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Abstract. Methane (CH4) is an important anthropogenic greenhouse gas and its rising concentration in the atmosphere con-

tributes significantly to global warming. A comparatively small number of highly emitting persistent methane sources is re-

sponsible for a large share of global methane emissions. The identification and quantification of these sources, which often

show large uncertainties regarding their emissions or locations, is important to support mitigating climate change. The
:::::
Daily

:::::
global

::::::::::::::
column-averaged

::::
dry

::
air

:::::
mole

:::::::
fractions

:::
of

::::::::::
atmospheric

:::::::
methane

:::::::
(XCH4)

:::
are

::::::::
retrieved

::::
from

::::::::
radiance

::::::::::::
measurements

::
of5

::
the

:
TROPOspheric Monitoring Instrument (TROPOMI) onboard

::
on

:::::
board on the Sentinel-5 Precursor (S5P) satellite , launched

in October 2017, provides measurements of the column-averaged dry-air mole fraction of atmospheric methane (XCH4) with

a daily global coverage and a
::::
with

:
a
::::::::::
moderately high spatial resolutionof up to 5.5× 7km2, enabling the detection and quan-

tification of localized methane sources. We developed a fully automated algorithm to detect regions with persistent methane

enhancement and to quantify their emissions using a monthly TROPOMI XCH4 dataset from the years 2018-2021. We detect10

217 potential persistent source regions (PPSRs), which account for approximately 20% of the total bottom-up emissions. By

comparing the PPSRs in a spatial analysis with anthropogenic and natural emission databases we conclude that 7.8% of the

detected source regions are dominated by coal, 7.8% by oil and gas, 30.4% by other anthropogenic sources like landfills or

agriculture, 7.3% by wetlands and 46.5% by unknown sources. Many of the identified PPSRs are well-known source regions,

like the Permian Basin in the USA, which is a large production area for oil and gas, the Bowen Basin coal mining area in15

Australia, or the Pantanal wetlands in Brazil. We perform a detailed analysis of the PPSRs with the 10 highest emission es-

timates, including the Sudd Wetland in South Sudan, an oil and gas dominated area on the west coast in Turkmenistan, and

one of the largest coal production areas in the world, the Kuznetsk Basin in Russia. The calculated emission estimates of these

source regions are in agreement within the uncertainties with results from other studies, but are in most of the cases higher than

the emissions reported by emission databases. We demonstrate that our algorithm is able to automatically detect and quantify20

persistent localized methane sources of different source type and shape, including larger-scale enhancements such as wetlands

or extensive oil and gas production basins.
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1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas after carbon dioxide (CO2) and its increasing

concentration in the atmosphere, which has accelerated in recent years, contributes significantly to global warming (Lan et al.,25

2021). Due to its shorter lifetime and higher global warming potential compared to CO2, the reduction of methane emissions

can contribute to mitigation of global warming (Shoemaker et al., 2013).

Almost half of the global methane emissions originate from anthropogenic sources, which are dominated by fossil fuel ex-

ploitation, livestock, rice cultivation and landfills, whereas the natural emissions mainly originate from wetlands (Saunois et al.,

2020). To efficiently reduce methane emissions, a comprehensive understanding of the natural and anthropogenic methane30

sources and sinks is required. However, global methane emissions are characterized by large uncertainties, as can be seen in

bottom-up inventories which have uncertainties of 20− 35% for anthropogenic emissions regarding agriculture, fossil fuel

and waste and 50% for wetland emissions (Saunois et al., 2020). These uncertainties are strongly related to emissions from

individual sources, which are highly uncertain or even partly unknown, especially on
:
a regional scale (Saunois et al., 2020).

As a result
:::::::::::
Consequently, the explanation of the observed behavior of atmospheric methane , for exampleduring

::::::::::
atmospheric35

:::::::
methane

:::::
trends

:::::::
remains

:::::::::::
challenging.

:::
For

::::::::
example,

:::
the

::::::::::
abundance

::
of

::::::::::
atmospheric

::::::::
methane

:::::
grew

::::
until

:
1998and 2006 where

it ,
:
remained at a constant plateau or during the recent years where it showed an accelerated increase, remains challenging.

Although, several studies conclude that the recent increase
:::
until

::::::
2006,

:::
and

::::
then

::::::
started

::
to
:::::

grow
::::::
again.

:::
The

:::::::
reasons

:::
for

::::
this

:::::
unique

::::::::
behavior

:::
are

:::
still

::::::
highly

:::::::
debated

::::::::::::::::::::::::::::::::
(Nisbet et al., 2016; Turner et al., 2019).

:::::
Also,

:::
the

::::::::::
accelerated

:::::::
increase

::
in

:::::
recent

:::::
years

:
is
::::

still
::::::
subject

:::
of

:::::::
ongoing

::::::::
research

::::
with

::::::
several

:::::::
studies

:::::::::
concluding

::::
that

:::
the

::::
rise was dominated by an increase in wetland40

emissions (Lan et al., 2021; Peng et al., 2022; Zhao et al., 2020).

In particular, strongly emitting methane sources have a substantial impact on global methane emissions. These include

small-scale point sources, so-called super-emitters, such as individual coal mines, natural gas compressor stations or landfills

(Lauvaux et al., 2022; Maasakkers et al., 2022; Schuit et al., 2023; Varon et al., 2019)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(He et al., 2024; Lauvaux et al., 2022; Maasakkers et al., 2022; Schuit et al., 2023; Varon et al., 2019)

. A comparatively small number of those super-emitters are responsible for a large proportion of methane emissions associ-45

ated with oil and gas exploitation, coal mining and waste (Frankenberg et al., 2016; Jacob et al., 2016; Lauvaux et al., 2022;

Zavala-Araiza et al., 2015). In addition to the super-emitters, larger-scale, but localized source regions also contribute a large

share to global methane emissions. These include large oil and gas fields, where smaller sources can emit a huge amount of

methane in aggregate, but also regions with high agricultural productivity (rice cultivation, livestock), as well as wetland areas

(Buchwitz et al., 2017; Naus et al., 2023; Pandey et al., 2021; Schneising et al., 2020)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Buchwitz et al., 2017; Chen et al., 2024; Naus et al., 2023; Pandey et al., 2021; Schneising et al., 2020)50

. The detection and quantification of these small-scale super-emitters and larger-scale source areas is essential in order to assess

the contribution of these sources to the global methane emissions and to identify their inherent potential for reducing the global

emissions.

Ground-based and aircraft measurements have been used to quantify localized methane sources, but are limited in time

and/or space, making (frequent) observations of remote source regions difficult (Borchardt et al., 2021; Frankenberg et al.,55

2016; Krautwurst et al., 2021). Satellite measurements, such as from SCIAMACHY (Burrows et al., 1995; Bovensmann et al.,
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1999) or GOSAT (Kuze et al., 2009, 2016), offer the possibility to globally detect and quantify localized emission sources

through temporally frequent global measurements of atmospheric methane (Buchwitz et al., 2017; Jacob et al., 2016, 2022;

Sherwin et al., 2024; Thorpe et al., 2023). One important breakthrough in satellite remote sensing of methane in recent years

was achieved by the successful launch of the Sentinel-5 Precursor (S5P) satellite in October 2017. Onboard S5P is the TRO-60

POspheric Monitoring Instrument (TROPOMI), which is a nadir viewing spectrometer (Veefkind et al., 2012). It provides

observations in the shortwave infrared (SWIR) spectral range with a spatial resolution of 5.5× 7km2 from which column-

averaged dry air mole fractions of atmospheric methane (XCH4) can be retrieved. Due to the high sensitivity to near-surface

concentration changes and the combination of daily global coverage with moderately high spatial resolution, TROPOMI data

have already been used to quantify emissions on global and regional scale, including a wide variety of methane sources, such65

as transient gas leaks, oil and gas fields, coal mining and urban areas, as well as wetland regions (Liu et al., 2021; Naus et al.,

2023; Qu et al., 2021; Pandey et al., 2019; Plant et al., 2022; Schneising et al., 2020; Varon et al., 2023; Veefkind et al., 2023).

In addition to emission quantification, various studies have shown that TROPOMI can be used to identify point sources on

a global scale via plume detection (Lauvaux et al., 2022; Schuit et al., 2023) or via combining with model forecasts (Barré

et al., 2021). For example, Barré et al. (2021) created a monitoring methodology to detect CH4 concentration anomalies by70

comparing TROPOMI data with high-resolution CH4 forecast from the Copernicus Atmosphere Monitoring Service (CAMS).

This method can be used to detect missing, underreported and overreported CH4 anomalies in the CAMS data worldwide.

Lauvaux et al. (2022) detected methane super-emitters associated with oil and gas production and exploitation for 2019-2020

by analyzing daily TROPOMI data using a plume detection algorithm based on the calculation of local XCH4 enhancements

and plume segmentation. The super-emitters were mostly detected over the largest oil and gas basins in Russia, Turkmenistan,75

USA, Algeria and Middle East and amount to 8−12% of the global oil and gas emissions. Schuit et al. (2023) used TROPOMI

data to identify anthropogenic super-emitters including emissions from the sectors coal, oil, gas and landfills for 2021 using a

machine-learning approach based on a convolution neuronal
:::::::::::
convolutional

:::::
neural

:
network to detect plume-like structures and

a support vector classifier to distinguish between real plumes and retrieval artefacts
:::::::
artifacts. Methane plumes originating from

super-emitters worldwide were identified, mostly from persistent emission clusters, but also from transient sources.80

Besides
:::
The

:::::
focus

::
of

:::
the

::::::
studies

:::::
from

:::::::::::::::
Barré et al. (2021),

:::::::::::::::::::
Lauvaux et al. (2022)

::
and

:::::::::::::::::
Schuit et al. (2023)

:
is
:::
on

:::
the

::::::::
detection

::
of

:::::
strong

:::::::
emitting

::::::::::::
anthropogenic

:::::
points

:::::::
sources,

:::
for

:::::::
example

:::
via

::::::
plume

::::::::
detection.

:::
But

::::::
besides

:
super-emitters, numerous larger-

scale strong source regions
:
of

::::::::
different

::::::
source

::::
types

:
exist, in which the emissions do not have a plume-like structure as the

signals of individual sources within the regions can interfere, which .
::::
This can be the case, for example, in large oil and gas fields

(Lauvaux et al., 2022; Naus et al., 2023)
::
or

::::::::
wetlands

:::::::::::::::::::::::::::::::::::::::::::::::::
(Lauvaux et al., 2022; Naus et al., 2023; Pandey et al., 2021).

:::
To

:::::::
include85

::::
such

:::::
source

:::::::
regions

::
in

:
a
::::::::
detection

::::::::
procedure

::::
was

::
an

::::::::
important

:::::::::
motivation

:::
for

:::
this

:::::
study. Therefore, we developed an automated

algorithm to detect and quantify source regions with various sizes, regardless of their source type, including small-scale super-

emitters such as coal mine ventilation shafts, but also larger-scale source areas such as wetland areas and large oil and gas

fields. We focus on source regions , which show
::::
Since

::::::
source

::::::
regions

:::::
with strong and persistent methane enhancements and

thus contribute significantly to the global methane emissions,
:::
we

::::
have

::::::::
focussed

::
on

::::
such

::::::
source

::::::
regions

::
in

:::
this

:::::
study. TROPOMI90

has been providing a vast amount of daily methane data since its launch in 2017. To allow
::
the

:
detection of methane source
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regions in this large dataset on a global scale, we fully automated our detection algorithm.
:::
The

::::::::::
data-driven

:::::::
detection

:::::::::
algorithm

:
is
:::::
based

:::
on

::::::
several

:::::
steps,

::::::::
including

::::::::
high-pass

:::::::
filtering

::
of
:::

the
::::::::::
TROPOMI

::::
data

:::
and

::::::::
masking

::
of

::::::
regions

::::
with

::::::::
persistent

::::::::
methane

:::::::::::
enhancements

:::
by

:::::::
applying

::::::::
different

:::::::
threshold

:::::::
criteria.

:
In addition to detection, our algorithm includes a characterization of the

source regions, in which the dominant source type is assigned and an emission estimate for each source region is determined.95

This study is structured as follows. In section 2, we first present the data that we used for the detection and characterization of

the source regions. In Section 3, we describe the algorithm. In Section 4, we present our results, including a global overview of

the detected source regions and a detailed analysis of the source regions with the 10 highest emission estimates by comparing

our results with emission databases and results from recent studies. At the end, in Section 5, we present our conclusions.

2 Data100

2.1 TROPOMI/WFMD XCH4 data product

The Sentinel-5 Precursor (S5P)
::::::
satellite

:
with the TROPOspheric Monitoring Instrument (TROPOMI) onboard was launched

in October 2017 in a near-polar, sun-synchronous orbit with an equatorial crossing of the ascending node at 13:30 local solar

time. TROPOMI is a nadir viewing spectrometer and operates in a push-broom configuration with a swath width of 2600km,

enabling daily global coverage. It measures solar radiation reflected at the earth’s surface in the ultraviolet (267− 332nm),105

ultraviolet-visible (305− 499nm), near-infrared (661− 786nm) and shortwave infrared (2300− 2389nm) spectral channels

(Veefkind et al., 2012). The measurements of TROPOMI in the shortwave infrared (SWIR) spectral range enable the retrieval

of column-averaged dry-air mole fractions of atmospheric methane (XCH4) with a horizontal resolution of 5.5× 7km2 (7×
7km2 before August 2019). The radiation back scattered

:::::::::::
backscattered

:
from the earth’s surface and measured at the top of

the atmosphere have
:::
has

:
passed through the planetary boundary layer. Therefore, TROPOMI’s measurements yield the gas110

absorption throughout the atmosphere and importantly close to the earth’s surface (Schneising et al., 2019). Consequently, the

retrieved XCH4 can be used to detect methane enhancements originating from localized methane sources at the earth’s surface.

In this study
:
,
:
we use a multi-year (2018-2021) TROPOMI XCH4 dataset retrieved with the Weighting Function Mod-

ified Differential Optical Absorption Spectroscopy (WFMD) retrieval algorithm (Buchwitz et al., 2006; Schneising et al.,

2011, 2014), which has been adapted and optimized for use on TROPOMI data (Schneising et al., 2019). We use the latest115

version v1.8 of the TROPOMI/WFMD product (Schneising et al., 2023) and average the data to monthly XCH4 maps with a

spatial resolution of 0.1◦×0.1◦. In addition to the XCH4, the dataset also includes two variables that are needed for the detec-

tion and characterization of the source regions. These variables are: (i) The retrieved surface albedo in the SWIR spectral range

and (ii) for each monthly averaged XCH4 grid cell the number of days Ndays with TROPOMI measurements from which the

monthly mean was calculated. In the following, we refer to this dataset consisting of the 0.1◦× 0.1◦ monthly maps of XCH4,120

SWIR albedo, and Ndays, as XCH4 dataset.
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2.2 Wind data

Wind data are required to calculate emissions. The European Centre for Medium-Range Weather Forecasts (ECMWF) reanal-

ysis (ERA5) wind product (Hersbach et al., 2020) provides hourly wind data with a horizontal resolution of 0.25◦× 0.25◦ on

model levels. From this dataset,
:
we computed boundary layer averaged wind speed at the overpass time of TROPOMI . For the125

analyzed time period 2018-2021, we computed monthly averaged wind speeds at the same
::
for

::::
each

::::::::::
TROPOMI

::::::::
sounding.

::::
The

:::::::
resulting

:::::
winds

:::
are

:::::
then

::::::
gridded

:::
as

:::
the

:::::
XCH4:::::::

dataset
::
to

:::::::
monthly

:::::
maps

::::
with

::
a spatial resolution of 0.1◦× 0.1◦as the XCH4

dataset by calculating the monthly mean wind speed and .
:::
In

:::::::
addition

::
to

:::
the

:::::::
monthly

::::::::
averaged

::::
wind

::::::
speeds,

:::
we

:::::::::
computed the

standard deviation of the wind speed within the months for each grid cell.

2.3 Surface elevation and roughness130

The Global Multi-resolution Terrain Elevation Data 2010 (GMTED 2010) is a dataset containing global surface elevation data

available at three different resolutions (approximately 250, 500 and 1,000 m) from various data sources (Danielson and Gesch,

2011). We use the GMTED 2010 to assign the mean surface elevation and the standard deviation of the surface elevation

(surface roughness) within the grid cells to the 0.1◦× 0.1◦ grid cells of the XCH4 dataset.

2.4 Emission databases135

We use the following emission databases to determine the dominant source types of the detected potential source regions by

comparing the emissions of the databases.

2.4.1 EDGAR

The Emissions Database for Global Atmospheric Research (EDGAR) v6.0 (Ferrario et al., 2021) is a bottom-up inventory

providing detailed information about global anthropogenic emissions of various air pollutants and greenhouse gases. The yearly140

emission data have a spatial resolution of 0.1◦× 0.1◦ and are available from 1970 to 2018. The emissions base on data
:
of

::
a

::::::
specific

:::
gas

:::
are

:::::::::
calculated

:::::
using

::::::::::
international

:::::::
activity

::::
data

:::
and

::::::::
emission

::::::
factors

:::::
using

:::
the

::::
IPPC

::::::
(2006)

::::::::::::
methodology.

:::::::
Activity

:::
data

::::::::
describes

:::
the

::::::::
activities

::::::::
producing

:::::::::
emissions

::::
such

::
as

:::
the

:::::::
amount

::
of

:::::
fossil

:::
fuel

:::::
which

::
is
::::::::
exploited

::
or

:::
the

:::::::
number

::
of

:::::::
animals

::
on

:
a
:::::
farm.

::::::::
Emission

::::::
factors

:::
are

::::::::::
coefficients

:::
that

:::::
relate

:::
the

::::::
emitted

:::::::
amount

::
of

:
a
:::::::
specific

:::
gas

::
to

::
a

::::::
certain

::::::
activity

::
or

:::::::
process.

::::
The

:::::::
required

:::
data

:::
to

:::::::
calculate

:::
the

::::::::
emissions

::
is
:
collected from a variety of sources, including international organizations such as the145

International Energy Agency (IEA), national emission inventories and industry reports. EDGAR provides also sector specific

emissions
:
is
::::::::::
well-suited

::
to

:::::::::
determine

:::
the

::::::::::::
anthropogenic

::::::
source

:::::
types

::
of

:::
the

::::::::
detected

:::::::
potential

:::::
since

::::
this

::::::::
inventory

::::::::
provides

::::::::::::
sector-specific

:::::::::
emissions,

:::::
which

:::::::
enables

:::
the

::::::::::::
differentiation

::::::::
between

::::::::
individual

::::::
source

:::::
types

::::::
within

:::
the

::::::
source

:::::::
regions. For

methanethis includes for example emissions fromfossil fuel exploitation,
:::::::
EDGAR

::::
v6.0

::::::::
provides

::::::::::::
sector-specific

::::::::::::
anthropogenic

::::::::
emissions

:::::
from,

:::
for

:::::::
example, enteric fermentationand rice cultivation .

:
,
:::::::
landfills,

::::
rice

:::::::::
cultivation

::::
and

::::
fossil

::::
fuel

:::::::::::
exploitation,150

:::::
which

:::
are

::::::
further

::::::::
separated

:::
into

:::::
coal,

::
oil

::::
and

:::
gas

:::::::::
emissions.

:::
We

:::
use

:::
the

:::::::
EDGAR

::::
v6.0

::::::::
methane

::::
data

::
for

:::::
2018.

:
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2.4.2 GFEI

The Global Fuel Emission Inventory (GFEI) v2.0 (Scarpelli et al., 2022) is a methane emission database providing global

anthropogenic emissions regarding the fossil fuel sector
:::::
sectors

::::
coal,

:::
oil

:::
and

:::
gas. The emission data are gridded to yearly maps

(2010-2019) with a resolution of 0.1◦×0.1◦. GFEI uses
::::
v2.0

::::
uses

::::
fossil

::::::::::
fuel-related

:
emission data reported by countries to the155

United Nations Framework Convention on Climate Change (UNFCCC),
::::::::
separates

:::
the

::::::::
emissions

::
to

::::::
sectors

::::
coal,

:::
oil

:::
and

:::
gas

:
and

assigns the data to
::
the

::::::::::
appropriate infrastructure locations like coal mines or oil and gas wells.

:::
The

:::::::::::
infrastructure

::::
data

:::
are

:::::
taken

::::
from

::::::
several

:::::::::
databases.

:::
For

::::::::
countries

::::
that

:::
do

:::
not

:::::
report

::::
their

:::::::::
emissions

::
to

:::
the

:::::::::
UNFCCC,

:::
the

:::::::::
emissions

:::
are

:::::::::
calculated

:::::
using

::::
IPCC

::::::
(2006)

::::::::
methods

:::
and

:::::::
activity

:::
data

:::::
from

:::
the

:::
US

::::::
Energy

::::::::::
Information

:::::::::::::
Administration

::::::
(EIA). Due to the different approach

and thus different emissions compared to EDGAR , GFEI
:::::::
methods

:::
and

::::
data

::::
used

:::
for

::::::::
emission

:::::::::::
quantification

::
in

::::::::
EDGAR

::::
v6.0160

:::
and

:::::
GFEI

::::
v2.0,

::::
both

:::::::::
databases

::::
show

::::::::::
differences

::
in

::::
their

:::::
fossil

:::
fuel

:::::::::
emissions,

:::::::::
especially

::
on

::
a
:::::::
regional

:::::
scale.

:::::::::
Therefore,

:::::
GFEI

::::
v2.0 can be used as a useful supplementary database to assign the

:::::::::
appropriate

:::::
fossil

:::
fuel

::::::
source

::::
type

::
to
::::

the detected source

regions to the corresponding source types.
:::::::
regions.

:::
We

:::
use

:::::
GFEI

::::
v2.0

::::
data

::
for

:::::
2019.

:

2.4.3 WetCHARTs

WetCHARTs v1.3.1 is a global wetland methane emission ensemble which provides monthly emissions with a resolution of165

0.5◦× 0.5◦ for the time period 2001-2019 (Bloom et al., 2021). The ensemble is based on different wetland extent scenarios,

multiple terrestrial biosphere models and various temperature dependence parameterizations, resulting in 18 different model

configurations.
::
We

::::
use

:::::::::::
WetCHARTs

::
to
:::::::

include
::::
also

::::::::
wetlands

::
as

::
a
::::::::
potential

::::::::
dominant

::::::
source

::::
type

:::
of

::
a

::::::
source

::::::
region.

:
To

compare the wetland emissions
::::
from

:::::::::::
WetCHARTs

:
with the other emission databases, we create a yearly averaged wetland

emission map for 2019 with a resolution of 0.1◦× 0.1◦, by averaging the emissions of all configurations and months.170

3 Methods

We have developed a data-driven Persistent Hotspot Detection (PHD) algorithm to automatically detect regions with persistent

XCH4 enhancements, to estimate their emissions, and to assign a source type to these regions. The individual steps of the

detection algorithm are shown in Figure 1. As input to the PHD algorithm, we use the XCH4 dataset (Sect. 2.1), the wind

dataset (Sect. 2.2), the surface elevation data according to GMTED 2010 (Sect. 2.3), and the two anthropogenic emission175

inventories EDGAR v6.0 and GFEI v2.0, as well as the wetland emission dataset WetCHARTs v1.3.1 (Sect. 2.4). First, we

process the XCH4 dataset (Sect. 3.1). This step includes filtering out grid cells with too few XCH4 data. For the detection

of localized enhancements, we filter out large-scale XCH4 variations by applying a high-pass filter with five different kernel

sizes to each monthly XCH4 map (Sect. 3.2), resulting in five datasets, which contain the local anomalies ∆XCH4. In the

next step, we analyze the ∆XCH4 datasets to detect persistent source regions (Sect. 3.3). For this, we first identify individual180

grid cells with persistent enhancement and then merge them into potential source regions. Afterwards, we conservatively filter

out detected source regions, which may be false positives due to challenging surface features. For each of the five ∆XCH4
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Figure 1. Flowchart of the Persistent Hotspot Detection (PHD) algorithm version 1.0. The colored boxes symbolize the steps in which data is

processed and analyzed. The gray boxes describe the input/output data of these steps. For a detailed description of the algorithm see Sections

3.1-3.6.

datasets, we obtain one global map of the detected potential source regions. In the next step, we combine all of the detected

source regions into one map (Sect. 3.4), before we estimate their emissions (Sect. 3.5). In the final step, we determine the

dominant source types of the source regions by applying a spatial analysis based on the comparison of the methane emission185

databases within the source regions. As
:
a
:
result of the PHD algorithm, we obtain a list with the characteristics of the detected

source regions. The list includes the locations, the estimated emissions, and the assigned dominant source types of the source

regions. In the following, we describe the steps of the algorithm in more detail.

3.1 Initial processing

To optimize the XCH4 dataset
:::::
(Sect.

:::
2.1)

:
for the detection of persistent XCH4 enhancements, we transform it into a new190

dataset XCH4*. For this, we apply a filtering and a so-called elevation correction, which is described in the following. For the

detection of persistent source regions, we only consider grid cells in which the monthly XCH4 means were calculated from

more than 3 days of TROPOMI measurements (Ndays > 3).

Changes of
::
in surface elevation and tropopause height lead to variations in the tropospheric fraction of the XCH4 (Kort et al.,

2014; Buchwitz et al., 2017). Because the mean mixing ratio of methane is higher in the troposphere than in the stratosphere, the195

XCH4 over a valley is enhanced compared to its surrounding area, even if the valley is not a source region. To correct for these

topography related
:::::::::::::::
topography-related

:
variations, we apply an elevation correction to the XCH4 (see (Buchwitz et al., 2017)

)
::::::::::::::::::
(Buchwitz et al., 2017). We normalize the XCH4 to mean sea level by adding 8.5ppb per kilometer above mean sea level to

the XCH4 of the grid cells. We calculated this value by following the approach of Buchwitz et al. (2017). To determine the

surface elevation of the grid cells, we use the surface elevation data described in Sect. 2.3.200

7



Figure 2. (a) Multi-year (2018-2021) XCH4 and (b) the corresponding filtered and elevation corrected XCH4*.

We denote the filtered and elevation corrected data as XCH4*. Figure 2 shows the global maps for 2018-2021 of XCH4

and XCH4*. The data gaps in Fig. 2 (b) are due to the removal of the grid cells with too few data. The effect of the elevation

correction can be seen in Fig. 2 (b) by higher XCH4 over areas with high surface elevation (e.g. Himalaya) compared to the

uncorrected dataset. In the following sections
:
, we always refer to XCH4* when we mention XCH4.

3.2 High-pass filtering205

The spatial distribution of global methane concentration shows large-scale methane variations, such as the interhemispheric

gradient (Figure 2 (a)). To better detect localized XCH4 enhancements, we minimize these large-scale variations by applying

a high-pass filter with five different kernel sizes to each monthly XCH4 map (see Sect. 3.1). For each kernel size, we obtain

one dataset, which consists of monthly maps showing only the local XCH4 variations. The high-pass filtering comprises three

steps and is applied to each grid cell of a monthly XCH4 map as follows. First, we define an area of size n◦×n◦ around the210

considered grid cell, denoted as high-pass filter area (HPFA(n)), with n ∈ {1,2,3,4,5}. The
::::::
Second,

:::
the

:
HPFA(n) has to be

filled with at least 25% data. Otherwise
:
, the considered grid cell is removed. Third, we calculate the so-called methane anomaly

∆XCH4 by calculating the difference of the XCH4 of the grid cell with the corresponding median X̃CH4 in the HPFA(n):

∆XCH4 = XCH4− X̃CH4|HPFA (1)

:::
The

:::::
steps

::
of

:::
the

::::::::
anomaly

:::::::::
calculation

:::
are

:::::::::
illustrated

::
in

::::
Fig.

::
3
::::::
(a)-(c).

:
In the next sections, we use the anomalies to identify215

potential source regions. For this, the used HPFA(n) has to be larger than the source regions to contain XCH4 which is

not enhanced. Otherwise, the anomalies only describe the variations within the source regions and not their enhancements.

However, the HPFA(n) must not be too large as it could contain XCH4 that is influenced by other nearby sources. Since the

potential source regions to be detected have different spatial extents, ranging from small point sources to larger-scale areas, we

choose five different HPFA(n) sizes from n= 1◦ to n= 5◦ to consider source regions with various sizes.220
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Figure 3. Comparison
::::::::
Illustration

:
of global (left) and regional (right) multi-year (2018-2021) XCH4 ::

the
::::
steps

::
to

:::::::
calculate

:::
the

:::::::
methane

::::::
anomaly

:
and ∆XCH4 ::::::

standard
:::::::
deviation maps

::::::
described

::
in
::::
Sect.

:::
3.2. (a) Same as Fig

:::::
XCH4:::

for
::::
April

::::
2020

:::
for

:
a
:::::
region

::::
close

::
to

:::
the

:::::
border

:
of
:::::::::::

Pakistan/India. 2
:::
The

::::::
anomaly

:::::::::
calculation

::::::
process

::
is

:::::::
illutrated

::
for

::::
one

:::
grid

:::
cell

:::::
shown

::
in
::::

red.
::::
First,

:::
the

:::::
HPFA(b

:
n)

::
is

::::::
defined,

:::::
which

::
is

::::::
1◦ × 1◦

:
in
:::
this

:::::::
example. (b) Corresponding zoom to South Sudan

:::
The

:::::
median

::
of

:::
the

:::::
XCH4:::::

values
::
in

:::
the

::::
HPFA

::
is
::::::::
calculated,

::::
with

::
the

::::::
XCH4

:
of
:::

the
:::::::::
considered

:::
grid

:::
cell

:::::::
excluded

::::
from

:::
the

:::::::::
calculation.

::::
The

::::::
anomaly

::
of
:::

the
:::::::::
considered

:::
grid

:::
cell

::
is
::::::::
computed

::::
using

:::
Eq.

::
1. (c) ∆XCH4

::
for

::::
April

::::
2020

:
calculated with

::::
using

:
a high-pass filter area (HPFA ) of 1◦ × 1◦.

:::
The

::::::::
anomalies

::::::
illustrate

:::
the

:::::
XCH4::::::::::

enhancement
::
in
:::
(a).

:
(d)

Zoom
:::::::
Illutration

::
of

:::
the

:::::
process

:
to South Sudan

:::::::
calculate

:::
the

::::::
standard

:::::::
deviation

:
of 1◦ × 1◦ ∆XCH4 map

::
the

:::::
XCH4:::::

values
::
in
:::
the

:::::
HPFA. (e)

As (c) but for a
::::
First,

:::
the

::::
95th

:::::::
percentile

::
of

:::
the

:::::
XCH4:::::

values
:::::
within

:::
the HPFA

:
is
::::::::
computed.

:::
All

:::::
XCH4:::::

values
:::::

above
:::
the

::::
95th

:::::::
percentile

:::
are

::::::
excluded

:::::
from

::
the

:::::::
standard

:::::::
deviation

:::::::::
calculation

::
to

:::::
reduce

:::
the

:::::
impact

:
of 5◦ × 5◦

::::
local

:::::::::::
enhancements. (f

:
e) Zoom to South Sudan

:::::::
Standard

:::::::
deviation of 5◦ × 5◦ ∆XCH4 map.

::
the

:::::
XCH4::

in
:::
the

:::::
HPFA

:
of
:::::::
1◦ × 1◦

::
for

::::
April

:::::
2020.

Figure 3
:
4 shows two multi-year ∆XCH4 maps on global and regional scales, calculated with HPFA sizes of 1◦ and 5◦

(bottom), and the corresponding XCH4 map (top). On the left side,
:

the global maps are shown. It can be seen that the large-

scale variations have been minimized in the ∆XCH4 maps. The ∆XCH4 maps contain less data compared to the XCH4 map

because grid cells are filtered out whose HPFA(n) does not contain the minimum number of XCH4 data. On the right side of

Fig. 3
:
4
:
we show a zoom to the South Sudan region, which is a well-known source region (Pandey et al., 2021). The strong225

wetland emissions of the region can be seen in the resulting XCH4 enhancements (Fig. 3
:
4 (b)). If we compare the anomalies

calculated with different HPFA of 1◦ and 5◦ (Fig. 3
:
4
:
(d) and (f)), we can see that the HPFA(1◦) is too small to detect the

large-scale XCH4 enhancements of this source region.

9



Figure 4.
::::::::
Comparison

::
of
::::::

global
::::
(left)

:::
and

::::::
regional

::::::
(right)

::::::::
multi-year

:::::::::
(2018-2021)

::::::
XCH4 :::

and
:::::::
∆XCH4:::::

maps.
::
(a)

:::::
Same

::
as

:::
Fig.

::
2
:::
(b).

:::
(b)

:::::::::::
Corresponding

::::
zoom

::
to

:::::
South

:::::
Sudan.

:::
(c)

:::::::
∆XCH4 :::::::

calculated
::::
with

:
a
:::::
HPFA

::
of

:::::::
1◦ × 1◦.

::
(d)

:::::
Zoom

::
to

:::::
South

:::::
Sudan

::
of

::::::
1◦ × 1◦

:::::::
∆XCH4 ::::

map.

::
(e)

::
As

:::
(c)

:::
but

::
for

:
a
:::::
HPFA

::
of

:::::::
5◦ × 5◦.

::
(f)

:::::
Zoom

::
to

::::
South

:::::
Sudan

::
of

::::::
5◦ × 5◦

:::::::
∆XCH4::::

map.

In addition to the anomalies, we calculate for each grid cell the standard deviation of the XCH4 in the corresponding

HPFA(n). With that, we can determine if an anomaly is significantly enhanced compared to the variation of the surrounding230

XCH4. To reduce the impact of local XCH4 enhancements on the standard deviation, we use only the XCH4 values of the
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HPFA(n) that are smaller than the 95th percentile of the XCH4 distribution. In addition, we ignore the XCH4 value of the grid

cell for which the standard deviation is calculated.
:::
The

:::::::::
calculation

::
of

:::
the

:::::::
standard

::::::::
deviation

::
is
:::::::::
illustrated

::
in

:::
Fig.

::
3
:::
(d)

:
-
:::
(e).

:

In total, we generate five anomaly datasets consisting of monthly ∆XCH4 maps and monthly standard deviation (σ) maps,

each corresponding to one of the five selected HPFA(n).235

3.3 Detection of persistent potential source regions

In the third step of the PHD algorithm, we identify regions with persistent ∆XCH4 enhancement in each of the five anomaly

datasets calculated in Sect. 3.2. We refer to these regions as potential persistent source regions (PPSRs). To detect PPSRs
:
in
:::
an

:::::::
anomaly

::::::
dataset, we apply the following steps:

1. We mask grid cells with persistently enhanced anomalies and cluster them to initial PPSR masks
::::::
analyze

:::
the

::::::::
monthly240

::::::::
anomalies

::
of

:::::
small

:::::
areas

::
to

::::
mask

::::::
PPSRs

:
(Sect. 3.3.2)

2. We refine the detected masks to PPSRs
::::
PPSR

::::::
masks (Sect. 3.3.3)

3. We filter out PPSRs with complicated surface properties (Sect. 3.3.4)

As result, for each of the five anomaly datasets, we obtain one global map containing the masks that define the PPSRs.

3.3.1 Detection
::::::::
Definition

:
of iPPSRs

:
a
::::::
PPSR245

To detect initial PPSRs (iPPSRs) in the five anomaly datasets, we proceed in two steps. First, we analyze the ∆XCH4 and

σ maps of each anomaly dataset to mark grid cells with persistent enhancement. Second, we cluster the detected grid cells

to iPPSRs. At the end we obtain for each anomaly dataset a global map with the identified iPPSRs. To detect regions with

persistent ∆XCH4 enhancement, we need
:
A

:::::
PPSR

::
is
::::::::::::
characterized

::
by

::::::::
showing

::::::::
enhanced

::::::::
anomalies

:::
at

:
a
::::::
certain

:::::::::
frequency

:::
over

::
a
::::::
certain

::::
time

::::::
period.

:::::::::
Therefore,

::
to

:::::
define

::
a
:::::
PPSR,

:::
we

:::::
have to specify the term enhanced . Therefore, we

:::::::
anomaly

::::
and

::
to250

::::::::
introduce

:::::::
variables

::
to

:::::::
quantify

::::
how

:::::
often

:::
the

:::::
region

::::::
shows

::::::::
enhanced

:::::::::
anomalies.

:::
We

:
define an anomaly as enhanced, if:

∆XCH4 ≥Nσ ·σ (2)

We set Nσ = 2. The σ is the standard deviation of the XCH4 in the HPFA(n) around the analyzed grid cell (Sect. 3.2).

To detect an iPPSR, we apply the following steps to each
::::::::::
characterize

:::
the

::::::::
persistent

:::::::::::
enhancement

:::
of

:
a
::::::
certain

::::::
region,

::::
e.g.

::::::::
consisting

:::
of

::::::
several

::::
grid

:::::
cells,

:::
we

::::
first

::::::
define

:::
the

:::::::
number

::
of

:::::::
months,

:::
in

:::::
which

:::
the

::::::
region

::::::::
contains

::
at

::::
least

::::
one

::::::::
anomaly255

::::::::::::
(measurement)

::
as

:::::::
Nmeas.::

In
::::::::

addition,
:::
the

:::::::
number

:::
of

:::::::
months,

::
in

:::::
which

::::
the

:::::
region

::::::::
contains

::
at

::::
least

::::
one

::::::::
enhanced

::::::::
anomaly

:
is
:::::::

defined
::
as

::::::
Nenh.

:::
As

::::::::
measure

:::
for

:::
the

:::::::::
persistence

:::
of

:::::::::::::
enhancements,

:::
we

:::::
define

::::
the

::::::
fraction

:::::::::::::::::::
Fenh =Nenh/Nmeas,::::::

which

::::::::::
characterizes

::
in
::::
how

:::::
many

::
of

:::
the

:::::::
months

::::
with

::::::::::::
measurements

:
at
:::::
least

:::
one

::
of

:::
the

:::::::::
anomalies

:
is
:::::::::
enhanced.

:::
Fig.

::
5
:::::
(a)-(c)

:::::::::
illustrates

::
the

::::::::::
calculation

::
of

::::
these

::::::::
variables

:::
for

:
a
::::::
region

::
of

:::::
3× 3

::::
grid

::::
cells.

:::
We

::::::
define

:
a
::::::
region

::
as

::::::
PPSR,

::
if:

Fenh ≥ Fenh,min, Nmeas ≥Nmeas,min
:::::::::::::::::::::::::::::::::

(3)260
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:::
The

::::::::
parameter

::::::::
Fenh,min::::

and
:::::::::
Nmeas,min:::::

define
:::
the

:::::
lower

:::::
limits

::
of

::::
Fenh::::

and
::::::
Nmeas.:::

We
:::
set

:::::::::::::
Fenh,min = 0.5

:::
and

::::::::::::::
Nmeas,min = 16.

::::
This

:::::
means

::::
that

:
a
::::::
region

::
is

::::::
defined

:::
as

:::::
PPSR

::
if

:
it
:::::::
contains

::::
data

:::
in

::
at

::::
least

::
16

:::
of

:::
the

::
48

:::::::
months

:::
and

::::
also

:::::::
contains

:::
an

::::::::
enhanced

:::::::
anomaly

::
in

::
at

::::
least

::::
half

::
of

:::
the

:::::::
months,

::
in

:::::
which

::
an

::::::::
anomaly

::
is

::
in

:::
the

::::::
region.

:::
We

::::
have

::::::
chosen

:::::::::::::
Fenh,min = 0.5

::
for

:::
the

::::::::
following

:::::::
reasons.

::::::::
Persistent

:::::::
methane

:::::::
sources

::
do

:::
not

::::::
always

:::::
show

::::::::
enhanced

:::::::
methane

::::::::
anomalies

::
in

:::
all

:::::::
months.

:::
For

::::::::
example,

:::::
some

::::::
sources

:::::
show

:::::::
seasonal

:::::::::
variations

::
in

:::::::::
emissions

::::
such

::
as

::::::::
wetlands

::
or

::::
rice

:::::::
paddies.265

::::::::
Emissions

:::::
from

::::
coal

:::::
mines

:::
can

::::
also

::::
vary

::::
over

:::::
time,

::
as

::::
they

::::::
depend

:::
on

::::::
mining

:::::::
activity.

::
In

::::::::
addition,

:::
we

::::
also

::::
want

::
to

::::
take

::::
into

::::::
account

::::::::
persistent

:::::::
sources

::
in

:::
the

::::::::
detection

::::::
process

:::
that

::::::
started

:::::::
emitting

::::::
during

:::::::::
2018-2021

::::
and

:::::::
therefore

:::
do

:::
not

::::
show

:::::::::
emissions

:::
over

:::
the

:::::
entire

:::::::
period.

::::
With

::::::::::::::
Nmeas,min = 16,

:::
we

::::
also

::::
take

:::
into

:::::::
account

::::::
regions

::::
that

::
do

::::
not

::::::
contain

::::
data

::
in

::
all

:::
48

:::::::
months.

3.3.2
:::::
Mask

::::::::
potential

:::::::::
persistent

::::::
source

::::::
regions

::
To

:::::
detect

::::::
PPSRs

::
in
:::

an
:::::::
anomaly

:::::::
dataset,

:::
we

:::::
define

:::::
small

:::::
areas

::::::
around

:::::
every grid cell of the considered anomaly dataset . The270

steps
::::::
dataset

:::
and

:::::::
calculate

:::
for

::::
each

::
of

:::::
those

::::
areas

:::
the

:::::::
number

::
of

::::::
months

::::
with

::
at

::::
least

:::
one

::::::::
anomaly

::::::
Nmeas,:::

the
::::::
number

::
of

:::::::
months

::::
with

::::::::
enhanced

::::::::
anomalies

:::::
Nenh:::

and
:::
the

:::::::
fraction

::
of

::::::
months

::::
with

::::::::
enhanced

:::::::::
anomalies

::::
Fenh:::

by
::::::::
analyzing

:::
the

:::::::
monthly

:::::
XCH4::::

and

:
σ
:::::
maps

::::
from

::::::::::
2018-2021.

::
In

:::::
detail,

:::
for

::::
each

::::
grid

::::
cell,

:::
we

:::::
apply

:::
the

::::::::
following

:::::
steps,

:::::
which

:
are illustrated in Fig. 4. As first step,

we
:
5.
:::
We

::::
first

:
define an area of 3× 3 grid cells consisting of the

::::::::
considered

:
grid cell itself and the directly adjacent grid cells .

We then analyze the ∆XCH4 and σ maps of the 3× 3 area to check if the area shows apersistent enhancement
::::::::::::
(black-outlined275

:::
area

:::
in

:::
Fig.

::
5
::::
(a)). We are considering the adjacent grid cells in the analysis

::::
using

::
a
:::::
small

:::::
3× 3

::::
area

:::
for

:::
the

:::::::::
calculation

:::
of

::::::
Nmeas,:::::

Nenh:::
and

:::::
Fenh,

:
rather than only analyzing the

:
a
:
single grid cell for the following reason. The ∆XCH4 enhancements

within a persistent source region depend on the source itself and the meteorological conditions. Therefore, enhancements show

a temporal and spatial variability. Consequently, the ∆XCH4 enhancements can occur at different grid cells
:
in

:::::::
different

:::::::
months

of the persistent source region. To account for this in the detection process, we analyze the ∆XCH4 and σ maps of multiple280

grid cells simultaneously rather than considering each grid cell independently. To check if a
::
We

::::
use

::
an

::::
area

::
of

::::
3× 3

::
to
::::
take

::::
into

::::::
account

::::
that

:::
the

::::::
varying

:::::::::::::
meteorological

::::::::
situations

::
in

:::
the

:::::::
monthly

::::::
XCH4:::::

maps
:::
are

:::
not

::
as

::::::
strong

::
as

::
in

:::
the

::::
daily

::::::
XCH4:::::

data.
::
In

::
the

::::::::
monthly

:::::
maps,

:::
the

::::
daily

:::::::
plumes,

::::::
which

::::
vary

::::
with

::::
wind

:::::::
strength

::::
and

::::::::
direction,

:::::::
typically

:::::::
average

:::
out

:::
and

:::::
result

::
in
::

a
::::::
XCH4

:::::::::::
enhancement

::::
over

::
the

::::::
source

::::::
region,

::::::
which

:::::
shows

::::
only

:::::
slight

:::::::
monthly

:::::::::
variability.

:

::::
After

:::::::
defining

:::
the

:
3× 3 areashows a persistent enhancement, we introduce several quantities to characterize the area. We285

count the number of months Nmeas in which the 3× 3 area contains at least one anomaly and the number of month Nenh in

which the ,
:::
we

:::::::
analyze

::
all

::::::::
monthly

:::::::
∆XCH4::::

and
::
σ

:::::
maps

::::
from

:::::::::
2018-2021

:::
for

:::
the

:
3× 3 area contains at least one enhanced

anomaly. Then, we calculate the fraction Fenh =Nenh/Nmeas, which indicates how many of the months with at least one

anomaly in the area show one enhanced anomaly
:::
area

::
to

::::::::
calculate

::::::
Nmeas,:::::

Nenh::::
and

::::
Fenh:::::

(Fig.
:
5
:::
(b)

::::
and

:::
(c)). We also count

for each grid cell of the 3× 3 area the number of month
::::::
months Ngc

enh in which the anomaly in the grid cell is enhanced. We290

define a
:
If

:::
the

:
3× 3 area as iPPSR, if:

Fenh ≥ Fenh,min, Nmeas ≥Nmeas,min, Ngc
enh of central grid cell of 3× 3 area≥ 1
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Figure 5.
::::::::
Illustration

::
of

:::
the

::::::
process

::
to

::::::
identify

:
a
:::::::
potential

:::::::
persistent

:::::
source

:::::
region

:::::::
(PPSR).

::
(a)

::::::::
2018-2021

:::::::
∆XCH4::::::::

calculated
::::
with

:
a
:::::
HPFA

:
of
:::::::
1◦ × 1◦.

:::
The

:::::::
detection

::::::
process

::
is
::::::::
illustrated

::
for

:::
the

::::
blue

::::::
outlined

:::
grid

::::
cell.

::::
First,

::
an

::::
area

::
of

::::
3× 3

::::
grid

:::
cells

:::::::
(outlined

::
in
:::::
black)

::
is

::::::
defined

:::::
around

:::
the

::::::::
considered

::::
grid

:::
cell.

:::
(b)

::::
Next,

:::
the

::::::::
anomalies

:::::
within

:::
the

:::::::::::
black-outlined

:::
area

:::
are

:::::::
analyzed

:::
for

::
all

:::::::
monthly

:::::::
∆XCH4 :::

and
:
σ
:::::

maps

:::
from

:::::::::
2018-2021

::
to

:::::::
calculate

::::::
Nmeas,

:::::
Nenh :::

and
::::::::::::::::
Fenh =Nenh/Nmeas::::::::

(definition
::

in
::::

Sect.
::::::

3.3.2).
::
In

:::::::
addition,

::
for

::::
each

::::
grid

:::
cell

:::::
within

:::
the

::::
3× 3

::::
area,

::::
Ngc

enh::
is

::::::
counted.

:::
(c)

::::::::
Multi-year

:::::::
∆XCH4 :::

with
:::
the

:::::
results

::::
from

::
the

:::::::
analysis

:::::::
described

::
in

:::
(b).

::
In

:::
each

::::
grid

:::
cell

::
of

::
the

::::
black

:::::::
outlined

:::
area

:::::
Ngc

enh :
is
::::::
shown.

:::
The

::::
3× 3

::::
area

:::::
fulfills

:::
the

::::::::
conditions

::
for

::
a
::::
PPSR

::::
from

:::
Eq.

::
3,

::::
since

::::::::::
Fenh ≥ 0.5,

:::::::::
Nmeas ≥ 16

:::
and

:::::
Ngc

enh::
of

:::::
central

::::
grid

:::
box

:::
≥ 1.

:::
(d)

:::::::
Resulting

::::
mask

::::::
(yellow

::::
grid

::::
cells)

::
of

:::
the

::::::
detected

:::::
PPSR.

::::
Only

:::
the

:::
grid

::::
cells

::
are

:::::::::
considered

::
for

:::
the

::::
mask,

::::
that

:::
have

::
an

::::::::
enhanced

::::::
anomaly

::
in

::
at

::::
least

:::
one

:::::
month

:::::::::
(Ngc

enh > 0).
::
(e)

:::::::::
Multi-year

::::::
∆XCH4::::

with
::
all

:::::::
detected

::::
PPSR

:::::
masks

::
in

:::
that

::::::
region.

:::
The

:::::::
algorithm

::
is
::::::
applied

::
to

:::
each

::::
grid

:::
cell,

:::::::
resulting

::
in

::
an

::::::::
additional

::::
PPSR

:::::
being

::::::
detected

:::::::
(outlined

::
in

:::::
blue).

::
(f)

::::::::
Multi-year

:::::::
∆XCH4::::

with
::
the

::::
final

:::::
PPSR

::::
mask,

:::::
which

::
is

:::::
created

::
by

:::::::
merging

:::::
PPSRs

:::
that

:::
are

::::::
directly

::::::
adjacent

::
or
::::::::::
overlapping.

The parameterFenh,min andNmeas,min define the lower limits ofFenh andNmeas. We setFenh,min = 0.5 andNmeas,min = 16.

This means that an area is defined as iPPSR if it contains an anomaly in at least 16 of the 48 months and also contains
:::::
fulfills

:::
the

:::::::::
persistence

:::::::::
conditions

::::
from

:::
Eq.

::
3

:::
and

::
if

:::
the

:::::
center

::::
grid

:::
cell

:::::
shows

:
an enhanced anomaly in at least half of the months, in which295

an anomaly is in the area. With the thresholds chosen, we ensure that an area has a sufficient number of months with (enhanced)

anomalies during 2018-2021, but does not have to be enhanced in every month, so that it can show a temporal variability, as

many methane sources typically do. We only consider 3× 3 areas as iPPSRs that have no complicated topography (median

of surface roughness < 80m and standard deviation of the surface elevation < 150m
:::
one

::::::
month,

:::
we

:::::
mask

:::
the

::::
area

::
as

::::::
PPSR

::::::
(yellow

::::
area

::
in

::::
Fig.

:
5
:::
(d)). To label a 3× 3 area as iPPSR

:::::
PPSR, we mark all grid cells within the area that show an enhanced300

anomaly in at least one month (Ngc
enh ≥ 1). Thus, grid cells with Fenh < 0.5 can also be part of an iPPSR

:
a

:::::
PPSR, if their
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enhancements contribute to the 3×3 area being marked as an iPPSR
:
a

:::::
PPSR.

:::
We

::::
only

::::::::
consider

::::
3× 3

:::::
areas

::
as

::::::
PPSRs

::::
that

::::
have

::
no

::::::::::
complicated

::::::::::
topography

:::::::
(median

::
of

::::::
surface

:::::::::
roughness

::::::
< 80m

:::
and

::::::::
standard

::::::::
deviation

::
of

:::
the

::::::
surface

::::::::
elevation

::::::::
< 150m). As

can be seen in Fig. 4
:
5 (c), the analysis of an area rather than a single grid cell enables the detection of source regions in which

the individual grid cells show no persistent enhancement
:
,
:::
but

:::
the

::::
area

::::
does. This means, that the enhanced anomalies need not305

to occur at the same grid cell every month, but can vary monthly within the area.

iPPSR
:::::
PPSRs

:
that are directly adjacent or overlapping are merged into one iPPSR

:::::
PPSR

:::::
(Fig.

:
5
:::
(e)

::::
and

:::
(f)). For this, we

apply a label
::::::
labeling

:
algorithm in which each individual iPPSR

::::
PPSR

:
is assigned its own number, with directly adjacent or

overlapping iPPSRs
:::::
PPSRs

:
getting the same number. In the end, we get a global map containing the separated and labeled

iPPSRs
:::::
PPSRs of the considered anomaly dataset.310

We apply the detection process to the five anomaly datasets and obtain five global maps with the detected iPPSRs
:::::
PPSRs.

3.3.3
::::::::::
Refinement

::
of

:::::
PPSR

::::::
masks

3.3.4 Refinement of iPPSR masks to PPSR masks

The detected iPPSR
:::
The

:::::::
detected

:::::
PPSR

:
masks describe the locations and shapes of the corresponding source regions. However,

some of the masks do not cover the entire spatial extent of the source regions. Therefore, in the next step, we refine the iPPSR315

:::::
PPSR masks. One example is shown in Fig. 5

:
6
:
(a). It can be seen that the two iPPSR

:::::
PPSR masks do not contain all the grid

cells that would be identified by eye as part of the source regions, because their fractions Fenh do not exceed the threshold

Fenh,min = 0.5 required for the detection (Eq. 3). These grid cells are nevertheless part of the source region , since they have

a high fraction Fenh and are located in the immediate surroundings of the source regions. To add them to the source regions,

we could lower the Fenh,min parameter. But this would imply a change of
::
in the persistence condition. To determine the total320

spatial extent of the source regions without changing the persistence condition, we choose the following approach. We add

grid cells to the iPPSR
::::
PPSR

:
masks that are in the immediate vicinity and whose fractions Fenh indicate that they are part of

the source. For this, we identify all grid cells with Fenh ≥ 0.33 that also fulfill all other conditions from Eq. 3. We refer to

these grid cells as toseeds
:::::
(green

::::
grid

::::
cells

::
in
::::
Fig.

::
6

:::
(b)). The grid cells detected with Fenh,min = 0.5 are called seeds (Fig. 5

:::::
yellow

::::
grid

::::
cells

::
in

::::
Fig.

:
6
:
(b)).

::
We

:::::
chose

::::
0.33

::
as

:::::
lower

:::::::::
threshold,

::::
since

:::::::::::
Fenh ≥ 0.33

:::::::
indicates

::::
that

::
the

::::
grid

::::
cells

:::::
show

::::::::
enhanced325

::::::::
anomalies

::
in

:
a
::::::
certain

:::::::
number

::
of

::::::
months

::::
and

::
are

::::::::
therefore

:::
still

:::::::
strongly

:::::::::
influenced

:::
by

:::
the

::::::
sources

::::::
within

::
the

::::::
PPSR,

:::::::
although

:::
its

::::
Fenh::

is
::::::
smaller

::::
than

::::
0.5.

::::
Grid

::::
cells

::::
with

::::::::::
Fenh < 0.33

:::::::
indicate

::
a

::::::
weaker

::::::::
influence

::
of

:::
the

::::::
sources

::
on

:::
the

::::
grid

:::::
cells,

:::::
which

::
is

::::
why

::
we

:::
did

:::
not

:::::::
include

::::
them

::
in

:::
the

:::::::
refining

:::::::
process. Next, we apply a random walker algorithm (Grady, 2006) to assign the toseeds

to the seeds. A random walker algorithm is an image segmentation algorithm, which can divide an image into several sections

based on threshold values. A first threshold is used to define the pixels of the image that represent the foreground of the image330

and are called seeds (the grid cells detected with Fenh,min). The seeds can have different labels , so that the foreground can

be divided into different areas. With a second threshold, which is below the first one, the pixels of the background are defined

which are not to be considered further. The pixels between the first and second threshold are the so called
:::::::
so-called

:
undefined

pixel that the random walker algorithm assigns to the corresponding seeds by using a diffusion equation (the grid cells with
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0.33≤ Fenh ≤ 0.5). Based on the gradient between an undefined pixel and the different seeds and the distance between them,335

the probability is calculated to which seed the respective undefined pixel is assigned. The lower the gradient, i.e. the more

similar the values of the undefined pixel and a seed are, the higher the probability that this pixel will be assigned to this seed.

Undefined pixel
::::
pixels

:
that do not have a contiguous path to at least one seed are discarded. As

:
a basis on which the grid

cells detected with Fenh,min are assigned to the iPPSRs
::::::
PPSRs, we use the multi-year (2018-2021) ∆XCH4 of the analyzed

anomaly dataset. Fig. 5
:
6 (c) shows the mask created by assigning the toseeds to the seeds. It can be seen that the spatial extent340

of the source regions is now better described by the masks and that grid cells are added, which connect the separate source

regions. But some of the toseeds have a low multi-year ∆XCH4 mean compared to the seeds. Here, we only want to consider

toseeds as part of the source region that have comparable high multi-year ∆XCH4 and remove added toseeds with ∆XCH4

smaller than 25% of the maximum ∆XCH4 of the seeds. In the end, we obtain the refined iPPSR
:::::
PPSR

:
masks, which now

better describe the spatial extent of the source regions and which we refer to as PPSR (Fig. 5
:
6 (d)). We emphazise

::::::::
emphasize,345

that the example shown in Fig. 5
:
6, in which two iPPSS

::::::
PPSRs

:
are first merged and then separated, does not appear often.

We only used it to illustrate all
::
the

:
steps of the refinement process for one region. Due to the refinement, the number of

::::
final

PPSRs can differ to
::::
from the number of iPPSRs

::::::
PPSRs

:::::::
detected

::
in

::::
Sect.

:::::
3.3.2. On the one hand, multiple iPSSR

:::::
PPSRs

:
can be

combined into one PSSR
::::
PPSR

:
by adding new grid cells to the masks. On the other hand, an iPSSR

:
a
:::::
PPSR

:
can be split into

multiple PPSRs by removing grid cells with too low 2018-2021 ∆XCH4 mean. We apply the refinement to each of the five350

global maps containing the detected iPPSRs
:::::
PPSRs

:
(Sect. 3.3.2).

Illustration of the process to refine iPPSR masks. (a) Multi-year (2018-2021) ∆XCH4. In each grid cell the fraction Fenh is

shown, which is calculated for the 3× 3 area of the respective grid cell (see Sect. 3.3.2). Grid cells that do not contain a fraction

do not fulfill any of the conditions from Eq. 3. The detected iPPSRs (black-outlined) are the result of the detection process

described in Sect. 3.3.2. Some grid cells with Fenh < 0.5 and a high multi-year ∆XCH4 mean would be assigned by eye as355

part of the source region. (b) To add them to the mask, all grid cells are marked with 3× 3 areas having a fraction Fenh ≥ 0.33

and also fulfilling all other conditions from Eq. 3. These grid boxes are called toseeds and are shown in green. The grid cells of

the iPPSRs (so-called seeds) are shown in yellow. (c) The toseeds are assigned to the seeds using a random walker algorithm

and form together the extended mask of the iPPSRs. (d) In a final step, the grid cells with a multi-year ∆XCH4 mean less than

25% of the maximum multi-year ∆XCH4 mean within the mask are removed from the mask. The final masks describe the360

refined iPPSRs and are denoted as PPSRs.

3.3.4 Filtering of potential false positives

Much effort was made to minimize systematic biases when generating the WFMD v1.8 XCH4 data product (Schneising et al.,

2023). However, it is unlikely
:::
not

:::::::::
guaranteed

:
that the WFMD v1.8 product is error-free

::::::
entirely

:::::::
unbiased. This means that

despite the good quality of the product, it is not certain that every individual XCH4 enhancement has its origin in a real365

methane source. For example, localized XCH4 enhancements could be caused by scenes with inhomogeneous albedo (e.g.

coastal regions, lakes and rivers) and complex topography. To take this into account, the PPSRs are filtered for surface features,

which potentially lead to a false positive detection. . We use a conservative approach and prefer to accept false negatives
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rather than false positives. We decide whether a PPSR has challenging surface features based on the following properties: The

correlation between SWIR surface albedo and XCH4, the standard deviation of the surface elevation within the PPSR mask, the370

frequency of months in which the largest XCH4 enhancements occur in or adjacent to grid cells with high surface roughness,

the fraction of coastal grid cells in the PPSR mask and the frequency of months in which the largest XCH4 enhancements occur

over or next to water grid cells. If a PPSR is identified by
:::
one of these criteria then it is filtered and not considered further.

Excluded from this are PPSRs in which very strong XCH4 enhancements occur. By this
:
, we ensure that important source

regions are not excluded due to their surface features. As we focus in this study on source regions that contribute significantly375

to the global methane budget, we filter out PPSRs with weak XCH4 enhancements. Additionally, we filter out PPSRs that

occur in the Bodélé Depression in Chad. This is a region where strong dust storms occur on average 100 days per year, always

directed towards the southwest and with a plume-like structure. Analyses of the WFMD data product have shown that these

special conditions, which only occur in this region, can lead to false positive detections. We apply the filtering to each detected

PPSR of each anomaly dataset to obtain five global maps comprising the refined and filtered PPSR masks, respectively.380

Example of PPSRs detected in two different anomaly datasets. (a) Multi-year (2018-2021) ∆XCH4 of South Sudan region

calculated with a HPFA of 4◦× 4◦. The detected PPSRs (outlined in black) have already been filtered (see Sect. 3.3.4). (b)

Same as (a) but for HPFA of 5◦× 5◦. (c) Corresponding 2018-2021 XCH4. The final PPSR masks of the combined masks

from different anomaly datasets.

3.4 Combination of PPSRs from different anomaly datasets385

Final PPSR masks (outlined in red) after filtering (Sect. 3.3.4) and combining (Sect. 3.4) processes shown for several regions

of the world. (a) 2018-2021 XCH4 for the southwestern part of the USA and northern Mexico. Some of the PPSRs are located

in well-known oil and gas basins like the Permian, Anadarko, Barnett, Haynesville, Denver and San Joaquin. (b) Same as (a)

but for Turkmenistan, parts of Iran, Uzbekistan, and Kazakhstan. One of the detected PPSRs includes two of the largest natural

gas fields in the world, Galkynish and Dauletabad. (c) Same as (a) but for parts of Queensland in Australia. Two PPSRs are390

detected, which are located in the Bowen Basin, a well-known coal mining area.

We used five different HPFA(n) for the calculation of the ∆XCH4 maps to detect source regions with various sizes (see

Sect. 3.2). As a result, we identified different PPSRs in each anomaly dataset. To consider all PPSRs collectively, we combine

them into one global map. For this, we must take into account that the same source region can be detected in multiple anomaly

datasets and is thus described by more than one mask. In such a case we merge all detected masks of the PPSR to one new395

mask. An example of the combination process is illustrated in Fig. 6
:
7. Here we show the well-known source regions in South

Sudan (see Sect. 3.2), which we detect in the HPFA(4◦) and HPFA(5◦) anomaly datasets, and the combined masks of the

individual source regions. Finally, we obtain one global map, in which each detected source region is described by one mask.

The masks of some PPSRs are shown in Fig. 7
:
8
:
including some well-known source regions, such as the oil and gas fields in

the Permian Basin in the USA (Schneising et al., 2020; Zhang et al., 2020; Varon et al., 2023; Veefkind et al., 2023), the natural400

gas fields Galkynish and Dauletabad in Turkmenistan (Schneising et al., 2020) and the coal mining area in the Bowen Basin in

Queensland in Australia (Sadavarte et al., 2021).
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3.5 Emission estimation

To compute emission estimates for each of the detected PPSRs, we apply the fast data-driven method of Buchwitz et al.

(2017). This method is designed to calculate averaged long-term emission estimates from time-averaged XCH4 maps. It uses a405

conversion factor to convert an XCH4 enhancement over a source region into an emission estimate. This implies the assumption

that emissions from an isolated source result in an XCH4 enhancement, δXCH4, over the source region compared to the

surrounding region. To determine the monthly emission estimate E (Mt yr−1) of a PPSR, we apply the method to the monthly

averaged XCH4 maps using the following equation:

E = δXCH4 ·M ·Mexp ·L ·V · 2 (4)410

The δXCH4 (ppb) describes the XCH4 enhancement of the PPSR and is calculated by computing the difference of the mean

XCH4 over the source region with the mean XCH4 over the surrounding region. The surrounding region is defined as described

in Fig. 8
:
9. We only consider the grid cells in the surrounding region that are not part of other PPSRs in the surrounding region.

We estimate the emissions only if the PPSR, as well as the surrounding region, are each filled with at least 25% data. To

convert the mole fraction change δXCH4 over the source region into a methane mass change per area, M and Mexp are used.415

M (5.345 · 10−9 MtCH4 km−2 ppb−1) is the methane mixing ratio enhancement to mass enhancement conversion factor for

standard conditions, i.e. for a surface pressure of 1013.25hPa. Since the actual mass change Mi of the ith grid cell depends

on the surface pressure pi (hPa) of the grid cell, Buchwitz et al. (2017) additionally used the dimensionless conversion factor

Mexp, which is defined as:

Mexp =
<Mi >

M
≈ < pi >

1013.25
≈< e−zi/H > (5)420

With surface elevation zi (km) of the ith grid cell, the scale height H (8.5km) and < > denoting the mean over all grid cells

of the source region. L (km) in Eq. 4 is the effective length of the source region, which we calculate as the square root of the

PPSR size. V (kmyr−1) is the wind speed from Sect. 2.2 averaged over the source region. The reason for adding the factor

two
:::::
factor

::
2 is described in detail in Buchwitz et al. (2017), but is briefly explained in the following. When an air parcel travels

with constant wind speed across the source region, it accumulates methane, which results in an XCH4 enhancement when it425

exits the source region (δXCH4,exit). However, δXCH4 from Eq. 4 describes the mean XCH4 enhancement over the source

region and not δXCH4,exit. Assuming a linear XCH4 increase while travelling
:::::::
traveling

:
across the source region (see Fig. 3 in

Buchwitz et al. (2017)), these two enhancements are linked via δXCH4 = 0.5 · δXCH4,exit. Therefore, the δXCH4 has to be

multiplied by two
:
2 to describe the XCH4 enhancement of the air parcel which results from the emission of the source region.

We calculate the 1σ uncertainty of the monthly emission estimate E, uE , by computing the sum of the squared uncertainties430

of the XCH4 enhancement, uδXCH4
, and the wind speed, uv , with respect to their mean values via(

uE
E2

uE
E
::

)
2 =

uδXCH4

δXCH2
4

uδXCH4

δXCH4
::::::

2 +

(
uv
V 2

uv
V
::

)
2 (6)
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We calculate uδXCH4
by varying the size of the surrounding region and calculating the standard deviation of the resulting

δXCH4 enhancements. We vary the region by adding to the northernmost, southernmost, westernmost, and easternmost coor-

dinates of the surrounding region all possible combinations of 0 and 2×Lsurr, where Lsurr is the length used to define the435

surrounding region (see Fig. 8
:
9). The square of the uncertainty of the wind is the sum of the squared standard deviation of the

monthly wind speeds within the source region, and the squared mean of the standard deviations of the wind speeds within the

months for each grid cell.

We calculate the averaged long-term emission estimate E of a PPSR by averaging all monthly emission estimates for

the period 2018-2021. For the corresponding uncertainty of the long-term emission estimate we use error propagation by440

computing the ratio of the root of the sum of the squared monthly uncertainties uE
::
uE:and the effective number of months neff

::::
neff contributing to the mean estimate

uE =

√∑
j u

2
E,j

neff
. (7)

With neff we consider the correlation between the monthly emission estimates. neff is equal to 1 means that all emission

estimates are correlated and neff is equal to the total number of emission estimates means that all emission estimates are445

uncorrelated. We choose neff with the assumption that the blocks of quarter-yearly emission estimates are uncorrelated. neff

is therefore the number of quarter-yearly data blocks in which at least one emission estimate contributes to the mean.

3.6 Assignment to source type

To determine the dominant methane source type in the detected PPSRs, we compare sector-specific emissions from different

emission databases. We distinguish between the source types coal, oil and gas, other anthropogenic sources, wetlands and450

unknown
:::
(see

:::::
Table

:::
1). We use the emission data regarding coal and oil and gas from EDGAR v6.0 2018 and GFEI v2.0

2019 (Sect. 2.4). To determine the emissions originating from other anthropogenic sources, we use anthropogenic methane

emissions from all sectors excluding fossil fuel from EDGAR v6.0 2018. For wetland emissions, we use the ensemble of

WetCHARTs v1.3.1 for 2019 (Sect. 2.4). We assign the source type with the highest emissions as
:::
the dominant source type of

the corresponding PPSR. For this we sum up the emissions in the PPSR for each source type, using an expanded PPSR mask,455

which includes the directly adjacent outer grid cells to account for variations in the locations of the sources in the databases. We

assign the type “unknown” to a PPSR if the total emissions in the respective PPSR mask are less than 50ktyr−1 for all three

emission databases. We choose this value by considering the PPSR with
:
It

::::::
should

::
be

:::::
noted

::::
that

::
no

:::::::::::
uncertainties

:::
are

::::::::
specified

::
in

:::
the

::::
used

:::::::::
databases,

:::::
which

::::::
means

:::
that

:::
the

:::::::::::
uncertainties

::::::
cannot

:::
be

:::::::::
considered

::
in

:::
the

::::::
source

::::
type

::::::::::
assignment.

:::::::::
Therefore,

:::
we

::::
have

::::
only

:::::
taken

:::
into

:::::::
account

:::::::
possible

:::::::::::
uncertainties

::
of

:::
the

::::::::
databases

::
in

:::
the

:::::
sense

::
of

:::::::::::::
underestimation

::
of

:::::::::
emissions

::
by

::::::
setting

:::
the460

:::::::
threshold

:::::
value

::
to

:::
be

:::::::
exceeded

:::
for

::::::
source

::::
type

:::::::::
assignment

::::::::::
(50ktyr−1)

::
to

:::
be

::::::::::
significantly

:::::
lower

::::
than the lowest mean emission

estimate for
::::::::
emissions

:::::::
estimate

:::
of 2018-2021

:::::::
detected

:::
by

::
us (120ktyr−1)and taking into account possible differences to the

emissions in the databases
:
.
::::
With

::::::::::
50ktyr−1,

:::::::
however,

:::
we

::::
also

:::::
ensure

::::
that

:::
the

::::::::
databases

:::
also

:::::
have

:
a
::::::
certain

::::::::
minimum

::::::::
emission

::::
when

::::::::
assigning

::
a
:::::
PPSR

::
to

:
a
::::::
source

::::
type.
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Table 1.
::::::::
Dominant

:::::
source

::::
types

::
of

:::::
PPSRs

:::
and

:::
the

:::::::::::
corresponding

:::::::
databases

::::
used

::
to

::::::
estimate

:::
the

:::::::::::
sector-specific

::::::::
emissions.

:::::
Source

::::
type

:::::::
Database

::::
Coal

::::::
EDGAR

::::
v6.0

::::
2018

::::
coal,

::::
GFEI

::::
v2.0

::::
2019

:::
coal

:::
Oil

:::
and

::
gas

: ::::::
EDGAR

::::
v6.0

::::
2018

::
oil

:::
and

::::
gas,

::::
GFEI

::::
v2.0

::::
2019

::
oil

:::
and

:::
gas

::::
Other

:::::::::::
anthropogenic

::::::
EDGAR

::::
v6.0

::::
2018

::
all

::::::
sectors

:::::::
excluded

::::
fossil

:::
fuel

:

::::::
Wetland

: ::::::::::
WetCHARTs

:::::
v1.3.1

::::
2019

:::::::
Unknown

: ::
No

:::::::
database

:::::
shows

::::::::
emissions

:::::
higher

:::::::
50ktyr−1

::
in

:::::
PPSR

4 Results465

In this section
:
, we present the results of the PHD algorithm, which we use to detect potential persistent source regions (PPSRs).

We provide a global overview of the detected PPSRs by describing the distribution of the PPSRs among the different source

types coal, oil and gas, other anthropogenic, and wetlands, as well as a rough total emission estimate of all the detected PPSRs

(Sect. 4.1). We then analyze the 10 PPSRs with the highest emission estimates in more detail (Sect. 4.2). These include the

Sudd Wetlands in South Sudan (Sect. 4.2.1), the west coast in Turkmenistan (Sect. 4.2.2), the Iberá wetlands in Argentina470

(Sect. 4.2.3), several regions in China (Sect. 4.2.4 and 4.2.5), the city Dhaka in Bangladesh and its surrounding area (Sect.

4.2.6), the Kuznetsk Basin in Russia (Sect. 4.2.7) and the Permian Basin in the United States (Sect. 4.2.8).

4.1 Global overview

We applied the PHD algorithm as described in Sect. 3 and detected a total of 217 PPSRs, whose global distribution and assigned

source types are shown in Fig. 9
::
10. Based on the comparison of the emission databases, the fraction of dominant source types475

are
:
is
:
7.8% coal, 7.8% oil and gas, 30.4% other anthropogenic sources, 7.3% wetlands and 46.5% unknown.

Some of the detected source regions are well-known coal production sites, which already have been subject of several

studies, such as the region Shanxi in China (Chen et al., 2022), the Bowen Basin in Queensland in Australia (Sadavarte et al.,

2021), and the Upper Silesia Coal Basin in Poland (Tu et al., 2022). Other PPSRs related to coal mining activities include

the Kuznetsk Basin in Russia, regions in and around Johannesburg in South Africa, the Appalachia Coal Basin in the United480

States, and the Ekibastuz Coal Basin in Kazakhstan. We also detect several PPSRs located in known oil and gas basins including

the Permian (Schneising et al., 2020; Zhang et al., 2020; Varon et al., 2023; Veefkind et al., 2023), Uintah (de Gouw et al.,

2020), Haynesville (Shen et al., 2022), and Anadarko (Schneising et al., 2020) in the USA, as well as two of the world’s

largest natural gas fields, Galkynish and Dauletabad in Turkmenistan (Schneising et al., 2020). A large number of the detected

PPSRs are assigned to the source type other anthropogenic sources. These include regions used for agriculture, such as the485

Po Valley in Italy, and regions including large cities, such as Dhaka in Bangladesh, Mumbai and Delhi in India, Madrid in

Spain, Buenos Aires in Argentina and Rio de Janeiro in Brazil. The emissions in these cities can originate from anthropogenic

sources of different types. For example, Maasakkers et al. (2022) analyzed the methane emissions of several cities, including

Mumbai, Delhi and Buenos Aires, and showed that landfills contribute to a large amount to the total emissions of these cities.
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In addition to anthropogenic source regions, we also detected PPSRs in wetland regions. These include well-known methane490

source regions like the Sudd wetlands in South Sudan (Pandey et al., 2021), the Pantanal wetlands in Brazil and the wetlands

formed by the Paraná river in Argentina (Parker et al., 2018). Often, source regions contain multiple sources of different types,

which is not indicated in the global map of Fig. 9
::
10. For example, we identified a source region at Lake Chad where the

emission databases indicate strong anthropogenic emissions but also strong wetland emissions. Another example is a source

region in the Central Valley in the USA, which is an oil and gas production site, but also known for its livestock farming495

(Buchwitz et al., 2017). 46.5% of the identified PPSRs are not assigned to any source type. By analyzing these in more detail,

we find that most of them occur in regions with wetlands, but in which WetCHARTs v1.3.1 shows emissions lower than the

used threshold of 50ktyr−1, which needs to be exceeded to assign a PPSRs to the corresponding source type (see Sect. 3.6).

For example, we detected four PPSRs in Zambia, which are all known wetland methane source regions (Shaw et al., 2022),

but only one of them was categorized as type wetland, while the other
:::::
others were assigned to type unknown. We also detected500

some unknown PPSRs that are located in fossil fuel production regions, such as the Cesar-Ranchería Basin in Colombia or

the Surat Basin in Queensland, and some unknown PPSRs in urban areas, such as in Tulsa (USA) or in Calgary (Canada). As

reported in Foy et al. (2023), the emissions from urban areas are often underestimated in EDGAR, which may be the reason

that these PPSRs could not be assigned to the other anthropogenic type.

The sum of the 2018-2021 mean emission estimates of all detected PPSRs is approximately 150Mtyr−1, of which 13.0% are505

associated with emissions from source type coal, 12.5% from type oil and gas, 35.4% from type other anthropogenic, 11.9%

from type wetland and 27.2% from type unknown. We compared our total emission estimates with the calculated bottom-up

methane budget for 2017 from Saunois et al. (2020). The detected PPSRs account for 20.1% of the total bottom-up emissions

(747Mtyr−1), for 24.1% of the emissions related to anthropogenic sources (380Mtyr−1) and for 4.9% of the emissions

related to natural sources (367Mtyr−1). An analysis of the anthropogenic emissions shows that the PPSRs assigned to fossil510

fuel account for 28.4% of the total fossil fuel emissions (135Mtyr−1) reported in Saunois et al. (2020), describing 44.5% of

coal-related emissions (44Mtyr−1) and 22.3% of oil and gas-related emissions (84Mtyr−1). The other anthropogenic PPSRs

account for 21.8% of the bottom-up anthropogenic emissions that are not related to fossil fuel (245Mtyr−1). Compared to

Lauvaux et al. (2022) and Schuit et al. (2023), the emissions of our detected source regions account for a larger percentage of

the reported anthropogenic emissions. The detected oil and gas methane ultra-emitters by Lauvaux et al. (2022) account for515

8− 12% of the oil and gas emissions reported by national inventories. In Schuit et al. (2023), anthropogenic super-emitters

are detected, accounting for 2.7% of the total anthropogenic emissions reported by Saunois et al. (2020). In addition to the

different methodology and data product, the higher percentage of emissions detected in our study can be explained by the focus

on persistent methane sources and the additional consideration of larger-scale source regions rather than only detecting point

sources.520

We only detected a fraction of the global total emissions, because we only considered source regions that are localized and

have a persistent enhancement, which is above a threshold. In addition, the sources can only be detected if sufficient TROPOMI

measurements are available, which depends, for example, on the presence of clouds in the considered region. Thus, emissions

from sources that do not meet these criteria, such as source regions that only show strong emissions in one of the four years,
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cannot be detected with this method. For the calculation of the total emissions, we have to consider that a few of the detected525

PPSRs can be false positives, even though we applied a filtering of PPSRs in Sect. 3.3.4. If some of the PPSRs are false

positives, then the calculated total emissions are overestimated.

Figure 10
::
11

:
shows the distribution of the 2018-2021 mean emission estimates of all detected PPSRs and the correspond-

ing cumulative distribution. The majority of the detected PPSRs, 63.6%, have a mean emission estimate between 0.1 and

0.6Mtyr−1. Although the PPSRs with emission estimates greater than 0.6Mtyr−1 account for only 36.4% of the detected530

PPSRs, they are responsible for 66.8% of the total detected emission estimates. Most of the PPSRs with a higher emission

estimate than 0.6Mtyr−1 were assigned to a source type, which indicates that the emission databases also report enhanced

methane emissions in the corresponding regions. In contrast, 64.5% of the PPSRs with emission estimates below 0.6Mtyr−1

are assigned to the unknown source type, which account for 88.1% of all unknown PPSRs.
:
In

:::::::
general,

::::
the

:::::
shape

::
of
::::

the

:::::::::
distribution

::
is
:::
in

:::::::::
agreement

::::
with

:::::
other

::::::
studies

:::::::::
describing

::
a

::::::::::
heavy-tailed

::::::::::
distribution

::
of

::::::::
strongly

:::::::
emitting

::::::::
methane

:::::::
emitters535

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Frankenberg et al., 2016; Jacob et al., 2016; Lauvaux et al., 2022; Zavala-Araiza et al., 2015).

:

For several of the detected PPSRs the emission estimates show a good agreement with emissions quantified in other studies.

These include, for example, the Upper Silesia Coal Basin in Southern Poland and the Bowen Basin in Queensland in Australia.

The Upper Silesia Coal Basin in Poland is one of Europe’s strongest methane emission hotspots due to its intense coal mining

activities. For the PPSR in this area, we calculate an emission estimate of 0.59± 0.11Mtyr−1, which is in good agreement540

with emissions calculated in Tu et al. (2022) of 0.50± 0.02Mtyr−1 for the period from November 2017 to December 2020

and with emissions quantified using methane observations conducted from aircraft measurements in June 2018 during the

CoMet (Carbon Dioxide and Methane Mission) campaign of 0.44±0.14Mtyr−1 and 0.48±0.13Mtyr−1 (Fiehn et al., 2020;

Fix et al., 2018). Another well-known methane source region is the Bowen Basin in Queensland in Australia, which is a coal

mining area. Here we detected two PPSRs for which the combined emission estimate is 0.63± 0.16Mtyr−1 for 2018-2021,545

which also agrees well within the uncertainties with the calculated emissions in Sadavarte et al. (2021) of 0.57±0.10Mtyr−1

for 2018-2019.

4.2 PPSRs with highest emission estimates

An overview of the results of the 10 PPSRs with the highest emission estimates is summarized in Table 2. In the following,

each PPSR is discussed in detail, including the 2018-2021 times series for the emission estimates, XCH4 enhancements and550

mean wind speed, and a comparison of the results with the emissions from EDGAR v6.0, GFEI v2.0, WetCHARTs v1.3.1 and

related studies.

4.2.1 South Sudan - Sudd wetland

The PPSR with the highest emission estimate for 2018-2021, called PPSR 1, is detected in the Sudd in central South Sudan,

one of the world’s largest wetlands. The South Sudan, and in particular its wetland region, is a well-known methane source555

region that has been subject of several studies (Frankenberg et al., 2011; Hu et al., 2018; Lunt et al., 2019; Pandey et al.,

2021). By comparing the emission databases within the PPSR 1 as described in Sect. 3.6, we determine its dominant source
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Table 2. Summary of the results of the 10 PPSRs with the highest methane emission estimates for 2018-2021 detected by the PHD algorithm.

The ± represents the corresponding 1σ uncertainty
::
of

::
the

::::::::
long-term

:::::::
emission

::::::
estimate

::::::::
calculated

:::
via

:::
Eq.

:
7.

Source region Lat. Lon. Emissions XCH4 Wind speed area Source type

(◦) (◦) (Mtyr−1) (ppb) (ms−1) (ha)

1 South Sudan - Sudd 7.95 30.15 4.5± 0.9 12.9± 1.3 3.9± 0.6 759.9 Wetland

2 Turkmenistan - Coast 38.65 53.85 3.5± 0.9 17.5± 1.4 4.3± 1.0 198.3 Oil and gas

3 Argentina - Iberá -27..35 302.95 3.3± 1.0 8.9± 1.9 5.7± 1.3 406.5 Wetland

4 China - Liaoning 41.75 122.95 2.9± 0.9 8.2± 1.6 6.5± 1.4 290.4 Other anthr.

5 China - Shanxi 1 36.05 112.85 2.6± 0.8 25.1± 2.5 5.1± 1.5 80.0 Coal

6 China - Shanxi 2 37.85 113.45 2.6± 0.7 20.6± 1.8 5.9± 1.3 42.9 Coal

7 China - Shanxi 3 37.55 112.15 2.4± 0.7 22.3± 2.5 4.7± 1.2 63.8 Coal

8 Bangladesh - Dhaka 23.55 90.85 2.4± 0.5 21.4± 2.0 2.9± 0.6 137.0 Other anthr.

9 Russia - Kuznetsk Basin 54.25 86.95 2.4± 0.5 17.3± 0.6 4.3± 0.9 112.2 Coal

10 USA - Permian Delaware 31.85 256.35 2.2± 0.6 7.5± 0.6 5.8± 1.5 272.9 Oil and gas

type as wetland, which corresponds to its location in the Sudd. In Figure 11 we show an overview of the PPSR 1 results. Fig.

11
::
12 (a) shows the 2018-2021 XCH4 of the South Sudan region, including the detected PPSR 1 mask, as well as one other

identified PPSR in eastern South Sudan. It can be seen that the XCH4 within the PPSR 1 is strongly enhanced compared to560

its surroundings. The area outlined in black in Fig. 11
::
12

:
(a) indicates the surrounding region, which is used to calculate the

XCH4 enhancements δXCH4 of the PPSR 1 (see Sect. 3.5). The corresponding time series of the δXCH4 for 2018-2021 is

shown in Fig. 11
::
12 (c). The mean for the entire time period is 12.9ppb with a 1σ uncertainty of 1.3ppb

::::::::::::
12.9± 1.3ppb and a

standard deviation of 10.3ppb. The δXCH4 shows a seasonal cycle with its peak enhancement at the end of each year, as well

as an
:
a strong increase since

::
the

:
end of 2020. Due to

::
the

:
frequent occurrence of clouds during the wet season from April to565

November, few data are available for this period of the year. In Fig. 11
::
12 (b) we show the emission estimates of PPSR 1 for

2018-2021, which we calculated as described in Sect. 3.5. The mean of the emission estimates is 4.5± 0.9Mtyr−1, where ±
indicates the 1σ uncertainty

::::::::
long-term

:::::::
emission

:::::::
estimate

::::::::::
uncertainty

::::::::
calculated

:::
via

:::
Eq.

::
7. By comparing the time series in Fig.

11
::
12 (b) - (d), it can be seen, that due to the small variations of the mean wind speed V , the δXCH4 variations determine the

temporal variations of the emission estimates, including the strong increase since
:::
the end of 2020. This strong increase is in570

good agreement with the finding that tropical wetlands are a major contributor to the strong methane growth rate in 2020 and

2021 (Peng et al., 2022; Lin et al., 2023).

Pandey et al. (2021) estimated the methane emissions of the entire wetland region in South Sudan, including the Sudd and

other wetlands, to be 8.0± 3.2Mtyr−1 for 2018-2019. In a study from Lunt et al. (2019) emissions of the Sudd region were

estimated using GOSAT XCH4 data resulting in 5.2−6.9Mtyr−1 for 2016. Our estimate is lower compared to the two results,575

which can be explained by the smaller source region of this study. By combining the PPSR 1 with the PPSR, which we detected
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in the east of South Sudan (0.8± 0.4Mtyr−1 for 2018-2021), we get the total emission estimate of 5.3± 1.3Mtyr−1, which

is in agreement within the uncertainties to the emissions calculated in Pandey et al. (2021) and Lunt et al. (2019).

The Emissions from the databases WetCHARTs v1.3.1, EDGAR v6.0 and GFEI v2.0 for the South Sudan region are shown

in Fig. 11
::
12 (e) - (g). We compute the emissions of the databases in a PPSR by adding all emissions within the extended580

mask of the PPSR (see Sect. 3.6), which include the directly adjacent outer grid cells of the PPSR, to consider possible source

location variations in the databases. WetCHARTs emissions for 2019 in the PPSR 1 are 0.88Mtyr−1. EDGAR’s emissions

for 2018 for the PPSR 1, which are mostly from the agriculture sector, combine to 0.17Mtyr−1 and the emissions from GFEI

for 2019 are 0.01Mtyr−1. It can be seen, that the emissions from the databases show a large difference with the emission

estimates of this study and with those of Pandey et al. (2021) and Lunt et al. (2019).585

4.2.2 Turkmenistan - West coast

The PPSR with the second highest emission estimate for 2018-2021, called PPSR 2, is detected at
::
on the west coast of Turk-

menistan, in the Balkan province, which borders the Caspian Sea. The dominant source type is determined as oil and gas. The

west coast of Turkmenistan is a methane source region with oil and gas infrastructure over almost the entire coastal belt, in-

cluding oil and gas power plants, compressor stations and pipelines (Irakulis-Loitxate et al., 2022). An overview of the results590

for PPSR 2, as well as the mask that defines the PPSR, can be seen in Fig. 12
::
13. The mean emission estimate for 2018-2021

is 3.5Mtyr−1 with an uncertainty of 0.9Mtyr−1 and a standard deviation of 0.6Mtyr−1. All months except January and

February 2018 contribute to the emission estimate. The mean of the δXCH4 for the time period is 17.5±1.4ppb and the mean

wind speed 4.3± 1.0ms−1, where ± indicates the 1σ uncertainty
:::::::::::
corresponding

:::::::::::
uncertainties.

Methane emissions on the west coast of Turkmenistan have been detected in recent studies (Irakulis-Loitxate et al., 2022; Barré et al., 2021; Schuit et al., 2023; Varon et al., 2019)595

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(He et al., 2024; Irakulis-Loitxate et al., 2022; Barré et al., 2021; Schuit et al., 2023; Varon et al., 2019). In Irakulis-Loitxate et al.

(2022), areas within the west coast were identified as hotspot regions using TROPOMI, where hyperspectral (ZY1 and

PRISMA) and multispectral (Sentinel-2) satellites detected several localized emission events in the range of kilo tons per

year from January 2017 to November 2020. In Varon et al. (2019), a methane source was detected at a compressor station in

Korpezhe, in the middle of the west coast of Turkmenistan. Using TROPOMI data, the total emissions within a 12× 12km2600

region around this source was calculated to be 0.45Mtyr−1 (0.19− 0.75) for December 2017 to January 2019. The emissions

calculated in these studies refer to individual events or to smaller regions of the west coast and therefore cannot be directly used

for comparison with the emission estimates calculated in this study, but provide an overview of the magnitude of the emissions.

The spatial distribution of methane emissions from EDGAR v6.0 for 2018 and GFEI v2.0 for 2019 for the considered region

are shown in Fig. 12
::
13 (e) - (g). The emissions from EDGAR of 0.64Mtyr−1 and GFEI of 0.62Mtyr−1 for the entire PPSR 3605

are significantly lower than our estimate of 3.5±1.8Mtyr−1. Several studies suggested that the inventories may underestimate

Turkmenistan’s emissions (Lauvaux et al., 2022; Buchwitz et al., 2017; Shen et al., 2023). For example, Shen et al. (2023)

calculated emissions of 3.6± 1.3Mtyr−1 related to oil and gas in Turkmenistan using TROPOMI, which is higher as the

emissions reported by GFEI of 1.5Mtyr−1. If we add the mean emission estimates of all oil and gas related
:::::::::
gas-related PPSRs
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in Turkmenistan, we get a total emission estimate of 5.0± 1.4Mtyr−1 which is in agreement within the uncertainties with610

Shen et al. (2023).

4.2.3
:::::::::
Argentina

:
-
:::::
Iberá

:::::::
wetland

4.2.4 Argentina - Iberá wetland

The PPSR with the third highest emission estimate for 2018-2021, called PPSR 3, is detected in the region of the border

between northeastern Argentina and southern Paraguay and is assigned to type wetland. The PPSR 3 is located in the northern615

part of the Paraná region, a well-known methane source region, which extends from the Iberá wetland in the north, the second

largest wetland in the world, to the area where the Paraná river flows into the Atlantic Ocean (Parker et al., 2018). In Figure 13

::
14

:
we show an overview of the results of the PPSR 3. The mean emission estimate for 2018-2021 is 3.3± 1.1Mtyr−1 with a

standard deviation of 1.3Mtyr−1 and the mean of the corresponding δXCH4 is 8.9± 1.9ppb. The emissions show a seasonal

cycle, which also can be seen in the δXCH4 time series and which is in good agreement with the wet season (Ortega et al.,620

2022; Parker et al., 2018). Furthermore, the emission estimates show a slight decrease from 2020 onward, which agrees with

the results in Lin et al. (2023), where methane emission changes between 2019 and 2021 are analyzed, including the emission

changes in the Paraná region.

WetCHARTs v1.3.1 shows enhanced methane emissions for the entire Paraná region, especially for the Iberá wetland,

whereas the anthropogenic databases indicate only low emissions (Fig. 13
::
14

:
(e) - (g)). WetCHARTs emissions for PPSR 3 are625

0.64Mtyr−1, which is below our emission estimate. Although the Paraná region is a known methane source region, until now,

no studies have calculated absolute values of the emissions from this region, that we can use to further assess our emission

estimates. For example, in Parker et al. (2018), XCH4 retrieved from GOSAT observations is used to analyze how well the

methane inter-annual variability is described by model simulations for several regions, including the Paraná, without reporting

explicit emission estimates.630

As Fig. 11 but for the Iberá wetlands in Argentina, where the PPSR with the third highest emission estimate for 2018-2021

is detected. The corresponding emissions of the databases in the PPSR 3 are: 0.64Mtyr−1 for WetCHARTs, 0.18Mtyr−1 for

EDGAR and 0.0Mtyr−1 for GFEI.

4.2.4 China -
:
Liaoning

The PPSR with the fourth highest emission estimate for 2018-2021, called PPSR 4, is detected in the Liaoning province in635

Northeast China and is assigned to type other anthropogenic. Liaoning is known for its high agricultural production (e.g. rice

cultivation and livestock) as well as for its large heavy industry, including strong coal mining activities. The results of the PPSR

4 are shown in Figure 14
::
15. The PPSR mask covers the region of the Liaoning province where most of the rice production

takes place and where a majority of the coal mines are located (Ma et al., 2021; Sheng et al., 2019). The mean emission

estimate is 2.9Mtyr−1 with an uncertainty of 0.9Mtyr−1 and a standard deviation of 1.0Mtyr−1. The δXCH4 has a mean640

of 8.1±1.6ppb and shows strong variability over the years with a standard deviation of 2.5ppb, with the minimum usually in
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spring. In all months from 2018-2021, the PPSR, as well as in the background region, are filled with sufficient XCH4 values

to calculate the δXCH4 and the emission estimates.

So far, there are only a few studies that have analyzed or identified methane emissions in the considered region. For example,

two plumes were detected in 2021 by Schuit et al. (2023), which are located in the PPSR, with one plume of the dominant645

source type coal and one of type landfill. In Sheng et al. (2019), coal-related emissions in 2011 for China, including the

Liaoning region, were estimated by analyzing reports from over 10000 coal mines in China. For Liaoning, the coal related

:::::::::
coal-related

:
emissions were calculated to be 1.04Mtyr−1. The different time periods, as well as the larger region considered

in Sheng et al. (2019) making
::::
make it difficult to compare the results with the results of this study. In Foy et al. (2023) emissions

of urban areas were estimated using TROPOMI data and compared with EDGAR, including the Shenyang region in Liaoning,650

where the emissions were estimated to 1.6Mtyr−1. If we take into account that the Shenyang region is smaller than PPSR 5

and thus some emissions from the surrounding area are not included in the estimate, our result is in good agreement with that

of Foy et al. (2023).

It can be seen from Fig. 14
::
15

:
(e) - (g), that the anthropogenic emissions are the dominant source type in this region.

Emissions from EDGAR for PPSR 4 are 1.3Mt in total for 2018, with large emissions seen in Shenyang, the capital of655

Liaoning. Of the 1.3Mt, 52% are from the category
::
of other anthropogenic sources, which are composed of emissions from

several sectors, such as rice cultivation or landfills. The remaining emissions from EDGAR are related to the fossil fuel sector,

mainly to coal production, which is in the range of the fossil fuel related
::::::::::
fuel-related emissions from GFEI in 2019 for the

PPSR of 0.49Mtyr−1. The emissions from the databases are significantly lower than the emissions calculated in this study of

2.9± 0.9Mtyr−1, which is also reported in Foy et al. (2023) for their emission estimate of the Shenyang region.660

4.2.5 China - Shanxi

The PPSR with the fifth, sixth and seventh highest emission estimate for 2018-2021, called PPSR 5, 6 and 7, are detected in

the Shanxi province in North China. The Shanxi province is a known methane source region with emissions resulting primarily

from high coal mining activity (Peng et al., 2023). This corresponds to the determined dominant source type of the three PPSRs,

which is coal. An overview of the results of the individual PPSRs is shown in Figure 14
::
16. Fig. 15

::
16 (a) shows the 2018-2021665

XCH4 for Shanxi and the surroundings, including the detected PPSR masks, as well as the corresponding background regions

for the PPSR 5, 6 and 7. It can be seen that the XCH4 in the PPSRs is enhanced compared to the XCH4 in the surrounding

regions. The time series of the δXCH4 for the PPSRs are shown in Fig. 15
::
16 (c). The PPSR 5 has a mean δXCH4 for 2018-

2021 of 25.1± 2.5ppb, PPSR 6 of 20.6± 1.8ppb and the PPSR 7 of 22.3± 2.2ppb, which are the highest mean δXCH4

values of all detected PPSRs. The δXCH4 shows a strong variability in all three PPSRs with standard deviations of 10.4ppb670

for PPSR 5, 6.5ppb in PPSR 6 and 4.8ppb in PPSR 7. This variability can also be seen in the emission estimates of the PPSRs

shown in Fig. 15
::
16

:
(b). The mean emission estimates are 2.6± 0.8Mtyr−1 for PPSR 5, 2.6± 0.7Mtyr−1 for PPSR 6 and

2.4±0.7Mtyr−1 for PPSR 7 and in all three PPSRs almost all months contribute to the corresponding mean emission estimate.

Methane emissions in Shanxi have already been detected in several studies. The main focus was on the detection of individual

plumes, which were identified, for example, by analyzing TROPOMI data as in Schuit et al. (2023) and Lauvaux et al. (2022),675
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by data from the Worldview 3 satellite as in Sánchez-García et al. (2022) or by data from the PRISMA satellite mission as

in Guanter et al. (2021). The detected transient plumes in these studies are not suitable for comparison with our emission

estimates, which were evaluated for persistent hotspot regions for several years. But this is the case for the study by Peng

et al. (2023), in which the coal-related methane emissions for the entire Shanxi region for the years 2019 and 2020 were

calculated by inversion of TROPOMI data. Peng et al. (2023) estimated emissions for 2019 of 8.5± 0.6Mtyr−1 and for 2020680

of 8.6± 0.6Mtyr−1. To compare, we computed the sum of the emissions of all the detected PPSRs in Shanxi (PPSRs 5, 6, 7

and one other PPSR with a mean emission estimate of 1.1± 0.3Mtyr−1 for 2018-2021, see Fig. 15
::
16 (a)) and obtained an

emission estimate of 8.8±2.4Mtyr−1 for the period 2018-2021, which is in agreement within the uncertainties with the results

from Peng et al. (2023). Moreover, by considering the emission estimates for 2019 and 2020, we obtained 8.5± 2.1Mtyr−1

for 2019 and 8.7± 1.8Mtyr−1 for 2020 for the combined PPSRs in Shanxi. In Peng et al. (2023), the entire Shanxi region685

is considered, while we only focused on parts of the region. However, if we assume that our identified hotspots in the Shanxi

region contain the majority of methane emissions, the comparison of the two results is reasonable.

Fig. 15
::
16

:
(e) - (g) shows the methane emissions of WetCHARTs v1.31

:::
.3.1, EDGAR v6.0 and GFEI v2.0 for Shanxi and the

surrounding area. It can be seen that the region is dominated by anthropogenic emissions. The emissions for 2018 from EDGAR

are mainly related to coal production and are 1.2Mtyr−1 for PPSR 5, 2.8Mtyr−1 in PPSR 6 and 1.2Mtyr−1 in PPSR 7 in the690

corresponding extended PPSR masks. In total, the EDGAR emissions of all PPSRs in Shanxi combine to 5.2Mtyr−1, which

is below our emission estimate of 8.8± 2.4Mtyr−1 for 2018-2021. The emissions from GFEI for 2019 are mostly related to

the coal sector and are concentrated in a few hotspots, which correlate with the locations of the detected PPSRs. For the PPSR

5, the GFEI emissions are 1.5Mtyr−1, 2.5Mtyr−1 for PPSR 6 and 1.9Mtyr−1 for PPSR 7. The total GFEI emissions of

the considered PPSRs are 5.9Mtyr−1, which is slightly higher as
:::
than

:
the emissions reported by EDGAR but lower than the695

emission estimates of this study and the study by Peng et al. (2023).

4.2.6 Bangladesh - Dhaka and surrounding area

The PPSR with the eighth highest emission estimate for 2018-2021, called PPSR 8, is detected in a region enclosing Dhaka,

the capitol
::::::
capital of Bangladesh, which is one of the most populated cities of

:
in
:

the world. The dominant source type is

determined as other anthropogenic sources. Dhaka and the surrounding area are a known methane source region with the main700

sources being agricultural production (rice, livestock) and waste management (waste water
:::::::::
wastewater, landfills), but also with

contributions from wetlands (Foy et al., 2023; Toha and Rahman, 2023). The results for the PPSR 8 are shown in Fig. 16
::
17.

The 2018-2021 XCH4 shows a strong enhancement in the PPSR, especially in and around Dhaka, compared to the XCH4

of the surrounding area (see Fig. 16
::
17

:
(a)). The δXCH4 values for 2018-2021 are shown in Fig. 16

::
17

:
(c), averaging to a

mean of 21.4± 2.0ppb, which is in the range of the enhancements of the PPSRs in the Shanxi region. For the considered705

years, no XCH4 is present for the period from March/April to October/November due to the monsoon season and the resulting

frequent high cloud coverage. Fig. 16
::
17

:
(b) shows the emission estimates for 2018-2021 with a mean of 2.4± 0.5Mtyr−1

and increasing values from October/November until April/May of the following year. This period is also one of two phases,

in which the rice is cultivated in Bangladesh. The first phase is in summer, which starts around June and ends in October with

26



the harvest. The second phase is during the winter from November to April, when the fields are artificially irrigated (Rahman710

et al., 2023).

Methane emissions in Dhaka have already been detected and quantified in several studies (Foy et al., 2023; Schuit et al.,

2023). Schuit et al. (2023) used TROPOMI data to detect plumes worldwide and detected in Dhaka as many plumes as in

no
::
any

:
other urban area. The emissions from Dhaka are calculated in Foy et al. (2023) by using TROPOMI data and a two-

dimensional plume model, resulting in emissions of 1.3Mtyr−1, which is lower than our estimate of 2.4±0.5Mtyr−1. It must715

be taken into account that our region is larger than that of Foy et al. (2023) and can therefore include emissions from other

cities in the surrounding area, as well as wetland emissions from the Ganges delta.

Fig. 16
::
17 (e) - (g) show the emissions from WetCHARTs v1.3.1, Edgar v6.0 and GFEI v2.0 for the Dhaka region. For

WetCHARTs, the emissions in the PPSR amount to 0.13Mt for 2019, for EDGAR to 0.92Mt for 2018 and for GFEI to

0.02Mt for 2019. The emissions from EDGAR are mainly from the agricultural sector with 0.38Mtyr−1 from rice production720

and 0.15Mtyr−1 from enteric fermentation and are lower than our calculated emission estimate. In Foy et al. (2023) the

calculated emissions were also higher compared to EDGAR. They concluded that part of the difference between EDGAR and

their emission estimate is due to the fact that untreated wastewater is not taken into account, which can be a major factor,

especially in very densely populated cities such as Dhaka.

4.2.7 Russia - Kuznetsk Basin725

The PPSR with the ninth highest emission estimate for 2018-2021, called PPSR 9, is detected in the Kuznetsk Basin (also

called Kuzbass) in southwestern Sibiria
::::::
Siberia, Russia. Its dominant source type is determined as coal, which coincides with

the fact that Kuzbass is one of the largest coal production areas worldwide (Labzovskii et al., 2022). Figure 17
::
18 shows an

overview of the results for the PPSR 9. In the 2018-2021 XCH4 map shown in Fig. 17
::
18

:
(a), a strong enhancement can be

seen in the entire PPSR mask compared to the XCH4 of the surrounding area. To quantify the XCH4 enhancements within the730

PPSR, we computed the monthly δXCH4 for the time period 2018-2021, which are on average 17.3± 0.6ppb with a standard

deviation of 6.6ppb. The mean emission estimate is 2.4Mtyr−1 with an uncertainty of 0.5Mtyr−1, which is computed from

emission estimates of 30 months (Fig. 17
::
18

:
(b)).

Even though the Kuzbass is one of the largest coal production areas worldwide, there is still a need for studies reporting

methane emissions from this region. In Schuit et al. (2023), methane plumes are detected in this region, but not discussed735

in more detail. Due to the limited number of studies, we only compare our emission estimate with the emissions from the

databases, which are shown in Figure 17
::
18

:
(e) - (g) for the considered region. It can be seen that the emissions from the

databases are dominated by anthropogenic activity and that the emission hotspots reported by EDGAR and GFEI show a high

spatial correlation. EDGAR reports emissions of 1.6Mt for 2018 and GFEI of 1.4Mt for 2019, whereby the emissions from

both databases are mainly related to the coal sector. Compared to the emission estimate of this study, the emissions from740

EDGAR and GFEI are lower, but still within the uncertainty.
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4.2.8 USA - Permian Basin

The PPSR with the tenth highest emission estimate for 2018-2021, called PPSR 10, is detected in the Permian Basin in the

USA and is assigned to the source type oil and gas. The Permian Basin is the most prolific oil field in the USA and also a high

producing
::::::::::::
high-producing natural gas region, which is located in western Texas and eastern New Mexico. The Permian Basin745

consists of several sub-basins, including the Delaware Basin in the west and the Midland Basin in the east of the Permian,

where mostly non-conventional exploitation techniques, such as hydraulic fracturing, are used. An overview of the results for

PPSR 10 are shown in Fig. 18
::
19. It can be seen that we detect two regions in the Permian Basin. The PPSR 10 in the Delaware

Basin and a PPSR in the Midland Basin, which shows the thirteenth strongest emission estimate. Since the literature often

refers to the emissions of the entire Permian Basin, we analyze these two PPSRs together. The monthly emission estimates for750

2018-2021 are shown in Fig. 18
::
19

:
(b). The mean emission estimate for PPSR 10 is 2.2± 0.6Mtyr−1 and 2.0± 0.5Mtyr−1

for PPSR 13, which leads to a combined mean emission estimate of 4.1± 1.1Mtyr−1 for 2018-2021 (taking into account the

second decimal place). The δXCH4 time series for 2018-2021 for PPSR 10 and 13 can be seen in Fig. 18
::
19 (c). The mean

δXCH4 enhancement for PPSR 10 is 7.5±0.6ppb with a standard deviation of 3.3ppb and 7.2±0.6ppb for PPSR 13 with a

standard deviation of 1.7ppb.755

Methane emissions from the Permian Basins have already been quantified in several studies (Schneising et al., 2020; Shen

et al., 2022; Varon et al., 2023; Veefkind et al., 2023; Zhang et al., 2020). In the studies by Schneising et al. (2020) and

Veefkind et al. (2023), emissions were calculated based on the TROPOMI/WFMD XCH4 data product. Schneising et al.

(2020) used a Gaussian integral method and calculated
:::::::
estimated

:
emissions of 3.2± 1.1Mtyr−1 for the period 2018-2019,

whereas Veefkind et al. (2023) calculated emissions of 3.0±0.7Mtyr−1 for 2019 using a divergence method. In
:::
The

:::::::::
emissions760

:::::::
reported

::
in the studies by Zhang et al. (2020), Shen et al. (2022) and Varon et al. (2023) , the emissions are calculated

:::
are based

on the operational TROPOMI data product and different inversion frameworks. Zhang et al. (2020) calculated emissions of

2.9± 0.5Mtyr−1 for the period from May 2018 to March 2019, whereas Shen et al. (2022) calculated
:::::::
estimated

:
emissions

of 2.9± 0.4Mtyr−1 for the period from May 2018 to February 2020 and of 3.7± 0.5Mtyr−1 for the same period but with

an adjusted prior. In Varon et al. (2023), the period from May 2018 to October 2020 is considered and mean emissions of765

3.7± 0.9Mtyr−1 are calculated
:::::::
reported, which is higher than the previous emission estimates. The emission estimate of

4.1± 1.1Mtyr−1 for 2018-2021 calculated in this study is slightly higher than the emissions of the presented studies , but is

in agreement
::
but

::::::
agrees

:
within the uncertainties.

The emissions from EDGAR v6.0, GFEI v2.0 and WetCHARTs v1.3 are shown in Fig. 18
::
19 (e) - (g). For EDGAR, the

emissions within the extended PPSRs mask (see Sect. 3.6) are 1.2Mtyr−1 and 0.2Mtyr−1 for GFEI and relate to the oil and770

gas sector. The emissions of both databases show high differences with
:::
are

::::::::::
significantly

::::::
lower

::::
than the emission estimates

of this study , as well as with the emissions of the studies considered. In addition, the emissions of the
:::
and

:::
the

:::::
other

::::::
studies

::::::::
mentioned

::::::
above.

::::
The

::::::::
emissions

::
of

:::::
these

:::
two

:
databases also differ from one another.

As Fig. 11 but for the Permian Basin in USA, where the PPSRs with the tenth and thirteenth highest emission estimate

for 2018-2021 are detected. The corresponding emissions of the databases in the PPSR 10 and 13 are: 0.0Mtyr−1 for775
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WetCHARTs, 1.2Mtyr−1 (PPSR 10) and 0.59Mtyr−1 (PPSR 13) for EDGAR and 0.21Mtyr−1 (PPSR 10) and 0.14Mtyr−1

(PPSR 13) for GFEI.

5 Conclusions

We developed an automated algorithm that uses TROPOMI XCH4 data to identify potential persistent methane source regions

(PPSRs), to estimate their emissions and to assign a source type to them. We applied the algorithm to a dataset comprising780

of monthly averaged XCH4 maps at 0.1◦× 0.1◦ spatial resolution from 2018-2021, which we generated by gridding the

TROPOMI WFMD v1.8 data product. The detection process involves two key steps: (i) the generation of monthly methane

anomaly ∆XCH4 maps
::::
maps

:::::::::
(∆XCH4), which indicate how “high” or “low” a local XCH4 value is compared to the median

of the surrounding XCH4, and (ii) the analysis of these anomaly maps. In the letter
:
,
:
we characterized each region by several

quantities, such as the number of months in which the region shows enhanced anomalies, to then identify regions with a785

persistent enhancement by defining threshold values for the corresponding quantities. The algorithm is designed in a way

that the thresholds can be adjusted depending on the focus of the source regions to be detected. For the automated emission

estimates of the individual PPSRs, we used a fast data driven
:::::::::
data-driven

:
mass balance method, which is designed to calculate

emission estimates from time-averaged XCH4 maps. For more precise emission estimates, we recommend conducting more

detailed analyses based on daily data. To determine the dominant source types of the PPSRs, we compared the emissions from790

several databases (WetCHARTs v1.3.1, EDGAR v6.0 and GFEI v2.0) within the PPSRs masks.

We detected a total of 217 PPSRs, of which 17 have the dominant source type coal, 17 oil and gas, 66 other anthropogenic

sources, 16 wetland and 101 an unknown source type. We showed that TROPOMI data can be used to detect a variety of well-

known methane source regions such as large oil and gas fields in Turkmenistan and the USA, but also small-scale source regions

like coal mines in Queensland in Australia. The emission estimates of all detected PPSRs amount to about 150Mtyr−1, which795

corresponds to approximately 20% of the bottom-up emissions reported in Saunois et al. (2020). We found that the majority of

emissions (35.4%) is associated with PPSRs dominated by other anthropogenic sources, followed by PPSRs of unknown type

(27.2%), type coal (13.0%), oil and gas (12.5%) and wetland (11.9%). The coal-dominated source regions describe almost half

(44.5%) of global coal emissions of Saunois et al. (2020), while those from oil and gas (22.3%), as well as other anthropogenic

sources (21.8%), also account for a large share of their sectors’ emissions. This demonstrates that a comparatively small800

number of high-emitting source regions contributes
::::::::
contribute a large proportion to the global methane emissions, underlining

the importance of their detection and quantification for improving the understanding of the global methane emissions. The

detected wetland regions account for 4.9% of the total natural emissions reported in Saunois et al. (2020). However, we note

that in some known wetland areas, such as Lake Chad or the Inner Niger Delta (Mali), strongly emitting PPSRs were detected,

but were assigned to other source types due to the comparatively lower emissions in the wetland database. In addition, a more805

detailed analysis showed that many of the PPSRs with unknown source type are wetland regions. In total, 46.5% of the PPSRs

show emissions of less than 50ktyr−1 in the emission databases and were thus labeled as source regions with
::
an unknown

source type. The emission estimates of the unknown PPSRs range from 0.12− 1.2Mtyr−1, indicating that in these regions
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the emission estimates of this study and the emissions in the databases have large differences. Some of the unknown PPSRs

have been identified as methane sources in other studies, such as the PPSRs we detected in the Surat Basin in Australia or810

in the wetland region in Zambia. We found differences between the emissions of the databases and our emission estimates

not only for the PPSRs with an unknown source type , but also for some of the PPSRs with the 10 highest mean emission

estimates for 2018-2021. These regions are located in the Sudd wetlands in South Sudan, in the west coast of Turkmenistan,

which is an area dominated by oil and gas infrastructure, the Iberá wetland in Argentina, in the Liaoning and Shanxi province

in China, which are known rice and coal production areas, in the city of Dhaka and its surroundings in Bangladesh, in the815

Kuznetsk Basin in Russia, one of the largest coal production areas in the world, and in the Permian Basin, a large oil and gas

field in the United States. For many of these PPSRs, the emission estimates are in agreement within the uncertainties with

emission estimates from other studies. In the emission databases, these PPSRs are also indicated as methane hotspots, but their

emissions are significantly lower compared to our emission estimates. Further studies are needed to analyze these differences

between the emissions of the databases and emission estimates in this and other studies in more detail. Furthermore, we cannot820

exclude that some of the detected PPSRs may be false positives. To improve the filtering of potential false positives, additional

parameters, such as the aerosol optical thickness, could be considered in the analysis. Since the distinction between a true and

a false positive detection is not trivial in many cases, it often requires detailed analyses. For example, in Schuit et al. (2023), as

well as in Lauvaux et al. (2022) human observers subsequently verify each detected plume. Such an approach was omitted in

this work in order to provide a fully automated algorithm.825

Each of the detected PPSRs is a potential source region that needs to be examined in more detail, for example using a similar

analyses as conducted for the PPSRs with the ten highest emission estimates. Furthermore, an additional analysis of the daily

data can provide new insights into the characteristics of the regions. This includes the potential to use other methods for the

calculation of the emission estimates (e.g., a gaussian integral method) or to perform detailed analyses to classify the PPSRs

in terms of a false positive detection.
:::
For

::::::::
example,

::::::::::
preliminary

:::::::
analyses

::
of

::::::
PPSRs

::::
165

:::
and

::::
217

::
in

::::::::
Germany

::::
have

::::::
shown

::::
that830

::::
their

:::::::
emission

::::::::
estimates

::
of

:::::::::::::::::
0.29± 0.07Mtyr−1

::::::
(PPSR

::::
165)

::::
and

:::::::::::::::::
0.12± 0.03Mtyr−1

::::::
(PPSR

::::
217)

:::
are

:::::
likely

:::
too

::::
high

:::::::
because

::
of

:::::::
potential

:::::::
retrieval

::::::
biases

:::::
and/or

::::::::::::
accumulation

::
of

:::::::
methane

::
in

:::
the

::::
coal

::::
pits,

:::::
which

::::::
means

::::
that

:::
the

::::::::::
assumptions

::
of

:::
the

:::::::
method

::
for

::::::::::
calculating

::::::::
emissions

:::
do

:::
not

::::::
match

:::
the

::::::::::::
characteristics

::
of

:::::
these

:::::::
regions.

:::::::
Methane

::::::::
retrievals

:::::::
directly

::::
over

:::
the

::::
coal

::::
pits

:::
are

:::::::::
challenging

::::
due

::
to

:::::::
complex

::::
and

:::::::
evolving

::::::::::
topography

:::
and

:::::::::
reflectivity

:::::::::
variations.

Moreover, a more detailed comparison between the regions detected in this study and the results from the studies from835

Schuit et al. (2023) and Lauvaux et al. (2022), in which also methane hotspots were detected using TROPOMI data, is of

interest. The studies differ in their focus on the type of hotspot to be detected. In Schuit et al. (2023) and Lauvaux et al. (2022)

the focus is on plumes originating from point sources, including short-term emissions such as gas well blowouts, while in

this study persistent source regions are detected, which also include larger-scale source regions in addition to point sources.

Despite these differences, a detailed comparison of these studies offers the opportunity to optimize the respective detection840

algorithms. The detection of known and unknown methane hotspots and the estimation of their emissions by algorithms such

as that
::::
those

:
described in this study provide important knowledge about both anthropogenic and natural sources of methane.
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Their operational use in the future has the potential to significantly improve the emission inventories and thus contribute to a

better understanding of the evolving sources of methane in a warming world.

31



Appendix A:
::::::
Impact

::
of

::::::::::
parameter

:::::
Ndays845
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Figure 6. Illustration of the process to identify an initial potential persistent source region (iPPSR)
::::
refine

:::::
PPSR

::::
masks. (a)

:::::::
Multi-year

::
(2018-

2021)
:
∆XCH4calculated with a HPFA of 1◦ × 1◦. The detection process comprises an analysis of the monthly ∆XCH4 and σ maps for

::
In

each grid cell. This analysis ,
:::
the

::::::
fraction

::::
Fenh:

is illustrated
:::::
shown,

:::::
which

::
is
::::::::
calculated for the blue outlined grid cell. First, an

::::
3× 3

:
area

of 3× 3 grid cells (outlined in black) is defined around the considered
:::::::
respective grid cell . (b

::
see

::::
Sect.

::::
3.3.2)Next, the anomalies within

the black-outlined area are analyzed for all monthly ∆XCH4 and σ maps from 2018-2021. The number
:::
Grid

::::
cells

:::
that

:::
do

:::
not

::::::
contain

:
a
::::::
fraction

::
do

:::
not

:::::
fulfill

:::
any

:
of months Nmeas is counted in which at least one anomaly is in the 3× 3 area

::::::::
persistence

:::::::::
conditions

::::
from

::
Eq. In addition, the number of months Nenh is counted in which an enhanced anomaly is in the 3× 3 area3. For

::
The

:::::::
detected

::::::
PPSRs

::::::::::::
(black-outlined)

::
are

:
the definition

::::
result

:
of an enhanced anomaly see Sec

::
the

::::::::
detection

::::::
process

:::::::
described

::
in

::::
Sect. 3.3.2. Furthermore, the

fraction Fenh =Nenh/Nmeas is calculated. As last
::::
Some

::::
grid

:::
cells

::::
with

:::::::::
Fenh < 0.5

:::
and

:
a
:::
high

::::::::
multi-year

:::::::
∆XCH4::::

mean
:::::
would

::
be

:::::::
assigned

::
by

:::
eye

::
as part of the monthly analysis, for each grid cell within

::::
source

::::::
region.

::
To

:::
add

::::
them

::
to
:
the 3× 3 area,

::::
masks

:::
we

:::
use

:
the number of

months Ngc
enh with enhanced anomaly is counted

:::::::
following

::::
steps. (c

:
b) Multi-year ∆XCH4 with the results from the analysis described in

::::
First,

::::
mark

::
als

::::::
toseeds

:
(b

:::::
shown

::
in

:::::
green,

:::::::
definition

::
in

::::
Sect.

::::
3.3.3). In each grid cell of the black outlined area Ngc

enh is
:::
The

::::
seeds

:::
are shown

:
in
::::::

yellow.
::
(c) The conditions for an iPPSR from Eq. 3

::::::
toseeds are fulfilled, since Fenh ≥ 0.5, Nmeas ≥ 16 and Ngc

enh of central grid box

of
::::::
assigned

::
to

:
the 3× 3 area ≥ 1

::::
seeds

::::
using

::
a
::::::
random

:::::
walker

::::::::
algorithm. (d) Resulting mask (yellow

::
In

::
the

::::
final

::::
step,

:::
the grid cells )

:::
with

:
a
::::::::
multi-year

:::::::
∆XCH4 ::::

mean
:::
less

::::
than

::::
25% of the detected iPPSR. Only

::::::::
maximum

::::::::
multi-year

::::::
∆XCH4:::::

mean
:::::
within the grid cells

::::
mask

:
are

considered for
::::::
removed

::::
from

:
the mask, that have an enhanced anomaly in at least one month (Ngc

enh > 0). (e) Multi-year ∆XCH4 with all

detected iPPSR masks in that region. The algorithm is applied to each grid cell, resulting in an additional iPPSR being detected (outlined in

blue). (f) Multi-year ∆XCH4 with the final iPPSR mask, which is created by merging iPPSRs that are directly adjacent or overlapping
:::::
masks

::::::
describe

:::
the

:::::
refined

:::::
PPSRs.
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Figure 7.
::::::
Example

::
of
::::::

PPSRs
:::::::
detected

::
in

:::
two

:::::::
different

:::::::
anomaly

:::::::
datasets.

:::
(a)

::::::::
Multi-year

::::::::::
(2018-2021)

:::::::
∆XCH4::

of
:::::

South
:::::

Sudan
::::::

region

:::::::
calculated

::::
with

::
a

:::::
HPFA

::
of

::::::
4◦ × 4◦.

::::
The

::::::
detected

::::::
PPSRs

:::::::
(outlined

::
in

:::::
black)

::::
have

::::::
already

::::
been

::::::
filtered

:::
(see

::::
Sect.

::::::
3.3.4).

::
(b)

:::::
Same

::
as

:::
(a)

::
but

:::
for

:::::
HPFA

::
of
:::::::
5◦ × 5◦.

:::
(c)

:::::::::::
Corresponding

:::::::::
2018-2021

::::::
XCH4.

:::
The

::::
final

:::::
PPSR

:::::
masks

::
of

:::
the

::::::::
combined

:::::
masks

::::
from

:::::::
different

:::::::
anomaly

::::::
datasets.
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Figure 8.
::::
Final

:::::
PPSR

:::::
masks

:::::::
(outlined

::
in

:::
red)

::::
after

::::::
filtering

:::::
(Sect.

:::::
3.3.4)

:::
and

::::::::
combining

:::::
(Sect.

:::
3.4)

::::::::
processes

:::::
shown

::
for

::::::
several

::::::
regions

::
of

::
the

:::::
world.

:::
(a)

::::::::
2018-2021

:::::
XCH4:::

for
:::
the

::::::::::
southwestern

:::
part

::
of

:::
the

::::
USA

:::
and

::::::
northern

:::::::
Mexico.

::::
Some

::
of
:::
the

:::::
PPSRs

:::
are

::::::
located

::
in

:::::::::
well-known

::
oil

:::
and

:::
gas

:::::
basins

:::
like

:::
the

:::::::
Permian,

::::::::
Anadarko,

::::::
Barnett,

::::::::::
Haynesville,

::::::
Denver

:::
and

:::
San

:::::::
Joaquin.

::
(b)

:::::
Same

::
as

::
(a)

:::
but

:::
for

:::::::::::
Turkmenistan,

::::
parts

:
of
::::

Iran,
:::::::::

Uzbekistan,
::::

and
:::::::::
Kazakhstan.

:::
One

:::
of

::
the

:::::::
detected

:::::
PPSRs

:::::::
includes

:::
two

::
of

:::
the

:::::
largest

::::::
natural

::
gas

:::::
fields

::
in

:::
the

:::::
world,

::::::::
Galkynish

:::
and

:::::::::
Dauletabad.

::
(c)

:::::
Same

::
as

:::
(a)

::
but

:::
for

::::
parts

::
of
:::::::::
Queensland

::
in
::::::::

Australia.
::::
Two

:::::
PPSRs

:::
are

:::::::
detected,

:::::
which

:::
are

::::::
located

::
in

:::
the

:::::
Bowen

:::::
Basin,

::
a

:::::::::
well-known

:::
coal

::::::
mining

:::
area.

:
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Figure 9. Illustration of the automated calculation of the surrounding area for a PPSR. (a) 2018-2021 XCH4. The detected and unfiltered

PPSRs in the HPFA(5◦) anomaly dataset for the South Sudan region are shown (outlined in red). The surrounding region for the central PPSR

is calculated as follows. First the maximum extents in meridional (merext) and zonal (zonext) direction of the PPSR are calculated. (b) Next,

a rectangle (black-outlined area) is defined around the PPSR by expanding the northernmost, southernmost, westernmost and easternmost

coordinates by Lsurr , which is half of the mean of merext and zonext. If Lsurr is smaller than 0.5◦, we set it to 0.5◦ to provide a reasonable

size of the surrounding region. (c) In the last step, all grid cells outside the rectangle and all grid cells inside a source region are removed.

The grid cells with XCH4 are defined as the surrounding area of the central PPSR.

Figure 10. All PPSRs detected with the PHD algorithm grouped by the different dominant source types. The sizes of the circles scale with

the emission estimates for 2018-2021 of the PPSRs. The 10 PPSRs with the highest emission estimates are indicated with a number.
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Figure 11. Distribution of the 2018-2021 emission estimates of the detected PPSRs, as well as the corresponding cumulative distribution

(blue line). The frequency per 0.1Mtyr−1 bin associated with the distribution of the emission estimates is shown on the left y-axis and the

percentage share of the cumulative emission estimate of the total emission estimate is shown on the right y-axis. In each bin, the source types

of the PPSRs contributing to that bin are shown with the corresponding color.
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Figure 12. Results for the South Sudan region. (a) 2018-2021 XCH4 with the detected PPSR masks outlined in red. The “1” indicates that

this region is the PPSR with the highest emission estimate for 2018-2021 detected with the PHD algorithm. The black-outlined area defines

the surrounding region used to calculate the XCH4 enhancements δXCH4. (b) Time series (2018-2021) of the emission estimates E, (c)

XCH4 enhancements δXCH4 and (d) mean wind speed V. (e) Methane emissions from WetCHARTs v1.3.1 for 2019, (f) from EDGAR v6.0

for 2018 and (g) from GFEI v2.0 for 2019. The
:::::::
emission

::::::
estimate

::
of

:::
the

:::::
PPSR

::
for

:::::::::
2018-2021

:
is
::::::::::::::
4.5± 0.9Mtyr−1

:::
and

:::
the corresponding

emissions
:
of

:::
the

:::::::
databases in this PPSR are: 0.88Mtyr−1 for WetCHARTs, 0.17Mtyr−1 for EDGAR and 0.01Mtyr−1 for GFEI.

47



Figure 13.
::
As

:::
Fig.

::
12

:::
but

::
for

:::
the

::::
west

::::
coast

:
in
:::::::::::
Turkmenistan,

:::::
where

:::
the

::::
PPSR

::::
with

::
the

::::::
second

:::::
highest

:::::::
emission

::::::
estimate

::
of

::::::::::::::
3.5± 0.9Mtyr−1

::
for

::::::::
2018-2021

::
is

:::::::
detected.

:::
The

:::::::::::
corresponding

:::::::
emissions

::
of

:::
the

:::::::
databases

::
in

:::
the

::::
PPSR

::
2

:::
are:

:::::::::
0.0Mtyr−1

:::
for

::::::::::
WetCHARTs,

::::::::::
0.64Mtyr−1

:::
for

::::::
EDGAR

:::
and

:::::::::::
0.62Mtyr−1

::
for

:::::
GFEI.
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Figure 14. As Fig. 11
::
12 but for the west coast

:::
Iberá

:::::::
wetlands

:
in Turkmenistan

:::::::
Argentina, where the PPSR with the second

:::
third

:
highest

emission estimate
:
of

::::::::::::::
3.3± 1.0Mtyr−1

:
for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 2

:
3
:

are:

0.0Mtyr−1
::::::::::
0.64Mtyr−1

:
for WetCHARTs, 0.64Mtyr−1

::::::::::
0.18Mtyr−1 for EDGAR and 0.62Mtyr−1

::::::::
0.0Mtyr−1

:
for GFEI.
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Figure 15. As Fig. 11
::
12 but for the Liaoning region in China, where the PPSR with the fourth highest emission estimate

:
of

::::::::::::::
2.9± 0.9Mtyr−1

for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 4 are: 0.0Mtyr−1 for WetCHARTs, 1.3Mtyr−1 for

EDGAR and 0.49Mtyr−1 for GFEI.
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Figure 16. As Fig. 11
::
12

:
but for the Shanxi region in China, where the PPSRs with the fifth

::::::::::::::
(2.6± 0.8Mtyr−1), sixth

:::::::::::::::
(2.6± 0.7Mtyr−1)

and seventh
:::::::::::::::
(2.4± 0.7Mtyr−1) highest emission estimate for 2018-2021 is

::
are

:
detected. The corresponding emissions of the databases in

the PPSR 5, 6 and 7 are: 0Mtyr−1 for WetCHARTs, 1.2Mtyr−1 (PPSR 5), 2.8Mtyr−1 (PPSr 6) and 1.2Mtyr−1 (PPSR 7) for EDGAR

and 1.5Mtyr−1 (PPSR 5), 2.5Mtyr−1 (PPSR 6) and 1.9Mtyr−1 (PPSR 7) for GFEI.
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Figure 17. As Fig. 11
::
12 but for the region in and around Dhaka in Bangladesh, where the PPSR with the eighth highest emission esti-

mate
::
of

:::::::::::::
2.4± 0.5Mtyr−1

:
for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 8 are: 0.13Mtyr−1 for

WetCHARTs, 0.92Mtyr−1 for EDGAR and 0.02Mtyr−1 for GFEI.
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Figure 18. As Fig. 11
::
12 but for the Kuznetsk Basin in Russia, where the PPSR with the ninth highest emission estimate

:
of

::::::::::::::
2.4± 0.5Mtyr−1

for 2018-2021 is detected. The corresponding emissions of the databases in the PPSR 9 are: 0.0Mtyr−1 for WetCHARTs, 1.6Mtyr−1 for

EDGAR and 1.4Mtyr−1 for GFEI.
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Figure 19.
::
As

:::
Fig.

:::
12

:::
but

:::
for

:::
the

:::::::
Permian

:::::
Basin

::
in

:::::
USA,

:::::
where

:::
the

:::::
PPSRs

::::
with

:::
the

:::::
tenth

:::
and

::::::::
thirteenth

::::::
highest

:::::::
emission

:::::::
estimate

::
for

:::::::::
2018-2021

:::
are

:::::::
detected.

::::
The

:::::::::::
corresponding

::::::::
emissions

::
of
::::

the
:::::::
databases

:::
in

:::
the

:::::
PPSR

::
10

::::::
(blue,

::::::::::::::
2.2± 0.6Mtyr−1)

::::
and

::
13

:::::
(red,

::::::::::::::
2.0± 0.5Mtyr−1)

:::
are:

:::::::::
0.0Mtyr−1

:::
for

::::::::::
WetCHARTs,

::::::::::
1.2Mtyr−1

:::::
(PPSR

:::
10)

:::
and

::::::::::
0.59Mtyr−1

:::::
(PPSR

:::
13)

:::
for

::::::
EDGAR

:::
and

:::::::::::
0.21Mtyr−1

:::::
(PPSR

:::
10)

:::
and

::::::::::
0.14Mtyr−1

:::::
(PPSR

:::
13)

:::
for

:::::
GFEI.
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Figure A1.
::::
(left)

::::::::
2018-2021

::::::
filtered

::::::
XCH4*

::::::::
calculated

::::
from

:::::::
monthly

:::::
means

::
in

:::::
which

:::
the

::::::
number

::
of

::::
days

::
of

:::::::::
TROPOMI

:::::::::::
measurements

:::::
within

::
the

:::::
month

:::::::
(Ndays)

::
is

:
at
::::

least
:::
(a)

:
4
:::
(as

:::
Fig.

::
2

:::
(b)),

:::
(c)

:
8
:::
and

:::
(e)

:::
16.

:::::
(right)

:::
The

:::::::::::
corresponding

::::::
number

::
of

::::::
months

:::::::::
contributing

::
to

:::
the

:::::::
multi-year

:::::
mean.
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