
Automated detection of regions with persistently enhanced methane
concentrations using Sentinel-5 Precursor satellite data
Steffen Vanselow1, Oliver Schneising1, Michael Buchwitz1, Maximilian Reuter1,
Heinrich Bovensmann1, Hartmut Boesch1, and John P. Burrows1

1Institute of Environmental Physics (IUP), University of Bremen FB1, Bremen, Germany

Correspondence: Steffen Vanselow (vanselow@iup.physik.uni-bremen.de)

Abstract. Methane (CH4) is an important anthropogenic greenhouse gas and its rising concentration in the atmosphere con-

tributes significantly to global warming. A comparatively small number of highly emitting persistent methane sources is re-

sponsible for a large share of global methane emissions. The identification and quantification of these sources, which often

show large uncertainties regarding their emissions or locations, is important to support mitigating climate change. Daily global

column-averaged dry air mole fractions of atmospheric methane (XCH4) are retrieved from radiance measurements of the TRO-5

POspheric Monitoring Instrument (TROPOMI) on board on the Sentinel-5 Precursor (S5P) satellite with a moderately high

spatial resolution, enabling the detection and quantification of localized methane sources. We developed a fully automated

algorithm to detect regions with persistent methane enhancement and to quantify their emissions using a monthly TROPOMI

XCH4 dataset from the years 2018-2021. We detect 217 potential persistent source regions (PPSRs), which account for approx-

imately 20% of the total bottom-up emissions. By comparing the PPSRs in a spatial analysis with anthropogenic and natural10

emission databases we conclude that 7.8% of the detected source regions are dominated by coal, 7.8% by oil and gas, 30.4%

by other anthropogenic sources like landfills or agriculture, 7.3% by wetlands and 46.5% by unknown sources. Many of the

identified PPSRs are well-known source regions, like the Permian Basin in the USA, which is a large production area for oil

and gas, the Bowen Basin coal mining area in Australia, or the Pantanal wetlands in Brazil. We perform a detailed analysis of

the PPSRs with the 10 highest emission estimates, including the Sudd Wetland in South Sudan, an oil and gas dominated area15

on the west coast in Turkmenistan, and one of the largest coal production areas in the world, the Kuznetsk Basin in Russia. The

calculated emission estimates of these source regions are in agreement within the uncertainties with results from other studies,

but are in most of the cases higher than the emissions reported by emission databases. We demonstrate that our algorithm is

able to automatically detect and quantify persistent localized methane sources of different source type and shape, including

larger-scale enhancements such as wetlands or extensive oil and gas production basins.20
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1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas after carbon dioxide (CO2) and its increasing

concentration in the atmosphere, which has accelerated in recent years, contributes significantly to global warming (Lan et al.,

2021). Due to its shorter lifetime and higher global warming potential compared to CO2, the reduction of methane emissions

can contribute to mitigation of global warming (Shoemaker et al., 2013).25

Almost half of the global methane emissions originate from anthropogenic sources, which are dominated by fossil fuel ex-

ploitation, livestock, rice cultivation and landfills, whereas the natural emissions mainly originate from wetlands (Saunois et al.,

2020). To efficiently reduce methane emissions, a comprehensive understanding of the natural and anthropogenic methane

sources and sinks is required. However, global methane emissions are characterized by large uncertainties, as can be seen in

bottom-up inventories which have uncertainties of 20− 35% for anthropogenic emissions regarding agriculture, fossil fuel30

and waste and 50% for wetland emissions (Saunois et al., 2020). These uncertainties are strongly related to emissions from

individual sources, which are highly uncertain or even partly unknown, especially on a regional scale (Saunois et al., 2020).

Consequently, the explanation of the observed atmospheric methane trends remains challenging. For example, the abundance

of atmospheric methane grew until 1998, remained at a constant plateau until 2006, and then started to grow again. The reasons

for this unique behavior are still highly debated (Nisbet et al., 2016; Turner et al., 2019). Also, the accelerated increase in recent35

years is still subject of ongoing research with several studies concluding that the rise was dominated by an increase in wetland

emissions (Lan et al., 2021; Peng et al., 2022; Zhao et al., 2020).

In particular, strongly emitting methane sources have a substantial impact on global methane emissions. These include

small-scale point sources, so-called super-emitters, such as individual coal mines, natural gas compressor stations or landfills

(He et al., 2024; Lauvaux et al., 2022; Maasakkers et al., 2022; Schuit et al., 2023; Varon et al., 2019). A comparatively40

small number of those super-emitters are responsible for a large proportion of methane emissions associated with oil and gas

exploitation, coal mining and waste (Frankenberg et al., 2016; Jacob et al., 2016; Lauvaux et al., 2022; Zavala-Araiza et al.,

2015). In addition to the super-emitters, larger-scale, but localized source regions also contribute a large share to global methane

emissions. These include large oil and gas fields, where smaller sources can emit a huge amount of methane in aggregate, but

also regions with high agricultural productivity (rice cultivation, livestock), as well as wetland areas (Buchwitz et al., 2017;45

Chen et al., 2024; Naus et al., 2023; Pandey et al., 2021; Schneising et al., 2020). The detection and quantification of these

small-scale super-emitters and larger-scale source areas is essential to assess the contribution of these sources to the global

methane emissions and to identify their inherent potential for reducing the global emissions.

Ground-based and aircraft measurements have been used to quantify localized methane sources, but are limited in time

and/or space, making (frequent) observations of remote source regions difficult (Borchardt et al., 2021; Frankenberg et al.,50

2016; Krautwurst et al., 2021). Satellite measurements, such as from SCIAMACHY (Burrows et al., 1995; Bovensmann et al.,

1999) or GOSAT (Kuze et al., 2009, 2016), offer the possibility to globally detect and quantify localized emission sources

through temporally frequent global measurements of atmospheric methane (Buchwitz et al., 2017; Jacob et al., 2016, 2022;

Sherwin et al., 2024; Thorpe et al., 2023). One important breakthrough in satellite remote sensing of methane in recent years
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was achieved by the successful launch of the Sentinel-5 Precursor (S5P) satellite in October 2017. Onboard S5P is the TRO-55

POspheric Monitoring Instrument (TROPOMI), which is a nadir viewing spectrometer (Veefkind et al., 2012). It provides

observations in the shortwave infrared (SWIR) spectral range with a spatial resolution of 5.5× 7km2 from which column-

averaged dry air mole fractions of atmospheric methane (XCH4) can be retrieved. Due to the high sensitivity to near-surface

concentration changes and the combination of daily global coverage with moderately high spatial resolution, TROPOMI data

have already been used to quantify emissions on global and regional scale, including a wide variety of methane sources, such60

as transient gas leaks, oil and gas fields, coal mining and urban areas, as well as wetland regions (Liu et al., 2021; Naus et al.,

2023; Qu et al., 2021; Pandey et al., 2019; Plant et al., 2022; Schneising et al., 2020; Varon et al., 2023; Veefkind et al., 2023).

In addition to emission quantification, various studies have shown that TROPOMI can be used to identify point sources on

a global scale via plume detection (Lauvaux et al., 2022; Schuit et al., 2023) or via combining with model forecasts (Barré

et al., 2021). For example, Barré et al. (2021) created a monitoring methodology to detect CH4 concentration anomalies by65

comparing TROPOMI data with high-resolution CH4 forecast from the Copernicus Atmosphere Monitoring Service (CAMS).

This method can be used to detect missing, underreported and overreported CH4 anomalies in the CAMS data worldwide.

Lauvaux et al. (2022) detected methane super-emitters associated with oil and gas production and exploitation for 2019-2020

by analyzing daily TROPOMI data using a plume detection algorithm based on the calculation of local XCH4 enhancements

and plume segmentation. The super-emitters were mostly detected over the largest oil and gas basins in Russia, Turkmenistan,70

USA, Algeria and Middle East and amount to 8−12% of the global oil and gas emissions. Schuit et al. (2023) used TROPOMI

data to identify anthropogenic super-emitters including emissions from the sectors coal, oil, gas and landfills for 2021 using a

machine-learning approach based on a convolutional neural network to detect plume-like structures and a support vector clas-

sifier to distinguish between real plumes and retrieval artifacts. Methane plumes originating from super-emitters worldwide

were identified, mostly from persistent emission clusters, but also from transient sources.75

The focus of the studies from Barré et al. (2021), Lauvaux et al. (2022) and Schuit et al. (2023) is on the detection of strong

emitting anthropogenic points sources, for example via plume detection. But besides super-emitters, numerous larger-scale

strong source regions of different source types exist, in which the emissions do not have a plume-like structure as the signals

of individual sources within the regions can interfere. This can be the case, for example, in large oil and gas fields or wetlands

(Lauvaux et al., 2022; Naus et al., 2023; Pandey et al., 2021). To include such source regions in a detection procedure was80

an important motivation for this study. Therefore, we developed an automated algorithm to detect and quantify source regions

with various sizes, regardless of their source type, including small-scale super-emitters such as coal mine ventilation shafts, but

also larger-scale source areas such as wetland areas and large oil and gas fields. Since source regions with strong and persistent

methane enhancements contribute significantly to global methane emissions, we have focussed on such source regions in this

study. TROPOMI has been providing a vast amount of daily methane data since its launch in 2017. To allow the detection of85

methane source regions in this large dataset on a global scale, we fully automated our detection algorithm. The data-driven

detection algorithm is based on several steps, including high-pass filtering of the TROPOMI data and masking of regions with

persistent methane enhancements by applying different threshold criteria. In addition to detection, our algorithm includes a
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characterization of the source regions, in which the dominant source type is assigned and an emission estimate for each source

region is determined.90

This study is structured as follows. In section 2, we first present the data that we used for the detection and characterization of

the source regions. In Section 3, we describe the algorithm. In Section 4, we present our results, including a global overview of

the detected source regions and a detailed analysis of the source regions with the 10 highest emission estimates by comparing

our results with emission databases and results from recent studies. At the end, in Section 5, we present our conclusions.

2 Data95

2.1 TROPOMI/WFMD XCH4 data product

The Sentinel-5 Precursor (S5P) satellite with the TROPOspheric Monitoring Instrument (TROPOMI) onboard was launched

in October 2017 in a near-polar, sun-synchronous orbit with an equatorial crossing of the ascending node at 13:30 local solar

time. TROPOMI is a nadir viewing spectrometer and operates in a push-broom configuration with a swath width of 2600km,

enabling daily global coverage. It measures solar radiation reflected at the earth’s surface in the ultraviolet (267− 332nm),100

ultraviolet-visible (305− 499nm), near-infrared (661− 786nm) and shortwave infrared (2300− 2389nm) spectral channels

(Veefkind et al., 2012). The measurements of TROPOMI in the shortwave infrared (SWIR) spectral range enable the retrieval of

column-averaged dry-air mole fractions of atmospheric methane (XCH4) with a horizontal resolution of 5.5×7km2 (7×7km2

before August 2019). The radiation backscattered from the earth’s surface and measured at the top of the atmosphere has

passed through the planetary boundary layer. Therefore, TROPOMI’s measurements yield the gas absorption throughout the105

atmosphere and importantly close to the earth’s surface (Schneising et al., 2019). Consequently, the retrieved XCH4 can be

used to detect methane enhancements originating from localized methane sources at the earth’s surface.

In this study, we use a multi-year (2018-2021) TROPOMI XCH4 dataset retrieved with the Weighting Function Mod-

ified Differential Optical Absorption Spectroscopy (WFMD) retrieval algorithm (Buchwitz et al., 2006; Schneising et al.,

2011, 2014), which has been adapted and optimized for use on TROPOMI data (Schneising et al., 2019). We use the latest110

version v1.8 of the TROPOMI/WFMD product (Schneising et al., 2023) and average the data to monthly XCH4 maps with a

spatial resolution of 0.1◦×0.1◦. In addition to the XCH4, the dataset also includes two variables that are needed for the detec-

tion and characterization of the source regions. These variables are: (i) The retrieved surface albedo in the SWIR spectral range

and (ii) for each monthly averaged XCH4 grid cell the number of days Ndays with TROPOMI measurements from which the

monthly mean was calculated. In the following, we refer to this dataset consisting of the 0.1◦× 0.1◦ monthly maps of XCH4,115

SWIR albedo, and Ndays, as XCH4 dataset.

2.2 Wind data

Wind data are required to calculate emissions. The European Centre for Medium-Range Weather Forecasts (ECMWF) reanal-

ysis (ERA5) wind product (Hersbach et al., 2020) provides hourly wind data with a horizontal resolution of 0.25◦× 0.25◦ on
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model levels. From this dataset, we computed boundary layer averaged wind speed at the overpass time of TROPOMI for each120

TROPOMI sounding. The resulting winds are then gridded as the XCH4 dataset to monthly maps with a spatial resolution of

0.1◦× 0.1◦. In addition to the monthly averaged wind speeds, we computed the standard deviation of the wind speed within

the months for each grid cell.

2.3 Surface elevation and roughness

The Global Multi-resolution Terrain Elevation Data 2010 (GMTED 2010) is a dataset containing global surface elevation data125

available at three different resolutions (approximately 250, 500 and 1,000 m) from various data sources (Danielson and Gesch,

2011). We use the GMTED 2010 to assign the mean surface elevation and the standard deviation of the surface elevation

(surface roughness) within the grid cells to the 0.1◦× 0.1◦ grid cells of the XCH4 dataset.

2.4 Emission databases

We use the following emission databases to determine the dominant source types of the detected potential source regions by130

comparing the emissions of the databases.

2.4.1 EDGAR

The Emissions Database for Global Atmospheric Research (EDGAR) v6.0 (Ferrario et al., 2021) is a bottom-up inventory

providing detailed information about global anthropogenic emissions of various air pollutants and greenhouse gases. The

yearly emission data have a spatial resolution of 0.1◦× 0.1◦ and are available from 1970 to 2018. The emissions of a specific135

gas are calculated using international activity data and emission factors using the IPPC (2006) methodology. Activity data

describes the activities producing emissions such as the amount of fossil fuel which is exploited or the number of animals on

a farm. Emission factors are coefficients that relate the emitted amount of a specific gas to a certain activity or process. The

required data to calculate the emissions is collected from a variety of sources, including international organizations such as the

International Energy Agency (IEA), national emission inventories and industry reports. EDGAR is well-suited to determine the140

anthropogenic source types of the detected potential since this inventory provides sector-specific emissions, which enables the

differentiation between individual source types within the source regions. For methane, EDGAR v6.0 provides sector-specific

anthropogenic emissions from, for example, enteric fermentation, landfills, rice cultivation and fossil fuel exploitation, which

are further separated into coal, oil and gas emissions. We use the EDGAR v6.0 methane data for 2018.

2.4.2 GFEI145

The Global Fuel Emission Inventory (GFEI) v2.0 (Scarpelli et al., 2022) is a methane emission database providing global

anthropogenic emissions regarding the fossil fuel sectors coal, oil and gas. The emission data are gridded to yearly maps

(2010-2019) with a resolution of 0.1◦× 0.1◦. GFEI v2.0 uses fossil fuel-related emission data reported by countries to the

United Nations Framework Convention on Climate Change (UNFCCC), separates the emissions to sectors coal, oil and gas
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and assigns the data to the appropriate infrastructure locations like coal mines or oil and gas wells. The infrastructure data are150

taken from several databases. For countries that do not report their emissions to the UNFCCC, the emissions are calculated

using IPCC (2006) methods and activity data from the US Energy Information Administration (EIA). Due to the different

methods and data used for emission quantification in EDGAR v6.0 and GFEI v2.0, both databases show differences in their

fossil fuel emissions, especially on a regional scale. Therefore, GFEI v2.0 can be used as a useful supplementary database to

assign the appropriate fossil fuel source type to the detected source regions. We use GFEI v2.0 data for 2019.155

2.4.3 WetCHARTs

WetCHARTs v1.3.1 is a global wetland methane emission ensemble which provides monthly emissions with a resolution of

0.5◦× 0.5◦ for the time period 2001-2019 (Bloom et al., 2021). The ensemble is based on different wetland extent scenarios,

multiple terrestrial biosphere models and various temperature dependence parameterizations, resulting in 18 different model

configurations. We use WetCHARTs to include also wetlands as a potential dominant source type of a source region. To160

compare the wetland emissions from WetCHARTs with the other emission databases, we create a yearly averaged wetland

emission map for 2019 with a resolution of 0.1◦× 0.1◦, by averaging the emissions of all configurations and months.

3 Methods

We have developed a data-driven Persistent Hotspot Detection (PHD) algorithm to automatically detect regions with persistent

XCH4 enhancements, to estimate their emissions, and to assign a source type to these regions. The individual steps of the165

detection algorithm are shown in Figure 1. As input to the PHD algorithm, we use the XCH4 dataset (Sect. 2.1), the wind

dataset (Sect. 2.2), the surface elevation data according to GMTED 2010 (Sect. 2.3), and the two anthropogenic emission

inventories EDGAR v6.0 and GFEI v2.0, as well as the wetland emission dataset WetCHARTs v1.3.1 (Sect. 2.4). First, we

process the XCH4 dataset (Sect. 3.1). This step includes filtering out grid cells with too few XCH4 data. For the detection

of localized enhancements, we filter out large-scale XCH4 variations by applying a high-pass filter with five different kernel170

sizes to each monthly XCH4 map (Sect. 3.2), resulting in five datasets, which contain the local anomalies ∆XCH4. In the

next step, we analyze the ∆XCH4 datasets to detect persistent source regions (Sect. 3.3). For this, we first identify individual

grid cells with persistent enhancement and then merge them into potential source regions. Afterwards, we conservatively filter

out detected source regions, which may be false positives due to challenging surface features. For each of the five ∆XCH4

datasets, we obtain one global map of the detected potential source regions. In the next step, we combine all of the detected175

source regions into one map (Sect. 3.4), before we estimate their emissions (Sect. 3.5). In the final step, we determine the

dominant source types of the source regions by applying a spatial analysis based on the comparison of the methane emission

databases within the source regions. As a result of the PHD algorithm, we obtain a list with the characteristics of the detected

source regions. The list includes the locations, the estimated emissions, and the assigned dominant source types of the source

regions. In the following, we describe the steps of the algorithm in more detail.180
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Figure 1. Flowchart of the Persistent Hotspot Detection (PHD) algorithm version 1.0. The colored boxes symbolize the steps in which data is

processed and analyzed. The gray boxes describe the input/output data of these steps. For a detailed description of the algorithm see Sections

3.1-3.6.

3.1 Initial processing

To optimize the XCH4 dataset (Sect. 2.1) for the detection of persistent XCH4 enhancements, we transform it into a new

dataset XCH4*. For this, we apply a filtering and a so-called elevation correction, which is described in the following. For the

detection of persistent source regions, we only consider grid cells in which the monthly XCH4 means were calculated from

more than 3 days of TROPOMI measurements (Ndays > 3).185

Changes in surface elevation and tropopause height lead to variations in the tropospheric fraction of the XCH4 (Kort et al.,

2014; Buchwitz et al., 2017). Because the mean mixing ratio of methane is higher in the troposphere than in the stratosphere,

the XCH4 over a valley is enhanced compared to its surrounding area, even if the valley is not a source region. To correct for

these topography-related variations, we apply an elevation correction to the XCH4 (Buchwitz et al., 2017). We normalize the

XCH4 to mean sea level by adding 8.5ppb per kilometer above mean sea level to the XCH4 of the grid cells. We calculated190

this value by following the approach of Buchwitz et al. (2017). To determine the surface elevation of the grid cells, we use the

surface elevation data described in Sect. 2.3.

We denote the filtered and elevation corrected data as XCH4*. Figure 2 shows the global maps for 2018-2021 of XCH4 and

XCH4*. The data gaps in Fig. 2 (b) are due to the removal of grid cells with too few data. The effect of the elevation correction

can be seen in Fig. 2 (b) by higher XCH4 over areas with high surface elevation (e.g. Himalaya) compared to the uncorrected195

dataset. In the following sections, we always refer to XCH4* when we mention XCH4.
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Figure 2. (a) Multi-year (2018-2021) XCH4 and (b) the corresponding filtered and elevation corrected XCH4*.

3.2 High-pass filtering

The spatial distribution of global methane concentration shows large-scale methane variations, such as the interhemispheric

gradient (Figure 2 (a)). To better detect localized XCH4 enhancements, we minimize these large-scale variations by applying

a high-pass filter with five different kernel sizes to each monthly XCH4 map (see Sect. 3.1). For each kernel size, we obtain200

one dataset, which consists of monthly maps showing only the local XCH4 variations. The high-pass filtering comprises three

steps and is applied to each grid cell of a monthly XCH4 map as follows. First, we define an area of size n◦×n◦ around the

considered grid cell, denoted as high-pass filter area (HPFA(n)), with n ∈ {1,2,3,4,5}. Second, the HPFA(n) has to be filled

with at least 25% data. Otherwise, the considered grid cell is removed. Third, we calculate the so-called methane anomaly

∆XCH4 by calculating the difference of the XCH4 of the grid cell with the corresponding median X̃CH4 in the HPFA(n):205

∆XCH4 = XCH4− X̃CH4|HPFA (1)

The steps of the anomaly calculation are illustrated in Fig. 3 (a)-(c). In the next sections, we use the anomalies to identify

potential source regions. For this, the used HPFA(n) has to be larger than the source regions to contain XCH4 which is

not enhanced. Otherwise, the anomalies only describe the variations within the source regions and not their enhancements.

However, the HPFA(n) must not be too large as it could contain XCH4 that is influenced by other nearby sources. Since the210

potential source regions to be detected have different spatial extents, ranging from small point sources to larger-scale areas, we

choose five different HPFA(n) sizes from n= 1◦ to n= 5◦ to consider source regions with various sizes.

Figure 4 shows two multi-year ∆XCH4 maps on global and regional scales, calculated with HPFA sizes of 1◦ and 5◦

(bottom), and the corresponding XCH4 map (top). On the left side, the global maps are shown. It can be seen that the large-

scale variations have been minimized in the ∆XCH4 maps. The ∆XCH4 maps contain less data compared to the XCH4 map215

because grid cells are filtered out whose HPFA(n) does not contain the minimum number of XCH4 data. On the right side

of Fig. 4 we show a zoom to the South Sudan region, which is a well-known source region (Pandey et al., 2021). The strong
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Figure 3. Illustration of the steps to calculate the methane anomaly and standard deviation maps described in Sect. 3.2. (a) XCH4 for April

2020 for a region close to the border of Pakistan/India. The anomaly calculation process is illutrated for one grid cell shown in red. First, the

HPFA(n) is defined, which is 1◦ × 1◦ in this example. (b) The median of the XCH4 values in the HPFA is calculated, with the XCH4 of the

considered grid cell excluded from the calculation. The anomaly of the considered grid cell is computed using Eq. 1. (c) ∆XCH4 for April

2020 calculated using a HPFA of 1◦ × 1◦. The anomalies illustrate the XCH4 enhancement in (a). (d) Illutration of the process to calculate

the standard deviation of the XCH4 values in the HPFA. First, the 95th percentile of the XCH4 values within the HPFA is computed. All

XCH4 values above the 95th percentile are excluded from the standard deviation calculation to reduce the impact of local enhancements. (e)

Standard deviation of the XCH4 in the HPFA of 1◦ × 1◦ for April 2020.

wetland emissions of the region can be seen in the resulting XCH4 enhancements (Fig. 4 (b)). If we compare the anomalies

calculated with different HPFA of 1◦ and 5◦ (Fig. 4 (d) and (f)), we can see that the HPFA(1◦) is too small to detect the

large-scale XCH4 enhancements of this source region.220

In addition to the anomalies, we calculate for each grid cell the standard deviation of the XCH4 in the corresponding

HPFA(n). With that, we can determine if an anomaly is significantly enhanced compared to the variation of the surrounding

XCH4. To reduce the impact of local XCH4 enhancements on the standard deviation, we use only the XCH4 values of the

HPFA(n) that are smaller than the 95th percentile of the XCH4 distribution. In addition, we ignore the XCH4 value of the grid

cell for which the standard deviation is calculated. The calculation of the standard deviation is illustrated in Fig. 3 (d) - (e).225

In total, we generate five anomaly datasets consisting of monthly ∆XCH4 maps and monthly standard deviation (σ) maps,

each corresponding to one of the five selected HPFA(n).
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Figure 4. Comparison of global (left) and regional (right) multi-year (2018-2021) XCH4 and ∆XCH4 maps. (a) Same as Fig. 2 (b). (b)

Corresponding zoom to South Sudan. (c) ∆XCH4 calculated with a HPFA of 1◦ × 1◦. (d) Zoom to South Sudan of 1◦ × 1◦ ∆XCH4 map.

(e) As (c) but for a HPFA of 5◦ × 5◦. (f) Zoom to South Sudan of 5◦ × 5◦ ∆XCH4 map.
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3.3 Detection of persistent potential source regions

In the third step of the PHD algorithm, we identify regions with persistent ∆XCH4 enhancement in each of the five anomaly

datasets calculated in Sect. 3.2. We refer to these regions as potential persistent source regions (PPSRs). To detect PPSRs in an230

anomaly dataset, we apply the following steps:

1. We analyze the monthly anomalies of small areas to mask PPSRs (Sect. 3.3.2)

2. We refine the detected PPSR masks (Sect. 3.3.3)

3. We filter out PPSRs with complicated surface properties (Sect. 3.3.4)

As result, for each of the five anomaly datasets, we obtain one global map containing the masks that define the PPSRs.235

3.3.1 Definition of a PPSR

A PPSR is characterized by showing enhanced anomalies at a certain frequency over a certain time period. Therefore, to define

a PPSR, we have to specify the term enhanced anomaly and to introduce variables to quantify how often the region shows

enhanced anomalies. We define an anomaly as enhanced, if:

∆XCH4 ≥Nσ ·σ (2)240

We set Nσ = 2. The σ is the standard deviation of the XCH4 in the HPFA(n) around the analyzed grid cell (Sect. 3.2).

To characterize the persistent enhancement of a certain region, e.g. consisting of several grid cells, we first define the number

of months, in which the region contains at least one anomaly (measurement) as Nmeas. In addition, the number of months, in

which the region contains at least one enhanced anomaly is defined as Nenh. As measure for the persistence of enhancements,

we define the fraction Fenh =Nenh/Nmeas, which characterizes in how many of the months with measurements at least one245

of the anomalies is enhanced. Fig. 5 (a)-(c) illustrates the calculation of these variables for a region of 3× 3 grid cells. We

define a region as PPSR, if:

Fenh ≥ Fenh,min, Nmeas ≥Nmeas,min (3)

The parameter Fenh,min and Nmeas,min define the lower limits of Fenh and Nmeas. We set Fenh,min = 0.5 and Nmeas,min =

16. This means that a region is defined as PPSR if it contains data in at least 16 of the 48 months and also contains an enhanced250

anomaly in at least half of the months, in which an anomaly is in the region.

We have chosen Fenh,min = 0.5 for the following reasons. Persistent methane sources do not always show enhanced methane

anomalies in all months. For example, some sources show seasonal variations in emissions such as wetlands or rice paddies.

Emissions from coal mines can also vary over time, as they depend on mining activity. In addition, we also want to take into

account persistent sources in the detection process that started emitting during 2018-2021 and therefore do not show emissions255

over the entire period. With Nmeas,min = 16, we also take into account regions that do not contain data in all 48 months.
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Figure 5. Illustration of the process to identify a potential persistent source region (PPSR). (a) 2018-2021 ∆XCH4 calculated with a HPFA

of 1◦ × 1◦. The detection process is illustrated for the blue outlined grid cell. First, an area of 3× 3 grid cells (outlined in black) is defined

around the considered grid cell. (b) Next, the anomalies within the black-outlined area are analyzed for all monthly ∆XCH4 and σ maps

from 2018-2021 to calculate Nmeas, Nenh and Fenh =Nenh/Nmeas (definition in Sect. 3.3.2). In addition, for each grid cell within the

3×3 area,Ngc
enh is counted. (c) Multi-year ∆XCH4 with the results from the analysis described in (b). In each grid cell of the black outlined

area Ngc
enh is shown. The 3× 3 area fulfills the conditions for a PPSR from Eq. 3, since Fenh ≥ 0.5, Nmeas ≥ 16 and Ngc

enh of central grid

box ≥ 1. (d) Resulting mask (yellow grid cells) of the detected PPSR. Only the grid cells are considered for the mask, that have an enhanced

anomaly in at least one month (Ngc
enh > 0). (e) Multi-year ∆XCH4 with all detected PPSR masks in that region. The algorithm is applied to

each grid cell, resulting in an additional PPSR being detected (outlined in blue). (f) Multi-year ∆XCH4 with the final PPSR mask, which is

created by merging PPSRs that are directly adjacent or overlapping.

3.3.2 Mask potential persistent source regions

To detect PPSRs in an anomaly dataset, we define small areas around every grid cell of the dataset and calculate for each

of those areas the number of months with at least one anomaly Nmeas, the number of months with enhanced anomalies

Nenh and the fraction of months with enhanced anomalies Fenh by analyzing the monthly XCH4 and σ maps from 2018-260

2021. In detail, for each grid cell, we apply the following steps, which are illustrated in Fig. 5. We first define an area of

3× 3 grid cells consisting of the considered grid cell itself and the directly adjacent grid cells (black-outlined area in Fig.

5 (a)). We are using a small 3× 3 area for the calculation of Nmeas, Nenh and Fenh, rather than only analyzing a single

grid cell for the following reason. The ∆XCH4 enhancements within a persistent source region depend on the source itself

and the meteorological conditions. Therefore, enhancements show temporal and spatial variability. Consequently, the ∆XCH4265
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enhancements can occur at different grid cells in different months of the persistent source region. To account for this in the

detection process, we analyze the ∆XCH4 and σ maps of multiple grid cells simultaneously rather than considering each grid

cell independently. We use an area of 3×3 to take into account that the varying meteorological situations in the monthly XCH4

maps are not as strong as in the daily XCH4 data. In the monthly maps, the daily plumes, which vary with wind strength and

direction, typically average out and result in a XCH4 enhancement over the source region, which shows only slight monthly270

variability.

After defining the 3× 3 area, we analyze all monthly ∆XCH4 and σ maps from 2018-2021 for the 3× 3 area to calculate

Nmeas, Nenh and Fenh (Fig. 5 (b) and (c)). We also count for each grid cell of the 3× 3 area the number of months Ngc
enh in

which the anomaly in the grid cell is enhanced. If the 3× 3 area fulfills the persistence conditions from Eq. 3 and if the center

grid cell shows an enhanced anomaly in at least one month, we mask the area as PPSR (yellow area in Fig. 5 (d)). To label a275

3× 3 area as PPSR, we mark all grid cells within the area that show an enhanced anomaly in at least one month (Ngc
enh ≥ 1).

Thus, grid cells with Fenh < 0.5 can also be part of a PPSR, if their enhancements contribute to the 3×3 area being marked as

a PPSR. We only consider 3×3 areas as PPSRs that have no complicated topography (median of surface roughness< 80m and

standard deviation of the surface elevation < 150m). As can be seen in Fig. 5 (c), the analysis of an area rather than a single

grid cell enables the detection of source regions in which the individual grid cells show no persistent enhancement, but the280

area does. This means, that the enhanced anomalies need not to occur at the same grid cell every month, but can vary monthly

within the area.

PPSRs that are directly adjacent or overlapping are merged into one PPSR (Fig. 5 (e) and (f)). For this, we apply a labeling

algorithm in which each individual PPSR is assigned its own number, with directly adjacent or overlapping PPSRs getting the

same number. In the end, we get a global map containing the separated and labeled PPSRs of the considered anomaly dataset.285

We apply the detection process to the five anomaly datasets and obtain five global maps with the detected PPSRs.

3.3.3 Refinement of PPSR masks

The detected PPSR masks describe the locations and shapes of the corresponding source regions. However, some of the masks

do not cover the entire spatial extent of the source regions. Therefore, in the next step, we refine the PPSR masks. One example

is shown in Fig. 6 (a). It can be seen that the two PPSR masks do not contain all the grid cells that would be identified by290

eye as part of the source regions, because their fractions Fenh do not exceed the threshold Fenh,min = 0.5 required for the

detection (Eq. 3). These grid cells are nevertheless part of the source region since they have a high fraction Fenh and are

located in the immediate surroundings of the source regions. To add them to the source regions, we could lower the Fenh,min

parameter. But this would imply a change in the persistence condition. To determine the total spatial extent of the source

regions without changing the persistence condition, we choose the following approach. We add grid cells to the PPSR masks295

that are in the immediate vicinity and whose fractions Fenh indicate that they are part of the source. For this, we identify all

grid cells with Fenh ≥ 0.33 that also fulfill all other conditions from Eq. 3. We refer to these grid cells as toseeds (green grid

cells in Fig. 6 (b)). The grid cells detected with Fenh,min = 0.5 are called seeds (yellow grid cells in Fig. 6 (b)). We chose 0.33

as lower threshold, since Fenh ≥ 0.33 indicates that the grid cells show enhanced anomalies in a certain number of months
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Figure 6. Illustration of the process to refine PPSR masks. (a) Multi-year (2018-2021) ∆XCH4. In each grid cell, the fraction Fenh is shown,

which is calculated for the 3× 3 area of the respective grid cell (see Sect. 3.3.2). Grid cells that do not contain a fraction do not fulfill any

of the persistence conditions from Eq. 3. The detected PPSRs (black-outlined) are the result of the detection process described in Sect. 3.3.2.

Some grid cells with Fenh < 0.5 and a high multi-year ∆XCH4 mean would be assigned by eye as part of the source region. To add them to

the masks we use the following steps. (b) First, mark als toseeds (shown in green, definition in Sect. 3.3.3). The seeds are shown in yellow.

(c) The toseeds are assigned to the seeds using a random walker algorithm. (d) In the final step, the grid cells with a multi-year ∆XCH4

mean less than 25% of the maximum multi-year ∆XCH4 mean within the mask are removed from the mask. The final masks describe the

refined PPSRs.

and are therefore still strongly influenced by the sources within the PPSR, although its Fenh is smaller than 0.5. Grid cells300

with Fenh < 0.33 indicate a weaker influence of the sources on the grid cells, which is why we did not include them in the

refining process. Next, we apply a random walker algorithm (Grady, 2006) to assign the toseeds to the seeds. A random walker
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algorithm is an image segmentation algorithm, which can divide an image into several sections based on threshold values. A

first threshold is used to define the pixels of the image that represent the foreground of the image and are called seeds (the grid

cells detected with Fenh,min). The seeds can have different labels so that the foreground can be divided into different areas.305

With a second threshold, which is below the first one, the pixels of the background are defined which are not to be considered

further. The pixels between the first and second threshold are the so-called undefined pixel that the random walker algorithm

assigns to the corresponding seeds by using a diffusion equation (the grid cells with 0.33≤ Fenh ≤ 0.5). Based on the gradient

between an undefined pixel and the different seeds and the distance between them, the probability is calculated to which seed

the respective undefined pixel is assigned. The lower the gradient, i.e. the more similar the values of the undefined pixel and a310

seed are, the higher the probability that this pixel will be assigned to this seed. Undefined pixels that do not have a contiguous

path to at least one seed are discarded. As a basis on which the grid cells detected with Fenh,min are assigned to the PPSRs,

we use the multi-year (2018-2021) ∆XCH4 of the analyzed anomaly dataset. Fig. 6 (c) shows the mask created by assigning

the toseeds to the seeds. It can be seen that the spatial extent of the source regions is now better described by the masks and

that grid cells are added, which connect the separate source regions. But some of the toseeds have a low multi-year ∆XCH4315

mean compared to the seeds. Here, we only want to consider toseeds as part of the source region that have comparable high

multi-year ∆XCH4 and remove added toseeds with ∆XCH4 smaller than 25% of the maximum ∆XCH4 of the seeds. In the

end, we obtain the refined PPSR masks, which now better describe the spatial extent of the source regions (Fig. 6 (d)). We

emphasize, that the example shown in Fig. 6, in which two PPSRs are first merged and then separated, does not appear often.

We only used it to illustrate all the steps of the refinement process for one region. Due to the refinement, the number of final320

PPSRs can differ from the number of PPSRs detected in Sect. 3.3.2. On the one hand, multiple PPSRs can be combined into

one PPSR by adding new grid cells to the masks. On the other hand, a PPSR can be split into multiple PPSRs by removing grid

cells with too low 2018-2021 ∆XCH4 mean. We apply the refinement to each of the five global maps containing the detected

PPSRs (Sect. 3.3.2).

3.3.4 Filtering of potential false positives325

Much effort was made to minimize systematic biases when generating the WFMD v1.8 XCH4 data product (Schneising et al.,

2023). However, it is not guaranteed that the WFMD v1.8 product is entirely unbiased. This means that despite the good quality

of the product, it is not certain that every individual XCH4 enhancement has its origin in a real methane source. For example,

localized XCH4 enhancements could be caused by scenes with inhomogeneous albedo (e.g. coastal regions, lakes and rivers)

and complex topography. To take this into account, the PPSRs are filtered for surface features, which potentially lead to a false330

positive detection. We use a conservative approach and prefer to accept false negatives rather than false positives. We decide

whether a PPSR has challenging surface features based on the following properties: The correlation between SWIR surface

albedo and XCH4, the standard deviation of the surface elevation within the PPSR mask, the frequency of months in which the

largest XCH4 enhancements occur in or adjacent to grid cells with high surface roughness, the fraction of coastal grid cells in

the PPSR mask and the frequency of months in which the largest XCH4 enhancements occur over or next to water grid cells.335

If a PPSR is identified by one of these criteria then it is filtered and not considered further. Excluded from this are PPSRs in
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Figure 7. Example of PPSRs detected in two different anomaly datasets. (a) Multi-year (2018-2021) ∆XCH4 of South Sudan region calcu-

lated with a HPFA of 4◦ × 4◦. The detected PPSRs (outlined in black) have already been filtered (see Sect. 3.3.4). (b) Same as (a) but for

HPFA of 5◦ × 5◦. (c) Corresponding 2018-2021 XCH4. The final PPSR masks of the combined masks from different anomaly datasets.

which very strong XCH4 enhancements occur. By this, we ensure that important source regions are not excluded due to their

surface features. As we focus in this study on source regions that contribute significantly to the global methane budget, we filter

out PPSRs with weak XCH4 enhancements. Additionally, we filter out PPSRs that occur in the Bodélé Depression in Chad.

This is a region where strong dust storms occur on average 100 days per year, always directed towards the southwest and with340

a plume-like structure. Analyses of the WFMD data product have shown that these special conditions, which only occur in this

region, can lead to false positive detections. We apply the filtering to each detected PPSR of each anomaly dataset to obtain

five global maps comprising the refined and filtered PPSR masks, respectively.

3.4 Combination of PPSRs from different anomaly datasets

We used five different HPFA(n) for the calculation of the ∆XCH4 maps to detect source regions with various sizes (see Sect.345

3.2). As a result, we identified different PPSRs in each anomaly dataset. To consider all PPSRs collectively, we combine them

into one global map. For this, we must take into account that the same source region can be detected in multiple anomaly

datasets and is thus described by more than one mask. In such a case we merge all detected masks of the PPSR to one new

mask. An example of the combination process is illustrated in Fig. 7. Here we show the well-known source regions in South

Sudan (see Sect. 3.2), which we detect in the HPFA(4◦) and HPFA(5◦) anomaly datasets, and the combined masks of the350

individual source regions. Finally, we obtain one global map, in which each detected source region is described by one mask.

The masks of some PPSRs are shown in Fig. 8 including some well-known source regions, such as the oil and gas fields in the

Permian Basin in the USA (Schneising et al., 2020; Zhang et al., 2020; Varon et al., 2023; Veefkind et al., 2023), the natural

gas fields Galkynish and Dauletabad in Turkmenistan (Schneising et al., 2020) and the coal mining area in the Bowen Basin in

Queensland in Australia (Sadavarte et al., 2021).355
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Figure 8. Final PPSR masks (outlined in red) after filtering (Sect. 3.3.4) and combining (Sect. 3.4) processes shown for several regions of

the world. (a) 2018-2021 XCH4 for the southwestern part of the USA and northern Mexico. Some of the PPSRs are located in well-known

oil and gas basins like the Permian, Anadarko, Barnett, Haynesville, Denver and San Joaquin. (b) Same as (a) but for Turkmenistan, parts

of Iran, Uzbekistan, and Kazakhstan. One of the detected PPSRs includes two of the largest natural gas fields in the world, Galkynish and

Dauletabad. (c) Same as (a) but for parts of Queensland in Australia. Two PPSRs are detected, which are located in the Bowen Basin, a

well-known coal mining area.

3.5 Emission estimation

To compute emission estimates for each of the detected PPSRs, we apply the fast data-driven method of Buchwitz et al.

(2017). This method is designed to calculate averaged long-term emission estimates from time-averaged XCH4 maps. It uses a

conversion factor to convert an XCH4 enhancement over a source region into an emission estimate. This implies the assumption

that emissions from an isolated source result in an XCH4 enhancement, δXCH4, over the source region compared to the360

surrounding region. To determine the monthly emission estimate E (Mt yr−1) of a PPSR, we apply the method to the monthly
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averaged XCH4 maps using the following equation:

E = δXCH4 ·M ·Mexp ·L ·V · 2 (4)

The δXCH4 (ppb) describes the XCH4 enhancement of the PPSR and is calculated by computing the difference of the mean

XCH4 over the source region with the mean XCH4 over the surrounding region. The surrounding region is defined as described365

in Fig. 9. We only consider the grid cells in the surrounding region that are not part of other PPSRs in the surrounding region.

We estimate the emissions only if the PPSR, as well as the surrounding region, are each filled with at least 25% data. To

convert the mole fraction change δXCH4 over the source region into a methane mass change per area, M and Mexp are used.

M (5.345 · 10−9 MtCH4 km−2 ppb−1) is the methane mixing ratio enhancement to mass enhancement conversion factor for

standard conditions, i.e. for a surface pressure of 1013.25hPa. Since the actual mass change Mi of the ith grid cell depends370

on the surface pressure pi (hPa) of the grid cell, Buchwitz et al. (2017) additionally used the dimensionless conversion factor

Mexp, which is defined as:

Mexp =
<Mi >

M
≈ < pi >

1013.25
≈< e−zi/H > (5)

With surface elevation zi (km) of the ith grid cell, the scale height H (8.5km) and < > denoting the mean over all grid cells

of the source region. L (km) in Eq. 4 is the effective length of the source region, which we calculate as the square root of the375

PPSR size. V (kmyr−1) is the wind speed from Sect. 2.2 averaged over the source region. The reason for adding factor 2 is

described in detail in Buchwitz et al. (2017), but is briefly explained in the following. When an air parcel travels with constant

wind speed across the source region, it accumulates methane, which results in an XCH4 enhancement when it exits the source

region (δXCH4,exit). However, δXCH4 from Eq. 4 describes the mean XCH4 enhancement over the source region and not

δXCH4,exit. Assuming a linear XCH4 increase while traveling across the source region (see Fig. 3 in Buchwitz et al. (2017)),380

these two enhancements are linked via δXCH4 = 0.5 ·δXCH4,exit. Therefore, the δXCH4 has to be multiplied by 2 to describe

the XCH4 enhancement of the air parcel which results from the emission of the source region.

We calculate the 1σ uncertainty of the monthly emission estimate E, uE , by computing the sum of the squared uncertainties

of the XCH4 enhancement, uδXCH4
, and the wind speed, uv , with respect to their mean values via(uE

E

)2
=

(
uδXCH4

δXCH4

)2

+
(uv
V

)2
(6)385

We calculate uδXCH4 by varying the size of the surrounding region and calculating the standard deviation of the resulting

δXCH4 enhancements. We vary the region by adding to the northernmost, southernmost, westernmost, and easternmost coor-

dinates of the surrounding region all possible combinations of 0 and 2×Lsurr, where Lsurr is the length used to define the

surrounding region (see Fig. 9). The square of the uncertainty of the wind is the sum of the squared standard deviation of the

monthly wind speeds within the source region, and the squared mean of the standard deviations of the wind speeds within the390

months for each grid cell.

We calculate the averaged long-term emission estimate E of a PPSR by averaging all monthly emission estimates for

the period 2018-2021. For the corresponding uncertainty of the long-term emission estimate we use error propagation by
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Figure 9. Illustration of the automated calculation of the surrounding area for a PPSR. (a) 2018-2021 XCH4. The detected and unfiltered

PPSRs in the HPFA(5◦) anomaly dataset for the South Sudan region are shown (outlined in red). The surrounding region for the central PPSR

is calculated as follows. First the maximum extents in meridional (merext) and zonal (zonext) direction of the PPSR are calculated. (b) Next,

a rectangle (black-outlined area) is defined around the PPSR by expanding the northernmost, southernmost, westernmost and easternmost

coordinates by Lsurr , which is half of the mean of merext and zonext. If Lsurr is smaller than 0.5◦, we set it to 0.5◦ to provide a reasonable

size of the surrounding region. (c) In the last step, all grid cells outside the rectangle and all grid cells inside a source region are removed.

The grid cells with XCH4 are defined as the surrounding area of the central PPSR.

computing the ratio of the root of the sum of the squared monthly uncertainties uE and the effective number of months neff

contributing to the mean estimate395

uE =

√∑
j u

2
E,j

neff
. (7)

With neff we consider the correlation between the monthly emission estimates. neff is equal to 1 means that all emission

estimates are correlated and neff is equal to the total number of emission estimates means that all emission estimates are

uncorrelated. We choose neff with the assumption that the blocks of quarter-yearly emission estimates are uncorrelated. neff

is therefore the number of quarter-yearly data blocks in which at least one emission estimate contributes to the mean.400

3.6 Assignment to source type

To determine the dominant methane source type in the detected PPSRs, we compare sector-specific emissions from different

emission databases. We distinguish between the source types coal, oil and gas, other anthropogenic sources, wetlands and

unknown (see Table 1). We use the emission data regarding coal and oil and gas from EDGAR v6.0 2018 and GFEI v2.0

2019 (Sect. 2.4). To determine the emissions originating from other anthropogenic sources, we use anthropogenic methane405

emissions from all sectors excluding fossil fuel from EDGAR v6.0 2018. For wetland emissions, we use the ensemble of

WetCHARTs v1.3.1 for 2019 (Sect. 2.4). We assign the source type with the highest emissions as the dominant source type of

the corresponding PPSR. For this we sum up the emissions in the PPSR for each source type, using an expanded PPSR mask,
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Table 1. Dominant source types of PPSRs and the corresponding databases used to estimate the sector-specific emissions.

Source type Database

Coal EDGAR v6.0 2018 coal, GFEI v2.0 2019 coal

Oil and gas EDGAR v6.0 2018 oil and gas, GFEI v2.0 2019 oil and gas

Other anthropogenic EDGAR v6.0 2018 all sectors excluded fossil fuel

Wetland WetCHARTs v1.3.1 2019

Unknown No database shows emissions higher 50ktyr−1 in PPSR

which includes the directly adjacent outer grid cells to account for variations in the locations of the sources in the databases.

We assign the type “unknown” to a PPSR if the total emissions in the respective PPSR mask are less than 50ktyr−1 for410

all three emission databases. It should be noted that no uncertainties are specified in the used databases, which means that

the uncertainties cannot be considered in the source type assignment. Therefore, we have only taken into account possible

uncertainties of the databases in the sense of underestimation of emissions by setting the threshold value to be exceeded for

source type assignment (50ktyr−1) to be significantly lower than the lowest mean emissions estimate of 2018-2021 detected

by us (120ktyr−1). With 50ktyr−1, however, we also ensure that the databases also have a certain minimum emission when415

assigning a PPSR to a source type.

4 Results

In this section, we present the results of the PHD algorithm, which we use to detect potential persistent source regions (PPSRs).

We provide a global overview of the detected PPSRs by describing the distribution of the PPSRs among the different source

types coal, oil and gas, other anthropogenic, and wetlands, as well as a rough total emission estimate of all the detected PPSRs420

(Sect. 4.1). We then analyze the 10 PPSRs with the highest emission estimates in more detail (Sect. 4.2). These include the

Sudd Wetlands in South Sudan (Sect. 4.2.1), the west coast in Turkmenistan (Sect. 4.2.2), the Iberá wetlands in Argentina

(Sect. 4.2.3), several regions in China (Sect. 4.2.4 and 4.2.5), the city Dhaka in Bangladesh and its surrounding area (Sect.

4.2.6), the Kuznetsk Basin in Russia (Sect. 4.2.7) and the Permian Basin in the United States (Sect. 4.2.8).

4.1 Global overview425

We applied the PHD algorithm as described in Sect. 3 and detected a total of 217 PPSRs, whose global distribution and assigned

source types are shown in Fig. 10. Based on the comparison of the emission databases, the fraction of dominant source types

is 7.8% coal, 7.8% oil and gas, 30.4% other anthropogenic sources, 7.3% wetlands and 46.5% unknown.

Some of the detected source regions are well-known coal production sites, which already have been subject of several

studies, such as the region Shanxi in China (Chen et al., 2022), the Bowen Basin in Queensland in Australia (Sadavarte et al.,430

2021), and the Upper Silesia Coal Basin in Poland (Tu et al., 2022). Other PPSRs related to coal mining activities include

the Kuznetsk Basin in Russia, regions in and around Johannesburg in South Africa, the Appalachia Coal Basin in the United
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Figure 10. All PPSRs detected with the PHD algorithm grouped by the different dominant source types. The sizes of the circles scale with

the emission estimates for 2018-2021 of the PPSRs. The 10 PPSRs with the highest emission estimates are indicated with a number.

States, and the Ekibastuz Coal Basin in Kazakhstan. We also detect several PPSRs located in known oil and gas basins including

the Permian (Schneising et al., 2020; Zhang et al., 2020; Varon et al., 2023; Veefkind et al., 2023), Uintah (de Gouw et al.,

2020), Haynesville (Shen et al., 2022), and Anadarko (Schneising et al., 2020) in the USA, as well as two of the world’s435

largest natural gas fields, Galkynish and Dauletabad in Turkmenistan (Schneising et al., 2020). A large number of the detected

PPSRs are assigned to the source type other anthropogenic sources. These include regions used for agriculture, such as the

Po Valley in Italy, and regions including large cities, such as Dhaka in Bangladesh, Mumbai and Delhi in India, Madrid in

Spain, Buenos Aires in Argentina and Rio de Janeiro in Brazil. The emissions in these cities can originate from anthropogenic

sources of different types. For example, Maasakkers et al. (2022) analyzed the methane emissions of several cities, including440

Mumbai, Delhi and Buenos Aires, and showed that landfills contribute to a large amount to the total emissions of these cities.

In addition to anthropogenic source regions, we also detected PPSRs in wetland regions. These include well-known methane

source regions like the Sudd wetlands in South Sudan (Pandey et al., 2021), the Pantanal wetlands in Brazil and the wetlands

formed by the Paraná river in Argentina (Parker et al., 2018). Often, source regions contain multiple sources of different types,

which is not indicated in the global map of Fig. 10. For example, we identified a source region at Lake Chad where the emission445

databases indicate strong anthropogenic emissions but also strong wetland emissions. Another example is a source region in

the Central Valley in the USA, which is an oil and gas production site, but also known for its livestock farming (Buchwitz et al.,

2017). 46.5% of the identified PPSRs are not assigned to any source type. By analyzing these in more detail, we find that most

of them occur in regions with wetlands, but in which WetCHARTs v1.3.1 shows emissions lower than the used threshold of

21



50ktyr−1, which needs to be exceeded to assign a PPSRs to the corresponding source type (see Sect. 3.6). For example, we450

detected four PPSRs in Zambia, which are all known wetland methane source regions (Shaw et al., 2022), but only one of them

was categorized as type wetland, while the others were assigned to type unknown. We also detected some unknown PPSRs that

are located in fossil fuel production regions, such as the Cesar-Ranchería Basin in Colombia or the Surat Basin in Queensland,

and some unknown PPSRs in urban areas, such as in Tulsa (USA) or in Calgary (Canada). As reported in Foy et al. (2023),

the emissions from urban areas are often underestimated in EDGAR, which may be the reason that these PPSRs could not be455

assigned to the other anthropogenic type.

The sum of the 2018-2021 mean emission estimates of all detected PPSRs is approximately 150Mtyr−1, of which 13.0% are

associated with emissions from source type coal, 12.5% from type oil and gas, 35.4% from type other anthropogenic, 11.9%

from type wetland and 27.2% from type unknown. We compared our total emission estimates with the calculated bottom-up

methane budget for 2017 from Saunois et al. (2020). The detected PPSRs account for 20.1% of the total bottom-up emissions460

(747Mtyr−1), for 24.1% of the emissions related to anthropogenic sources (380Mtyr−1) and for 4.9% of the emissions

related to natural sources (367Mtyr−1). An analysis of the anthropogenic emissions shows that the PPSRs assigned to fossil

fuel account for 28.4% of the total fossil fuel emissions (135Mtyr−1) reported in Saunois et al. (2020), describing 44.5% of

coal-related emissions (44Mtyr−1) and 22.3% of oil and gas-related emissions (84Mtyr−1). The other anthropogenic PPSRs

account for 21.8% of the bottom-up anthropogenic emissions that are not related to fossil fuel (245Mtyr−1). Compared to465

Lauvaux et al. (2022) and Schuit et al. (2023), the emissions of our detected source regions account for a larger percentage of

the reported anthropogenic emissions. The detected oil and gas methane ultra-emitters by Lauvaux et al. (2022) account for

8− 12% of the oil and gas emissions reported by national inventories. In Schuit et al. (2023), anthropogenic super-emitters

are detected, accounting for 2.7% of the total anthropogenic emissions reported by Saunois et al. (2020). In addition to the

different methodology and data product, the higher percentage of emissions detected in our study can be explained by the focus470

on persistent methane sources and the additional consideration of larger-scale source regions rather than only detecting point

sources.

We only detected a fraction of the global total emissions, because we only considered source regions that are localized and

have a persistent enhancement, which is above a threshold. In addition, the sources can only be detected if sufficient TROPOMI

measurements are available, which depends, for example, on the presence of clouds in the considered region. Thus, emissions475

from sources that do not meet these criteria, such as source regions that only show strong emissions in one of the four years,

cannot be detected with this method. For the calculation of the total emissions, we have to consider that a few of the detected

PPSRs can be false positives, even though we applied a filtering of PPSRs in Sect. 3.3.4. If some of the PPSRs are false

positives, then the calculated total emissions are overestimated.

Figure 11 shows the distribution of the 2018-2021 mean emission estimates of all detected PPSRs and the corresponding cu-480

mulative distribution. The majority of the detected PPSRs, 63.6%, have a mean emission estimate between 0.1 and 0.6Mtyr−1.

Although the PPSRs with emission estimates greater than 0.6Mtyr−1 account for only 36.4% of the detected PPSRs, they

are responsible for 66.8% of the total detected emission estimates. Most of the PPSRs with a higher emission estimate than

0.6Mtyr−1 were assigned to a source type, which indicates that the emission databases also report enhanced methane emis-

22



Figure 11. Distribution of the 2018-2021 emission estimates of the detected PPSRs, as well as the corresponding cumulative distribution

(blue line). The frequency per 0.1Mtyr−1 bin associated with the distribution of the emission estimates is shown on the left y-axis and the

percentage share of the cumulative emission estimate of the total emission estimate is shown on the right y-axis. In each bin, the source types

of the PPSRs contributing to that bin are shown with the corresponding color.

sions in the corresponding regions. In contrast, 64.5% of the PPSRs with emission estimates below 0.6Mtyr−1 are assigned485

to the unknown source type, which account for 88.1% of all unknown PPSRs. In general, the shape of the distribution is in

agreement with other studies describing a heavy-tailed distribution of strongly emitting methane emitters (Frankenberg et al.,

2016; Jacob et al., 2016; Lauvaux et al., 2022; Zavala-Araiza et al., 2015).

For several of the detected PPSRs the emission estimates show a good agreement with emissions quantified in other studies.

These include, for example, the Upper Silesia Coal Basin in Southern Poland and the Bowen Basin in Queensland in Australia.490

The Upper Silesia Coal Basin in Poland is one of Europe’s strongest methane emission hotspots due to its intense coal mining

activities. For the PPSR in this area, we calculate an emission estimate of 0.59± 0.11Mtyr−1, which is in good agreement

with emissions calculated in Tu et al. (2022) of 0.50± 0.02Mtyr−1 for the period from November 2017 to December 2020

and with emissions quantified using methane observations conducted from aircraft measurements in June 2018 during the

CoMet (Carbon Dioxide and Methane Mission) campaign of 0.44±0.14Mtyr−1 and 0.48±0.13Mtyr−1 (Fiehn et al., 2020;495

Fix et al., 2018). Another well-known methane source region is the Bowen Basin in Queensland in Australia, which is a coal

mining area. Here we detected two PPSRs for which the combined emission estimate is 0.63± 0.16Mtyr−1 for 2018-2021,

23



Table 2. Summary of the results of the 10 PPSRs with the highest methane emission estimates for 2018-2021 detected by the PHD algorithm.

The ± represents the corresponding uncertainty of the long-term emission estimate calculated via Eq. 7.

Source region Lat. Lon. Emissions XCH4 Wind speed area Source type

(◦) (◦) (Mtyr−1) (ppb) (ms−1) (·102 km2)

1 South Sudan - Sudd 7.95 30.15 4.5± 0.9 12.9± 1.3 3.9± 0.6 759.9 Wetland

2 Turkmenistan - Coast 38.65 53.85 3.5± 0.9 17.5± 1.4 4.3± 1.0 198.3 Oil and gas

3 Argentina - Iberá -27..35 302.95 3.3± 1.0 8.9± 1.9 5.7± 1.3 406.5 Wetland

4 China - Liaoning 41.75 122.95 2.9± 0.9 8.2± 1.6 6.5± 1.4 290.4 Other anthr.

5 China - Shanxi 1 36.05 112.85 2.6± 0.8 25.1± 2.5 5.1± 1.5 80.0 Coal

6 China - Shanxi 2 37.85 113.45 2.6± 0.7 20.6± 1.8 5.9± 1.3 42.9 Coal

7 China - Shanxi 3 37.55 112.15 2.4± 0.7 22.3± 2.5 4.7± 1.2 63.8 Coal

8 Bangladesh - Dhaka 23.55 90.85 2.4± 0.5 21.4± 2.0 2.9± 0.6 137.0 Other anthr.

9 Russia - Kuznetsk Basin 54.25 86.95 2.4± 0.5 17.3± 0.6 4.3± 0.9 112.2 Coal

10 USA - Permian Delaware 31.85 256.35 2.2± 0.6 7.5± 0.6 5.8± 1.5 272.9 Oil and gas

which also agrees well within the uncertainties with the calculated emissions in Sadavarte et al. (2021) of 0.57±0.10Mtyr−1

for 2018-2019.

4.2 PPSRs with highest emission estimates500

An overview of the results of the 10 PPSRs with the highest emission estimates is summarized in Table 2. In the following,

each PPSR is discussed in detail, including the 2018-2021 times series for the emission estimates, XCH4 enhancements and

mean wind speed, and a comparison of the results with the emissions from EDGAR v6.0, GFEI v2.0, WetCHARTs v1.3.1 and

related studies.

4.2.1 South Sudan - Sudd wetland505

The PPSR with the highest emission estimate for 2018-2021, called PPSR 1, is detected in the Sudd in central South Sudan,

one of the world’s largest wetlands. The South Sudan, and in particular its wetland region, is a well-known methane source

region that has been subject of several studies (Frankenberg et al., 2011; Hu et al., 2018; Lunt et al., 2019; Pandey et al.,

2021). By comparing the emission databases within the PPSR 1 as described in Sect. 3.6, we determine its dominant source

type as wetland, which corresponds to its location in the Sudd. In Figure 11 we show an overview of the PPSR 1 results.510

Fig. 12 (a) shows the 2018-2021 XCH4 of the South Sudan region, including the detected PPSR 1 mask, as well as one other

identified PPSR in eastern South Sudan. It can be seen that the XCH4 within the PPSR 1 is strongly enhanced compared to its

surroundings. The area outlined in black in Fig. 12 (a) indicates the surrounding region, which is used to calculate the XCH4

enhancements δXCH4 of the PPSR 1 (see Sect. 3.5). The corresponding time series of the δXCH4 for 2018-2021 is shown in
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Figure 12. Results for the South Sudan region. (a) 2018-2021 XCH4 with the detected PPSR masks outlined in red. The “1” indicates that

this region is the PPSR with the highest emission estimate for 2018-2021 detected with the PHD algorithm. The black-outlined area defines

the surrounding region used to calculate the XCH4 enhancements δXCH4. (b) Time series (2018-2021) of the emission estimates E, (c)

XCH4 enhancements δXCH4 and (d) mean wind speed V. (e) Methane emissions from WetCHARTs v1.3.1 for 2019, (f) from EDGAR v6.0

for 2018 and (g) from GFEI v2.0 for 2019. The emission estimate of the PPSR for 2018-2021 is 4.5± 0.9Mtyr−1 and the corresponding

emissions of the databases in this PPSR are: 0.88Mtyr−1 for WetCHARTs, 0.17Mtyr−1 for EDGAR and 0.01Mtyr−1 for GFEI.

Fig. 12 (c). The mean for the entire time period is 12.9± 1.3ppb and a standard deviation of 10.3ppb. The δXCH4 shows515

a seasonal cycle with its peak enhancement at the end of each year, as well as a strong increase since the end of 2020. Due

to the frequent occurrence of clouds during the wet season from April to November, few data are available for this period of

the year. In Fig. 12 (b) we show the emission estimates of PPSR 1 for 2018-2021, which we calculated as described in Sect.

3.5. The mean of the emission estimates is 4.5± 0.9Mtyr−1, where ± indicates the long-term emission estimate uncertainty

calculated via Eq. 7. By comparing the time series in Fig. 12 (b) - (d), it can be seen, that due to the small variations of the520

mean wind speed V , the δXCH4 variations determine the temporal variations of the emission estimates, including the strong

increase since the end of 2020. This strong increase is in good agreement with the finding that tropical wetlands are a major

contributor to the strong methane growth rate in 2020 and 2021 (Peng et al., 2022; Lin et al., 2023).

Pandey et al. (2021) estimated the methane emissions of the entire wetland region in South Sudan, including the Sudd and

other wetlands, to be 8.0± 3.2Mtyr−1 for 2018-2019. In a study from Lunt et al. (2019) emissions of the Sudd region were525

estimated using GOSAT XCH4 data resulting in 5.2−6.9Mtyr−1 for 2016. Our estimate is lower compared to the two results,

which can be explained by the smaller source region of this study. By combining the PPSR 1 with the PPSR, which we detected
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in the east of South Sudan (0.8± 0.4Mtyr−1 for 2018-2021), we get the total emission estimate of 5.3± 1.3Mtyr−1, which

is in agreement within the uncertainties to the emissions calculated in Pandey et al. (2021) and Lunt et al. (2019).

The Emissions from the databases WetCHARTs v1.3.1, EDGAR v6.0 and GFEI v2.0 for the South Sudan region are shown530

in Fig. 12 (e) - (g). We compute the emissions of the databases in a PPSR by adding all emissions within the extended mask of

the PPSR (see Sect. 3.6), which include the directly adjacent outer grid cells of the PPSR, to consider possible source location

variations in the databases. WetCHARTs emissions for 2019 in the PPSR 1 are 0.88Mtyr−1. EDGAR’s emissions for 2018

for the PPSR 1, which are mostly from the agriculture sector, combine to 0.17Mtyr−1 and the emissions from GFEI for 2019

are 0.01Mtyr−1. It can be seen, that the emissions from the databases show a large difference with the emission estimates of535

this study and with those of Pandey et al. (2021) and Lunt et al. (2019).

4.2.2 Turkmenistan - West coast

The PPSR with the second highest emission estimate for 2018-2021, called PPSR 2, is detected on the west coast of Turk-

menistan, in the Balkan province, which borders the Caspian Sea. The dominant source type is determined as oil and gas. The

west coast of Turkmenistan is a methane source region with oil and gas infrastructure over almost the entire coastal belt, in-540

cluding oil and gas power plants, compressor stations and pipelines (Irakulis-Loitxate et al., 2022). An overview of the results

for PPSR 2, as well as the mask that defines the PPSR, can be seen in Fig. 13. The mean emission estimate for 2018-2021

is 3.5Mtyr−1 with an uncertainty of 0.9Mtyr−1 and a standard deviation of 0.6Mtyr−1. All months except January and

February 2018 contribute to the emission estimate. The mean of the δXCH4 for the time period is 17.5±1.4ppb and the mean

wind speed 4.3± 1.0ms−1, where ± indicates the corresponding uncertainties.545

Methane emissions on the west coast of Turkmenistan have been detected in recent studies (He et al., 2024; Irakulis-Loitxate

et al., 2022; Barré et al., 2021; Schuit et al., 2023; Varon et al., 2019). In Irakulis-Loitxate et al. (2022), areas within the west

coast were identified as hotspot regions using TROPOMI, where hyperspectral (ZY1 and PRISMA) and multispectral (Sentinel-

2) satellites detected several localized emission events in the range of kilo tons per year from January 2017 to November 2020.

In Varon et al. (2019), a methane source was detected at a compressor station in Korpezhe, in the middle of the west coast of550

Turkmenistan. Using TROPOMI data, the total emissions within a 12× 12km2 region around this source was calculated to be

0.45Mtyr−1 (0.19− 0.75) for December 2017 to January 2019. The emissions calculated in these studies refer to individual

events or to smaller regions of the west coast and therefore cannot be directly used for comparison with the emission estimates

calculated in this study, but provide an overview of the magnitude of the emissions.

The spatial distribution of methane emissions from EDGAR v6.0 for 2018 and GFEI v2.0 for 2019 for the considered555

region are shown in Fig. 13 (e) - (g). The emissions from EDGAR of 0.64Mtyr−1 and GFEI of 0.62Mtyr−1 for the entire

PPSR 3 are significantly lower than our estimate of 3.5± 1.8Mtyr−1. Several studies suggested that the inventories may

underestimate Turkmenistan’s emissions (Lauvaux et al., 2022; Buchwitz et al., 2017; Shen et al., 2023). For example, Shen

et al. (2023) calculated emissions of 3.6±1.3Mtyr−1 related to oil and gas in Turkmenistan using TROPOMI, which is higher

as the emissions reported by GFEI of 1.5Mtyr−1. If we add the mean emission estimates of all oil and gas-related PPSRs in560
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Figure 13. As Fig. 12 but for the west coast in Turkmenistan, where the PPSR with the second highest emission estimate of 3.5±0.9Mtyr−1

for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 2 are: 0.0Mtyr−1 for WetCHARTs, 0.64Mtyr−1 for

EDGAR and 0.62Mtyr−1 for GFEI.

Turkmenistan, we get a total emission estimate of 5.0± 1.4Mtyr−1 which is in agreement within the uncertainties with Shen

et al. (2023).

4.2.3 Argentina - Iberá wetland

The PPSR with the third highest emission estimate for 2018-2021, called PPSR 3, is detected in the region of the border

between northeastern Argentina and southern Paraguay and is assigned to type wetland. The PPSR 3 is located in the northern565

part of the Paraná region, a well-known methane source region, which extends from the Iberá wetland in the north, the second

largest wetland in the world, to the area where the Paraná river flows into the Atlantic Ocean (Parker et al., 2018). In Figure

14 we show an overview of the results of the PPSR 3. The mean emission estimate for 2018-2021 is 3.3± 1.1Mtyr−1 with a

standard deviation of 1.3Mtyr−1 and the mean of the corresponding δXCH4 is 8.9± 1.9ppb. The emissions show a seasonal

cycle, which also can be seen in the δXCH4 time series and which is in good agreement with the wet season (Ortega et al.,570

2022; Parker et al., 2018). Furthermore, the emission estimates show a slight decrease from 2020 onward, which agrees with

the results in Lin et al. (2023), where methane emission changes between 2019 and 2021 are analyzed, including the emission

changes in the Paraná region.

WetCHARTs v1.3.1 shows enhanced methane emissions for the entire Paraná region, especially for the Iberá wetland,

whereas the anthropogenic databases indicate only low emissions (Fig. 14 (e) - (g)). WetCHARTs emissions for PPSR 3 are575
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Figure 14. As Fig. 12 but for the Iberá wetlands in Argentina, where the PPSR with the third highest emission estimate of 3.3±1.0Mtyr−1

for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 3 are: 0.64Mtyr−1 for WetCHARTs, 0.18Mtyr−1

for EDGAR and 0.0Mtyr−1 for GFEI.

0.64Mtyr−1, which is below our emission estimate. Although the Paraná region is a known methane source region, until now,

no studies have calculated absolute values of the emissions from this region, that we can use to further assess our emission

estimates. For example, in Parker et al. (2018), XCH4 retrieved from GOSAT observations is used to analyze how well the

methane inter-annual variability is described by model simulations for several regions, including the Paraná, without reporting

explicit emission estimates.580

4.2.4 China - Liaoning

The PPSR with the fourth highest emission estimate for 2018-2021, called PPSR 4, is detected in the Liaoning province in

Northeast China and is assigned to type other anthropogenic. Liaoning is known for its high agricultural production (e.g. rice

cultivation and livestock) as well as for its large heavy industry, including strong coal mining activities. The results of the

PPSR 4 are shown in Figure 15. The PPSR mask covers the region of the Liaoning province where most of the rice production585

takes place and where a majority of the coal mines are located (Ma et al., 2021; Sheng et al., 2019). The mean emission

estimate is 2.9Mtyr−1 with an uncertainty of 0.9Mtyr−1 and a standard deviation of 1.0Mtyr−1. The δXCH4 has a mean

of 8.1±1.6ppb and shows strong variability over the years with a standard deviation of 2.5ppb, with the minimum usually in

spring. In all months from 2018-2021, the PPSR, as well as in the background region, are filled with sufficient XCH4 values

to calculate the δXCH4 and the emission estimates.590
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So far, there are only a few studies that have analyzed or identified methane emissions in the considered region. For example,

two plumes were detected in 2021 by Schuit et al. (2023), which are located in the PPSR, with one plume of the dominant

source type coal and one of type landfill. In Sheng et al. (2019), coal-related emissions in 2011 for China, including the

Liaoning region, were estimated by analyzing reports from over 10000 coal mines in China. For Liaoning, the coal-related

emissions were calculated to be 1.04Mtyr−1. The different time periods, as well as the larger region considered in Sheng595

et al. (2019) make it difficult to compare the results with the results of this study. In Foy et al. (2023) emissions of urban

areas were estimated using TROPOMI data and compared with EDGAR, including the Shenyang region in Liaoning, where

the emissions were estimated to 1.6Mtyr−1. If we take into account that the Shenyang region is smaller than PPSR 5 and thus

some emissions from the surrounding area are not included in the estimate, our result is in good agreement with that of Foy

et al. (2023).600

It can be seen from Fig. 15 (e) - (g), that anthropogenic emissions are the dominant source type in this region. Emissions

from EDGAR for PPSR 4 are 1.3Mt in total for 2018, with large emissions seen in Shenyang, the capital of Liaoning. Of the

1.3Mt, 52% are from the category of other anthropogenic sources, which are composed of emissions from several sectors,

such as rice cultivation or landfills. The remaining emissions from EDGAR are related to the fossil fuel sector, mainly to coal

production, which is in the range of the fossil fuel-related emissions from GFEI in 2019 for the PPSR of 0.49Mtyr−1. The605

emissions from the databases are significantly lower than the emissions calculated in this study of 2.9± 0.9Mtyr−1, which is

also reported in Foy et al. (2023) for their emission estimate of the Shenyang region.

4.2.5 China - Shanxi

The PPSR with the fifth, sixth and seventh highest emission estimate for 2018-2021, called PPSR 5, 6 and 7, are detected in

the Shanxi province in North China. The Shanxi province is a known methane source region with emissions resulting primarily610

from high coal mining activity (Peng et al., 2023). This corresponds to the determined dominant source type of the three PPSRs,

which is coal. An overview of the results of the individual PPSRs is shown in Figure 16. Fig. 16 (a) shows the 2018-2021 XCH4

for Shanxi and the surroundings, including the detected PPSR masks, as well as the corresponding background regions for the

PPSR 5, 6 and 7. It can be seen that the XCH4 in the PPSRs is enhanced compared to the XCH4 in the surrounding regions.

The time series of the δXCH4 for the PPSRs are shown in Fig. 16 (c). The PPSR 5 has a mean δXCH4 for 2018-2021 of615

25.1± 2.5ppb, PPSR 6 of 20.6± 1.8ppb and the PPSR 7 of 22.3± 2.2ppb, which are the highest mean δXCH4 values of all

detected PPSRs. The δXCH4 shows a strong variability in all three PPSRs with standard deviations of 10.4ppb for PPSR 5,

6.5ppb in PPSR 6 and 4.8ppb in PPSR 7. This variability can also be seen in the emission estimates of the PPSRs shown in

Fig. 16 (b). The mean emission estimates are 2.6±0.8Mtyr−1 for PPSR 5, 2.6±0.7Mtyr−1 for PPSR 6 and 2.4±0.7Mtyr−1

for PPSR 7 and in all three PPSRs almost all months contribute to the corresponding mean emission estimate.620

Methane emissions in Shanxi have already been detected in several studies. The main focus was on the detection of individual

plumes, which were identified, for example, by analyzing TROPOMI data as in Schuit et al. (2023) and Lauvaux et al. (2022),

by data from the Worldview 3 satellite as in Sánchez-García et al. (2022) or by data from the PRISMA satellite mission as

in Guanter et al. (2021). The detected transient plumes in these studies are not suitable for comparison with our emission
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Figure 15. As Fig. 12 but for the Liaoning region in China, where the PPSR with the fourth highest emission estimate of 2.9± 0.9Mtyr−1

for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 4 are: 0.0Mtyr−1 for WetCHARTs, 1.3Mtyr−1 for

EDGAR and 0.49Mtyr−1 for GFEI.

estimates, which were evaluated for persistent hotspot regions for several years. But this is the case for the study by Peng625

et al. (2023), in which the coal-related methane emissions for the entire Shanxi region for the years 2019 and 2020 were

calculated by inversion of TROPOMI data. Peng et al. (2023) estimated emissions for 2019 of 8.5± 0.6Mtyr−1 and for 2020

of 8.6± 0.6Mtyr−1. To compare, we computed the sum of the emissions of all the detected PPSRs in Shanxi (PPSRs 5, 6,

7 and one other PPSR with a mean emission estimate of 1.1± 0.3Mtyr−1 for 2018-2021, see Fig. 16 (a)) and obtained an

emission estimate of 8.8±2.4Mtyr−1 for the period 2018-2021, which is in agreement within the uncertainties with the results630

from Peng et al. (2023). Moreover, by considering the emission estimates for 2019 and 2020, we obtained 8.5± 2.1Mtyr−1

for 2019 and 8.7± 1.8Mtyr−1 for 2020 for the combined PPSRs in Shanxi. In Peng et al. (2023), the entire Shanxi region

is considered, while we only focused on parts of the region. However, if we assume that our identified hotspots in the Shanxi

region contain the majority of methane emissions, the comparison of the two results is reasonable.

Fig. 16 (e) - (g) shows the methane emissions of WetCHARTs v1.3.1, EDGAR v6.0 and GFEI v2.0 for Shanxi and the635

surrounding area. It can be seen that the region is dominated by anthropogenic emissions. The emissions for 2018 from EDGAR

are mainly related to coal production and are 1.2Mtyr−1 for PPSR 5, 2.8Mtyr−1 in PPSR 6 and 1.2Mtyr−1 in PPSR 7 in the

corresponding extended PPSR masks. In total, the EDGAR emissions of all PPSRs in Shanxi combine to 5.2Mtyr−1, which

is below our emission estimate of 8.8± 2.4Mtyr−1 for 2018-2021. The emissions from GFEI for 2019 are mostly related

to the coal sector and are concentrated in a few hotspots, which correlate with the locations of the detected PPSRs. For the640
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Figure 16. As Fig. 12 but for the Shanxi region in China, where the PPSRs with the fifth (2.6± 0.8Mtyr−1), sixth (2.6± 0.7Mtyr−1)

and seventh (2.4± 0.7Mtyr−1) highest emission estimate for 2018-2021 are detected. The corresponding emissions of the databases in the

PPSR 5, 6 and 7 are: 0Mtyr−1 for WetCHARTs, 1.2Mtyr−1 (PPSR 5), 2.8Mtyr−1 (PPSr 6) and 1.2Mtyr−1 (PPSR 7) for EDGAR and

1.5Mtyr−1 (PPSR 5), 2.5Mtyr−1 (PPSR 6) and 1.9Mtyr−1 (PPSR 7) for GFEI.

PPSR 5, the GFEI emissions are 1.5Mtyr−1, 2.5Mtyr−1 for PPSR 6 and 1.9Mtyr−1 for PPSR 7. The total GFEI emissions

of the considered PPSRs are 5.9Mtyr−1, which is slightly higher than the emissions reported by EDGAR but lower than the

emission estimates of this study and the study by Peng et al. (2023).

4.2.6 Bangladesh - Dhaka and surrounding area

The PPSR with the eighth highest emission estimate for 2018-2021, called PPSR 8, is detected in a region enclosing Dhaka,645

the capital of Bangladesh, which is one of the most populated cities in the world. The dominant source type is determined

as other anthropogenic sources. Dhaka and the surrounding area are a known methane source region with the main sources

being agricultural production (rice, livestock) and waste management (wastewater, landfills), but also with contributions from

wetlands (Foy et al., 2023; Toha and Rahman, 2023). The results for the PPSR 8 are shown in Fig. 17. The 2018-2021 XCH4

shows a strong enhancement in the PPSR, especially in and around Dhaka, compared to the XCH4 of the surrounding area (see650

Fig. 17 (a)). The δXCH4 values for 2018-2021 are shown in Fig. 17 (c), averaging to a mean of 21.4± 2.0ppb, which is in

the range of the enhancements of the PPSRs in the Shanxi region. For the considered years, no XCH4 is present for the period

from March/April to October/November due to the monsoon season and the resulting frequent high cloud coverage. Fig. 17 (b)

shows the emission estimates for 2018-2021 with a mean of 2.4± 0.5Mtyr−1 and increasing values from October/November
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Figure 17. As Fig. 12 but for the region in and around Dhaka in Bangladesh, where the PPSR with the eighth highest emission estimate of

2.4±0.5Mtyr−1 for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 8 are: 0.13Mtyr−1 for WetCHARTs,

0.92Mtyr−1 for EDGAR and 0.02Mtyr−1 for GFEI.

until April/May of the following year. This period is also one of two phases, in which the rice is cultivated in Bangladesh. The655

first phase is in summer, which starts around June and ends in October with the harvest. The second phase is during the winter

from November to April, when the fields are artificially irrigated (Rahman et al., 2023).

Methane emissions in Dhaka have already been detected and quantified in several studies (Foy et al., 2023; Schuit et al.,

2023). Schuit et al. (2023) used TROPOMI data to detect plumes worldwide and detected in Dhaka as many plumes as in any

other urban area. The emissions from Dhaka are calculated in Foy et al. (2023) by using TROPOMI data and a two-dimensional660

plume model, resulting in emissions of 1.3Mtyr−1, which is lower than our estimate of 2.4± 0.5Mtyr−1. It must be taken

into account that our region is larger than that of Foy et al. (2023) and can therefore include emissions from other cities in the

surrounding area, as well as wetland emissions from the Ganges delta.

Fig. 17 (e) - (g) show the emissions from WetCHARTs v1.3.1, Edgar v6.0 and GFEI v2.0 for the Dhaka region. For

WetCHARTs, the emissions in the PPSR amount to 0.13Mt for 2019, for EDGAR to 0.92Mt for 2018 and for GFEI to665

0.02Mt for 2019. The emissions from EDGAR are mainly from the agricultural sector with 0.38Mtyr−1 from rice production

and 0.15Mtyr−1 from enteric fermentation and are lower than our calculated emission estimate. In Foy et al. (2023) the calcu-

lated emissions were also higher compared to EDGAR. They concluded that part of the difference between EDGAR and their

emission estimate is due to the fact that untreated wastewater is not taken into account, which can be a major factor, especially

in very densely populated cities such as Dhaka.670
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Figure 18. As Fig. 12 but for the Kuznetsk Basin in Russia, where the PPSR with the ninth highest emission estimate of 2.4± 0.5Mtyr−1

for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 9 are: 0.0Mtyr−1 for WetCHARTs, 1.6Mtyr−1 for

EDGAR and 1.4Mtyr−1 for GFEI.

4.2.7 Russia - Kuznetsk Basin

The PPSR with the ninth highest emission estimate for 2018-2021, called PPSR 9, is detected in the Kuznetsk Basin (also

called Kuzbass) in southwestern Siberia, Russia. Its dominant source type is determined as coal, which coincides with the fact

that Kuzbass is one of the largest coal production areas worldwide (Labzovskii et al., 2022). Figure 18 shows an overview

of the results for the PPSR 9. In the 2018-2021 XCH4 map shown in Fig. 18 (a), a strong enhancement can be seen in the675

entire PPSR mask compared to the XCH4 of the surrounding area. To quantify the XCH4 enhancements within the PPSR, we

computed the monthly δXCH4 for the time period 2018-2021, which are on average 17.3± 0.6ppb with a standard deviation

of 6.6ppb. The mean emission estimate is 2.4Mtyr−1 with an uncertainty of 0.5Mtyr−1, which is computed from emission

estimates of 30 months (Fig. 18 (b)).

Even though the Kuzbass is one of the largest coal production areas worldwide, there is still a need for studies reporting680

methane emissions from this region. In Schuit et al. (2023), methane plumes are detected in this region, but not discussed

in more detail. Due to the limited number of studies, we only compare our emission estimate with the emissions from the

databases, which are shown in Figure 18 (e) - (g) for the considered region. It can be seen that the emissions from the databases

are dominated by anthropogenic activity and that the emission hotspots reported by EDGAR and GFEI show a high spatial

correlation. EDGAR reports emissions of 1.6Mt for 2018 and GFEI of 1.4Mt for 2019, whereby the emissions from both685
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databases are mainly related to the coal sector. Compared to the emission estimate of this study, the emissions from EDGAR

and GFEI are lower, but still within the uncertainty.

4.2.8 USA - Permian Basin

The PPSR with the tenth highest emission estimate for 2018-2021, called PPSR 10, is detected in the Permian Basin in the

USA and is assigned to the source type oil and gas. The Permian Basin is the most prolific oil field in the USA and also a690

high-producing natural gas region, which is located in western Texas and eastern New Mexico. The Permian Basin consists of

several sub-basins, including the Delaware Basin in the west and the Midland Basin in the east of the Permian, where mostly

non-conventional exploitation techniques, such as hydraulic fracturing, are used. An overview of the results for PPSR 10 are

shown in Fig. 19. It can be seen that we detect two regions in the Permian Basin. The PPSR 10 in the Delaware Basin and

a PPSR in the Midland Basin, which shows the thirteenth strongest emission estimate. Since the literature often refers to the695

emissions of the entire Permian Basin, we analyze these two PPSRs together. The monthly emission estimates for 2018-2021

are shown in Fig. 19 (b). The mean emission estimate for PPSR 10 is 2.2± 0.6Mtyr−1 and 2.0± 0.5Mtyr−1 for PPSR 13,

which leads to a combined mean emission estimate of 4.1±1.1Mtyr−1 for 2018-2021 (taking into account the second decimal

place). The δXCH4 time series for 2018-2021 for PPSR 10 and 13 can be seen in Fig. 19 (c). The mean δXCH4 enhancement

for PPSR 10 is 7.5± 0.6ppb with a standard deviation of 3.3ppb and 7.2± 0.6ppb for PPSR 13 with a standard deviation of700

1.7ppb.

Methane emissions from the Permian Basins have already been quantified in several studies (Schneising et al., 2020; Shen

et al., 2022; Varon et al., 2023; Veefkind et al., 2023; Zhang et al., 2020). In the studies by Schneising et al. (2020) and Veefkind

et al. (2023), emissions were calculated based on the TROPOMI/WFMD XCH4 data product. Schneising et al. (2020) used

a Gaussian integral method and estimated emissions of 3.2± 1.1Mtyr−1 for the period 2018-2019, whereas Veefkind et al.705

(2023) calculated emissions of 3.0± 0.7Mtyr−1 for 2019 using a divergence method. The emissions reported in the studies

by Zhang et al. (2020), Shen et al. (2022) and Varon et al. (2023) are based on the operational TROPOMI data product and

different inversion frameworks. Zhang et al. (2020) calculated emissions of 2.9±0.5Mtyr−1 for the period from May 2018 to

March 2019, whereas Shen et al. (2022) estimated emissions of 2.9± 0.4Mtyr−1 for the period from May 2018 to February

2020 and of 3.7± 0.5Mtyr−1 for the same period but with an adjusted prior. In Varon et al. (2023), the period from May710

2018 to October 2020 is considered and mean emissions of 3.7± 0.9Mtyr−1 are reported, which is higher than the previous

emission estimates. The emission estimate of 4.1± 1.1Mtyr−1 for 2018-2021 calculated in this study is slightly higher than

the emissions of the presented studies but agrees within the uncertainties.

The emissions from EDGAR v6.0, GFEI v2.0 and WetCHARTs v1.3 are shown in Fig. 19 (e) - (g). For EDGAR, the

emissions within the extended PPSRs mask (see Sect. 3.6) are 1.2Mtyr−1 and 0.2Mtyr−1 for GFEI and relate to the oil715

and gas sector. The emissions of both databases are significantly lower than the emission estimates of this study and the other

studies mentioned above. The emissions of these two databases also differ from one another.
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Figure 19. As Fig. 12 but for the Permian Basin in USA, where the PPSRs with the tenth and thirteenth highest emission estimate for 2018-

2021 are detected. The corresponding emissions of the databases in the PPSR 10 (blue, 2.2± 0.6Mtyr−1) and 13 (red, 2.0± 0.5Mtyr−1)

are: 0.0Mtyr−1 for WetCHARTs, 1.2Mtyr−1 (PPSR 10) and 0.59Mtyr−1 (PPSR 13) for EDGAR and 0.21Mtyr−1 (PPSR 10) and

0.14Mtyr−1 (PPSR 13) for GFEI.

5 Conclusions

We developed an automated algorithm that uses TROPOMI XCH4 data to identify potential persistent methane source regions

(PPSRs), to estimate their emissions and to assign a source type to them. We applied the algorithm to a dataset compris-720

ing of monthly averaged XCH4 maps at 0.1◦× 0.1◦ spatial resolution from 2018-2021, which we generated by gridding the

TROPOMI WFMD v1.8 data product. The detection process involves two key steps: (i) the generation of monthly methane

anomaly maps (∆XCH4), which indicate how “high” or “low” a local XCH4 value is compared to the median of the surround-

ing XCH4, and (ii) the analysis of these anomaly maps. In the letter, we characterized each region by several quantities, such as

the number of months in which the region shows enhanced anomalies, to then identify regions with a persistent enhancement725

by defining threshold values for the corresponding quantities. The algorithm is designed in a way that the thresholds can be

adjusted depending on the focus of the source regions to be detected. For the automated emission estimates of the individual

PPSRs, we used a fast data-driven mass balance method, which is designed to calculate emission estimates from time-averaged

XCH4 maps. For more precise emission estimates, we recommend conducting more detailed analyses based on daily data. To

determine the dominant source types of the PPSRs, we compared the emissions from several databases (WetCHARTs v1.3.1,730

EDGAR v6.0 and GFEI v2.0) within the PPSRs masks.
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We detected a total of 217 PPSRs, of which 17 have the dominant source type coal, 17 oil and gas, 66 other anthropogenic

sources, 16 wetland and 101 an unknown source type. We showed that TROPOMI data can be used to detect a variety of well-

known methane source regions such as large oil and gas fields in Turkmenistan and the USA, but also small-scale source regions

like coal mines in Queensland in Australia. The emission estimates of all detected PPSRs amount to about 150Mtyr−1, which735

corresponds to approximately 20% of the bottom-up emissions reported in Saunois et al. (2020). We found that the majority of

emissions (35.4%) is associated with PPSRs dominated by other anthropogenic sources, followed by PPSRs of unknown type

(27.2%), type coal (13.0%), oil and gas (12.5%) and wetland (11.9%). The coal-dominated source regions describe almost half

(44.5%) of global coal emissions of Saunois et al. (2020), while those from oil and gas (22.3%), as well as other anthropogenic

sources (21.8%), also account for a large share of their sectors’ emissions. This demonstrates that a comparatively small number740

of high-emitting source regions contribute a large proportion to the global methane emissions, underlining the importance of

their detection and quantification for improving the understanding of the global methane emissions. The detected wetland

regions account for 4.9% of the total natural emissions reported in Saunois et al. (2020). However, we note that in some known

wetland areas, such as Lake Chad or the Inner Niger Delta (Mali), strongly emitting PPSRs were detected, but were assigned

to other source types due to the comparatively lower emissions in the wetland database. In addition, a more detailed analysis745

showed that many of the PPSRs with unknown source type are wetland regions. In total, 46.5% of the PPSRs show emissions

of less than 50ktyr−1 in the emission databases and were thus labeled as source regions with an unknown source type. The

emission estimates of the unknown PPSRs range from 0.12−1.2Mtyr−1, indicating that in these regions the emission estimates

of this study and the emissions in the databases have large differences. Some of the unknown PPSRs have been identified as

methane sources in other studies, such as the PPSRs we detected in the Surat Basin in Australia or in the wetland region in750

Zambia. We found differences between the emissions of the databases and our emission estimates not only for the PPSRs with

an unknown source type but also for some of the PPSRs with the 10 highest mean emission estimates for 2018-2021. These

regions are located in the Sudd wetlands in South Sudan, in the west coast of Turkmenistan, which is an area dominated by

oil and gas infrastructure, the Iberá wetland in Argentina, in the Liaoning and Shanxi province in China, which are known

rice and coal production areas, in the city of Dhaka and its surroundings in Bangladesh, in the Kuznetsk Basin in Russia, one755

of the largest coal production areas in the world, and in the Permian Basin, a large oil and gas field in the United States. For

many of these PPSRs, the emission estimates are in agreement within the uncertainties with emission estimates from other

studies. In the emission databases, these PPSRs are also indicated as methane hotspots, but their emissions are significantly

lower compared to our emission estimates. Further studies are needed to analyze these differences between the emissions of

the databases and emission estimates in this and other studies in more detail. Furthermore, we cannot exclude that some of the760

detected PPSRs may be false positives. To improve the filtering of potential false positives, additional parameters, such as the

aerosol optical thickness, could be considered in the analysis. Since the distinction between a true and a false positive detection

is not trivial in many cases, it often requires detailed analyses. For example, in Schuit et al. (2023), as well as in Lauvaux

et al. (2022) human observers subsequently verify each detected plume. Such an approach was omitted in this work in order to

provide a fully automated algorithm.765
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Each of the detected PPSRs is a potential source region that needs to be examined in more detail, for example using a similar

analyses as conducted for the PPSRs with the ten highest emission estimates. Furthermore, an additional analysis of the daily

data can provide new insights into the characteristics of the regions. This includes the potential to use other methods for the

calculation of the emission estimates (e.g., a gaussian integral method) or to perform detailed analyses to classify the PPSRs

in terms of a false positive detection. For example, preliminary analyses of PPSRs 165 and 217 in Germany have shown that770

their emission estimates of 0.29± 0.07Mtyr−1 (PPSR 165) and 0.12± 0.03Mtyr−1 (PPSR 217) are likely too high because

of potential retrieval biases and/or accumulation of methane in the coal pits, which means that the assumptions of the method

for calculating emissions do not match the characteristics of these regions. Methane retrievals directly over the coal pits are

challenging due to complex and evolving topography and reflectivity variations.

Moreover, a more detailed comparison between the regions detected in this study and the results from the studies from Schuit775

et al. (2023) and Lauvaux et al. (2022), in which also methane hotspots were detected using TROPOMI data, is of interest. The

studies differ in their focus on the type of hotspot to be detected. In Schuit et al. (2023) and Lauvaux et al. (2022) the focus

is on plumes originating from point sources, including short-term emissions such as gas well blowouts, while in this study

persistent source regions are detected, which also include larger-scale source regions in addition to point sources. Despite these

differences, a detailed comparison of these studies offers the opportunity to optimize the respective detection algorithms. The780

detection of known and unknown methane hotspots and the estimation of their emissions by algorithms such as those described

in this study provide important knowledge about both anthropogenic and natural sources of methane. Their operational use in

the future has the potential to significantly improve the emission inventories and thus contribute to a better understanding of

the evolving sources of methane in a warming world.
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Appendix A: Impact of parameter Ndays785

Figure A1. (left) 2018-2021 filtered XCH4* calculated from monthly means in which the number of days of TROPOMI measurements

within the month (Ndays) is at least (a) 4 (as Fig. 2 (b)), (c) 8 and (e) 16. (right) The corresponding number of months contributing to the

multi-year mean.
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