Advances in CALIPSO (IIR) cirrus cloud property retrievals – Part 1: Methods and testing

David L. Mitchell¹, Anne Garnier², and Sarah Woods³

¹ Desert Research Institute, Reno, NV 89512-1095, USA
²[RSES]Analytical Mechanics Associates, Hampton, VA 23666, USA
³ NSF NCAR, Boulder, CO 80301, USA

Correspondence to: David L. Mitchell (David.Mitchell@dri.edu)

Figure S1: same as Fig. 14 but showing the curve fits only.

Figure S2: Same as Fig. 16 but for cirrus clouds having $\sim 0.3 < \tau < \sim 3$, over oceans and land.

Figure S3: Same as Fig. 17 (ATTREX) but where ~ $0.3 < \tau < ~ 3$

Figure S4: Same as Fig. 18 (POSIDON) but where ~ $0.3 < \tau < ~3$

POSIDON	~ 0.2 - 0.3 < t < ~ 3			$\sim 0.01 < \tau < \sim 3$		
T _r (K)	193	213	233	193	213	233
Pixel count	151	1448	188	2107	2366	350
$\tau_{abs}(12.05 \ \mu m)$	0.17	0.39	0.58	0.04	0.26	0.28
$\Delta \tau_{abs}(12.05 \ \mu m)$	0.017	0.020	0.029	0.016	0.019	0.023
τ	0.27	0.69	1.04	0.06	0.45	0.49
Δτ	0.033	0.041	0.053	0.032	0.040	0.046
β _{eff}	1.241	1.088	1.060	1.200	1.087	1.050
$\Delta\beta_{eff}$	0.07	0.03	0.03	0.30	0.04	0.05
$\alpha_{\rm vis}~({\rm km}^{-1})$	0.16	0.29	0.60	0.05	0.20	0.29
$\Delta \alpha_{\rm vis} / \alpha_{\rm vis}$	0.11	0.06	0.06	0.52	0.09	0.10
D _e (μm)	23	43	61	25	43	136
$\Delta D_e/D_e$	0.16	0.15	1.73	0.97	0.33	>3.00
IWC (mg m ⁻³)	1.0	4.6	11.5	0.5	3.4	6.9
ΔIWC/IWC	0.25	0.21	1.70	1.45	0.44	>3.00
$N_i (L^{-1})$	158	66	43	46	44	28
$\Delta N_i/N_i (L^{-1})$	0.30	0.65	2.73	1.87	1.22	> 3.00

Table S1: Same as Table 6 but for the POSIDON campaign.