2019) and is therefore the same for all sites of one region. Air
2023

. Photosynthetic activate radiation (PAR) was download with a three hours resolution from Wang (2021), the dail

sum of PAR was obtained by calculating the integral of a quadratic regression to the PAR values. We calculated the

PAR values per region. We created region-specific PAR inputs due to the coarse resolution of the PAR data. Soil
rooting depth (Herold et al., 2021d) and organic

and intensity of and height of mowing events and total fertilization of

temperature and precipitation were obtained for each site from the Biodiversity Exploraties project (Wollauer et al.,

texture (Schoning et al. Schéning et al.

matter content (Schéning et al., 2021b) were used from soil sampling campaigns of the Biodiversity Exploratories project.

The total nitrogen concentration was aggregated from four years to get a mean overall total nitrogen concentration
Schéning et al., 2021b, e, a: Schoénin

of the Biodiversity Exploratories project. Leaf area and leaf dry weight was sampled from individuals from sites of the
Exploratories (Prati et al., 2021) to calculate the specific leaf area. The root surface area per below-ground biomass

arbuscular mycorrhizal colonisation rate and above-ground biomass per total biomass were obtained from individuals
that were grown in a greenhouse experiment on sand (Bergmann and Rillig, 2022). The maximum height was obtained

, 2023). The trait data was compiled from species that are present in grasslands

from Jager et al. (2017) and the leaf nitrogen per leaf mass from the TRY database (Kattge et al. 2020, mainly from
Gubsch et al. 2010; Pakeman et al. 2008; Schroeder-Georgi et al. 2016). We decided to set leaf biomass per above-ground

For 70 species we had values for all the traits. We used a reduced set of 25 species as input for the simulation (see Appendix
ing initialisation, the initial above-ground and below-ground biomass of 5000 kg-ha~! was evenly distributed
content was set to 180 mm, which assumes no drought stress in the beginning of the simulation. For the calibration and
distributions. The biomass was cut once per year on every site at 4 cm height (Hinderling et al., 2024). Each year, the
cover of plant species was estimated on an area of 16 m? (Hinderling and Keller, 2023). Whereas we used input data

from 2006 to 2022, we only used calibration data from 2010 to 2022 to allow for an initialisation phase of the grassland
model.
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980 C1 Reducing the number of species from 70 to 25 for the Biodiversity Exploratories dataset

groups. To do this, we first standardised the trait values by min-max normalisation to a range of [0, 1] to give each trait

985 applied hierarchical clustering ("hclust” function from "stats” package, R Core Team 2024) and formed 25 groups and
calculated the mean of the non-standardised trait values to obtain the trait values for 25 virtual species. A comparison of
the general community patterns (see Figure A4).
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995 Appendix D: Calculating the distance between two community trait distributions

two discrete distributions (Rubner et al. 2000; Villani 2009; Bernton et al. 2019, for applications in movement ecolo

see Potts et al. 2014; Kranstauber et al. 2017). The cost is computed as the product of the amount of probability mass

transported and the distance it is moved. We used the implementation in the Python package "scipy” ("wasserstein_ distance_nd"
1000 function, Virtanen et al. 2020). With this function the trait values of both distributions are given as "u_values” and

"v_values” (matrices, each row with trait values for one species) and the respective cover or biomass proportions are

iven as "u_weights” and "v_weights”. Always, when we write in the text, that we calculate the earth mover’'s distance
we standardise the trait value by z-score normalisation

ive all traits an equal weight in the calculation.
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Appendix E: Technical details on running the MCMC routine

For both datasets, we used the Haario-Bardenet Markov Chain Monte Carlo with the Python software package PINTS
Clerx et al., 2019). We called our Julia package GrasslandTraitSim.jl from Python. We ran four independent chains for

75 thousand iterations (150 thousand for FAO dataset) and discarded the first half of the iterations as warm-up. The first
five thousand iterations were used as an adaption free initial phase. We checked that all four chains converged to the

same posterior region by visually examining the trace plots (see Figures A2 and A7) and by checking that all rhat values

were less than 1.01 (not shown, Vehtari et al. 2021). We compared how much the posterior shifted in comparison to the

rior densities and interpreted it as how much uncertainty was reduced. We also compared how much uncertainty was
reduced while simulating trajectories with GrasslandTraitSim.jl from the

redictive with the posterior predictive distribution).

For both datasets, we used the one step ahead prediction method (predict until next datapoint, evaluate prediction

reset state variables to data point and repeat procedure). By using this method and not explicitly estimating the hidden
state of the above-ground biomass (e.g., by a state space model), we ignored the observational error and only considered

45



090235

o RUE_owmH

CSEA STI

1355413

¢seA sT2

0842005

¢ SeAmin
%

2221012

|

—

§_SEN ST

B % % % % B%%Y BB

[ | [ |

4_SEN_ST2

&_SENmax

0
C
0

%,

seeesae = o
Y

i .

S R F T I O O A R T R e R Y Y P PR R AR

o RUE_owmH CseA sTH ¢ seA sT2 ¢ SEAmin ¢_seAmax @_SEN_ST1 y_SEN_ST2 §_SENmax o"_biomass

o
% %

°
%
2
2

s

o,
a
"
8 o

Figure Al. Input-variables-Pair plot of the modelposterior densities for the calibration with the FAQ dataset. Fhe-dimensions-of-In

the variables—right upper plots, the marginal posterior densities (histograms) are given—in-shown together with the subseript-prior
densities (red lines). The first half of the symbels—+#-per-dayiterations were discarded as warm-up.

1020

46



0.015 1

o_SEN

|
0.010 1

0.005

2751

250

2254

¢_SEAmax

2.004

1.75 4

0.0060.0090.0120.015.018

1.00 1

T 0.98
EOSB
s|
w
5 o
T
o

2400
2200

5 2000

& 1800 4

&

' 1600
1400 -
12004

1500 2000 2500

o
o
o
.
i

3500
o
i =
.f/_)‘ U,\
< z
) &, 3000
'\'l =
] 2500 ‘ ’ » ;
250 500 750 1000 2500 3000 3500 4000
3.0
251
o 17501 ; 5
U)‘ 5
é 1500 87 ]
N ES
15
12501
1.0 1
1500 2000 2500 10 15 20 25 30
1.0 q
09+ 1 0.250 1
£ ﬁ
£
5 084 1 s
@ 50225 4
. B
0.7 ]
200
06 i 0.200 |

EERRE

8.00x10* 1.00x10° 1.20x10° 1.40x10°
draw

Figure A2,
MCMC chains. In the densit

were discarded as warm-up.

0.0

0.5 1.

°

47

8.00x10* 1.00x10° 1.20x10% 1.40x10%

draw

Trace plot, prior and posterior densities for the calibration with the FAO dataset. Different colours represent the different




Spain, La Coruna, FAO45 Netherlands, Wageningen, FAO55

%
<
2 6000 -
© E
Q
§ ._g 4000 [ ‘
= > o .
28 1l
.9-8 ) . o. °e b
5.52000- .- R R WA
o !’ ! .. ) .. o L . c..
2 _.--‘. rve ed oY r 58
_8 0- .-'-"" o o ) . “/
<
T
«©
~
o 2 6000 -
=)
- )
O © .
85
<3 4000
- > o0
235 -
E -O .‘
@ 52000 |
o5 M
1
>
_8 0 ©
<
1984-01 1984-05 1985-011983-01 1983-05 1984-01

Date (Start of month) Date (Start of month)

Figure A3. Prior and posterior predictive checks for the FAO dataset. Simulations with parameters drawn from the prior distribution

or from the posterior distribution (grey lines) are compared to measured above-ground biomass (blue dots).

48



7 6000 |
[l |
© £ 50004 .
§ g 4000 - l‘ | . . (‘ — simulation with 25 species
g’@ 3000 4 | ‘ - \ ° ‘ ‘ simulation with 70 species
‘ | 1
_§ E 2000 - f ‘ l ‘ / \ | \‘ M ® measured above-ground biomass
<o | L/\/ m I 9
%.1000 NJJJ/ \N/‘ \J,\/\/\/\f.‘ it A_J
287
= — simulation with 25 species
£ 1.5+ simulation with 70 species
(=2
'g community weighted mean trait
1.0 ® of observationally derived trait
g ‘L/ -—/‘M"'"MW dlstnbutl?n wuth 25 virtual spetr:les
= 054 community weighted mean trait
= e of observed trait distribution
with 70 species
— i hﬁm\av\!\\ﬁpkf ‘de ¢
T 0.015 o
o ) ‘s
2E A{f \ e 8
o 4
gg 0.010
(23]
& 0.005 4
__ 45+
&1
Qo
c O
§§ 30 L ° - ®
ea -
4
T 15
58
(2]
n i
E - 0.75
S &
5 ‘ ' .
€5 0.60 1 =y ] | L] ® .
<]
g
§ 2 0.45
(1] —_—
0TT
& § > 0.3
[ORRCa
¢ ok PP IS =
£59% 02 e U
288 o % o0 e
859
T o904
— 0.6
8%
3ES 041
399
285§ .
o
"oz \V\Wr\ i
M«f\«w’\m

T
2006 201 0 201 4 201 8 2022
Time [start of year]

Figure A4. Comparison of community dynamics (above-ground biomass and community weighted mean traits) with 70 species and

with the reduced set of 25 species. The trait values of the 25 species were derived by calculating mean trait values of 25 groups

that were built from the dataset with the trait values of all 70 species (see Appendix C1).
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Figure Ab. Prior and posterior predictive checks for two sites of the Biodiversity Exploratories dataset. The predicted above-ground

biomass, based on simulations with parameters drawn from either the prior or posterior distributions, is compared to the measured

above-ground biomass.
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Figure A8. Development of the community trait distribution over time for validation sites with the highest (SEG20) and the lowest

HEGA47) mean absolute error for the distance between simulated and observed community trait distribution (for the selection, see

Figure 6). The simulated (red) and observed (grey) densities are calculated by kernel density estimation by including the biomass

roportion of the species as weights. The trait values of the species are constant (black horizontal lines on the left). To analyse

correlations between traits, the observed and simulated traijt distributions are shown in a pair plot for 2018 in Figure A9 and Al0.




Figure A9.

Simulated

Specific
leaf area [m? g=']

Root surface area

Arbuscular
mycorrhizal

0.8 1

0.4+

=4
o

AEG31in 2018

© Maximum height [m]

Q
@
o

o

2

o
1

0.000

Leaf nitrogen per
o
o
!

leaf mass [mg g~']
o
(&)
1

o
!

4
©
L

Aboveground biomass
per total biomass [-]
o o
w o
! |

o
IS
L

024

per belowground
biomass [m? g~']

0.0

1.2

0.6

colonisation [-]

red) and observationall

T T
0.0 1.5
Maximum height [m]

T T i
0.000 0.015 0.0300
Specific
leaf area [m? g=']

T T
25 50
Leaf nitrogen per

leaf mass [mg g~']

T T T
0.3 0.6 0.9
Aboveground biomass
per total biomass [-]

T T T

0.0 0.2 0.4
Root surface area
per belowground
biomass [m2 g~]

derived (black) community trait distribution for the

T T

0.0 0.6
Arbuscular
mycorrhizal

colonisation [-]

1.2

rassland site AEG31 of the

in 2018. The AEG31 site has the highest distance between the simulated and observationall

derived community trait distribution over all years (see Figure 6).

Schwabische Alb region (German

54



0.8 1

AEG41in 2018

© Maximum height [m]
o
S
L

0.015 4

Specific
leaf area [m? g=']

Leaf nitrogen per
leaf mass [mg g~']
o
(&)
1

4
©
L

Aboveground biomass
per total biomass [-]
o o
w o
! |

o
IS
L

[m*g~1]
o
N

g8 |

Root surface area
per belowground

bi

iomass

0.0+

»

o
o
!

Arbuscular
mycorrhizal
colonisation [-]

4
o
L

T T T T Tt T T T T T T T T T T
0.0 1.5 0.000 0.015 0.0300 25 50 0.3 0.6 0.9 00 0.2 0.4 0.0 0.6 1.2
Maximum height [m] Specific Leaf nitrogen per  Aboveground biomass  Root surface area Arbuscular
leaf area [m? g='] leaf mass [mg g~'] per total biomass [-] per belowground mycorrhizal
biomass [m2 g~] colonisation [-]
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Table A3. Input variables of the GrasslandTraitSim.jl model. The dimensions of the variables are given in the subscript of the
symbols: ¢ per day and s per species.

Sym—Symbol Variable description Unit
Climate

PARm-PAR;  Photosynthetic active radiation MJ-ha~*
Frag Tt Mean air temperature °C

Py Py Precipitation mm

PE - PET; Potential evapotranspiration mm
Management

GU T CUT;,  Cutting height for mowing m or NaN
LDy LDy Livestock density ha~! or NaN
I Fertilization (may vary from year to year kgN-ha™t.yr?
Soil

SNDz~SND  Sand content (proportion € [0,1]) -
SEFe-SLT Silt content (proportion € [0,1]) -

LY OLY Clay content (proportion € [0,1]) —
OMzyOM Organic matter content (proportion € [0,1]) —
BEAwBLEK Bulk density g-cm™?
RPz-RD_ Rooting depth of plants mm

Nag N Total nitrogen in the soil gN.-kg™?!
Morphological plant traits

maxheights Maximum plant height m

slas Specific leaf area m?- kgf1
Incs Leaf nitrogen content per leaf mass mg-g*
rSas Root surface area per below-ground biomass m?.g?
amcs Arbuscular mycorrhizal eetenization-colonisation rate -

abps abeve-grotired-Above-ground biomass per total biomass —

lbps Leaf biomass per tetal-above-ground biomass -
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Table A4. Parameters of the model and the references for the parameter values. In the reference column we denote whether a
parameter is calibrated with the Biodiversity Exploratories (BE) or the FAO dataset, whether the parameter is set manually by
comparing time series with data or if the parameter value is derived from literature. For the parameters calibrated using the FAO

dataset, we set prior distributions based on the literature, as shown in Table A6.
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Symbol Parameter Value Unit Reference
Reference traits
Ref t surf total bi . ~ 007 2.g7t
PTRSA eference root surface area per total biomass m°-g —calibrated with BE
used in nutrient stress function and maintenance 0.023
S dataset
costs for roots function —set-te-mean—-of
Ref b I i hi ~ 0.11 —
dramc eference arbuscular myeorriza-mycorrhiza —calibrated with BE.
colonisation rate per total biomass, used in
dataset
nutrient stress function and maintenance costs for
mycorrhizae function;—set-to-mean-of-commumnity:
Reference specific leaf area, used in senescence m?. g1
Psta P ~—0-009 & —manually adjusted for BE
function —set-to-mean-of-community:
0012 dataset, close to
- community mean_
Light interception and competition
YRU Emaz Maximum radiation use efficiency 0.003 kg -MJ~! Schapendonk et al. (1998)
YRUE,k Light extinction coefficient 0.6 — Schapendonk et al. (1998)
« cwm Reduction factor of radiation use efficiency at a . . .
R eemt / catibrated —calibrated with FAQ
height of 0.2 m € [0,1
g [0,1] —Brrer dataset
Exponent
that
coontrols
how
stronghy
taler
plants
intercept
reEe
light—than
s
sl
calibrated
~ 0.989

Water stress
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Symbol Parameter Value Unit Reference
aw A Water stress growth reduction factor for species ) - . .
AT e ts & P calibrated —calibrated with BE
with mean trait: TRSA = sA, when the plant
orr P x4t dataset.
available water equals: Wezy=0-5-W, ¢ = 0.5
W AT, Slope of the logistic function that relates the . — .
Pw AT raa P & ealibrated —manually adjusted for BE
plant available water to the water stress growth
75 dataset
reduction factor
dw A Controls how strongly species differ in their water -m~?
e Evep calibrated calibrated with BE dataset
stress growth reduction from the mean response ~al
Nutrient stress
kgN ™.
Maximum-total-seil-nitrogen—on—all-thegrasstand 0.4 & ) manually adjusted for BE
ha™" -yr
sites-of-theBiodiversity-Explorateries—the Y gl/g;\aAs/gL
maximum-Controls the influence of the
. L . gN~'-kg .
WNUTN. Controls the influence of the total soil nitrogen is 352 —manually adjusted for BE
36-on the nutrient index dataset
QNUT,TSB Reference value, if the sum of the product of trait . kg-ha™! .
P calibrated & —manually adjusted for the
similarity and biomass of all species equals:
’ P = 5000 BE dataset
>TS-B<1,>TS-B=1,> TS-B>1the
nutrient adjustment factor A qa5rzys
NUT4ug;.5 is higher than one, one and lower than
one, respectively
« i Maximum of the nutrient adjustment factor + —
NuTmazad ! 102 —manually adjusted for BE
G ’ . .
dataset.
UT, Scaling factor for the trait similarity matrix 2 B manually adjusted for BE
dataset
« 5 Nutrient stress based on arbuscular myeerriza —
e cafibrated —calibrated with BE
mycorrhiza colonisation growth reduction factor
~ 079 dataset

for species with mean trait: TAMC = ¢ramc,
when the plant available nutrients equal:
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Symbol Parameter Value Unit Reference
QANUT,rsa,05 Nutrient stress based on root surface area growth ) — . )
catibrated —calibrated with BE
reduction factor for species with mean trait:
~ 0.76 dataset.
TRSA = ¢rrsa, when the plant available
nutrients equal: Npzys="0-5-Np s = 0.5
NUT, Slope of the logistic function that relates the . — .
PnuT,ame P & ealibrated —manually adjusted for BE
plant available nutrients to the nutrient stress
5 dataset
growth reduction factor based on arbuscular
myeorriza-mycorrhiza colonisation
Slope of the logistic function that relates the plant —
PNUT,rsa P & P calibrated —manually adjusted for BE
available nutrients to the nutrient stress growth
75 dataset.
reduction factor based on root surface area
1) Controls how strongly species differ in their —
N gy P calibrated calibrated with BE dataset
nutrients stress growth reduction based on ~ 6.1
arbuscular myeerriza-mycorrhiza colonisation from DA
the mean response
5 Controls how strongly species differ in their -m 2
N BYp calibrated calibrated with BE dataset
nutrient stress growth reduction based on root ~ 19.2
surface area from the mean response
Maintenance costs for roots and mycorrhizae
K Maximum growth reduction due to maintenance -
ROOTame & calibrated —calibrated with BE
costs for mycorrhizae based on arbuscular
Y ~ 0.28 dataset
myeorriza-mycorrhiza colonisation rate
K Maximum growth reduction due to maintenance —
ROOTree & calibrated ~calibrated with BE
costs for fine roots based on root surface area
~ 0.07 dataset
Environmental and seasonal growth adjustment
YRAD,1 Controls the steepness of the linear decrease in 4.45-107% MJ!-ha Schapendonk et al. (1998)
radiation use efficiency for high PAR-PAR,
values
YRAD,2 Threshold value of PARzy-P AR, from which 5.10% MJ-ha™?! Schapendonk et al. (1998)
starts a linear decrease in radiation use efficiency
WTEMP,T, Minimum temperature for growth 4 °C Jouven et al. (2006)
WTEMP,T, Lower limit of optimum temperature for growth 10 °C Schapendonk et al. (1998)
WTEMP,Ts Upper limit of optimum temperature for growth 20 °C Jouven et al. (2006)
WTEMP,T, Maximum temperature for growth 35 °C Moulin et al. (2021)
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Symbol Parameter Value Unit Reference
SEA.S Threshold of the cumulative . °C . .
s remperate calbrated ~calibrated with FAQ
temperature since the beginning of the current
~ 400 dataset.
year, the seasonality factor starts to decrease
from (spAmax t0 (sEAmin above
EsrasT—H9°6(sga.sm, — 100 °C
SEA,ST: Threshold of the cumulative . °C . )
BTy remperate cabbrated —calibrated with FAQ
temperature since the beginning of the current
gnnne % 1460 dataset
year, above which the seasonality factor is set to
CSEAmin
SEAmi Minimum value of the seasonal growth effect . - . .
s min : catbrated ~calibrated with FAQ
~ 0.84 dataset
SEAm: Maximum value of the seasonal growth effect . — . .
o e calbrated ~calibrated with FAQ
~ 216 dataset.
Senescence
QASEN Basic senescence rate ) month™? . .
ealibrated -calibrated with FAQ
~ 0.012 dataset
Controls the influence of the specific leaf area on —
BspN,sia P calibrated —manually adjusted for BE
the senescence rate
25 dataset.
SEN,ST, Threshold of the cumulative temperate . °C ) )
paENsh cabbrated —calibrated with FAQ
temperature since the beginning of the current
~ 1731 dataset
year above which the senescence begins to
increase
Threshold of the cumulative °C
¢SEN,ST2 temperate ~ . .
temperature since the beginning of the current . .
year above which the senescence reaches the
maximum senescence rate YsEN max
YSEN max Maximum senescence rate ) — ) _
~ 177 dataset.
Management
GRZ.1 Controls the influence of leaf nitrogen per leaf . — .
Berzinc gen P calibrated —manually adjusted for BE
mass on grazer preference
grazerp 3. dataset
a Controls the influence of height on grazer . — .
Berz.n B & ealibrated —manually adjusted for BE
reference
P L dataset.
NGRZ Scaling factor that controls at which biomass 2 —

density additional feed is supplied by farmers,63

fixed for calibration

—manually adjusted for BE

dataset
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Symbol Parameter Value Unit Reference

KGRZ Consumption of dry biomass per livestock and day 22 kg-ha™? Gillet (2008)

€GRZ,min H Minimum height that is reachable by grazers 0.05 m cf. Hirata et al. (2010)
Water dynamics

BsNp,wHC, Slope parameter relating the sand, silt, clay, 0.5678, - Gupta and Larson (1979)
BsLr,wHC, organic matter content and the bulk density to 0.9228, -, for all five parameter values
BerLy,wHC, the soil water content at the water holding 0.9135, -,

Bom,wHC, capacity 0.6103, -,

BBLK,WHC —0.2696 em® - g7t

Bsnp,pwP, Slope parameter relating the sand, silt, clay, —0.0059, -, Gupta and Larson (1979)
BsrLr,pwp, organic matter content and the bulk density to 0.1142, -, for all five parameter values
BerLy,pwp, the soil water content at the permanent wilting 0.5766, -,

Bom,pwp, point 0.2228, -,

BBLK,PWP 0.02671 cm® g7t
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Table A5. Overview of the model equations and their references. New means that the equations are newly composed for the

grassland model and were not adopted from other grassland models.

Eq.

Topic

Main biomass dynamic

1

g~ W N

main biomass

ratio between
change in abo
change in belc

actual growth

Light interception and competition

6

12

potential grow

fraction of the

community-we
total leaf area
leaf area inde>
light intercept

vertical layers

General form of the growth reducer for nutrient and water stress

13

14

species-specifi
function for ni
logistic growtl

stress

Nutrient stress
15
16
17
18
19

65

nutrient stress
arbuscular my
root surface al
plant available
nutrient adjus

similarity



Eq. Topic

References

20 normalized arbuscular mycorrhizal colonisation rate

21 normalized root surface area per below-ground biomass
22 trait dissimilarity index

23 trait similarity calculation

24 trait similarity as matrix

general equation
general equation
new
new

new

Water stress

25  plant available water

Moulin et al. (2021)

Maintenance costs for roots and mycorrhizae
26  costs for roots and mycorrhizae growth reduction factor
27  costs for fine roots reduction factor

28  costs for mycorrhizae growth reduction factor

new

new

new

Environmental and seasonal growth adjustment
29 environmental and seasonal growth adjustment
30  growth reduction based on too high radiation

31 temperature growth reducer function

32  seasonal growth adjustment

33  yearly accumulated temperature

Moulin et al. (2021)

Schapendonk et al. (1998)

Schapendonk et al. (1998), Jouven et al. (2006),
Moulin et al. (2021)

Jouven et al. (2006), Moulin et al. (2021)
Jouven et al. (2006), Moulin et al. (2021)

Senescence

34 senescence rate

35  seasonality of senescence

Moulin et al. (2021), added influence of specific
leaf area

Moulin et al. (2021)

Management
36  biomass losses due to management

37 mown biomass

38  grazed biomass

41 influence of leaf nitrogen per leaf mass on grazer

preference

42 community-weighted mean leaf nitrogen content

similar to Moulin et al. (2021)

influence of plant height to mowing tolerance
similar to the A in Moulin et al. (2021)

partly based on Moulin et al. (2021); added
influence of leaf nitrogen content and height on
grazer preference

new

general equation

Plant height dynamics
43 change in the plant height
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Eq.

Topic

References

Water dynamic

44
45
46
47
48
49

50

51
52

main soil water dynamic

evaporation

transpiration

actual evapotranspiration

water drainage and run-off

fraction of the soil that can be filled with water at the
water holding capacity

fraction of the soil that can be filled with water at the
permanent wilting point

water holding capacity in the rooting zone

permanent wilting point in the rooting zone

Schapendonk et al. (1998), Moulin et al. (2021)
Moulin et al. (2021)

simplified/modified from Moulin et al. (2021)
Moulin et al. (2021)

Moulin et al. (2021)

Gupta and Larson (1979)

Gupta and Larson (1979)

Gupta and Larson (1979)
Gupta and Larson (1979)
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Table Ab6. Prior distributions for the calibration with the FAQ dataset.

Parameter  Prior Distribution Reference for Prior

QSEN.
truncated(Normal(0.01, 0.002); we assumed a relatively low basis senescence rate per
lower = 0.005, upper = 0.02 month

YSENmax.

truncated(Normal(1.5, 0.5); Moulin et al. (2021) used 3 [—]
lower = 1, upper = 3

truncated(Normal(1800, 200); Moulin et al. (2021) used 775 [° C]
lower = 1200, upper = 2500)*

truncated(Normal(3000, 200); Moulin et al. (2021) used 3000 [° C]
lower = 2500, upper = 4000

YSENST .

YSENSTa

$sBAmin.
Beta(3,1) Jouven et al. (2006) used 0.67 [—]
CsBAmas.
truncated(Normal(1, 2); Jouven et al. (2006) used 1.33 [—]
lower = 1, upper = 5)_
CSEASTL.
truncated(Normal(800, 200); Jouven et al. (2006) used 775 [° C]
lower = 250, upper = 1200
CSEASTs.
truncated(Normal(1800, 200); Jouven et al. (2006) used 1450 [° C]
lower = 1200, upper = 2500
QRUE,cuml,
Beta(8, 2) we assumed a small effect, if the parameter is one, the
rocess would have no effect
o2

truncated(Normal(0, 5); wide prior, we compared measured and simulated biomass
lower = 0.0) in [t-ha™']

!Note that we assumed higher values for ¢sEN,sT; because we calibrated our model for lower altitudes compared to Moulin et al. (2021), as

more heat is accumulated over the year before the senescence starts to increase in autumn.
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Table A7. Overview of experiments with location, year and whether an experiment is used for calibration for the FAO dataset. If
an experiment is not used for calibration, it is used for validation. We only used the subset of the experiments that were irrigated.

experiment number  location (lat, lon year used for calibration?
FAQOL UK, Crossnacreevy (54.53,:5.85) 1982 X
FAO51  ltaly, Carmagnola (44.85, 7.72 1983
FAOS3  Italy, Carmagnola (44.85,7.72) 1984

FAO55  Netherlands, Wageningen (51.97, 5.67 1983
FAO57  Netherlands, Wageningen (51.97, 5.67 1984

FAO59  Italy, Lodi (45.32, 9.5 1983
FAO6L  Italy, Lodi (45.32, 9.5 1984
FAO63  ltaly, Lodi (45.32, 9.5 1985

FAO71  Netherlands, Zegveld (52.12, 4.85 1984
FAO73  Netherlands, Zegveld (52.12, 4.85 1985

FAQO75 UK, Crossnacreevy (54.53, -5.85 1983
FAO77 UK, Crossnacreevy (54.53, -5.85 1984
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Table A8. Prior distributions for the calibration with the Biodiversity Exploratories dataset. The prior distributions for the parameters,
which are rather theoretical, were set so that the simulated trajectories were close to the measured above-ground biomass and to
the community weighted mean traits.

Parameter  Prior Distribution

awazssaos  Beta(d, 1)
dwarese.  Uniform(0, 25)
aNUTse0s.  Beta(4, 1)
ONUTameos.  Beta(d, 1)
yutase.  Uniform(0, 25)
Syutame  Uniform(0, 12.5)

KBOQT,rs0. truncated(Normal(0.0, 0.05); lower = 0, upper = 0.5
KBOQT,ame_  truncated(Normal(0.25, 0.05); lower = 0, upper = 0.5

TRSA truncated(Normal(0.02, 0.01); lower = 0.0, upper = 0.1
Pramc. truncated(Normal(0.1, 0.02); lower = 0.05, upper = 0.25
W truncated(Normal(0, 5); lower = 0.0




Table A9. Overview of sites with location, dominant land use and whether a site is used for calibration of the Biodiversit
Exploratories dataset from the Schwabische Alb region. If a site is not used for calibration, it is used for validation.

Site code  Location (lat, lon Dominant land use  Used for calibration?

AEGOL  Schwabische Alb (48:4, 9.34)  mainly mown_
AEG02  Schwabische Alb (48.38, 9.47)  mainly mown_
AEGO3_ Schwabische Alb (48:41, 9.53)  mainly mown_
AEGO4  Schwabische Alb (48.38, 9.42)  mown and grazed
AEGO5_ Schwabische Alb (48.4, 9.44)  mown and grazed
AEGO6_ Schwabische Alb (48.4, 9.44)  mown and grazed
AEGO8  Schwabische Alb (48.42, 9.49)  mown and grazed
AEGL0  Schwabische Alb (48.38, 9.21)  mainly mown
AEGLL ~ Schwabische Alb (48.49, 9.35)  mainly mown
AEG12  Schwabische Alb (48.39, 9.35)  mainly mown
AEG13  Schwébische Alb (48.39, 9.36)  mainly mown
AEG14  Schwébische Alb (48.38, 9.52)  mainly mown
AEGL5  Schwébische Alb (48.49, 9.45)  mainly mown
AEGL7  Schwibische Alb (48.4,9.52)  mainly mown
AEG18  Schwébische Alb (48.38, 9.52)  mainly mown
AEG22  Schwabische Alb (48.4, 9.51)  mainly mown
AEG23  Schwabische Alb (48.42, 9.51)  mainly mown
AEG24  Schwabische Alb (48.4, 9.49)  mown and grazed
AEG29_ Schwabische Alb (48.42, 9.36)  mown and grazed
AEG3L ~ Schwabische Alb (48.46, 9.46)  mown and grazed
AEG35  Schwabische Alb (48.48, 9.29)  mainly mown
AEG36_ Schwabische Alb (48.48, 9.3)  mainly mown
AEG37  Schwabische Alb (48.4, 9.41)  mainly mown
AEG38  Schwabische Alb (48.44, 9.43)  mainly mown
AEG39  Schwébische Alb (48.39, 9.43)  mainly mown
AEG40_ Schwébische Alb (48.41, 9.57)  mainly mown
AEG4L  Schwibische Alb (48.37, 9.4)  mainly mown
AEG42  Schwabische Alb (48.4, 9.38) ~ mown and grazed
AEG45  Schwabische Alb (48.4, 9.46)  mainly mown
AEG50_  Schwébische Alb (48.41, 9.47)  mainly mown

XX X
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Table A10. Overview of sites with location, dominant land use and whether a site is used for calibration of the Biodiversit
Exploratories dataset from the Hainich region. If a site is not used for calibration, it is used for validation.

Site code  Location (lat, lon Dominant land use  Used for calibration?

XX x X
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Table All. Overview of sites with location, dominant land use and whether a site is used for calibration of the Biodiversit
Exploratories dataset from the Schorfheide-Chorin region. If a site is not used for calibration, it is used for validation.

Site code  Location (lat, lon Dominant land use  Used for calibration?
SEGO1  Schorfheide-Chorin (53.09, 13.97 ‘mainly mown_ X
SEGO02  Schorfheide-Chorin (53.09, 13.98 ‘mown and grazed x
SEGO03  Schorfheide-Chorin (53.1, 13.99 ‘mainly mown_ X
SEG08  Schorfheide-Chorin (53.11, 14.02 ‘mown and grazed X
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Table A12. Sensitivity of above-ground biomass of Lolium perenne to changes in parameter values for all experiments in the FAO
dataset. The default parameter values are listed in Table A4. We decreased (6~) and increased (9™) each parameter one-at-a-time

by 1 % (local sensitivity analysis). We calculated the output variable (denoted by Y) with one parameter decreased, one parameter

increased and the default parameters to calculate the following quotient: (Y (07) —Y (0~ 2-0.01-Y(0)). We calculated the

ratio for each time point and for all the experiments and took the overall average. All parameters not listed here have no influence
on the biomass dynamic without soil water and nutrient growth limitation. The parameters are ordered from positive, to small
ositive/negative effect, to negative effect on the above-ground biomass.

Parameter
above-ground biomass to
parameter changes

ABUEmaz,

1.465

QRUE,coml,

1.251

CsEAmin .

0.836

JBUEk .

0.680

CsEAmas.

0.628

Psla.

0.454

(SBASTs.

0.354

ABAD2
0.339

STAMC.

0.124

YWTEMPTs.

0.047

YSENSTa
0.043

PSENST:

0.031

YWTEMPT,.

0.015
TRSA
0.004

SSEAST.

-0.012

YWTEMPIL.

-0.012

WTEMPTy 74
-0.047

YSENwax.



Table A13. Sensitivity of the total above-ground biomass to changes in parameter values for all sites in the Biodiversity Exploratories
dataset. The default parameter values are listed in Table A4. We decreased (6~) and increased (9™) each parameter one-at-a-time

by 1 % (local sensitivity analysis). We calculated the output variable (denoted by Y) with one parameter decreased, one parameter

increased and the default parameters to calculate the following quotient: (Y (1) —Y (07)) /(2-0.01-Y(0)). We calculated the

ratio for each time point and for all the sites and took the overall average. The parameters are sorted into positive (left columns
and negative effect or almost no effect (right columns) on the total above-ground biomass.

Parameter Parameter

parameter changes parameter changes
Psla. CLY.PWE

291 -1.26
QABUEmaz, QSEN .
QRUE, cwmH. Bseysla.

184 111
JBUE k. BLEK,WH

149 -0.69
Bsrrwae SENmax

146 -0.67
(sBAwax. WTEMPT2

141 -0.39
Berywaea . ABADA .

126 -0.39

L1l 0.3
$SEAmin . Bsrrpwe.

09 -0.28
JBAD2 KBOQT rsa_

045 -0.17

045 -0.16
dWAL wsa. WIEMPTL

0.44 -0.13
VSENSTo Bpri.ewe.

024 -0.11
SSBASTI KGBZ.

022 -0.09
€GRZmin H. Prrsa

0.18_ -0.06
VSEN,STL. oM.

012 -0.05

TAM QNULmazads.

1 -0.

0.1 75 -0.05
Bsypwnc. GRZJne

0.1 -0.02

BoymwHC BNUT.rsa



1030

1035

1040

1045

1050

Code and data availability. The model code, scripts for calibration, and raw and processed data for the calibration and validation
can be found on Zenodo with DOI: 10.5281/zenodo.14011849 (N&Bler, 2025). This work is partly based on data of the Biodiversity
Exploratories program (DFG Priority Program 1374). These datasets are publicly available in the Biodiversity Exploratories Infor-
mation System (http://doi.org/10.17616/R32P9Q), with links to the specific datasets in the reference section, and are included
in the Zenodo repository. The documentation of the model with installation instructions and tutorials can be found online at

https:/ /felixnoessler.github.io/Grassland TraitSim.jl /.
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